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Introduction
David Masser

On the first page of the Bibliography are listed earlier works about some of the
topics treated in this monograph. In particular the books of Gelfond, Schneider
and Siegel are universally regarded as milestones in the development of the
theory of transcendental numbers. Each book was based largely on the author’s
own breakthroughs.

The present monograph represented a similar milestone. Chapters 2, 3, 4,
5, 9, 10, and to a lesser extent Chapters 6, 8, cover material due to the author
Alan Baker. This material and Baker’s own further developments of it earned
him a Fields Medal in 1970.

Of course it is the material in Chapter 2 that constitutes the heart of his
achievement. This is explained in the first two pages with a characteristic
brevity and modesty. Here we wish to complement this with the following
less brief and modest account.

The essential ideas can be conveyed through the special case of his
Theorem 2.1 for n = 2,3, even ignoring the extra 1 that appears there.

We start with n = 2. It amounts to the impossibility of

β log α = log α′ (1)

for α,α′ non-zero algebraic numbers and β irrational algebraic. Of course this
is the Gelfond–Schneider Theorem of 1934. It also follows from Theorem 6.1
of Chapter 6, and we proceed to sketch the argument.

We assume (1) and we will obtain a contradiction. Following Gelfond we
construct a non-zero polynomial F , say in Z[x,y], such that

f (z) = F(ez,eβz) (2)

has many zeroes. More precisely we need the derivatives

f (t)(s log α) = 0 (3)

ix
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for a certain range of integers

t < T , 1 ≤ s ≤ S (4)

with T ,S integers to be suitably chosen later. Thus we have zeroes at
log α, . . . ,S log α and moreover of multiplicity at least T . The point is that
the functions ez,eβz in (2) take the values

elog α = α, eβ log α = elog α′ = α′

at say z = log α; and these are algebraic numbers. Similarly at s log α and
with multiplicities. Thus the conditions (3) are homogeneous linear equations
in the coefficients of F . Under appropriate assumptions relating T ,S to the
degree of F , these can be solved non-trivially; and using things like Lemma 1
of Chapter 2 or Lemma 1 of Chapter 6 one can make sure that the resulting
coefficients are not too large.

Next, Gelfond used analytic techniques to show that the values f (t)(s log α)

are very small on a range larger than (3). Compare (8) of Chapter 2 and the
use of Cauchy’s Theorem in section 5 of Chapter 6. These values are still
algebraic numbers, and then arithmetic techniques show that they are in fact
zero. Compare Lemma 3 of Chapter 2 or Lemma 3 of Chapter 6 (nowadays one
tends to use heights, with a definition slightly different from that of Chapter 1).

Together these lead to (3) for the new range

t < 2T , 1 ≤ s ≤ 2S (5)

slightly larger than (4) (this is not quite consistent with Baker’s remark near
the end of section 1 of Chapter 2 or the method of section 5 of Chapter 6, but
it simplifies the proof a little).

And now the step from (4) to (5) can be iterated, and even indefinitely.
This provides infinite multiplicities, and so this f must be identically zero.
Taking into account the irrationality of β, we see that this implies that F is
also identically zero; our required contradiction.

Next for n = 3 we have to reach a similar contradiction from

β1 log α1 + β2 log α2 = log α′ (6)

instead of (1), where α1,α2,α
′ are non-zero algebraic and β1,β2 are algebraic,

this time with 1,β1,β2 linearly independent over Q. Even this was a new result.
Baker’s first step looks natural: to construct now

f (z1,z2) = F(ez1,ez2,eβ1z1+β2z2) (7)
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instead of (2) with many zeroes; but no-one had written this down before.
Still less had anyone considered multiplicities, now defined by the partial
derivatives (

∂

∂z1

)t1
(

∂

∂z2

)t2

f (s log α1,s log α2) = 0 (8)

instead of (3). Note that there is no (s1 log α1,s2 log α2) here, because we do
not have the Cartesian product situation for C2 mentioned in section 1 of
Chapter 2. In fact our (s log α1,s log α2) lie on a complex line in C2.

Baker took a range

t1 + t2 < T, 1 ≤ s ≤ S (9)

instead of (4), and the problem is then to increase this as in (5).
Now the experts know that the world of two complex variables is very

different from that of a single variable. Possibly Baker did not know this.
Anyway, to this day no-one knows how to reach t1 + t2 < 2T as in (5).

He probably started by reducing to C via

g(z) = f (z log α1,z log α2). (10)

Then we deduce

g(t)(s) = 0 (t < T , 1 ≤ s ≤ S).

The twin analytic-arithmetic argument then shows that g(s) = 0 for a
larger range of s, that is, f (s log α1,s log α2) = 0. However, as it stands
we cannot deduce even g′(s) = 0 because differentiation in (10) introduces
transcendental numbers, so we cannot get at, say,(

∂

∂z1

)
f (s log α1,s log α2) (11)

in this way.
Now that we have set up the scene, Baker’s solution to this problem may

seem in retrospect obvious: we use (10) with f replaced by (∂/∂z1)f . For
the new g we get almost (9), but now only for t < T − 1. However this tiny
loss does not affect the argument, and we find indeed that (11) vanishes on the
larger range of s.

And what about higher derivatives? To get at some(
∂

∂z1

)τ1
(

∂

∂z2

)τ2

f (s log α1,s log α2)

we use (10) with f replaced by (∂/∂z1)
τ1(∂/∂z2)

τ2f . We then get (9) for
t < T − τ1 − τ2. If we aim for all τ1,τ2 just with τ1 + τ2 < T , then hardly
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anything remains of the multiplicity; so it is wiser to restrict to say τ1 + τ2 <

T/2, thus securing t < T/2. Now the loss is less tiny, but still acceptable.
We end up with (8) on the range, say,

t1 + t2 < T/2, 1 ≤ s ≤ 8S. (12)

As (9) is about T 2S/2 conditions and (12) is about T 2S conditions, we do
actually have more zeroes.

But now another problem arises: we cannot iterate indefinitely the step from
(9) to (12).

In fact a related problem had turned up before Baker; for example when
trying to show that the two sides of (1) cannot even be too near to each other.
And indeed Baker was able to extend the classical methods; in this case the
argument of section 5 of Chapter 2 amounts to the use of a non-vanishing
Vandermonde determinant.

All this extends to n logarithms, and then to include 1 as in Theorem 2.1. In
our notation assuming

β0 + β1 log α1 + · · · + βn−1 log αn−1 = log α′, (13)

we have to use

f (z0,z1, . . . ,zn−1) = F(z0,e
z1, . . . ,ezn−1,eβ0z0+β1z1+···+βn−1zn−1)

in place of (7) at (s,s log α1, . . . ,s log αn−1) – compare Lemma 2 of Chapter 2.
This completes our account of Chapter 2. On the way, we have mentioned

the problem of approximate versions of (1), and the corresponding generaliza-
tions to (6) and (13) are treated in Chapter 3. It is these that are needed for the
applications in Chapters 4 and 5.

It is these applications, to Diophantine equations and class numbers, that
were the most spectacular of his achievements. It is enough here to cite the
first ever upper bounds for the solutions of Mordell’s equation y2 = x3 + k

with a history going back to 1621, and the verification of Gauss’s conjectures
from 1801 about imaginary quadratic fields with class numbers h = 1 and
h = 2.

But one should not overlook the less spectacular material in Chapter 6,
whose subsequent developments (by others) will be described in the afterword.



Preface

Fermat, Euler, Lagrange, Legendre . . . introitum ad penetralia huius divinae
scientiae aperuerunt, quantisque divitiis abundent patefecerunt

Gauss, Disquisitiones Arithmeticae

The study of transcendental numbers, springing from such diverse sources
as the ancient Greek question concerning the squaring of the circle, the
rudimentary researches of Liouville and Cantor, Hermite’s investigations on
the exponential function and the seventh of Hilbert’s famous list of 23
problems, has now developed into a fertile and extensive theory, enriching
widespread branches of mathematics; and the time has seemed opportune to
prepare a systematic treatise. My aim has been to provide a comprehensive
account of the recent major discoveries in the field; the text includes, more
especially, expositions of the latest theories relating to linear forms in the
logarithms of algebraic numbers, of Schmidt’s generalization of the Thue–
Siegel–Roth theorem, of Shidlovsky’s work on Siegel’s E-functions and of
Sprindžuk’s solution to the Mahler conjecture. Classical aspects of the subject
are discussed in the course of the narrative; in particular, to facilitate the
acquisition of a true historical perspective, a survey of the theory as it existed
at about the turn of the century is given at the beginning. Proofs in the subject
tend, as will be appreciated, to be long and intricate, and thus it has been
necessary to select for detailed treatment only the most fundamental results;
moreover, generally speaking, emphasis has been placed on arguments which
have led to the strongest propositions known to date or have yielded the
widest application. Nevertheless, it is hoped that adequate references have been
included to associated works.

Notwithstanding its long history, it will be apparent that the theory of
transcendental numbers bears a youthful countenance. Many topics would

xiii
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certainly benefit by deeper studies and several famous longstanding problems
remain open. As examples, one need mention only the celebrated conjectures
concerning the algebraic independence of e and π and the transcendence of
Euler’s constant γ , the solution to either of which would represent a major
advance. If this book should play some small rôle in promoting future progress,
the author will be well satisfied.

The text has arisen from numerous lectures delivered in Cambridge,
America and elsewhere, and it has also formed the substance of an Adams
Prize essay.

I am grateful to Dr D. W. Masser for his kind assistance in checking the
proofs, and also to the Cambridge University Press for the care they have taken
with the printing.

Cambridge, 1974 A.B.








