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First published in 1973, this influential work discusses Einstein’s General
Theory of Relativity to show how two of its predictions arise: first, that the
ultimate fate of many massive stars is to undergo gravitational collapse to
form ‘black holes’; and second, that there was a singularity in the past at the
beginning of the universe. Starting with a precise formulation of the theory,
including the necessary differential geometry, the authors discuss the signifi-
cance of spacetime curvature and examine the properties of a number of
exact solutions of Einstein’s field equations. They develop the theory of the
causal structure of a general spacetime, and use it to prove a number of
theorems establishing the inevitability of singularities under certain condi-
tions. A foreword contributed by Abhay Ashtekar and a new preface from
George Ellis help put the volume into context of the developments in the
field over the past 50 years.

STEPHEN W. HAWKING (1942-2018) was an English theoretical physicist,
cosmologist, and author who was director of research at the Centre for
Theoretical Cosmology at the University of Cambridge. He was the
Lucasian Professor of Mathematics at Cambridge from 1979 to 2009 and is
the author of numerous books, including the international best-seller A Brief
History of Time.

GEORGE F. R. ELLIS is the emeritus distinguished professor of complex
systems in the Department of Mathematics and Applied Mathematics at the
University of Cape Town, South Africa. He is considered one of the world’s
leading theorists in cosmology and, in recent years, he has been prolific in
areas relating to the philosophy of science. He is author or co-author of more
than a dozen books, including Relativistic Cosmology (with Roy Maartens
and Malcolm MacCallum).
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Foreword
to the 50" Anniversary Edition

In 1921, Cambridge University Press published Arthur Eddington’s mono-
graph, The Mathematical Theory of Relativity, arguably the first systematic
and comprehensive textbook on the theory. It embodies Eddington’s view
that “The investigation of the external world is a quest for structure rather
than substance’. It had a deep influence on how researchers thought of
general relativity in subsequent decades.

Five decades later, the Press published another monograph, The Large
Scale Structure of Space-Time by Stephen Hawking and George Ellis in
1973. Hailed immediately as ‘a masterpiece, written by sure hands’ it too
focuses on ‘structure’ — but now on global aspects of spacetime structure,
which had been almost entirely ignored in earlier books. The monograph
solidified the new approach to understand gravitational phenomena, intro-
duced by Roger Penrose through his use of global methods and causal
structures, which transformed the way the community thought of strong
gravity. It has had even greater impact on the development of relativistic
gravity than Eddington’s monograph because it helped shape the ‘golden
age’ of general relativity during the 1970s.

Before the appearance of this monograph, contributions to general rela-
tivity were by and large dominated by tensor calculus and partial differential
equations in local coordinates. The monograph served as a powerful catalyst
that changed our way of understanding the physics of general relativity.
Thanks in large part to its influence, a sizable fraction of researchers started
thinking invariantly, in geometrical terms, using spacetime diagrams and
light cones. The emphasis shifted to global issues. In subsequent years, this
shift led to numerous novel directions that created new frontiers of research:
black hole uniqueness theorems; detailed investigations of the cosmic cen-
sorship hypothesis; introduction of quasi-local horizons that now play a key
role in numerical relativity; and unforeseen connections between relativistic
gravitation, quantum physics, and statistical mechanics, through black holes.

[x]



FOREWORD TO THE 50 " ANNIVERSARY EDITION

The transformative impact of the monograph is not confined to physics and
astrophysics. Even in the mathematical community that provides us with
rigorous proofs, the emphasis has shifted from local results based on partial
differential equations to ‘geometric analysis’ that focuses on global existence
and uniqueness results for solutions to Einstein’s equations, obtained using
geometric structures that emphasize causality.

Hallmarks of this monograph are its conceptual clarity, mathematical
rigor, and concise and precise statements that capture the essential under-
lying structures. The authors reverse the Machian view that the local laws are
determined by large scale structure, and instead ‘take the local physical laws
to be experimentally determined’ and explore ‘what these laws imply about
the large scale structure of the universe’. This insightful switch guides their
discussion throughout the monograph.

The organization of the monograph was also novel at the time. It used
invariantly defined structures in differential geometry to present general
relativity through a systematic set of postulates. Five decades have passed
and yet this approach continues to be contemporary! Similarly, almost
nothing new can be added to the presentation of the physical effects of
curvature on test particles, the detailed mathematical discussion of energy
conditions and the masterful treatment of the global structure of space-
times — such as de Sitter, anti-de Sitter, Schwarzschild, and Kerr — that
continue to feature prominently in the contemporary literature. The discus-
sion of singularity theorems and strong field dynamics associated with gravi-
tational collapse and binary black hole mergers are the crowning
achievements of the monograph. A series of influential works from the then
Soviet school led by Khalatnikov and Lifshitz suggested that the formation of
singularities in gravitational collapse is an artifact of the high degree of
symmetry assumed in the analysis, and generic solutions would be
singularity-free. The comprehensive treatment of singularity theorems in
the monograph was instrumental in causing a decisive shift in the commu-
nity, away from this paradigm. Similarly, at the time, many astronomers and
physicists did not believe that black holes were physical entities. Inclusion of
a detailed discussion of black hole dynamics in a monograph shows incred-
ible foresight and confidence. It has been handsomely rewarded through
discoveries of binary black hole mergers by the LIGO-Virgo collaboration.
Discussions of these events routinely include not only the technical state-
ments from the monograph, but even some of the diagrams!

In his preface to this golden jubilee edition, George Ellis has included a list
of topics that are not covered by the book. Almost all of them refer to
discoveries that were made since publication. However, the omission of

[xi]
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gravitational waves is somewhat puzzling, given that Bondi, Sachs, Penrose,
Newman, and others had developed the subject in detail during the preced-
ing decade, and the subject matter is intimately related to the large scale
structure of spacetime. Its inclusion would have made the work even more
prescient! Perhaps it was left out because the volume is already close to 400
pages. Indeed, even as it stands, the monograph is peerless in the way it
served to guide the subsequent developments in the field.

When it first appeared, I was a graduate student. I distinctly remember the
excitement we all felt as we slowly absorbed the grandeur of the new vistas
that the monograph opened before us. When I moved to Oxford as a
postdoctoral researcher, I eagerly went to Blackwell’s to buy my own paper-
back copy, which had just appeared. At £3.95, it is the best book purchase
I have ever made! I still refer to it.

Abhay Ashtekar
University Park, PA, USA

[xii]
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Anniversary Edition

This book, written by Stephen Hawking (see Carr et al. 2019) and myself
between 1971 and 1973, presents a systematic overview of Einstein’s
General Theory of Relativity as a theory of gravity. We wrote it in the middle
of what has come to be called the ‘golden age’ of general relativity: a time
when a largely ignored theory, regarded by many as being at a dead end,
transitioned to being truly dynamic, with the foundations being laid for
developments in many directions in later years.

The book is dedicated to our research supervisor Dennis Sciama, FRS
(Ellis and Penrose 2010), who was an outstanding physicist and supervisor.
I arrived in Cambridge from South Africa in 1961, and started as his first
research student in the University Department of Applied Mathematics and
Theoretical Physics (DAMTP) in January 1962. Stephen arrived from Oxford
in 1962, and the third student in the group who would focus on related issues
in general relativity and cosmology was Brandon Carter, who came from
Australia in 1962. The convivial way the research group was run is recalled in
Ellis and Penrose (2010) and Ellis (2014).

The key issue we were involved in at the time was whether the universe
had a beginning or not. Dennis was debating with Fred Hoyle, Hermann
Bondi, and Tommy Gold whether their Steady State theory of the universe,
which had no start, was a better model than the Standard Model, which did
have a beginning. However, the Steady State model did not obey the field
equations of general relativity: would models obeying those equations neces-
sarily have a beginning? This would represent the earliest time the universe
existed. Using the data of the time, this seemed to be the case: the universe
would start at a singularity, an edge to spacetime where physical quantities
such as the density would diverge. The universe — and physics — did not exist
before that time.

However, the standard cosmological models had a highly simplified geom-
etry: they were spherically symmetric about every point as well as being

[xiii]



PREFACE TO THE 50" ANNIVERSARY EDITION

spatially homogeneous, hence there was no rotation or acceleration that
could avoid a singularity. We wanted to know if more general geometries
could allow a non-singular start. Our method was to look at specific aniso-
tropic but spatially homogeneous models; but we could not prove it
either way.

A related issue, driven primarily by John Wheeler at Princeton, was whether
a spacetime singularity would occur at the centre of gravitational collapse when
a star had used up all its nuclear energy. The same issue arose: simple models
said this would happen when they were over a certain mass, and collapse to a
singularity was unavoidable if they were massive enough. But they were
spherically symmetric models. Could rotation of a collapsing star avoid a
singularity?

The whole topic was blown wide open in 1965 by a truly innovative paper
by Roger Penrose, who was then at Birkbeck College, London, showing
singularities would indeed occur at the endpoint of gravitational collapse
(Penrose 1965); he would much later receive the Nobel Prize in Physics for
this work (Nobel Prize 2020). The paper involved innovative examination of
global properties and causal structures of spacetimes, energy inequalities
rather than exact equations, the crucial concept of a closed trapped
surface, and a characterization of existence of singularities via geodesic
incompleteness.

The Cambridge group (mainly Hawking, Carter, and myself) went into
overdrive to learn the details of these new methods, jointly with colleagues
Felix Pirani and others from King’s College, London, and DAMTP visitors
John Wheeler and Charles Misner from Princeton and Maryland, respect-
ively. Stephen and I wrote a paper showing that these methods would indeed
work in the restricted case of spatially homogeneous models (Hawking and
Ellis 1965), and he then rapidly produced a series of existence proofs for
generic cases, based on the idea of a time-reversed closed trapped surface
together with suitable causal conditions. An initial such theorem was given in
both Hawking (1965) and the last chapter of his PhD thesis (Hawking
1966a); a further series of singularity theorems with different details were
presented in Hawking (1966b, 1966¢, 1966d, 1967).

The Adams Prize is awarded jointly by the Cambridge University Faculty
of Mathematics and St John’s College for an essay in a stipulated topic in
mathematics. In 1966 the topic was ‘Geometric Problems of Relativity, with
special reference to the foundations of general relativity and cosmology’. The
adjudicators were H. Bondi, W. V. D. Hodge, and A. G. Walker. The prize
was awarded to Roger Penrose for his essay entitled ‘An analysis of the
structure of spacetime’, presenting the methods he had used in his 1965

[xiv]
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paper, while Stephen was awarded an auxiliary prize for his essay
‘Singularities and the geometry of spacetime’ (Hawking 1966e), reprinted
with commentary in Ellis (2014). This essay summarized global properties of
general relativity theory, and on this basis developed a series of cosmological
singularity theorems he had proved. Neither Adams Prize essay was pub-
lished as a book, although preprint versions of both were circulated in the
relativity community.

Further important work developing causal relations and global properties
was carried out inter alia by Penrose, Robert Geroch (who was at Birkbeck
with Penrose), Carter, Hawking, Werner Israel, Misner, and others; see for
example Hawking (1968, 1970, 1971). A major summary theorem was
developed by Hawking and Penrose (1970).

On the observational side, crucial new data became available about the
nature of the expanding universe via the discovery in 1965 of the Cosmic
Microwave Background (CMB) radiation, giving evidence of the nature of
the evolution of the early universe and the existence of a Hot Big Bang
epoch. Its implications were rapidly explored by Sciama, his students John
Stewart and Martin Rees, and many others. Stephen and I wrote a paper
(Hawking and Ellis 1968) showing how the very existence of that radiation
showed a time-reversed closed trapped universe must exist in the early
universe, and so provide evidence of the existence of an initial singularity.

To follow these developments in detail required pulling together a variety
of mathematical topics that were not well known to the relativity community
at that time, so a summary book was discussed between Stephen and myself
in 1966, encouraged by Dennis. A contract for such a book with Cambridge
University Press was accepted by them on 24 April 1967 and signed on
18 May 1967 under the title Singularities, Causality and Cosmology, to
be published in the Cambridge Series on General Relativity, edited by
W. H. McCrea and D. W. Sciama. By the time of publication in 1973 this
had become the Cambridge Monographs on Mathematical Physics, with
J. C. Polkinghorne added as third editor of the series.

The real writing of the book only started in 1970, with the focus being in
1971-1972, because we were both doing other things. This was the pre-
LaTeX era. Stephen was having trouble coordinating his muscles so I typed
the text myself, inserting handwritten equations in the text sent to the
Press, who typeset it and sent proofs back. Then several rounds of correc-
tions to proofs followed. The diagrams were drawn by a draftsman in
the geography department under my guidance. The writing was completed
in January 1973. The title had changed to The Large Scale Structure of
Space-Time.

[xv]
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The book is a book of its time, and does not include major developments
that have come later. In particular, it was written at a key time in the
development of black hole theory; while it made a contribution to that
development, later papers and books developed that theory much further.
The same is true for cosmology and gravitational waves. Nobel prizes have
been awarded in each of these areas since those times.

We were asked later on if we wished to do an updated version to take some
of these developments into account, but declined. Given Stephen’s physical
condition, this would not have been practical. In any case, the book had a
terse style because giving all details in depth would have made it much
longer, and no more readable. We did not want to change this.

What this book does not cover:

¢ Alternative theories of gravity: Scalar—tensor theories, higher-order gravity
theories

¢ Experimental tests of general relativity theory: Solar systems tests, tests via
cosmology and astrophysics

¢ Inflationary cosmology and structure formation: Structure formation in cos-
mology, CMB anisotropies, dark energy/dark matter existence and nature

¢ Black hole thermodynamics: The four laws of black hole thermodynamics,
Hawking radiation, astrophysical black holes: formation, accretion, and associated
radiation

¢ Gravitational radiation: Carrying off energy and momentum, emission and
detection of gravitational radiation

¢ Quantum gravity: Supergravity, string theory, loop quantum gravity, etc.; and the

wave function of the universe

Major advances have been made in all these areas since the book was written.

What has changed?

A key point to notice is the following: the status of the energy conditions has
completely altered due to the advent of inflationary cosmology theory
through the pioneering work of Alan Guth (1981), followed by many others
(Guth 2007). This is now widely accepted as a correct model of the universe
(Mukhanov 2005, Peter and Uzan 2009), with a slow rolling scalar field
dominating early universe dynamics so that the energy conditions required
for the singularity theorems no longer hold (Ellis 2014).

This possible breakdown of the energy conditions is essentially recognized
in our book on page 96, but it is suggested there that this will be on such a
small scale as to not alter the conclusions as regards the singularity theorems.
But now that dominance of scalar field dynamics in the early universe is

[xvi]
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generally accepted, that conclusion is called into question. Singularity-free
universes are in principle possible (Ellis and Maartens 2003).

However, in the end, the issue of whether the universe has a start or not
depends on a resolution of the issue of the nature of quantum gravity: and we
simply do not know what that answer is. The key question that led to the
book is unsolved. But we acknowledge this in the conclusion on page 364.

George Ellis
Cape Town
June 2022
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Preface

The subject of this book is the structure of space—time on length-scales from
1073 ¢m, the radius of an elementary particle, up to 10%® ¢m, the radius of
the universe. For reasons explained in chapters 1 and 3, we base our
treatment on Einstein’s General Theory of Relativity. This theory leads to
two remarkable predictions about the universe: first, that the final fate of
massive stars is to collapse behind an event horizon to form a ‘black hole’
which will contain a singularity; and secondly, that there is a singularity in our
past which constitutes, in some sense, a beginning to the universe. Our
discussion is principally aimed at developing these two results. They depend
primarily on two areas of study: first, the theory of the behaviour of families
of timelike and null curves in space-time, and secondly, the study of the
nature of the various causal relations in any space-time. We consider these
subjects in detail. In addition we develop the theory of the time-develop-
ment of solutions of Einstein’s equations from given initial data. The discus-
sion is supplemented by an examination of global properties of a variety of
exact solutions of Einstein’s field equations, many of which show some rather
unexpected behaviour.

This book is based in part on an Adams Prize Essay by one of us (S. W. H.).
Many of the ideas presented here are due to R. Penrose and R. P. Geroch, and
we thank them for their help. We would refer our readers to their review
articles in the Battelle Rencontres (Penrose (1968)), Midwest Relativity
Conference Report (Geroch (1970c¢)), Varenna Summer School Proceedings
(Geroch (1971)), and Pittsburgh Conference Report (Penrose (1972b)). We
have benefited from discussions and suggestions from many of our colleagues,
particularly B. Carter and D. W. Sciama. Our thanks are due to them also.

Cambridge S. W. Hawking
January 1973 G. F. R. Ellis
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1
The role of gravity

The view of physics that is most generally accepted at the moment is
that one can divide the discussion of the universe into two parts. First,
there is the question of the local laws satisfied by the various physical
fields. These are usually expressed in the form of differential equations.
Secondly, there is the problem of the boundary conditions for these
equations, and the global nature of their solutions. This involves
thinking about the edge of space—time in some sense. These two parts
may not be independent. Indeed it has been held that the local laws
are determined by the large scale structure of the universe. This view
is generally connected with the name of Mach, and has more recently
been developed by Dirac (1938), Sciama (1953), Dicke (1964), Hoyle
and Narlikar (1964), and others. We shall adopt a less ambitious
approach: we shall take the local physical laws that have been experi-
mentally determined, and shall see what these laws imply about the
large scale structure of the universe.

There is of course a large extrapolation in the assumption that the
physical laws one determines in the laboratory should apply at other
points of space-time where conditions may be very different. If they
failed to hold we should take the view that there was some other
physical field which entered into the local physical laws but whose
existence had not yet been detected in our experiments, because it
varies very little over a region such as the solar system. In fact most of
our results will be independent of the detailed nature of the physical
laws, but will merely involve certain general properties such as the
description of space-time by a pseudo-Riemannian geometry and the
positive definiteness of enecgy density.

The fundamental interactions at present known to physics can be
divided into four classes: the strong and weak nuclear interactions,
electromagnetism, and gravity. Of these, gravity is by far the weakest
(the ratio G'm?[e? of the gravitational to electric force between two
electrons is about 10~%°). Nevertheless it plays the dominant role in
shaping the large scale structure of the universe. This is because the
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strong and weak interactions have a very short range (~ 10~13cm or
less), and although electromagnetism is a long range interaction, the
repulsion of like charges is very nearly balanced, for bodies of macro-
scopic dimensions, by the attraction of opposite charges. Gravity on
the other hand appears to be always attractive. Thus the gravitational
fields of all the particles in a body add up to produce a field which, for
sufficiently large bodies, dominates over all other forces.

Not only is gravity the dominant force on a large scale, but it is a
force which affects every particle in the same way. This universality
was first recognized by Galileo, who found that any two bodies fell
with the same velocity. This has been verified to very high precision
in more recent experiments by Eotvos, and by Dicke and his collabo-
rators (Dicke (1964)). It has also been observed that light is deflected
by gravitational fields. Since it is thought that no signals can travel
faster than light, this means that gravity determines the causal
structure of the universe, i.e. it determines which events of space-time
can be causally related to each other.

These properties of gravity lead to severe problems, for if a suffi-
ciently large amount of matter were concentrated in some region, it
could deflect light going out from the region so much that it was in fact
dragged back inwards. This was recognized in 1798 by Laplace, who
pointed out that a body of about the same density as the sun but
250 times its radius would exert such a strong gravitational field that
no light could escape from its surface. That this should have been
predicted so early is so striking that we give a translation of Laplace’s
essay in an appendix.

One can express the dragging back of light by a massive body more
precisely using Penrose’s idea of a closed trapped surface. Consider
a sphere J surrounding the body. At some instant let 7~ emit a flash
of light. At some later time £, the ingoing and outgoing wave fronts
from J will form spheres 7, and 7, respectively. In a normal situa-
tion, the area of J; will be less than that of 7 (because it represents
ingoing light) and the area of 7, will be greater than that of J
(because it represents outgoing light; see figure 1). However if a suffi-
ciently large amount of matter is enclosed within 7, the areas of J,
and J, will both be less than that of 7 . The surface 7 is then said to
be a closed trapped surface. As ¢ increases, the area of 7, will get
smaller and smaller provided that gravity remains attractive, i.e. pro-
vided that the energy density of the matter does not become negative.
Since the matter inside J~ cannot travel faster than light, it will be
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trapped within a region whose boundary decreases to zero within a
finite time. This suggests that something goes badly wrong. We shall
in fact show that in such a situation a space-time singularity must
occur, if certain reasonable conditions hold.

One can think of a singularity as a place where our present laws of
physics break down. Alternatively, one can think of it as representing
part of the edge of space-time, but a part which is at a finite distance
instead of at infinity. On this view, singularities are not so bad, but one
still has the problem of the boundary conditions. In other words, one
does not know what will come out of the singularity.

(@)

O

FIGURE 1. At some instant, the sphere 7 emits a flash of light. At a later time,
the light from a point p forms a sphere & around p, and the envelopes J ; and
T 4 form the ingoing and outgoing wavefronts respectively. If the areas of both
T, and I, are less than the area of 7, then J is a closed trapped surface.

There are two situations in which we expect there to be a sufficient
concentration of matter to cause a closed trapped surface. The first is
in the gravitational collapse of stars of more than twice the mass of
the sun, which is predicted to occur when they have exhausted their
nuclear fuel. In this situation, we expect the star to collapse to a singu-
larity which is not visible to outside observers. The second situation is
that of the whole universe itself. Recent observations of the microwave
background indicate that the universe contains enough matter to
cause a time-reversed closed trapped surface. This implies the exist-
ence of a singularity in the past, at the beginning of the present epoch
of expansion of the universe. This singularity is in principle visible to
us. It might be interpreted as the beginning of the universe.
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In this book we shall study the large scale structure of space—time
on the basis of Einstein’s General Theory of Relativity. The predic-
tions of this theory are in agreement with all the experiments so far
performed. However our treatment will be sufficiently general to cover
modifications of Einstein’s theory such as the Brans-Dicke theory.

While we expect that most of our readers will have some acquain-
tance with General Relativity, we have endeavoured to write this
book so that it is self-contained apart from requiring a knowledge of
simple calculus, algebra and point set topology. We have therefore
devoted chapter 2 to differential geometry. Our treatment is reason-
ably modern in that we have formulated our definitions in a manifestly
coordinate independent manner. However for computational con-
venience we do use indices at times, and we have for the most part
avoided the use of fibre bundles. The reader with some knowledge of
differential geometry may wish to skip this chapter.

In chapter 3 a formulation of the General Theory of Relativity is
given in terms of three postulates about a mathematical model for
space-time. This model is a manifold .# with a metric g of Lorentz
signature. The physical significance of the metric is given by the first
two postulates: those of local causality and of local conservation of
energy—momentum. These postulates are common to both the General
and the Special Theories of Relativity, and so are supported by the
experimental evidence for the latter theory. The third postulate, the
field equations for the metric g, is less well experimentally established.
However most of our results will depend only on the property of the
field equations that gravity is attractive for positive matter densities.
This property is common to General Relativity and some modifications
such as the Brans-Dicke theory.

In chapter 4, we discuss the significance of curvature by considering
its effects on families of timelike and null geodesics. These represent
the paths of small particles and of light rays respectively. The curva-
ture can be interpreted as a differential or tidal force which induces
relative accelerations between neighbouring geodesics. If the energy—
momentum tensor satisfies certain positive definite conditions, this
differential force always has a net converging effect on non-rotating
families of geodesics. One can show by use of Raychaudhuri’s equation
(4.26) that this then leads to focal or conjugate points where neigh-
bouring geodesics intersect.

To see the significance of these focal points, consider a one-dimen-
sional surface & in two-dimensional Euclidean space (figure 2). Let p
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be a point not on&. Then there will be some curve from & to p which
is shorter than, or as short as, any other curve from % to p. Clearly
this curve will be a geodesic, i.e. a straight line, and will intersect &
orthogonally. In the situation shown in figure 2, there are in fact three
geodesics orthogonal to# which pass through p. The geodesic through
the point 7 is clearly not the shortest curve from % to p. One way of
recognizing this (Milnor (1963)) is to notice that the neighbouring

F1cure 2. The line pr cannot be the shortest line from p to &%, because there is
a focal point ¢ between p and 7. In fact either px or py will be the shortest line
from p to &.

geodesics orthogonal to & through u and v intersect the geodesic
through » at a focal point ¢ between# and p. Then joining the segment
uq to the segment ¢p, one could obtain a curve from & to p which had
the same length as a straight line p. However as ugp is not a straight
line, one could round off the corner at g to obtain a curve from % to p
which was shorter than rp. This shows that rp is not the shortest curve
from & to p. In fact the shortest curve will be either xp or yp.

One can carry these ideas over to the four-dimensional space-time
manifold .# with the Lorentz metric g. Instead of straight lines, one
considers geodesics, and instead of considering the shortest curve one
considers the longest timelike curve between a point p and a spacelike
surface & (because of the Lorentz signature of the metric, there will
be no shortest timelike curve but there may be a longest such curve).
This longest curve must be a geodesic which intersects.# orthogonally,
and there can be no focal point of geodesics orthogonal to % between
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& and p. Similar results can be proved for null geodesics. These results
are used in chapter 8 to establish the existence of singularities under
certain conditions.

In chapter 5 we describe a number of exact solutions of Einstein’s
equations. These solutions are not realistic in that they all possess
exact symmetries. However they provide useful examples for the suc-
ceeding chapters and illustrate various possible behaviours. In
particular, the highly symmetrical cosmological models nearly all
possess space-time singularities. For a long time it was thought that
these singularities might be simply a result of the high degree of
symmetry, and would not be present in more realistic models. It will
be one of our main objects to show that this is not the case.

In chapter 6 we study the causal structure of space—time. In Special
Relativity, the events that a given event can be causally affected by,
or can causally affect, are the interiors of the past and future light
cones respectively (see figure 3). However in General Relativity the
metric ¢ which determines the light cones will in general vary from
point to point, and the topology of the space-time manifold .# need
not be that of Euclidean space R%. This allows many more possibilities.
For instance one can identify corresponding points on the surfaces
&, and &, in figure 3, to produce a space—time with topology R2 x S.
This would contain closed timelike curves. The existence of such a
curve would lead to causality breakdowns in that one could travel into
one’s past. We shall mostly consider only space—times which do not
permit such causality violations. In such a space-time, given any
spacelike surface #, there is a maximal region of space-time (called
the Cauchy development of &) which can be predicted from knowledge
of data on &. A Cauchy development has a property (‘Global hyper-
bolicity ’) which implies that if two points in it can be joined by a time-
like curve, then there exists a longest such curve between the points.
This curve will be a geodesic.

The causal structure of space—time can be used to define a boundary
or edge to space-time. This boundary represents both infinity and the
part of the edge of space-time which is at a finite distance, i.e. the
singular points.

In chapter 7 we discuss the Cauchy problem for General Relativity.
We show that initial data on a spacelike surface determines a unique
solution on the Cauchy development of the surface, and that in a
certain sense this solution depends continuously on the initial data.
This chapter is included for completeness and because it uses a number
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Future light cone
Future

/[ %

Time
> Space P
Space
Past light cone
/©\ )

Ficure 3. In Special Relativity, the light cone of an event p is the set of all
light rays through p. The past of p is the interior of the past light cone, and the
future of p is the interior of the future light cone.

of results of the previous chapter. However it is not necessary to read
it in order to understand the following chapters.

In chapter 8 we discuss the definition of space-time singularities.
This presents certain difficulties because one cannot regard thesingular
points as being part of the space-time manifold .#.

We then prove four theorems which establish the occurrence of
space-time singularities under certain conditions. These conditions
fall into three categories. First, there is the requirement that gravity
shall be attractive. This can be expressed as an inequality on the
energy-momentum tensor. Secondly, there is the requirement that
there is enough matter present in some region to prevent anything
escaping from that region. This will occur if there is a closed trapped
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surface, or if the whole universe is itself spatially closed. The third
requirement is that there should be no causality violations. However
this requirement is not necessary in one of the theorems. The basic
idea of the proofs is to use the results of chapter 6 to prove there must
be longest timelike curves between certain pairs of points. One then
shows that if there were no singularities, there would be focal points
which would imply that there were no longest curves between the pairs
of points.

We next describe a procedure suggested by Schmidt for constructing
a boundary to space-time which represents the singular points of
space-time. This boundary may be different from that part of the
causal boundary (defined in chapter 6) which represents singularities.

In chapter 9, we show that the second condition of theorem 2 of
chapter 8 should be satisfied near stars of more than 1} times the solar
mass in the final stages of their evolution. The singularities which occur
are probably hidden behind an event horizon, and so are not visible
from outside. To an external observer, there appears to be a ‘black
hole’ where the star once was. We discuss the properties of such black
holes, and show that they probably settle down finally to one of the
Kerr family of solutions. Assuming this to be the case, one can place
certain upper bounds on the amount of energy which can be extracted
from black holes. In chapter 10 we show that the second conditions of
theorems 2 and 3 of chapter 8 should be satisfied, in a time-reversed
sense, in the whole universe. In this case, the singularities are in our
past and constitute a beginning for all or part of the observed universe.

The essential part of the introductory material is that in §3.1, §3.2
and § 3.4. A reader wishing to understand the theorems predicting the
existence of singularities in the universe need read further only chap-
ter 4,§6.2-§6.7,and § 8.1 and § 8.2. The application of these theorems
to collapsing stars follows in §9.1 (which uses the results of appen-
dix B); the application to the universe as a wholeis given in § 10.1, and
relies on an understanding of the Robertson—-Walker universe models
(§5.3). Our discussion of the nature of the singularities is contained
in §8.1, §8.3-§ 8.5, and § 10.2; the example of Taub-NUT space (§ 5.8)
plays an important part in this discussion, and the Bianchi I universe
model (§5.4) is also of some interest.

A reader wishing to follow our discussion of black holes need read
only chapter 4, §6.2-§6.6, §6.9, and §9.1, §9.2 and §9.3. This discus-
sion relies on an understanding of the Schwarzschild solution (§5.5)
and of the Kerr solution (§5.6).
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Finally a reader whose main interest is in the time evolution
properties of Einstein’s equations need read only §6.2-§6.6 and
chapter 7. He will find interesting examples given in §5.1, §5.2 and
§5.5.

We have endeavoured to make the index a useful guide to all the
definitions introduced, and the relations between them.



2
Differential geometry

The space-time structure discussed in the next chapter, and assumed
through the rest of this book, is that of a manifold with a Lorentz
metric and associated affine connection.

In this chapter, we introduce in § 2.1 the concept of a manifold and
in §2.2 vectors and tensors, which are the natural geometric objects
defined on the manifold. ‘A discussion of maps of manifolds in §2.3
leads to the definitions of the induced maps of tensors, and of sub-
manifolds. The derivative of the induced maps defined by a vector
field gives the Lie derivative defined in §2.4; another differential
operation which depends only on the manifold structure is exterior
differentiation, also defined in that section. This operation occurs in
the generalized form of Stokes’ theorem.

An extra structure, the connection, is introduced in §2.5; this
defines the covariant derivative and the curvature tensor. The connec-
tion is related to the metric on the manifold in §2.6; the curvature
tensor is decomposed into the Weyl tensor and Ricci tensor, which are
related to each other by the Bianchi identities.

In the rest of the chapter, a number of other topics in differential
geometry are discussed. The induced metric and connection on a
hypersurface are discussed in §2.7, and the Gauss—Codacci relations
are derived. The volume element defined by the metric is introduced
in §2.8, and used to prove Gauss’ theorem. Finally, we give a brief
discussion in §2.9 of fibre bundles, with particular emphasis on the
tangent bundle and the bundles of linear and orthonormal frames.
These enable many of the concepts introduced earlier to be reformu-
lated in an elegant geometrical way. §2.7 and §2.9 are used only at
one or two points later, and are not essential to the main body of the
book.

[10]
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2.1 Manifolds

A manifold is essentially a space which is locally similar to Euclidean
space in that it can be covered by coordinate patches. This structure
permits differentiation to be defined, but does not distinguish intrin-
sically between different coordinate systems. Thus the only concepts
defined by the manifold structure are those which are independent of
the choice of a coordinate system. We will give a precise formulation
of the concept of a manifold, after some preliminary definitions.

Let R* denote the Euclidean space of n dimensions, that is, the set
of all n-tuples (2!, 2%, ...,2") (— o0 < a* < 00) with the usual topology
(open and closed sets are defined in the usual way), and let $ R* denote
the ‘lower half’ of B, i.e. the region of R" for which 2! < 0. Amap ¢ of
an open set @ < R* (respectively 3R") to an open set 0' = R™ (respec-
tively L R™) is said to be of class Cr if the coordinates (2, 2’3, ..., 2'™) of
the image point ¢(p) in @' are r-times continuously differentiable
functions (the rth derivatives exist and are continuous) of the co-
ordinates (2,22 ...,2") of p in @. If a map is C7 for all » > 0, then it is
said to be C*. By a C°® map, we mean a continuous map.

A function f on an open set @ of R" is said to be locally Lipschitz if
for each open set < @ with compact closure, there is some constant
K such that for each pair of points p,qe%, |f(p)—f(g)| < K |p—4q|,
where by |p| we mean

{@ (@) + @*(P)*+ ... + @ (p) .

A map ¢ will be said to be locally Lipschitz, denoted by C1-, if the
coordinates of ¢(p) are locally Lipschitz functions of the coordinates
of p. Similarly, we shall say that a map ¢ is Cr— if it is C"~1 and if the
(r—1)th derivatives of the coordinates of ¢(p) are locally Lipschitz
functions of the coordinates of p. In the following we shall usually only
mention C7, but similar definitions and results hold for C—.

If 2 is an arbitrary set in R (respectively 1R"), a map ¢ from £ to
a set ' < R™ (respectively 3R™) is said to be a C" map if ¢ is the
restriction to & and #’ of a Cr map from an open set @ containing &
to an open set @' containing &'.

A O n-dimensional manifold M is a set A together with a C” atlas
{%,, ¢,}, that is to say a collection of charts (%,, ¢,) where the %, are
subsets of .# and the ¢, are one—one maps of the corresponding %, to
open sets in R™ such that

(1) the %, cover A ,i.e. # =U%,,

a
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(2) if %, n s is non-empty, then the map
P 0Ppt: Pp(Uy N\ Upg) —> Do U N Up)

is a C" map of an open subset of B to an open subset of B (see figure 4).

Each %, is a local coordinate neighbourhood with the local coordinates
2% (@ = 1ton)defined by the map ¢, (i.e.if p € %,, then the coordinates
of p are the coordinates of ¢,(p) in R*). Condition (2) is the requirement
that in the overlap of two local coordinate neighbourhoods, the
coordinates in one neighbourhood are Cr functions of the coordinates
in the other neighbourhood, and vice versa.

¢a(%a)

F1GURE 4. In the overlap of coordinate neighbourhoods %, and % 4, coordinates
are related by a O" map @,0 ¢z

Another atlas is said to be compatible with a given CT atlas if their
union is a Cr atlas for all .#. The atlas consisting of all atlases com-
patible with the given atlas is called the complete atlas of the manifold;
the complete atlas is therefore the set of all possible coordinate
systems covering /.

The topology of .# is defined by stating that the open sets of .#
consist of unions of sets of the form %, belonging to the complete atlas.
This topology makes each map ¢, into a homeomorphism.

A Cr differentiable manifold with boundary is defined as above, on
replacing ‘R*’ by ‘}R™’. Then the boundary of #, denoted by 0.4, is
defined to be the set of all points of .# whose image under a map ¢, lies
on the boundary of } B in R"*. 0.# is an (r — 1)-dimensional C” manifold
without boundary.
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These definitions may seem more complicated than necessary. How-
ever simple examples show that one will in general need more than one
coordinate neighbourhood to describe a space. The two-dimensional
Euclidean plane R? is clearly a manifold. Rectangular coordinates
(x, y; —o0<x <00, —00 <y <oo) cover the whole plane in one
coordinate neighbourhood, where ¢ is the identity. Polar coordinates
(r,0) cover the coordinate neighbourhood (r > 0, 0 < @ < 2m); one
needs at least two such coordinate neighbourhoods to cover R2 The
two-dimensional cylinder C? is the manifold obtained from R? by identi-
fying the points (z,y) and (x+ 27,y). Then (z,y) are coordinates in
a neighbourhood (0 <z < 27, —00 <y < 00) and one needs two
such coordinate neighbourhoods to cover C% The Mobius strip is the
manifold obtained in a similar way on identifying the points (z, ) and
(x + 27, —y). The unit two-sphere S? can be characterized as the surface
in R® defined by the equation (21)2+ (22)%+ (23)% = 1. Then

(x%2% —1<a?2<1,—1<a3< 1)

are coordinates in each of the regions 2! > 0, 2! < 0, and one needs six
such coordinate neighbourhoods to cover the surface. In fact, it is not
possible to cover S% by a single coordinate neighbourhood. The
n-sphere S™ can be similarly defined as the set of points

(1) 4+ (22)2+ ... + (x"+1)2 = 1
in Rr+1,

A manifold is said to be orientable if there is an atlas {%,, ¢,} in the
complete atlas such that in every non-empty intersection %, n %, the
Jacobian |0xi/ox'l| is positive, where (2),...,2") and (2%, ...,2'") are
coordinates in %, and %, respectively. The Mobius strip is an example
of a non-orientable manifold.

The definition of a manifold given so far is very general. For most
purposes one will impose two further conditions, that .# is Hausdorff
and that .# is paracompact, which will ensure reasonable local
behaviour.

A topological space . is said to be a Hausdorff space if it satisfies
the Hausdorff separation axiom: whenever p, g are two distinct points
in #, there exist disjoint open sets %, ¥ in A such that pe %, ge¥".
One might think that a manifold is necessarily Hausdorff, but this is
not so. Consider, for example, the situation in figure 5. We identify the
points b, b’ on the two lines if and only if x, = y,- < 0. Then each point
is contained in a (coordinate) neighbourhood homeomorphic to an
open subset of B1. However there are no disjoint open neighbourhoods
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b «

> ° x
(x = ) (x=0)

b o

-o- L K)
(y = yy) (y=0)

FIGURE 5. An example of a non-Hausdorff manifold. The two lines above are
identical for x = y < 0. However the two points a (x = 0) and a’(y = 0) are
not identified.

U,V satisfying the conditions a € %, a’ € ¥", where a is the point x = 0
and a' is the point y = 0.

An atlas {%,, ¢,} is said to be locally finite if every point p € # has
an open neighbourhood which intersects only a finite number of the
sets %,. M is said to be paracompact if for every atlas {#,, $,} there
exists a locally finite atlas {¥7, {5} with each %7 contained in some %,.
A connected Hausdorff manifold is paracompact if and only if it has
a countable basis, i.e. there is a countable collection of open sets such
that any open set can be expressed as the union of members of this
collection (Kobayashi and Nomizu (1963), p. 271).

Unless otherwise stated, all manifolds considered will be paracompact,
connected C° Hausdorff manifolds without boundary. It will turn out
later that when we have imposed some additional structure on .# (the
existence of an affine connection, see §2.4) the requirement of para-
compactness will be automatically satisfied because of the other
restrictions.

A function f on a C* manifold .# is a map from .# to R*. It is said to
be of class C* (r < k) at a point p of #, if the expression fo @, of f on
any local coordinate neighbourhood %, is a C" function of the local
coordinates at p; and f is said to be a C function on a set ¥~ of A if
fis a Cr function at each point pe¥".

A property of paracompact manifolds we will use later, is the fol-
lowing: given any locally finite atlas {#,, §,} on a paracompact C*
manifold, one can always (see e.g. Kobayashi and Nomizu (1963),
p. 272) find a set of C* functions g, such that

(1) 0 < g, < 1on.#,for each a;

(2) the support of g,, i.e. the closure of the set {p e .#: g,(p) + 0}, is
contained in the corresponding %,;

(3) X g,(p) =1, forall pe 4.
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Such a set of functions will be called a partition of unity. The result
is in particular true for C* functions, but is clearly not true for analytic
functions (an analytic function can be expressed as a convergent
power series in some neighbourhood of each point p € .#, and so is zero
everywhere if it is zero on any open neighbourhood).

Finally, the Cartesian product & x # of manifolds .7, & is a mani-
fold with a natural structure defined by the manifold structures of
o, & for arbitrary points p e &, g€ #, there exist coordinate neigh-
bourhoods %, ¥ containing p, g respectively, so the point (p, g) € & x %
is contained in the coordinate neighbourhood % x ¥” in &/ x # which
assigns to it the coordinates (z%,y’), where «* are the coordinates of p
in % and y’ are the coordinates of ¢ in ¥".

2.2 Vectors and tensors

Tensor fields are the set of geometric objects on a manifold defined in
a natural way by the manifold structure. A tensor field is equivalent
to a tensor defined at each point of the manifold, so we first define
tensors at a point of the manifold, starting from the basic concept of
a vector at a point.

A C% curve A(t) in A is a C* map of an interval of the real line R!into
A . The vector (contravariant vector) (9/t),|, tangent to the C! curve
A(t) at the point A(t,) is the operator which maps each C? function f at
A(f,) into the number (9f/ét), | ,,; that is, (9f/0t), is the derivative of fin
the direction of A(f) with respect to the parameter ¢. Explicitly,

(@),

The curve parameter ¢ clearly obeys the relation (9/0t),t = 1.
If («1, ...,2™) are local coordinates in a neighbourhood of p,

(af) Com A ¥ _dd o
),

o i1 db [y, 02Ty  dE 02
(Here and throughout this book, we adopt the summation convention
whereby a repeated index implies summation over all values of that
index.) Thus every tangent vector at a point p can be expressed as
a linear combination of the coordinate derivatives

(8/6Y)| 5 - -, (0/02™)| -

Conversely, given a linear combination V#(9/0x7)|, of these operators,
where the Vi are any numbers, consider the curve A(f) defined by

= lim < {f(A(t +9) ~JA0)} 2.1)

[] 8—0

A
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2I(A(t)) = x/(p) + ¢V, for ¢ in some interval [ —¢, €]; the tangent vector
to this curve at p is V9(9/027)|,. Thus the tangent vectors at p form
a vector space over R! spanned by the coordinate derivatives (9/027)|,,
where the vector space structure is defined by the relation

(@X +BY)f = «(Xf)+B(Yf)

which is to hold for all vectors X, ¥, numbers «, £ and functions f.
The vectors (9/dx7), are independent (for if they were not, there
would exist numbers V7 such that Vi(9/0x7)|,, = 0 with at least one V7
non-zero; applying this relation to each coordinate z* shows

Vioak|oxl = VE =0,

a contradiction), so the space of all tangent vectors to .# at p, denoted
by T,(.#) or simply 7, is an n-dimensional vector space. This space,
representing the set of all directions at p, is called the tangent vector
space to A at p. One may think of a vector VeT), as an arrow at p,
pointing in the direction of a curve A(¢) with tangent vector V at p,
the ‘length’ of V being determined by the curve parameter ¢ through
the relation V(¢) = 1. (As V is an operator, we print it in bold type;
its components V7, and the number V(f) obtained by V acting on a
function f, are numbers, and so are printed in italics.)

If {E,} (@ = 1 to n) are any set of n vectors at p which are linearly
independent, then any vector VT, can be written V = V°E, where
the numbers {V%} are the components of V with respect to the basis
{E,} of vectors at p. In particular one can choose the E, as the coordi-
nate basis (9/0x?)|,; then the components V¢ = V(z%) = (dz?/dt)|, are
the derivatives of the coordinate functions 2! in the direction V.

A one-form (covariant vector) w at p is a real valued linear function
on the space T}, of vectors at p. If X is a vector at p, the number into
which w maps X will be written {w, X); then the linearity implies that

(w,aX +Y) = alw, X) + f{w,Y)

holds for all a, e R! and X,YeT,. The subspace of T, defined by
{w,X) = (constant) for a given one-form w, is linear. One may there-
fore think of a one-form at p as a pair of planes in 7}, such that if
{w,X) = 0 the arrow X lies in the first plane, and if (w,X) =1 it
touches the second plane.

Given a basis {E,} of vectors at p, one can define a unique set of
n one-forms {E?} by the condition: E* maps any vector X to the
number X* (the ¢th component of X with respect to the basis {E,}).
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Then in particular, (E% E,) = 62,. Defining linear combinations of
one-forms by the rules

(aw + 0, X) = a{w,X) + {0, X)

for any one-forms w, v and any «, feR, Xe T, one can regard {E?}
as a basis of one-forms since any one-form w at p can be expressed as
w = w; E? where the numbers w; are defined by w; = (w, E;). Thus the
set, of all one forms at p forms an n-dimensional vector space at p, the
dual space T'*,, of the tangent space 7j,. The basis {E*} of one-forms is
the dual basis to the basis {E,} of vectors. For any weT* , X €T, one
can express the number (w, X) in terms of the components w,, X* of
w, X with respect to dual bases {E?}, {E,} by the relations

(w,X) = (w; E}, X'E}) = 0, X".
Each foaction f on 4 defines a one-form df at p by the rule: for
each vector X, df,X) = Xf.

dfis called the differential of f. If (x1, ..., 2") are local coordinates, the
set of differentials (dz!,dz?,...,dz") at p form the basis of one-forms
dual to the basis (9/0x!, 9/0x?, ..., 9[0x™) of vectors at p, since

(dat, 0foxy = oxiloxt = &7
In terms of this basis, the differential d f of an arbitrary function f is
given by df = (9foxt) dast.
If df is non-zero, the surfaces {f = constant} are (n— 1)-dimensional
manifolds. The subspace of 7}, consisting of all vectors X such that
{df,X) = 0 consists of all vectors tangent to curves lying in the
surface {f = constant} through p. Thus one may think of df as a
normal to the surface {f = constant} at p. If & # 0, adf will also be
a normal to this surface.

From the space T, of vectors at p and the space T'*, of one-forms
at p, we can form the Cartesian product

Hﬁ:T*pr*px...xT*pr}Dprx...pr,

r factors s factors

i.e. the ordered set of vectors and one-forms (n},...,q",Y;,...,Y,)
where the Ys and s are arbitrary vectors and one-forms respectively.

A tensor of type (r, s) at p is a function on II¢ which is linear in each
argument. If T is a tensor of type (r, s) at p, we write the number into
which T maps the element (v, ...,%", Y,, ..., Y,) of IIf as

T, ..., Yy, ..., Yy).
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Then the linearity implies that, for example,
Tt ...,n",aX+8Y,Y,,....Y) =a. T, ..., X,Y,,...,Y,)
+8.TqY, ..., Y,Y,,....Y,)
holds for all ¢, fe R and X, Y€ T,
The space of all such tensors is called the tensor product
Tip)=T,8..0T,T*,®...QT*,.
N’ h—v———}
r factors s factors
In particular, T4(p) = T, and T(p) = T*,.

Addition of tensors of type (, s) is defined by the rule: (T + T") is the
tensor of type (r,s) at p such that for all Y;e T}, W/ eT*,

T+T)0, . Yo, ., ) = Tl .., Yy, ., Y,)
+T'mY ..., Y, ..., X))
Similarly, multiplication of a tensor by a scalar « € R! is defined by the
rule: («T) is the tensor such that for all Y;eT}, n/eT*,
@)oYy, .., Y) =a. T, ..., Yy, ..., Y,).

With these rules of addition and scalar multiplication, the tensor
product T%(p) is a vector space of dimension n+¢ over R1.

Let X;eT, (¢ =1 to r) and w/eT*, (j=1 to s). Then we shall
denote by X; ® ... ® X, ® 0! ® ... ® w* that element of T%(p) which
maps the element (v, ...,%",Y,, ..., Y,) of II¢ into

L XD % X)X (@, Y (et Y.

Similarly, if ReT(p) and SeT%(p), we shall denote by R® S that
element of T{}(p) which maps the element (n!, ...,q+,Y,,..., Y, +g)
of I1¢12 into the number

B, ..., 0% Y, ..., Y,) S, ..., ntte, Yeinr oo Yoip):

With the product ®, the tensor spaces at p form an algebra
over R.
If {E,}, {E%} are dual bases of 7}, T'*, respectively, then

{E;,®...0E,  E"® ... ® E%}, (@;,b; run from 1 to n),

will be a basis for T%(p). An arbitrary tensor T € 7%(p) can be expressed
in terms of this basis as

T =Tu-,. ,E, ®.. Q0F, E"®...® Ex
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where {T@--%, 1 are the components of T with respect to the dual
bases {E,}, {E?} and are given by

Talma'bl...b, — T(Ean, veny E“', Ebl’ ceey Ebs)'

Relations in the tensor algebra at p can be expressed in terms of the
components of tensors. Thus

\a;...a —_ ay...q ‘a,...q
(T+T)aany, =Ty o +T 00y
vor — Ay... Q,
(@T)t0ny gy = . T00ry s

\ay... —_ ay... ’
TRT)™ Py by = Tortny g T 0r+1%4mp L by

Because of its convenience, we shall usually represent tensor relations
in this way.

If {E,} and {E%} are another pair of dual bases for 7}, and 7'* , they
can be represented in terms of {E,} and {E<} by

E, =?.,°E, (2.2)
where @2 is an n x n non-singular matrix. Similarly
E? = o7 Ee (2.3)

where @, is another » x n non-singular matrix. Since {E,}, {E%} are
dual bases,

(sb'a’ = <Eb’; Ea’> = <(Db,b Eb, (I)a,a Ea> = (Da'a q)blb 8ab = (I)a'a (I)b'a’

i.e. @ 2, O% areinverse matrices, and 6%, = ©2,, OV,
The components 7'%1--%r, ., of a tensor T with respect to the
dual bases {E,}, {E*} are given by

Tal"'arbll...b"; = T(Eal g seey Ea', Eb'l’ ...,Ebl ).

8

They are related to the components 7'%--4r, , of T with respect to
the bases {E,}, {E%} by

Ty, by = T,y P¥1g, o Dy D 21 Dy b (2.4)

The contraction of a tensor T of type (r,s), with components

Tab--d.  with respect to bases {E,}, {E%}, on the first contravariant

and first covariant indices is defined to be the tensor C}(T) of type

(r—1,s—1) whose components with respect to the same basis are
Tab...dafmg, ie.

CT) =T®-4, E,®..0E;QF®..Q®E:.
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If {E,}, {E%} are another pair of dual bases, the contraction C}(T)
defined by them is

ONT)=T4,, E®..QE;,QE'®...E"
= ma'a mah' Th’b,.‘.dla"r'..'g’ @blb e led @flj' coe Qg'y
E,®..QE,®QFE ... @ Er
=74 E®. @ERE®.. QF =C(T),

so the contraction C} of a tensor is independent of the basis used in its
definition. Similarly, one could contract T over any pair of contra-
variant and covariant indices. (If we were to contract over two contra-
variant or covariant indices, the resultant tensor would depend on the
basis used.)

The symmetric part of a tensor T of type (2, 0) is the tensor S(T)
defined by 1
S(T) (ny,me) = 21 {T(n1,M2) + T (0o, m1)}

for all n,,m,€T'*,. We shall denote the components S(T) of S(T) by
T@b; then 1
T(ab) — §_' {Tab + Tba}_

Similarly, the components of the skew-symmetric part of T will be
denoted by

| =

Tiab) = — (Tab _ Ta},

[ 3

In general, the components of the symmetric or antisymmetric part of
a tensor on a given set of covariant or contravariant indices will be
denoted by placing round or square brackets around the indices. Thus

b...
T(a,...a,) !

1 “r

1 . .1
= —{sum over all permutations of the indices a, to a, (T}, ,%"f
r! p 1 ay.
and
T[al,..a,]bmf

1 . . o
= {alternating sum over all permutations of the indices
' a, to a, (T, o)}

For example,

Kooy = H{EK%ea+ Ko+ K% gy — K%ge— K% — K%gep}-



