




ORTHOGONAL POLYNOMIALS IN THE SPECTRAL
ANALYSIS OF MARKOV PROCESSES

In pioneering work in the 1950s, S. Karlin and J. McGregor showed that the
probabilistic aspects of certain Markov processes can be studied by analyzing the
orthogonal eigenfunctions of associated operators. In the decades since, many
authors have extended and deepened this surprising connection between orthogonal
polynomials and stochastic processes.

This book gives a comprehensive analysis of the spectral representation of the
most important one-dimensional Markov processes, namely discrete-time
birth–death chains, birth–death processes and diffusion processes, and brings
together all the main results from the extensive literature on the topic with detailed
examples and applications. It also features an introduction to the basic theory of
orthogonal polynomials and has a selection of exercises at the end of each chapter.
The book is suitable for graduate students with a solid background in stochastic
processes as well as researchers in orthogonal polynomials and special functions
who want to learn about applications of their work to probability.
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This series is devoted to significant topics or themes that have wide application in
mathematics or mathematical science and for which a detailed development of the
abstract theory is less important than a thorough and concrete exploration of the
implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their
subjects comprehensively. Less important results may be summarized as exercises
at the ends of chapters. For technicalities, readers can be referred to the
bibliography, which is expected to be comprehensive. As a result, volumes are
encyclopedic references or manageable guides to major subjects.



Encyclopedia of Mathematics and Its Applications

All the titles listed below can be obtained from good booksellers or from Cambridge University Press.
For a complete series listing visit www.cambridge.org/mathematics.

131 H. Morimoto Stochastic Control and Mathematical Modeling
132 G. Schmidt Relational Mathematics
133 P. Kornerup and D. W. Matula Finite Precision Number Systems and Arithmetic
134 Y. Crama and P. L. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and

Engineering
135 V. Berthé and M. Rigo (eds.) Combinatorics, Automata and Number Theory
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Preface

The connection between stochastic processes, special functions and orthogonal
polynomials has a long history. From the 1930s N. Wiener and later K. Itô knew
about the connection between Hermite polynomials and integration theory with
respect to Brownian motion. Around the 1950s many authors like M. Kac [80],
W. Feller [53]–[56], E. Hille [71], W. Ledermann and G. E. Reuter [111], J. F. Barrett
and D. G. Lampard [6], S. Karlin and J. McGregor [82]–[89], H. P. McKean
[116] and D. G. Kendall [103] established an important connection between the
transition probability functions of diffusion processes, continuous-time birth–death
processes and discrete-time birth–death chains (in this order) by means of a spectral
representation. This spectral representation is based on the spectral analysis of the
infinitesimal operator associated with these special types of Markov processes and
many probabilistic aspects can be analyzed in terms of the corresponding orthogonal
eigenfunctions and eigenvalues. In the following years these relationships were
developed further, finding connections with other stochastic processes like random
matrices, Sheffer systems, Lévy processes, stochastic integration theory or Stein’s
method. For a brief account of all these relations see [129].

The main goal of this monograph is to give a comprehensive analysis of the main
results related to the spectral representation of the most important one-dimensional
Markov processes, namely discrete-time birth–death chains (also called random
walks in some references, see [87]), birth–death processes and diffusion processes.
Since the pioneering work of S. Karlin and J. McGregor in the 1950s, many authors
have contributed to finding more applications of the spectral representation of the
transition probability functions of these processes. This monograph tries to gather
all the important results that appear in many publications over the last 60 years in
one common text. The contents of this monograph served as a one-semester graduate
advanced course taught at the Instituto de Matemáticas of the Universidad Nacional
Autónoma de México in Fall 2018. The interested audience can be divided into



x Preface

two categories. On the one hand, it is intended for graduate students who have a
solid background in the field of stochastic processes but are not so familiar with the
theory of special functions and orthogonal polynomials. This monograph will give
them alternative methods and ways of studying basic Markov processes by spectral
methods. On the other hand, the book may also serve for students or researchers who
are familiar with the theory of special functions and orthogonal polynomials but want
to learn more about the connection between basic Markov processes and orthogonal
polynomials.

In the experience of the author, graduate students are typically more familiar with
probability theory and stochastic processes. This is the reason why an introduction
to orthogonal polynomials is included in Chapter 1. This chapter also includes
the concept of the Stieltjes transform and some of its properties, which will play
a very important role in the spectral analysis of discrete-time birth–death chains
and birth–death processes. A section about the spectral theorem for orthogonal
polynomials (or Favard’s theorem) will give insights about the relation between
tridiagonal Jacobi matrices and spectral probability measures. We will focus then on
the classical families of orthogonal polynomials, both of a continuous and a discrete
variable. These families are characterized by the fact that they are eigenfunctions
of a second-order differential or difference operator of hypergeometric type solving
certain Sturm–Liouville problems. These classical families are part of the so-called
Askey scheme.

In Chapter 2 we will perform the spectral analysis of discrete-time birth–death
chains on N0, which are the most basic and important discrete-time Markov chains.
These chains are characterized by a tridiagonal one-step transition probability matrix.
We will obtain the so-called Karlin–McGregor integral representation formula of the
n-step transition probability matrix in terms of orthogonal polynomials with respect
to a probability measure ψ with support inside the interval [−1,1]. We will give
an extensive collection of examples related to orthogonal polynomials, including
gambler’s ruin, the Ehrenfest model, the Bernoulli–Laplace model and the Jacobi
urn model. The chapter ends with applications of the Karlin–McGregor formula
to probabilistic aspects of discrete-time birth–death chains, such as recurrence,
absorption, the strong ratio limit property and the limiting conditional distribution.
Finally we will apply spectral methods to discrete-time birth–death chains on Z,
which are not so much studied in the literature.

In Chapter 3 we will perform the spectral analysis of birth–death processes on
N0, which are the most basic and important continuous-time Markov chains. In
this case, these processes will be characterized by an infinitesimal operator, which
is a tridiagonal matrix whose spectrum is inside the interval (−∞,0]. Again, we
will obtain the Karlin–McGregor integral representation formula of the transition



Preface xi

probability functions of the process in terms of orthogonal polynomials with respect
to a probability measure ψ with support inside the interval [0,∞). Although many
of the results are similar or equivalent to those of discrete-time birth–death chains,
the methods and techniques are quite different. For instance, in this chapter, we will
have to prove that the Karlin–McGregor representation formula is in fact a transition
probability function of a birth–death process, something that was not necessary
for the case of discrete-time birth–death chains. We will also provide an extensive
collection of examples related to orthogonal polynomials, including the M/M/k
queue with 1 ≤ k ≤ ∞ servers, the continuous-time Ehrenfest and Bernoulli–Laplace
urn models, a genetics model of Moran and linear birth–death processes. As in the
case of discrete-time birth–death chains, we will apply the Karlin–McGregor formula
to probabilistic aspects of birth–death processes, such as processes with killing,
recurrence, absorption, the strong ratio limit property, the limiting conditional
distribution, the decay parameter, quasi-stationary distributions and bilateral birth–
death processes on Z.

In Chapter 4 we will perform the spectral analysis of one-dimensional diffusion
processes, which are the most basic and important continuous-time Markov pro-
cesses where now the state space is a continuous interval contained in R. Diffusion
processes are characterized by an infinitesimal operator, which is a second-order
differential operator with a drift and a diffusion coefficient. We will obtain a
spectral representation of the transition probability density of the process in terms
of the orthogonal eigenfunctions of the corresponding infinitesimal operator, for
which we will have to solve a Sturm–Liouville problem with certain boundary
conditions. An analysis of the behavior of these boundary points will also be made.
We will also give an extensive collection of examples related to special functions
and orthogonal polynomials, including Brownian motion with drift and scaling,
the Orstein–Uhlenbeck process, a population growth model, the Wright–Fisher
model, the Jacobi diffusion model and the Bessel process, among others. Finally,
we will study the concept of quasi-stationary distributions, for which the spectral
representation will play an important role.

I would like to thank F. Alberto Grünbaum for introducing me to the fascinating
connection between orthogonal polynomials and Markov processes. Back in 2009
I was visiting him as an undergraduate student at the University of California, Berke-
ley and we were studying one example of matrix-valued orthogonal polynomials
coming from group representation theory which had a nice interpretation in terms
of two-dimensional Markov chains. This was my first connection to the subject that
brought me to write this monograph. I would also like to thank Eric A. van Doorn for
reading the manuscript and providing an important list of corrections and additional
material to include in the book. Unfortunately he tragically passed away before being
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able to read the final version of this book. In closing I would like to thank the staff at
Cambridge University Press for their support and cooperation during the preparation
of this book.

Manuel Domínguez de la Iglesia1

Ciudad de México

1
Partially supported by PAPIIT-DGAPA-UNAM grants IA102617 and IN104219 (México) and CONA-
CYT grant A1-S-16202 (México).



1

Orthogonal Polynomials

In this chapter we introduce some basic definitions and properties about the theory
of special functions and orthogonal polynomials on the real line. In the first section
we will introduce some basic special functions and the concept of the Stieltjes
transform, which will be used frequently in the text. In Section 1.2 we will give some
properties of the general theory of orthogonal polynomials. Section 1.3 is devoted to
the spectral theorem and in particular applied to orthogonal polynomials, in which
case it is usually called Favard’s theorem. In Sections 1.4 and 1.5 we will focus on
the so-called classical orthogonal polynomials, both of a continuous and a discrete
variable. These special families, apart from being orthogonal, are characterized by
the fact that they are eigenfunctions of a second-order differential operator (in the
continuous variable) or a second-order difference operator (in the discrete variable)
of the Sturm–Liouville type. Finally, in Section 1.6, we describe the Askey scheme,
which is a way of organizing orthogonal polynomials of hypergeometric type into a
hierarchy, where the classical orthogonal polynomials are included. This chapter is
based on references [3, 9, 16, 74, 135, 137, 142].

1.1 Some Special Functions and the Stieltjes Transform

The Gamma function is a complex-valued function that extends the domain of the
factorial function of a nonnegative integer n!. It was introduced by Euler in 1789 and
it is defined by its integral representation

�(z) =
∫ ∞

0
e−ttz−1dt, Re z > 0. (1.1)

Integrating by parts we obtain the functional equation

z�(z) = �(z + 1), Re z > 0.

The formula above can also be written as

(z)n�(z) = �(z + n), n ≥ 0,
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where (z)n is the Pochhammer symbol

(z)n =
{

1, if n = 0,

z(z + 1) · · · (z + n − 1), if n ≥ 1.
(1.2)

From here we also observe that if n is a nonnegative integer, then �(n + 1) = n!.
The Beta function is defined by the integral

B(x,y) =
∫ 1

0
tx−1(1 − t)y−1dt, Re x, Re y > 0. (1.3)

It is symmetric, i.e. B(x,y) = B(y,x), and it is related to the Gamma function by the
well-known formula

B(x,y) = �(x)�(y)

�(x + y)
.

A hypergeometric series
∑∞

n=0 cn is a series for which c0 = 1 and the ratio of con-
secutive terms is a rational function of the summation index n, i.e. one for which

cn+1

cn
= P(n)

Q(n)
,

where P(n) and Q(n) are polynomials. In this case, cn is called a hypergeometric
term. If the polynomials are completely factored, the ratio of successive terms can
be written as

cn+1

cn
= P(n)

Q(n)
= (n + a1)(n + a2) · · · (n + ap)

(n + b1)(n + b2) · · · (n + bq)(n + 1)
,

where the factor n + 1 in the denominator is present for historical reasons of notation.
From here we define the generalized hypergeometric function as

pFq

(
a1, . . . ,ap

b1, . . . ,bq
;x

)
=

∞∑
n=0

cnxn =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
. (1.4)

We can also use the following notation for generalized hypergeometric functions:

pFq(a1, . . . ,ap;b1, . . . ,bq;x).

This series is absolutely convergent for all x if p ≤ q and for |x| < 1 if p = q + 1. It
is divergent for all x �= 0 if p > q + 1, as long as the series is not finite. Observe that
when one of the parameters of the numerator ai,i = 1, . . . ,p, is a negative integer,
then the generalized hypergeometric function is a polynomial.

Many of the known special functions can be represented in terms of generalized
hypergeometric functions. For example, the simplest cases of 0F0 and 1F0 corre-
spond to the exponential series and the binomial series, respectively. Indeed,

0F0(−; − ;x) =
∞∑

n=0

xn

n!
= ex,
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1F0(a; − ;x) =
∞∑

n=0

(a)nxn

n!
=

∞∑
n=0

�(z + n)

�(a)�(n +1)
xn =

∞∑
n=0

(
a + n − 1

n

)
xn =(1 − x)−a.

If p = 2 and q = 1, the function becomes what is called the Gaussian hypergeometric
function 2F1(a,b;c;x) and it is related to the solutions of Euler’s hypergeometric
differential equation

x(1 − x)y′′(x)+ [c − (a + b + 1)x]y′(x)− aby(x) = 0. (1.5)

We will see later the relation of this equation with the Jacobi polynomials. All
families of orthogonal polynomials in the Askey scheme admit a representation in
terms of hypergeometric series, as we will see later. For more information about
generalized hypergeometric functions see [3, Chapter 2].

The Stieltjes transform (also known as the Cauchy transform) of a measure ψ
defined on R is defined as the complex-valued function

B(z;ψ) =
∫
R

dψ(x)

x − z
, z ∈ C \ R. (1.6)

This transform is related to the generating function of the moments of the measure
ψ , since, formally

B(z;ψ) = −1

z

∫
R

1

1 − x/z
dψ(x) = −1

z

∞∑
n=0

∫
R

xn

zn
dψ(x) = −

∞∑
n=0

μn

zn+1
, (1.7)

where μn = ∫
R

xndψ(x) are the moments of the measure. In the case where
supp(ψ) ⊆ [−A,A], then |μn| ≤ 2An, implying that the series (1.7) is absolutely
convergent for |z| > A. In this case, the Stieltjes transform is completely determined
in terms of the moments of the measure ψ . In general, the expansion of the Stieltjes
transform (1.6) has to be interpreted as an asymptotic expansion of the Stieltjes trans-
form B(z;ψ) as |z| → ∞.

There is a formula which allows to calculate the measureψ if we have information
about the corresponding Stieltjes transform. This formula is known as the Perron–
Stieltjes inversion formula. It has several versions, but the one we will use in this text
is included in the following result.

Proposition 1.1 ([51, Theorem X.6.1]) Let ψ be a probability measure with finite
moments and B(z;ψ) its Stieltjes transform (1.6). Then∫ b

a
dψ(x)+ 1

2
ψ({a})+ 1

2
ψ({b}) = 1

π
lim
ε↓0

∫ b

a
ImB(x + iε;ψ) dx, (1.8)

where ψ({a}) ≥ 0 is the magnitude or size of the mass at an isolated point a. If the
measure is absolutely continuous at a then ψ({a}) = 0.
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Proof Observe that

2iImB(z;ψ) = B(z;ψ)− B(z;ψ)= B(z;ψ)− B(z;ψ) =
∫
R

[
1

x − z
− 1

x − z

]
dψ(x)

=
∫
R

z − z

|x − z|2 dψ(x) = 2i
∫
R

Imz

|x − z|2 dψ(x).

Therefore

ImB(x + iε;ψ) =
∫
R

ε

|s − (x + iε)|2 dψ(s) =
∫
R

ε

(s − x)2 + ε2
dψ(s).

Integrating and exchanging integrals (which is allowed since the integrand is
positive) we have that∫ b

a
ImB(x + iε;ψ) dx =

∫
R

[∫ b

a

ε

(s − x)2 + ε2
dx

]
dψ(s).

The internal integral can be calculated explicitly by making the change of variables
y = (x − s)/ε:

χε(s) =
∫ b

a

ε

(s − x)2 + ε2
dx =

∫ (b−s)/ε

(a−s)/ε

1

1 + y2
dy = arctan y

∣∣∣∣y=(b−s)/ε

y=(a−s)/ε
.

We have that 0 ≤ χε(s) ≤ π and when we take the limit (which is also allowed using
the Lebesgue dominated convergence theorem since ψ is a probability measure and
χε(s) is bounded and positive) we have that

lim
ε↓0

χε(s) =
{
π, if a < s < b,
π
2 , if s = a or s = b.

As a consequence of the previous proposition we also have the formula∫ b

a
dψ(x) = 1

π
lim
ε↓0

lim
η↓0

∫ b−η

a+η
ImB(x + iε;ψ) dx. (1.9)

When the measure is absolutely continuous with respect to the Lebesgue measure,
i.e. dψ(x) = ψ(x) dx (abusing the notation), we have

ψ(x) = 1

π
lim
ε↓0

ImB(x + iε;ψ) = lim
ε↓0

B(x + iε;ψ)− B(x − iε;ψ)
2π i

. (1.10)

Finally, for measures that have an absolutely continuous part and a discrete part,
there is a direct way to calculate the size of the jump. Indeed, assume that
ψ = ψ̂ + ψ({a})δa, where δa(x) = δ(x − a) is the Dirac delta distribution which is
defined, as usual, by

∫
R

f (x)δ(x − a) dx = f (a). Then, since the Stieltjes transform is
linear, we have

B(z;ψ) = B(z;ψ̂)+ ψ({a})
a − z

.
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Evaluating at z = a + iε and taking imaginary parts, we have

ImB(a + iε;ψ) = ImB(a + iε;ψ̂)+ Im
ψ({a})
−iε

= ImB(a + iε;ψ̂)+ ψ({a})
ε

.

Therefore we get

ψ({a}) = εImB(a + iε;ψ)− εImB(a + iε;ψ̂). (1.11)

Taking limits as ε ↓ 0 we observe that B(a + iε;ψ̂) is bounded since ψ̂ is absolutely
continuous. Therefore the meaningful isolated points (where ψ({a}) > 0) must be
those satisfying

lim
ε↓0

ImB(a + iε;ψ) = ∞,

while the size of the jump at x = a is given by

ψ({a}) = lim
ε↓0

εImB(a + iε;ψ) ≥ 0. (1.12)

Example 1.2 Let B(z;ψ) be given by

B(z;ψ) = 1

1 − z
, z ∈ C \ {1}.

According to (1.11) there will be a pole at z = 1, so it is a candidate for a singular
part of the measure. Assume that ψ = ψ̂ + ψ({1})δ1, where ψ̂ is the absolutely
continuous part. Then, by (1.10), we have

ψ̂(x) = 1

π
lim
ε↓0

Im
1

1 − x − iε
= 1

π
lim
ε↓0

Im

(
1 − x + iε

(1 − x)2 + ε2

)
= 1

π
lim
ε↓0

ε

(1 − x)2 + ε2
.

We observe that if x �= 1, then ψ̂(x) = 0. Therefore the measure ψ consists only of a
singular part at x = 1. The value of ψ({1}) is given by (1.12) and it is easy to see that

ψ({1}) = lim
ε↓0

εImB(1 + iε;ψ) = lim
ε↓0

ε
ε

ε2
= 1.

Therefore ψ(x) = δ1(x). ♦

Example 1.3 Consider the Stieltjes transform given by

B(z;ψ) = −2z + 2
√

z2 − 1, z ∈ C \ [−1,1],

where the branch of the square root is determined by analytic continuation from
positive values for real z > 1. We observe that there are no singular points, so the
measure will consist only of an absolutely continuous part. From (1.10) we get

ψ(x) = 1

π
lim
ε↓0

ImB(x + iε;ψ)

= 1

π
lim
ε↓0

(
−2ε + 2Im

√
x2 − ε2 + 2ixε − 1

)
= 2

π
Im

√
x2 − 1.



6 Orthogonal Polynomials

The last part has only imaginary part when |x| ≤ 1. Therefore

ψ(x) = 2

π

√
1 − x2, |x| < 1,

which is the Wigner semicircle distribution. ♦

In Chapters 2 and 3 we will see several examples of computation of measures
using the Perron–Stieltjes inversion formula.

Remark 1.4 As we have seen in (1.7), the Stieltjes transform is related to the
generating function of the moments of a probability measure ψ . This is not exactly
the same as the usual moment generating function, which is defined as

MX(t) = E(etX) =
∞∑

n=0

μn
tn

n!
,

where X is the random variable associated with the probability measure ψ . This
moment generating function is more related to the Laplace transform. Indeed,
assume that the probability measure is absolutely continuous and supported on
[0,∞). Then the Laplace transform is defined by

L[ψ](s) =
∫ ∞

0
e−sxψ(x) dx.

Then we have L[ψ](−t) = MX(t). The Stieltjes transform arises naturally as an
iteration of the Laplace transform. Indeed, if we call φ(s) = L[ψ](s) then, formally,
we have

L[φ](t) =
∫ ∞

0
e−stφ(s)ds =

∫ ∞

0
e−st

(∫ ∞

0
e−suψ(u)du

)
ds

=
∫ ∞

0
ψ(u)

(∫ ∞

0
e−s(t+u)ds

)
du

=
∫ ∞

0
ψ(u)

(
− 1

t + u
e−s(t+u)

∣∣∣∣s=∞

s=0

)
du =

∫ ∞

0

ψ(u)

t + u
du, Re(t) > 0.

Therefore B(t;ψ) = L2[ψ](−t). A good reference about Stieltjes transforms in
connection with the Laplace transform can be found in Chapter VIII of [146]. ♦

1.2 General Properties of Orthogonal Polynomials

Let ψ be a positive Borel measure on R with infinite support and let us assume that
the moments

μn =
∫
R

xndψ(x), n ≥ 0,
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exist and are finite. We normalize the measure in such a way that μ0 = 1, so we
have a probability measure. Following Lebesgue’s decomposition theorem any Borel
measure on the real line can be decomposed into three measures such that

ψ = ψc + ψd + ψsc,

where ψc is absolutely continuous, ψd is discrete and ψsc is singular continuous. The
absolutely continuous measure ψc is classified by the Radon–Nikodym theorem and
can always be written (abusing the notation) as dψc(x) = ψc(x)dx, with respect to
the Lebesgue measure. The discrete measure ψd can always be written as

dψd(x) =
∑

k

ψ({xk})δ(x − xk) dx,

where k runs over a countable set, xk are the mass points, ψ({xk}) are the sizes or
magnitudes of these jumps and δ(x − a) is the Dirac delta distribution. Finally, the
singular continuous measure ψsc is defined over a set of measure 0. The Cantor
measure (the probability measure on the real line whose cumulative distribution
function is the Cantor function) is an example of a singular continuous measure.
In this text we consider positive Borel measures on R with either only an absolutely
continuous part or only a discrete part (or a combination of both).

Associated with this measure ψ we can consider the Hilbert space L2
ψ with the

inner product

( f,g)ψ =
∫
R

f (x)g(x) dψ(x), (1.13)

of all measurable real functions f such that ( f,f )ψ = ‖f ‖2
ψ < ∞. If the support of

the measure is given by S ⊆ R, then this space will be written as L2
ψ(S). When S is a

countable set, for example N0 = {0,1, . . .}, this space is usually denoted by 
2
ψ(N0).

We say that (pn(x))n is a sequence of polynomials if each element is a polynomial
of degree exactly n in the real variable x. A sequence of polynomials is monic if the
leading coefficient of each polynomial is exactly 1. A sequence of polynomials (pn)n

is orthogonal with respect to a Borel measure ψ if

(pn,pm)ψ =
∫
R

pn(x)pm(x) dψ(x) = d2
nδnm,

where d2
n = ‖pn‖2

ψ > 0. If the norm is always identically 1, we say that the poly-
nomial sequence is orthonormal and we denote it by (Pn)n. When we work with the
sequence of monic orthogonal polynomials, we will use the notation (̂Pn)n and its
norms will be denoted by ‖P̂n‖2

ψ = ζn.
Given a Borel measure ψ on R with infinite support and finite moments, it will

always be possible to build a sequence of orthogonal polynomials. A direct way is
through the Gram–Schmidt orthogonalization process applied to the set {1,x,x2, . . .}.
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This method builds the polynomials one by one taking into account that all the
previous ones have already been calculated. Specifically

P̂0(x) = 1,

P̂1(x) = x − (̂P0,x)ψ
(̂P0,P̂0)ψ

P̂0(x),

...
...

P̂k(x) = xk −
k−1∑
j=0

(̂Pj,xk)ψ

(̂Pj,P̂j)ψ
P̂j(x).

Once they have been computed, the monic polynomials can be normalized by divid-
ing them by ‖P̂k‖ψ = √

ζk. Observe that the monic orthogonal polynomials have
always real coefficients.

Another way to define orthogonal polynomials is through determinants associated
with the moments. Consider the determinant

�n =

∣∣∣∣∣∣∣∣∣
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
...

...
. . .

...
μn μn+1 · · · μ2n

∣∣∣∣∣∣∣∣∣ , �−1 = 1.

The quadratic form associated with the matrix of the previous determinant,
which we denote by (�n), is always positive definite. Indeed, for any real vector
v= (v0,v1, . . . ,vn)

T , we have that

vT(�n)v =
n∑

j,k=0

μj+kvjvk =
∫
R

⎡⎣ n∑
j=0

vjx
j

⎤⎦2

dψ(x),

which is clearly positive. Thus �n > 0,n ≥ 0. �n,n ≥ 0 are usually called Hankel
determinants.

It is easy to see that the sequence of polynomials defined by

pn(x) =

∣∣∣∣∣∣∣∣∣
μ0 μ1 · · · μn−1 1
μ1 μ2 · · · μn x
...

...
. . .

...
...

μn μn+1 · · · μ2n−1 xn

∣∣∣∣∣∣∣∣∣ , n ≥ 0, (1.14)

is orthogonal with respect to the measureψ . To see that, we simply evaluate the inner
product (pn,xm)ψ = 0,m = 0,1, . . . ,n − 1 observing that we always have a repeated
column, so the determinant is 0. Alternatively, we have (pn,xn)ψ = �n > 0. Thus

pn(x) = �n−1xn + lower degree terms,
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and we have that

(pn,pn)ψ = (pn,�n−1xn)ψ = �n−1�n.

Therefore, the polynomials

Pn(x) = 1√
�n−1�n

pn(x)

are orthonormal, and the leading coefficient is given by hn = √
�n−1/�n = ζ

−1/2
n .

The monic family can be written as

P̂n(x) = 1

�n−1
pn(x) =

√
�n

�n−1
Pn(x).

Finally, let us see another way to generate the orthogonal polynomials recurrently.
Assume that we have a sequence of orthogonal polynomials (pn)n. The polynomial
xpn(x) has degree n + 1 and can be expressed as a linear combination of the n + 1
first polynomials, i.e.

xpn(x) =
n+1∑
j=0

dn,jpj(x).

Now, multiplying by pk(x) and evaluating the inner product, it is easy to see, using
the orthogonal relations, that the coefficients dn,j = 0,j = 0,1, . . . ,n − 2. Therefore,
only the last three coefficients remain and every family of orthogonal polynomials
satisfies a three-term recurrence relation of the form

xpn(x) = anpn+1(x)+ bnpn(x)+ cnpn−1(x), n ≥ 0, p−1 = 0, (1.15)

where

an = (xpn,pn+1)ψ

(pn+1,pn+1)ψ
, bn = (xpn,pn)ψ

(pn,pn)ψ
, cn = (xpn,pn−1)ψ

(pn−1,pn−1)ψ
.

We observe that the coefficient bn is always real. Moreover, for the orthonormal
family Pn(x) we have, comparing the coefficients of xn+1 in (1.15), that an = hn/

hn+1 = √
ζn+1/ζn > 0, and that cn = (xPn,Pn−1)ψ = (Pn,xPn−1)ψ = an−1.

Therefore the sequence of orthonormal polynomials (Pn)n satisfies a three-term
recurrence relation of the form

xPn(x) = anPn+1(x)+ bnPn(x)+ an−1Pn−1(x), an > 0, bn ∈ R. (1.16)

For the monic family (̂Pn)n the three-term recurrence relation will be given by

xP̂n(x) = P̂n+1(x)+ αnP̂n(x)+ βnP̂n−1(x), P̂0(x) = 1, P̂1(x) = x − α0,

(1.17)
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where αn−1 ∈ R,βn > 0 for n ≥ 1. The relations between these coefficients and the
coefficients of the orthonormal family are given by

an =
√
ζn+1

ζn
, αn = bn, βn = ζn

ζn−1
.

Observe that ζn = βn · · ·β1.
Another way of writing this recurrence relation is in matrix form. Denoting the

column vector of orthonormal polynomials by P(x) = (P0(x),P1(x), . . .)T , we have
that xP(x) = JP(x), where J is the tridiagonal symmetric matrix

J =

⎛⎜⎜⎜⎜⎜⎝
b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·
...

...
...

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ . (1.18)

This matrix plays a very important role and it is called a Jacobi matrix. In particular,
we will find this kind of matrix in the one-step transition probability matrix of a
one-dimensional discrete-time birth–death chain and in the infinitesimal operator of
a birth–death process, as we will see in the next two chapters. The inverse result, i.e.
for a family of polynomials defined by (1.16), where there exists a positive measure
for which they are orthogonal, is known as Favard’s theorem or the spectral theorem
for orthogonal polynomials. We will see more details in Section 1.3.

The powers of J can be computed formally using orthogonality properties.
Observe that the relation xP(x) = JP(x) implies that xnP(x) = JnP(x). Therefore,
multiplying by PT(x), integrating with respect to the measure ψ and looking at the
(i,j) entry, we obtain∫

R

xnPi(x)Pj(x)dψ(x) =
∑
k≥0

∫
R

Jn
ikPk(x)Pj(x)dψ(x) = Jn

ij. (1.19)

From here we observe that the moments (μn)n of the measure ψ can be computed
from Jn

00. In general, the diagonal coefficients Jn
ii are the moments of the measure

dψi(x) = P2
i (x)dψ(x).

The identity (1.19) can be extended to any analytic function defined on supp(ψ)
of the form f (x) = ∑

n≥0 cnxn as∫
R

f (x)Pi(x)Pj(x) dψ(x) =
∑
n≥0

∫
R

cnxnPk(x)Pj(x) dψ(x) =
∑
n≥0

cnJn
ij = f (J)ij.
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For instance, the function f (x) = (1− zx)−1 with z−1 ∈ C\ supp(ψ) gives, formally,
that

(I − zJ)−1
00 =

∫
R

P2
0(x)

1 − xz
dψ(x) =

∫
R

dψ(x)

1 − xz
=

∑
n≥0

μnzn, (1.20)

i.e. the generating function of the moments of ψ . In terms of the Stieltjes transform
B(z;ψ) defined by (1.6), we have that

(I − zJ)−1
00 = −1

z
B

(
1

z
;ψ

)
. (1.21)

Theorem 1.5 Let J be the Jacobi matrix given by (1.18) and denote by J(0) the
Jacobi matrix built from J by removing the first row and column. Then we have

(I − zJ)−1
00 = 1

1 − b0z − a2
0z2(I − zJ(0))−1

00

.

Proof Write the Jacobi matrix J in (1.18) as

J =

⎛⎜⎜⎜⎝
b0 a0 · · ·
a0

0 J(0)

...

⎞⎟⎟⎟⎠ .

Using the well-known formula for the inverse of a 2 × 2 block matrix(
A B
C D

)−1

=
(
(A − BD−1C)−1 ∗

∗ ∗
)
,

applied to the matrix I − zJ, we get

(I − zJ)−1
00 =

[
1 − zb0 − a2

0z2eT
0 (I − zJ(0))−1e0

]−1 = 1

1 − zb0 − a2
0z2(I − zJ(0))−1

00

,

where e0 is the canonical vector e0 = (1,0, . . .)T .

Remark 1.6 If we assume that associated with the Jacobi matrices J and J(0) there
exist positive measures ψ and ψ(0), respectively, then we have, using (1.20), that∫ 1

−1

dψ(x)

1 − xz
= 1

1 − b0z − a2
0z2

∫ 1

−1

dψ(0)(x)

1 − xz

.

This formula relates the generating functions of the moments of the measures ψ and
ψ(0). In terms of Stieltjes transforms, relation (1.21) gives
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B(z;ψ) = − 1

z − b0 + a2
0B(z;ψ(0))

. (1.22)

♦

Example 1.7 Consider the Jacobi matrix given by

J =

⎛⎜⎜⎜⎝
0 1/2 0 0 · · ·

1/2 0 1/2 0 · · ·
0 1/2 0 1/2 · · ·
...

...
. . .

. . .
. . .

⎞⎟⎟⎟⎠ .

Then we have that J(0) = J and consequently ψ = ψ(0). From (1.22) we obtain a
quadratic equation for B(z;ψ) = B(z), given by

B2(z)+ 4zB(z)+ 4 = 0.

Therefore

B(z) = −2z ± 2
√

z2 − 1.

On the one hand, we can discard the negative solution of B(z) since as z → ∞ the
Stieltjes transform should vanish. On the other hand, the function B(z) is well defined
as a single-valued function in the complex plane from which we have removed the
interval [−1,1]. If we approach the cut from above, B(z) has a nontrivial imaginary
part coming from the square root. This square root has positive values for Re z > 1
and negative values for Re z > 1. Therefore we have

B(z;ψ) = −2z + 2
√

z2 − 1, z ∈ C \ [−1,1],

and the branch of the square root is determined by analytic continuation from positive
values of Re z > 1. This example is precisely the one studied in Example 1.3 and the
spectral measure is given by the Wigner semicircle distribution using the Perron–
Stieltjes inversion formula. ♦

Multiplying (1.16) by Pn(y) and (1.16) (for x = y) by Pn(x), and subtracting both
formulas, we get the telescopic relation

(x − y)Pn(x)Pn(y) = an[Pn+1(x)Pn(y)− Pn(x)Pn+1(y)]

− an−1[Pn(x)Pn−1(y)− Pn−1(x)Pn(y)],

which iterating, adding and dividing by x − y gives the Christoffel–Darboux formula

Kn(x,y)
.=

n∑
j=0

Pj(x)Pj(y) = an

[
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x − y

]
. (1.23)
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Taking y → x we get the confluent Christoffel–Darboux formula

n∑
j=0

P2
j (x) = an[P′

n+1(x)Pn(x)− Pn+1(x)P
′
n(x)]. (1.24)

The kernel Kn(x,y) generated by the Christoffel–Darboux formula has the reproduc-
ing kernel property, i.e for every polynomial p of degree n, we have that∫

R

p(x)Kn(x,y)dψ(x) = p(y).

In terms of the monic family (̂Pn)n the Christoffel–Darboux formula can be written as

n∑
j=0

P̂j(x)̂Pj(y)

ζj
= P̂n+1(x)̂Pn(y)− P̂n(x)̂Pn+1(y)

ζn(x − y)
(1.25)

and the confluent formula as
n∑

j=0

P̂2
j (x)

ζj
= P̂′

n+1(x)̂Pn(x)− P̂n+1(x)̂P′
n(x)

ζn
. (1.26)

Observe that the Christoffel–Darboux formula is a property that holds for every
(monic) sequence of polynomials generated by the three-term recurrence relation
(1.17), no matter if they are orthogonal or not with respect to some measure. The
sequence ζn is generated by ζn = βn · · ·β1. In the following result we will prove
certain properties of the zeros of these polynomials.

Proposition 1.8 The zeros or roots of the monic polynomials P̂n generated by the
three-term recurrence relation (1.16) are all real and simple. Moreover the zeros
of P̂n+1 and P̂n interlace. If the polynomials are orthogonal with respect to some
measure ψ , then these zeros lie in the smallest closed interval containing supp(ψ)
for all n ≥ 1.

Proof Let u be a complex zero of P̂n. Since the coefficients of P̂n are all real then
ū is also a complex zero of P̂n. Taking x = u and y = ū in the Christoffel–Darboux
formula (1.25) we get a contradiction since the right-hand part should be 0 while the
left-hand side is > 1 (sum of positive absolute values of complex numbers). Then
all zeros must be real. Alternatively, if we had a multiple zero then the confluent
Christoffel–Darboux formula (1.26) will give the same contradiction.

If P̂n+1 and P̂n have a zero in common, then by the recursion formula (1.17), it is
also a zero of P̂n−1. Following this reasoning this zero is a zero of P̂0 = 1, but this
is a contradiction. Regarding the interlacing property, for n < 2 there is nothing to
prove. For n ≥ 2, (1.26) implies that P̂′

n+1(x)̂Pn(x)−P̂n+1(x)̂P′
n(x) > 0. Assume that

y1 < y2 are two consecutive zeros of P̂n+1. Then the above inequality implies that
P̂′

n+1(yj)̂Pn(yj) > 0,j = 1,2. Since P̂′
n+1(y1) and P̂′

n+1(y2)must have different signs,
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since they are simple, it follows from the previous inequality that P̂n(yj),j = 1,2,
has different signs. Thus, P̂n has a zero in the range (y1,y2) by Bolzano’s theorem.

Finally let [a,b] the smallest closed interval containing supp(ψ) and c1, . . . ,cj

the zeros of P̂n contained in [a,b]. If j < n then the orthogonality implies that∫
R

P̂n(x)
∏j

k=1(x − ck)dψ(x) = 0. But this is a contradiction because the integrand
does not change signs on [a,b]. Therefore j = n.

For a fixed n, let xn,j, j = 1, . . . ,n denote the zeros of P̂n arranged in the following
form:

xn,1 < xn,2 < · · · < xn,n. (1.27)

The interlacing property says that each sequence (xn,i)n is monotone, therefore the
limits exist. Define them as

ξi = lim
n→∞ xn,i and ηj = lim

n→∞ xn,n−j+1, i,j ≥ 1. (1.28)

We have that

−∞ ≤ ξi ≤ ξi+1 < ηj+1 ≤ ηj ≤ ∞, i,j ≥ 1.

The interval [ξ1,η1] is usually called the true interval of orthogonality and it is
the smallest closed interval containing supp(ψ). Therefore ξ1 = inf supp(ψ) and
η1 = sup supp(ψ). If we call

σ = lim
i→∞

ξi and τ = lim
j→∞

ηj,

then we have

−∞ ≤ ξi ≤ σ ≤ τ ≤ ηj ≤ ∞, i,j ≥ 1.

Therefore, defining the (possible finite) sets

� = {ξ1,ξ2, . . .} and H = {η1,η2, . . .},
we have that (see [16, II.4.2])

supp(ψ) = �̄ ∪ S ∪ H̄,

where the bar denotes closure and S ⊂ (σ,τ ). Also σ is the smallest and τ is the
largest limit point of supp(ψ).

Another way to prove Proposition 1.8 is to write the monic polynomials P̂n as the
characteristic polynomial of the truncated Jacobi matrix of dimension n × n in the
following form:

P̂n(x) =

∣∣∣∣∣∣∣∣∣∣∣

x − α0 −1 0 · · · 0 0 0
−β1 x − α1 −1 · · · 0 0 0

...
. . .

. . .
. . .

...
...

...
0 0 · · · −βn−2 x − αn−2 −1
0 0 0 · · · 0 −βn−1 x − αn−1

∣∣∣∣∣∣∣∣∣∣∣
. (1.29)
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The zeros of the orthogonal polynomials play an important role in the approxima-
tion of integrals of the form

∫
R

f (x)dψ(x) by Gaussian quadrature formulas. For a
fixed n, let xn,j,j = 1, . . . ,n denote the zeros of P̂n arranged in the form (1.27).

Theorem 1.9 For any n, there exist positive numbers λ1, . . . ,λn, such that∫
R

p(x)dψ(x) =
n∑

k=1

λkp(xn,k) (1.30)

for all polynomials p of degree at most 2n − 1. The values λk admit the following
representation:

λk =
∫
R

P̂n(x)

P̂′
n(xn,k)(x − xn,k)

dψ(x) =
∫
R

[
P̂n(x)

P̂′
n(xn,k)(x − xn,k)

]2

dψ(x). (1.31)

Proof A proof can be found in [74, Theorem 2.4.1].

The numbers λ1, . . . ,λn are usually called Christoffel numbers. Observe from
(1.31) that they are always positive.

Proposition 1.10 The Christoffel numbers have the following properties:

1 =
n∑

k=1

λk, (1.32)

λk = − ζn

P̂n+1(xn,k )̂P′
n(xn,k)

, k = 1, . . . ,n,

1

λk
= Kn(xn,k,xn,k), k = 1, . . . ,n.

Proof A proof can be found in [74, Theorem 2.4.2].

The three-term recurrence relation (1.16) is a second-order difference equation
and therefore it must have two linearly independent solutions. One is given by Pn(x),
and the other can be constructed using the initial conditions

P(0)0 (x) = 0, P(0)1 (x) = 1/a0,

which makes P(0)n a polynomial of degree n − 1. These polynomials are called
associated polynomials, 0th associated polynomials, numerator polynomials or
polynomials of the second kind. Multiplying the recurrence relation (1.16) by P(0)n

and subtracting (1.16) (for P(0)n ) multiplied by Pn, we can see that

an−1

[
Pn(x)P

(0)
n−1(x)− P(0)n (x)Pn−1(x)

]
= an−1

∣∣∣∣∣ Pn(x) P(0)n (x)

Pn−1(x) P(0)n−1(x)

∣∣∣∣∣ = −1 �= 0.
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Then they are linearly independent. This relation (called a Casoratian determinant)
also shows that the zeros of P(0)n (x) are all real, simple and interlace with the zeros
of Pn(x). We also have the following integral representation:

P(0)n (x) =
∫
R

Pn(x)− Pn(y)

x − y
dψ(y), n ≥ 0. (1.33)

Indeed, let us use Rn(x) to denote the right-hand side of (1.33). Then R0(x) = 0 and
R1(x) = 1/a0. For x not real and n > 0, we have, using (1.16), that

anRn+1(x)− (x − bn)Rn(x)+ an−1Rn−1(x)

=
∫
R

−anPn+1(y)+ (x − bn)Pn(y)− an−1Pn−1(y)+ yPn(y)− yPn(y)

x − y
dψ(y)

=
∫
R

(x − y)Pn(y)

x − y
dψ(y) = 0, n > 0.

Another way to generate the associated polynomials is by using the Jacobi matrix
J(0) built from the Jacobi matrix J in (1.18) by removing the first row and column
(see Theorem 1.5). The Stieltjes transforms of the spectral measures associated with
both Jacobi matrices are related by the formula (1.22). For more information about
how to compute the spectral measure associated with the associated polynomials see
[61, 136] or more recently [31].

There is an important asymptotic result that relates these two solutions of the three-
term recurrence relation with the Stieltjes transform of the corresponding measureψ .

Theorem 1.11 (Markov’s theorem) Let ψ be a positive measure defined in a
bounded interval [a,b] and consider the corresponding orthonormal polynomials
Pn(x) and the associated polynomials P(0)n (x). Then we have that

lim
n→∞

P(0)n (z)

Pn(z)
=

∫ b

a

dψ(x)

z − x
, z ∈ C \ [a,b],

and the convergence is uniform on compact subsets of C \ [a,b].

Proof Details of the proof can be found in [3, Section 5.5] or [34, Chapter 3].

There is a nice interpretation of the previous theorem in terms of continued
fractions (see for instance [16, Chapter IV]), given by∫ b

a

dψ(x)

z − x
= 1

z − b0 − a2
0

z − b1 − a2
1

z − b2 − a2
2

z − b3 − · · ·

, z ∈ C \ [a,b]. (1.34)
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This formula can be regarded as an alternative way of computing the Stieltjes
transform of a probability measure ψ and eventually computing the measure by the
Perron–Stieltjes inversion formula.

Finally we give without proof the necessary conditions for the completeness of a
sequence of orthogonal polynomials in the space L2

ψ .

Theorem 1.12 Let ψ be an absolutely continuous positive Borel measure defined
on an interval (a,b) and assume that for some c > 0, we have∫ b

a
ec|x|ψ(x)dx < ∞.

Let (Pn)n be a sequence of orthonormal polynomials with respect to ψ . Then, for any
f ∈ L2

ψ(a,b), we have that

f (x) =
∞∑

n=0

( f,Pn)ψPn(x),

in the sense that the partial sums of the series converge in norm in the space L2
ψ(a,b).

Moreover, we have Parseval’s identity

‖f ‖2
ψ =

∞∑
n=0

( f,Pn)
2
ψ . (1.35)

Proof Details of the proof, using tools from Fourier analysis, can be found in
[3, Section 6.5].

A measure ψ satisfying Parseval’s identity (1.35) is usually called extremal.

1.3 The Spectral Theorem for Orthogonal Polynomials

In linear algebra, when we have a linear operator acting on C
n, we may ask

ourselves under what conditions a finite-dimensional square matrix associated with
the operator can be diagonalized. In finite dimensions it is enough to analyze
the spectrum or eigenvalues associated with this matrix. However, when we work
with infinite-dimensional vector spaces, the situation is not as simple. The spectral
theorem has a broader context in the theory of linear operators on Hilbert spaces
equipped with an inner product. The spectral theorem identifies a class of linear
operators that can be modeled by multiplication operators. In particular, self-adjoint
operators will be of special interest. In general, given a self-adjoint linear operator A
defined on a Hilbert space H, we will always be able to find a measure ψ defined on
a certain measurable space S and a unitary operator U : H → L2

ψ(S) such that(
U AU−1f

)
(x) = F(x)f (x),
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for a certain measurable and bounded real function F defined on S . This is a
generalization of the finite-dimensional case.

In the context of orthogonal polynomials, the operator A is identified with the
symmetric tridiagonal Jacobi matrix J defined by (1.18), which is obviously self-
adjoint (symmetric) in the Hilbert space H = 
2(N0). We want to find a measure ψ
and a complete orthonormal basis in L2

ψ(S) with S a real interval (for example, the
orthonormal polynomials) in such a way that F(x) = x. In the literature this result is
usually called Favard’s theorem, since J. Favard proved it in 1935. However, other
authors, such as A. Wintner in 1929 or M. H. Stone in 1932, proved the same theorem
some years before, or almost at the same time, such as J. A. Shohat in 1936.

There are several ways to prove the spectral theorem for orthogonal polynomials
and in these notes we will see two different ones. The first one builds a distribution
that is located at the zeros of the monic polynomials P̂n generated by a three-
term recurrence relation and then we take n → ∞. This version can be found in
[74, Section 2.5] or more extensively in [16, Chapter II]. A second (more general)
method uses functional analysis tools and spectral theory of self-adjoint operators
(see [27, Chapter 2], [109] or [133]). We keep both proofs since the first one will be
used in the spectral representation of birth–death processes in Chapter 3 while the
second one will be in the spectral representation of one-dimensional discrete-time
birth–death chains in Chapter 2 and bilateral birth–death processes in Chapter 3.

Other methods, which will not be discussed here, are related to the theory of
positive linear functionals L defined by L(xn) = μn (see [16, p. 21]); or also solving
the moment problem, which is divided into three depending on whether the support
of the measure is finite (Hausdorff), semi-infinite (Stieltjes) or R (Hamburger). For
more information, see [2, 133, 137]. There is a close connection between these
problems and the theory of continued fractions.

Constructive Method Using the Zeros of the Polynomials
We will prove the spectral theorem for the monic family of polynomials (̂Pn)n

defined by the three-term recurrence relation (1.17). From Proposition 1.8 we know
that the zeros of P̂n are all real and simple and in addition those of P̂n and P̂n−1

interlace. For a fixed n, let xn,j, j = 1, . . . ,n be the zeros of P̂n arranged in the
form (1.27). Since the polynomial is monic, we have P̂n(x) > 0 for x > xn,1 and
therefore (−1)j−1P̂′

n(xn,j) > 0. Hence, using the confluent formula (1.24), we get
that (−1)j−1P̂n−1(xn,j) > 0. Therefore the sequence defined by

ρ(xn,j) = ζn−1

P̂′
n(xn,j)̂Pn−1(xn,j)

, 1 ≤ j ≤ n, (1.36)

takes positive values. Using the Christoffel–Darboux formula (1.25) for monic
polynomials with ζj = βj · · ·β1 and the confluent formula (1.26), the expression
(1.36) can be rewritten, taking x = xn,r and y = xn,s, as
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ρ(xn,r)

n−1∑
k=0

P̂k(xn,r )̂Pk(xn,s)

ζk
= δrs. (1.37)

The real matrix U defined by

U = (ur,k), 1 ≤ r,k ≤ n, ur,k = √
ρ(xn,r)

P̂k−1(xn,r)√
ζk−1

,

satisfies UUT= I. Therefore UTU = I by the uniqueness of the inverse, i.e. U is a
unitary matrix. From the (r,s) entry of UTU = I it follows that

n∑
r=1

ρ(xn,r )̂Pk(xn,r )̂Pj(xn,r) = ζkδjk, j,k = 0,1, . . . ,n − 1. (1.38)

The previous identity shows that there exists some discrete orthogonality of the
polynomials P̂n(x) when we restrict their support to the corresponding zeros. The
values ρ(xn,j),j = 1, . . . ,n are the corresponding sizes of the jumps at those zeros.
Note also that for k = j = 0, we have

∑n
r=1 ρ(xn,r) = 1, and the total sum of all

these quantities is exactly 1.
We now introduce a sequence of distribution functions (ψn)n defined by

ψn(−∞) = 0, lim
x↓xn,j

ψn(x)− lim
x↑xn,j

ψn(x) = ρ(xn,j). (1.39)

Theorem 1.13 ([74, Theorem 2.5.2]) Given a sequence of polynomials (̂Pn)n

generated by the three-term recurrence relation (1.17) with αn−1 ∈ R and βn > 0
for all n ≥ 1, there exists a distribution function ψ such that∫

R

P̂n(x)̂Pm(x)dψ(x) = ζnδnm.

Proof From (1.38), we have that

1 = ζ0 =
∫
R

dψn(x) = ψn(∞)− ψn(−∞) =
n∑

r=1

ρ(xn,r).

Therefore the functions ψn are uniformly bounded. Helly’s selection principle (see
[137, Introduction]) allows us to find a subsequence (ψnk)k of (ψn)n that converges
to a distribution ψ , which is also non-decreasing and bounded. The same principle
gives that if for all n, the moments of ψn exist, then the moments of ψ also exist and
also the moments of the subsequence ψnk converge to the moments of ψ . Since xn

can be written as a linear combination of the polynomials P̂j,j = 0,1, . . . ,n, from
(1.38) we see that the moments of ψn exist. Therefore, taking limits in (1.38) as
n → ∞, we obtain the result.
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The previous result shows existence but not uniqueness. In fact there exist families
of measures having all the same moments (see [74, Example 2.5.3]). Let us now see
that if the coefficients αn and βn are bounded, then the measure is unique.

Theorem 1.14 ([74, Theorem 2.5.5]) If the sequences (αn)n and (βn)n are bounded,
then the orthogonality measure ψ of Theorem 1.13 is unique.

Proof First, if the sequences (αn)n and (βn)n are bounded, then the support of ψ is
also bounded. This is due to the representation (1.29) of the polynomials in terms of
the truncated matrix Jn of the Jacobi matrix J. The zeros of P̂n are the eigenvalues of
Jn. Therefore |xn,j| < 3M, where M is an upper bound of both sequences (αn)n and
(βn)n (see [74, Theorem 1.1.1]). Therefore the support of each ψn is contained in the
interval (−3M,3M).

Let ν be another orthogonality measure that has the same moments as the measure
ψ . For any a > 0, we have∫

|x|≥a
dν(x) ≤ a−2n

∫
|x|≥a

x2ndν(x) ≤ a−2n
∫
R

x2ndν(x) = a−2n
∫
R

x2ndψ(x).

Applying the quadrature formula (1.30) for p(x) = x2n and using (1.32), we have that∫
|x|≥a

dν(x) ≤ a−2n
n+1∑
k=1

λk(xn+1,k)
2n ≤ (A/a)2n

n+1∑
k=1

λk = (A/a)2n,

where |xn,j| ≤ A for all n ≥ 1 and 1 ≤ j ≤ n. Since a is a free parameter, in
particular, if a > A, then

∫
|x|≥a dν(x) = 0 by taking n → ∞ in the previous

inequality. Therefore the support of ν is contained in [−A,A]. Let us now see that
ν = ψ . For |x| ≥ 2A, we have that

∑n
k=0 tkx−k−1 converges to 1/(x − t) for all

t ∈ [−A,A] since |t/x| < 1 as a consequence of |x| ≥ 2A > A ≥ |t|. Thus∫
R

dψ(t)

x − t
=

∫
R

lim
n→∞

n∑
k=0

tk

xk+1
dψ(t) = lim

n→∞

∫
R

n∑
k=0

tk

xk+1
dψ(t) = lim

n→∞

n∑
k=0

μk

xk+1
,

using the dominated convergence theorem, since |t/x| ≤ 1/2. The last limit only
depends on the moments and is the same for all measures that have the same
moments. Then F(x) = ∫

R

dψ(t)
x−t is uniquely determined for any x outside the circle

|x| = 2A. Since F is analytic in x ∈ C \ [−A,A], F is unique. Then the theorem is a
consequence of the Perron–Stieltjes inversion formula (1.8).

For the more general case see for instance [74].

Methods from Functional Analysis and Spectral Theory
This method is based on important results on functional analysis and spectral analysis
of linear operators in Hilbert spaces, which will not be proved in these notes. For
more information about these results, see [125, 127].
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Let H be a Hilbert space with an inner product (·,·) and denote by B(H) the set
of all linear operators of H in H. For an operator T ∈ B(H), the resolvent operator
is defined by R(z) = (T − z)−1. The values of z ∈ C for which R(z) is a bounded
linear operator are called regular values and are denoted by ρ(T). The complement
of the resolvent set ρ(T) is called the spectrum of T and is denoted by σ(T). For
a bounded operator T the spectrum σ(T) is a compact subset of the disk of radius
‖T‖ = infu∈H(‖Tu‖/‖u‖). Moreover, if T is self-adjoint, i.e. (Tu,v) = (u,Tv) for
all u,v ∈ H, then σ(T) ⊂ R, so that σ(T) ⊂ [−‖T‖,‖T‖].

A resolution of the identity E of the Hilbert space H is a map E : R → B(H)
such that for any Borel sets A,B ⊆ R we have (i) E(A) is a self-adjoint projection,
i.e. E(A)2 = E(A), (ii) E(A ∩ B) = E(A)E(B), (iii) E(∅) = 0,E(R) = IH, (iv)
A ∩ B = ∅ implies E(A ∪ B) = E(A) + E(B) and (v) for all u,v ∈ H the map
A �→ Eu,v(A) = (E(A)u,v) is a complex Borel measure. The spectral measure
for orthogonal polynomials will be constructed from the map A �→ Ee0,e0(A) =
(E(A)e0,e0), where e0 is the first canonical vector of the space 
2(N0), as we will
see below.

Theorem 1.15 (Spectral theorem) Let T : H → H be a bounded self-adjoint linear
operator. Then there exists a unique resolution of the identity E of H such that
T = ∫

R
tdE(t), i.e.

(Tu,v) =
∫
R

tdEu,v(t).

Moreover, E is supported on the spectrum σ(T) and any of the spectral projections
E(A),A ⊂ R, commutes with T.

Proof See [127, Section 12.22] or also [51, 125].

For any continuous function f defined on the spectrum σ(T), we can define the
operator f (T) = ∫

R
f (t)dE(t), i.e. ( f (T)u,v) = ∫

R
f (t)dEu,v(t). Then f (T) is a

bounded operator with norm ‖f (T)‖ = supx∈σ(T) |f (x)|. In particular this can be
applied to f (x) = 1/(x−z),z ∈ ρ(T) and f (T)(z) = R(z), the resolvent operator. The
spectral measure E can be obtained from the resolvent operator using the Perron–
Stieltjes inversion formula. Indeed, for an open interval (a,b) ⊂ R, we have that

Eu,v ((a,b)) = lim
δ↓0

lim
ε↓0

1

2π i

∫ b−δ

a+δ
[(R(x + iε)u,v)− (R(x − iε)u,v)] dx.

Compare with the Perron–Stieltjes inversion formula in (1.9). For unbounded linear
operators there is also a spectral theorem, but it is a little bit more technical than the
bounded case (see [27, 109, 125]).

Let J be the symmetric tridiagonal Jacobi operator (1.18) with bn ∈ R,an > 0,
n ≥ 0 and assume that these coefficients are bounded. J is an operator defined on the
Hilbert space 
2(N0) given by


