




The General Theory of Relativity

The general theory of relativity, Einstein’s theory of gravitation, has been included as a compulsory
subject in undergraduate and graduate courses in Physics and Applied Mathematics all over the
world. However, the physics-first approach that is taken by many textbooks is not universally used, as
the approach often depends on the instructors’ or students’ background. Conceived from the lecture
notes made by the author over a teaching career spanning 18 years, this book introduces the general
theory of relativity for advanced students with a strong mathematical background.

The proposed book takes a ‘math-first approach’, for which the mathematical formalism
comes first and is then applied to physics. It presents a concise yet comprehensive and structured
understanding of the general theory of relativity. The book discusses the mathematical foundation
of the general theory of relativity and focuses heavily on topics such as tensor calculus, geodesics,
Einstein field equations, linearized gravity, Lie derivatives and their applications, the causal structure
of spacetime, rotating black holes, and basic knowledge of cosmology and astrophysics. All of these
are explained through a large number of worked examples and exercises.

Farook Rahaman is a Professor of Mathematics at Jadavpur University, Kolkata. Besides writing
a book, The Special Theory of Relativity, he has published numerous research papers on galactic
dark matter, wormhole geometry, charged fluid model, topological defects in the early universe,
gravastars, black hole physics, star modeling, and the cosmological model of the universe.
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Preface

At the beginning of the twentieth century, Einstein spent many years developing a new theory
in physics. The newly developed theory is known as the theory of relativity. This is basically a
combination of two theories: the first one is known as the special theory of relativity and latter
one is dubbed as the general theory of relativity. The special theory of relativity is based on two
postulates, namely the principle of relativity or equivalence, that is, the laws of physics are the same
in all inertial systems, which means no preferred inertial system exists, while the second postulate
is the principle of the constancy of the speed of light. The general theory of relativity asserts that
there is no difference between the local effects of a gravitational field and that of acceleration of an
inertial system. In other words, spacetime is warped or distorted by the matter and energy in it as an
effect of gravity. According to the general theory of relativity, massive objects cause the outer space
to twist due to gravity like a heavy ball bending a thin rubber sheet that is holding the ball. Heavier
balls bend spacetime far more than lighter ones. Like the special theory of relativity, the general
theory of relativity attracted scientists a lot, immediately after its discovery by Einstein. As a result,
it has been included as a compulsory subject in graduate and postgraduate courses of physics and
applied mathematics all over the globe. Einstein proposed the field equations for the general theory
of relativity by applying his own intuition. Later, many other methods were developed to construct
Einstein’s field equations.

This book on the general theory of relativity is an outcome of a series of lectures delivered by me,
over several years, to postgraduate students of mathematics at Jadavpur University. I should mention
that it is not a fundamental book. This book has been written, from a mathematical point of view, after
consulting several books existing in the literature. I have provided the list of the reference books.
During my lectures, many students asked questions that helped me know their needs as well as the
shortcomings in their understanding. Therefore, it is a well-planned textbook that has been organized
in a logical order and every topic has been dealt with in a simple and lucid manner. A number of
problems with hints, taken from the question papers of different universities, are included in each
chapter.

The book is organized as follows:
In Chapter One a brief overview of tensor calculus, including the different types of tensors as

well as operations on tensors, is given. Generalized Kronecker delta, Christoffel symbols, affine
connection, covariant derivatives, geodesic coordinate, and various forms of tensors are described,
with examples, as a foreground to understand the basics of general relativity. Chapter Two starts
with a discussion of the geodesic equation in curved spacetime. In addition, several problems
for different spacetimes are provided on geodesics. Chapter Three begins with the statement
of three basic principles, namely Mach’s principle, equivalence principle, and the principle of
covariance. Next, the Einstein gravitational field equations are derived from the variational principle.

xix



xx Preface

Also, in this chapter, the outline of some modified theories of gravity, such as f(R) theory of
gravity, Gauss–Bonnet gravity, f(G) theory of gravity or modified Gauss–Bonnet gravity, f(T)
theory of gravity, f(R,T) theory of gravity, Brans–Dicke theory of gravity, and Weyl gravity, are
provided. A discussion on linearized gravity is given in Chapter Four. Newtonian limit of Einstein
field equations or weak field approximation of Einstein field equations is derived. It is shown
that Poisson’s equation can be viewed as an approximation of Einstein field equations. A short
mathematical description of gravitational wave is also provided. Chapter Five is dedicated to a
short discussion on Lie derivatives and their applications. Killing equations and Killing vectors are
also discussed with several examples. A short note on conformal Killing vector is also provided.
Chapter Six is devoted to discussions on spacetimes of spherically symmetric distributions of
matter. The exact exterior and interior solutions of Einstein field equations in spherically symmetric
spacetimes are discussed. The proof of Birkoff’s theory is provided. It states that a spherically
symmetric gravitational field in vacuum is necessarily static and must have Schwarzschild form. The
Tolman–Oppenheimer–Volkov (TOV) equation is discussed. Isotropic coordinate system is a new
coordinate system whose spatial distance is proportional to the Euclidean square of the distances.
Some static spherically symmetric spacetimes are rewritten in an isotropic coordinate system. A
short discussion on interaction between the gravitational and electromagnetic fields are provided.
Reissner–Nordström solution is a static solution of the gravitational field outside of a spherically
symmetric charged body. Particle and photon orbits in the Schwarzschild spacetime are discussed
in Chapter Seven. Also, in this chapter, using the trajectory in the gravitational field of sun (i.e., in
the Schwarzschild spacetime), several tests of the theory of general relativity, namely the precession
of the perihelion motion of mercury, bending of light, radar echo delay, and gravitational redshift,
are explained. A discussion on the stable circular orbits in the Schwarzschild spacetime is given. A
general treatment is provided for the experimental test of general theory of relativity for a general
static and spherically symmetric configuration. Causal structure in the special theory of relativity,
i.e., in Minkowski spacetime or flat spacetime, is characterized so that no massive particle can
travel faster than light. In general relativity, locally there is no difference of the causality relation
with Minkowski spacetime. However, globally, the causality relation is significantly different due
to various spacetime topologies. A short discussion on causal structure of spacetimes is given
in Chapter Eight. Several basic definitions and some standard theorems related to causality are
explained. Chapter Nine deals with discussions on causal structures of specific spacetimes, which
are the standard exact solutions of Einstein field equations such as Minkowski spacetime, de Sitter
and anti-de Sitter spacetimes, Robertson–Walker spacetime, Bianchi-I spacetime, Schwarzschild
spacetime, and Reissner–Nordström black hole. A short elementary discussion on rotating black
holes is given in Chapter Ten. After introducing the tetrad, an outline of the derivation of the Kerr
and Kerr–Newman solutions is illustrated through the complex transformation algorithm for both
in four and higher dimensions. Some of the different forms of the Kerr solution are mentioned.
Some elementary properties of the Kerr solution including the maximal extension of Kerr spacetime
are discussed. Finally, brief discussions on Hawking radiation, Penrose process of extraction of
energy from a Kerr black hole, and laws of black hole thermodynamics are given. Chapters Eleven
and Twelve provide some simple applications of general theory of relativity in astrophysics and
cosmology, respectively. Some preliminary concepts of extrinsic curvature, Lagrangian formalism
of the general theory of relativity, and 3 + 1 decomposition of spacetime are given as appendices.
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CHAPTER

1 Tensor Calculus— A Brief Overview

1.1 Introduction
The principal target of tensor calculus is to investigate the relations that remain the same when we
change from one coordinate system to any other. The laws of physics are independent of the frame
of references in which physicists describe physical phenomena by means of laws. Therefore, it is
useful to exploit tensor calculus as the mathematical tool in which such laws can be formulated.

1.2 Transformation of Coordinates
Let there be two reference systems, S with coordinates (x1, x2,… , xn) and S with coordinates
(x1, x2,… , xn) (Fig. 1). The new system S depends on the old system S as

xi = 𝜙i(x1, x2,… , xn); i = 1, 2,… , n. (1.1)

Here 𝜙i are single-valued continuous differentiable functions of x1, x2,… , xn and further the
Jacobian

|||||𝜕𝜙
i

𝜕xj

||||| =
||||||||||

𝜕𝜙1

𝜕x1

𝜕𝜙1

𝜕x2

𝜕𝜙1

𝜕x3 … 𝜕𝜙1

𝜕xn

𝜕𝜙2

𝜕x1

𝜕𝜙2

𝜕x2

𝜕𝜙2

𝜕x3 … 𝜕𝜙2

𝜕xn

. . . . . . . . . . . . . . . . . .
𝜕𝜙n

𝜕x1

𝜕𝜙n

𝜕x2

𝜕𝜙n

𝜕x3 … 𝜕𝜙n

𝜕xn

||||||||||
≠ 0.

Differentiation of Eq. (1.1) yields

dxi =
n∑

r=1

𝜕𝜙i

𝜕xr
dxr =

n∑
r=1

𝜕xi

𝜕xr
dxr =

n∑
r=1

ai
rdxr.

Now and onward, we use the Einstein summation convention, i.e., omit the summation symbol
∑

and write the above equations as

dxi = 𝜕xi

𝜕xr
dxr = ai

rdxr, (1.2)

1



2 Tensor Calculus—A Brief Overview

Figure 1 S and S frames.

or

dxi = 𝜕xi

𝜕xm dxm = ai
mdxm. (1.3)

The repeated index r or m is known as dummy index. The index i is not dummy and is known as
free index.

The transformation matrices are inverse to each other

ai
r am

i = 𝛿m
r . (1.4)

The symbol 𝛿m
r is Kronecker delta, is defined as

𝛿m
r = 1 if m = r

= 0 if m ≠ r

Obviously vectors in (S) system are linked with (S) system.

1.3 Covariant and Contravariant Vector and Tensor
Usually one can describe the tensors by means of their properties of transformation under coordinate
transformation. There are two possible ways of transformations from one coordinate system (xi) to
the other coordinate system (xi).

Let us consider a set of n functions Ai of the coordinates xi. The functions Ai are said to be the
components of covariant vector if these components transform according to the following rule

Āi =
𝜕xj

𝜕x̄i
Aj. (1.5)

Also, one can find by multiplying 𝜕x̄i

𝜕xk and using 𝜕x̄i

𝜕xk

𝜕xj

𝜕x̄i = 𝛿j
k and 𝛿j

kAj = Ak

Ak =
𝜕x̄i

𝜕xk
Āi.
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Exercise 1.1

Gradient of a scalar B, i.e., Bi =
𝜕B
𝜕xi

is a covariant vector.

Here, Ai is known as the covariant tensor of first order or of the type (0, 1).
The functions Ai are said to be the components of the contravariant vector if these components

transform according to the following rule

Āi = 𝜕x̄i

𝜕xj
Aj (1.6)

Also, one can find by multiplying both sides with 𝜕xk

𝜕x̄i and using 𝛿k
j Aj = Ak

Ak = 𝜕xk

𝜕x̄i
Āi.

Here, Ai is known as the contravariant tensor of first order or of the type (1, 0).

Exercise 1.2

Tangent vector dxi

du
of the curve xi = xi(u) is a contravariant vector.

Exercise 1.3

Let components of velocity vector in Cartesian coordinates are ẋ and ẏ. Find corresponding
components in polar coordinates.
Hint: Here, x1 = x , x2 = y, and x1 = r, x2 = 𝜃 with x = r cos 𝜃, y = r sin 𝜃, i.e., r =

√
x2 + y2,

𝜃 = tan−1( y
x
).

Let A1 = ẋ, A2 = ẏ. We will have to find A
1
, A

2
.

(“dot” denotes differentiation with respect to t.)

Using the definition A
i
= 𝜕x̄i

𝜕xj A
j, we have

A
1
= 𝜕x̄1

𝜕x1
A1 + 𝜕x̄1

𝜕x2
A2 or, A

1
= 𝜕r
𝜕x

ẋ + 𝜕r
𝜕y

ẏ = ṙ.

Similarly,

A
2
= 𝜕𝜃
𝜕x

ẋ + 𝜕𝜃
𝜕y

ẏ = 𝜃̇.

Exercise 1.4

Let components of acceleration vector in Cartesian coordinates be ẍ and ÿ. Find corresponding
components in polar coordinates.
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Hint: Let A1 = ẍ, A2 = ÿ. We will have to find A
1
, A

2
.

Here,

A
1
= 𝜕r
𝜕x

ẍ + 𝜕r
𝜕y

ÿ = r̈ − r𝜃̇, A
2
= 𝜕𝜃
𝜕x

ẍ + 𝜕𝜃
𝜕y

ÿ = 𝜃̈ + 2
r
𝜃̇ṙ.

1.3.1 Invariant
Let 𝜙 be a function of coordinate system (xi) and 𝜙 be its transform in another coordinate system
(xi). Then, 𝜙 is said to be invariant if 𝜙 = 𝜙.

Exercise 1.5

The expression AiBi is an invariant or scalar, i.e.,

ĀiB̄i = AiBi. (1.7)

Hint: Use definitions given in Eqs. (1.5) and (1.6).

An invariant or scalar is known as the tensor of the type (0, 0).

1.3.2 Contravariant and covariant tensors of rank two
Let Ci and Bj be two contravariant vectors with n components, then CiBj = Aij has n2 quantities, i.e.,
Aij are the set of n2 functions of the coordinates xi. If the transformation of Aij is like

Āij = 𝜕x̄i

𝜕xk
𝜕x̄j

𝜕xl
Akl, (1.8)

then Aij is known as contravariant tensor of rank two. Here, Aij is also known as the contravariant
tensor of order two or of the type (2, 0).

If we multiply both sides of (1.8) by 𝜕xr

𝜕x̄i

𝜕xs

𝜕x̄j , then

Ars = 𝜕xr

𝜕x̄i
𝜕xs

𝜕x̄j
Āij.

Again, if Ci and Bj are two covariant vectors with n components, then CiBj = Aij form n2

quantities, i.e., Aij are the set of n2 functions of the coordinates xi.
If the transformation of Aij is like

Āij =
𝜕xk

𝜕x̄i
𝜕xl

𝜕x̄j
Akl, (1.9)

then Aij is known as covariant tensor of rank two.
Here, Aij is also known as the covariant tensor of order two or of the type (0, 2).
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If we multiply both sides of (1.9) by 𝜕x̄i

𝜕xr

𝜕x̄j

𝜕xs , then

Ars =
𝜕x̄i

𝜕xr
𝜕x̄j

𝜕xs
Āij.

1.3.3 Mixed tensor of order two Ai
j

Suppose Ai
j is a set of n2 functions of n coordinates. If the transformation obeys the following rule

Āi
j =

𝜕x̄i

𝜕xk
𝜕xl

𝜕x̄j
Ak

l ,

then Ak
l is known as the mixed tensor of order two or of the type (1, 1).

Thus, mixed tensor of order two can be obtained by taking a covariant vector Ai and a
contravariant vector Bj, i.e., Cj

i = AiB
j.

Exercise 1.6

Kronecker delta 𝛿j
i is a mixed tensor of order two.

Hint: If 𝛿j
i can be combined with components of two vectors to form a scalar, then 𝛿j

i will be a tensor.
Now

AiBj𝛿
j
i = AiBi = scalar.

If the transformation obeys the following rule

Ā
i1i2…ip
j1j2…jq

= 𝜕x̄i1

𝜕xk1

𝜕x̄i2

𝜕xk2
… 𝜕x̄ip

𝜕xkp

𝜕xl1

𝜕x̄j1

𝜕xl2

𝜕x̄j2
… 𝜕xlq

𝜕x̄jq
A

k1k2…kp

l1l2…lq
,

then A
k1k2…kp

l1l2…lq
is known as mixed tensor of the type (p, q).

1.3.4 Symmetric and skew-symmetric tensors
If a tensor is unaltered after changing every pair of contravariant or covariant indices, then it is said
to be a symmetric tensor. Let T𝛼𝛽 be a covariant tensor of rank two.

If T𝛼𝛽 = T𝛽𝛼 , then it is known as symmetric tensor.
If a tensor is altered in its sign but not in magnitude after changing every pair of contravariant

or covariant indices, then it is said to be a skew-symmetric tensor.
If T𝛼𝛽 = −T𝛽𝛼 , then it is known as antisymmetric or skew-symmetric tensor.

Exercise 1.7

Kronecker delta 𝛿ij is a symmetric tensor.
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Exercise 1.8

If Ai is covariant vector, then curlAi =
𝜕Ai

𝜕xj
− 𝜕Aj

𝜕xi
is a skew-symmetric tensor.

Hint: Use curlAi =
𝜕Ai

𝜕xj
− 𝜕Aj

𝜕xi
= Bij and show that Bij = −Bji.

Note 1.1

Symmetry property of a tensor is independent of the coordinate system.

Note 1.2

A symmetric tensor of order two in n-dimensional space has at most n(n+1)
2

independent components

whereas an antisymmetric tensor of order two has at most n(n−1)
2

independent components.

1.4 Operations on Tensors
i. The addition and subtraction of two tensors of the same type is a tensor of same type.

Exercise 1.9

Aij ± Bij = Cij, Aij ± Bij = Cij, Aj
i ± Bj

i = Cj
i

Exercise 1.10

Any covariant or contravariant tensor of second order can be expressed as a sum of a symmetric and
a skew-symmetric tensor of order two.
Hint:

aij =
1
2
(aij + aji) +

1
2
(aij − aji), etc.

ii. The type of the tensor remains invariant by multiplication of a scalar 𝛼.

Exercise 1.11

𝛼Aij = Cij, 𝛼Aij = Cij, 𝛼Aj
i = Cj

i

iii. Outer product: The outer product of two tensors is a new tensor whose order is the sum of the
orders of the given tensors.
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Exercise 1.12

Let two tensors of types (2,3) and (1,2) be respectively, Aij
klm and Ba

bc, then the outer product of these
tensors has type (3,5), i.e.,

Aij
klmBa

bc = Tija
klmbc

iv. Contraction: The particular type of operation by which the order (r) of a mixed tensor is lowered
by order (r − 2) is known as contraction.

Exercise 1.13

Let Aij
klm be a mixed tensor of order five. The new tensor Aij

kim can be obtained by replacing lower
index l by the upper index i and taking summation over i, one gets the tensor of order three.

Aij
kim = Bj

km

v. Inner product: The outer product of two tensors followed by contraction with respect to an upper
index and a lower index of the other results in a new tensor which is called an inner product.

Exercise 1.14

Aij
k Bk

mn ≡ Cijk
kmn = Dij

mn, Aij
k Bm

ij = Dm
k

1.4.1 Test for tensor character: Quotient Law
An entity whose inner product by an arbitrary tensor (covariant or contravariant) always gives a
tensor is itself a tensor.

Exercise 1.15

If C(i, j)AiBj is an invariant, then C(i, j) = Cij is a tensor of the type (0,2).

Exercise 1.16

If C(p, q, r)Bqs
r = As

p, then C(p, q, r) = Cr
pq is a tensor of the type (1,2).

Exercise 1.17

Let 𝜆i, 𝜇i be the components of two arbitrary vectors with ahijk𝜆h𝜇i𝜆j𝜇k = 0, then prove that

ahijk + ahkji + ajihk + ajkhi = 0.
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Hint: Given that

A = ahijk𝜆
h𝜇i𝜆j𝜇k = 0.

Differentiating with respect to 𝜆h, we get

𝜕A
𝜕𝜆h

= ahijk𝜇
i𝜆j𝜇k + apihk𝜆

p𝜇i𝜇k = 0.

Again, differentiating with respect to 𝜆j, we get

𝜕2A
𝜕𝜆h𝜕𝜆j

= ahijk𝜇
i𝜇k + ajihk𝜇

i𝜇k = 0.

Now, differentiating with respect to 𝜇i and 𝜇k, one will find, respectively,

𝜕3A
𝜕𝜆h𝜕𝜆j𝜕𝜇i

= ahijk𝜇
k + ahkji𝜇

k + ajihk𝜇
k + ajkhi𝜇

k = 0,

𝜕4A
𝜕𝜆h𝜕𝜆j𝜕𝜇i𝜕𝜇k

= ahijk + ahkji + ajihk + ajkhi = 0.

Exercise 1.18

If Ai is an arbitrary contravariant vector and CijA
iAj is an invariant, then show that Cij + Cji is a

covariant tensors of the second order.
Hint: Given CijA

iAj is an invariant for arbitrary contravariant vector Ai, therefore,

CijA
iAj = C′

ijA
′iA′j.

Tensor law of transformation yields

CijA
iAj = C′

ij
𝜕x′i

𝜕x𝛼
A𝛼 𝜕x′j

𝜕x𝛽
A𝛽 .

Now interchanging the suffix i and j

CjiA
jAi = C′

ji
𝜕x′j

𝜕x𝛼
𝜕x′i

𝜕x𝛽
A𝛼A𝛽 = C′

ji
𝜕x′i

𝜕x𝛼
𝜕x′j

𝜕x𝛽
A𝛼A𝛽 .

(interchanging the dummy suffixes 𝛼 and 𝛽)
Thus,

(Cji + Cij)AiAj = (C′
ji + C′

ij)
𝜕x′i

𝜕x𝛼
𝜕x′j

𝜕x𝛽
A𝛼A𝛽 ,

⇒ (C𝛼𝛽 + C𝛽𝛼)A𝛼A𝛽 = (C′
ji + C′

ij)
𝜕x′i

𝜕x𝛼
𝜕x′j

𝜕x𝛽
A𝛼A𝛽 ,

⇒

[
(C𝛼𝛽 + C𝛽𝛼) − (C′

ij + C′
ji)
𝜕x′i

𝜕x𝛼
𝜕x′j

𝜕x𝛽

]
A𝛼A𝛽 = 0.
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Since A𝛼 is arbitrary, therefore, the expression within the square bracket vanishes. Hence, C𝛼𝛽 +C𝛽𝛼
is a (0, 2)-tensor.

1.4.2 Conjugate or reciprocal tensor of a tensor
Consider a symmetric covariant tensor of second order aij, i.e., of the type (0,2) whose determinant,|aij| is nonzero; then

bij =
cofactor of aij in |aij||aij|

is known as reciprocal tensor of aij. It is of the type (2,0).

Note 1.3

Reciprocal tensor exists for any tensor. Only condition being its determinant is nonzero. Here,
aijb

ik = 𝛿k
j and |aij||bik| = |𝛿k

j | = 1. Usually, conjugate of aij is written as aij and aija
ij = 𝛿j

j = n.

Note 1.4

Tensor equations in one system (xi) remain valid in all other coordinate systems (xi), e.g., if Ti
jkl =

2Ti
ljk, then T

i

jkl = 2T
i

ljk.

1.5 Generalized Kronecker Delta
The generalized Kronecker Delta 𝛿𝛼𝛽𝜇𝜈 is defined as follows:

𝛿𝛼𝛽𝜇𝜈 =
|||||𝛿
𝛼
𝜇 𝛿

𝛽
𝜇

𝛿𝛼𝜈 𝛿
𝛽
𝜈

|||||
= +1, 𝛼 ≠ 𝛽, 𝛼 = 𝜇, 𝛽 = 𝜈
= −1, 𝛼 ≠ 𝛽, 𝛼 = 𝜈, 𝛽 = 𝜇
= 0, otherwise.

We can define 𝛿𝛼𝛽𝛾𝜇𝜈𝜉 and 𝛿𝛼𝛽𝛾𝜌𝜇𝜈𝜉𝜔 as follows:

𝛿𝛼𝛽𝛾𝜇𝜈𝜉 =
|||||||
𝛿𝛼𝜇 𝛿

𝛽
𝜇 𝛿

𝛾
𝜇

𝛿𝛼𝜈 𝛿
𝛽
𝜈 𝛿

𝛾
𝜈

𝛿𝛼𝜉 𝛿
𝛽
𝜉 𝛿

𝛾
𝜉

||||||| ,

𝛿𝛼𝛽𝛾𝜌𝜇𝜈𝜉𝜔 =

||||||||||
𝛿𝛼𝜇 𝛿

𝛽
𝜇 𝛿

𝛾
𝜇 𝛿

𝜌
𝜇

𝛿𝛼𝜈 𝛿
𝛽
𝜈 𝛿

𝛾
𝜈 𝛿

𝜌
𝜈

𝛿𝛼𝜉 𝛿
𝛽
𝜉 𝛿

𝛾
𝜉 𝛿

𝜌
𝜉

𝛿𝛼𝜔 𝛿
𝛽
𝜔 𝛿

𝛾
𝜔 𝛿

𝜌
𝜔

||||||||||
.
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Exercise 1.19

𝛿123
123 = 𝛿123

231 = 1,

𝛿123
213 = 𝛿123

132 = −1.

Exercise 1.20

Show that

𝛿𝛼𝛽𝜇𝛽 = 3𝛿𝛼𝜇 .

Exercise 1.21

Show that

𝛿𝛼𝛼 = 4.

Exercise 1.22

Show that

𝛿𝛼𝛽𝜏𝜇𝛾𝜏 = 2𝛿𝛼𝛽𝜇𝛾 .

Hint:

𝛿𝛼𝛽𝜏𝜇𝛾𝜏 =
|||||||
𝛿𝛼𝜇 𝛿

𝛽
𝜇 𝛿𝜏𝜇

𝛿𝛼𝛾 𝛿
𝛽
𝛾 𝛿𝜏𝛾

𝛿𝛼𝜏 𝛿
𝛽
𝜏 𝛿𝜏𝜏

|||||||.
Now, expand along third row and use 𝛿𝜏𝜏 = 4

Exercise 1.23

Show that

𝛿𝛼𝛽𝜏𝜌𝜇𝜈𝛾𝜌 = −
|||||||
𝛿𝛼𝜇 𝛿

𝛽
𝜇 𝛿𝜏𝜇

𝛿𝛼𝜈 𝛿
𝛽
𝜈 𝛿𝜏𝜈

𝛿𝛼𝛾 𝛿
𝛽
𝛾 𝛿𝜏𝛾

||||||| .



The Line Element 11

Exercise 1.24

Show that

𝛿𝛼𝛽𝜏𝜌𝜇𝜈𝜏𝜌 = −2(𝛿𝛼𝜇𝛿
𝛽
𝜈 − 𝛿

𝛼
𝜈 𝛿

𝛽
𝜇).

Exercise 1.25

Show that

𝛿𝛼𝛽𝜏𝜌𝜇𝛽𝜏𝜌 = −6𝛿𝛼𝜇 .

Exercise 1.26

Show that

𝛿𝛼𝛽𝜏𝜌𝛼𝛽𝜏𝜌 = −24.

Symbols: Symmetric and skew-symmetric tensors of second order:

T(ab) =
1
2
(Tab + Tba), T[ab] =

1
2
(Tab − Tba).

For the tensors of third order, we can construct symmetric and skew-symmetric tensors as

T(abc) =
1
3!
(Tabc + Tbca + Tcab + Tbac + Tacb + Tcba),

T[abc] =
1
3!
(Tabc + Tbca + Tcab − Tbac − Tacb − Tcba).

We can express skew-symmetry symbols by means of generalized Kronecker delta as

T[ab] =
1
2!

Tcd𝛿
cd
ab,

T[abc] =
1
2!

Tcde𝛿
cde
abc.

1.6 The Line Element
The distance between two neighboring points P(r⃗(xi)) and F(r⃗(xi) + dr⃗(xi)) (xi are the coordinates of
the space) in an n-dimensional space is given by (see Fig. 2)

ds2 = dr⃗ ⋅ dr⃗ = gabdxadxb (1.10)
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Figure 2 Two neighboring points in a space.

Here,

dr⃗(xi) = 𝜕r⃗
𝜕x1

dx1 + 𝜕r⃗
𝜕x2

dx2 +………+ 𝜕r⃗
𝜕xn

dxn = 𝛼1dx1 + 𝛼2dx2 +…+ 𝛼ndxn

with

𝛼i =
𝜕r⃗
𝜕xi

and gab = 𝛼a ⋅ 𝛼b.

The distance between two neighboring points is referred as line element and is given by
Eq. (1.10).

Here, gab are known as metric tensor, which are functions of xa. If g = |gab| ≠ 0 and ds is
adopted to be invariant, then the space is called Riemannian space.

In mathematics, Riemannian space is used for a positive-definite metric tensor, whereas in
theoretical physics, spacetime is modeled by a pseudo-Riemannian space in which the metric tensor
is indefinite.

The metric tensor gab is also called fundamental tensor (covariant tensor of order two).
In Euclidean space:

ds2 = dx2 + dy2 + dz2.

In Minkowski flat spacetime, the line element

ds2 = dx02 − dx12 − dx22 − dx32.

Since the distance ds between two neighboring points is real, the Eq. (1.10) will be amended to

ds2 = egijdxidxj,

where e is known as the indicator and assumes the value+1 or−1 in order that ds2 be always positive.
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The contravariant tensor gij is defined by

gij = Δij

g
,

here Δij is the cofactor of gij and g is the determinant of gij.
Obviously

gab gbc = gc
a = 𝛿c

a.

With the help of gab and gab, one can raise or lower the indices of any tensor as

gacTab = Tb
c

Tab gac = Tc
b

gabAb = Aa

gab Aa = Ab

Here, Aa and Aa are known as associated vectors.

gab gcd gbd = gac.

AaBb = gabAaBb = gabAaBb.

Exercise 1.27

Show that the determinant of the metric tensor is not a scalar. Also, prove that the expression√
−g d4x where d4x = dx1dx2dx3dx4 is an invariant volume element.

Hints: We know

g′
ab = 𝜕xc

𝜕x′a
𝜕xd

𝜕x′b
gcd

⇒ det(g′
ab) =

|||| 𝜕x
𝜕x′

||||2 det (gcd)

⇒ g′ =
|||| 𝜕x
𝜕x′

||||2 g (1.11)

This indicates that the determinant of the metric tensor is not a scalar.

Also the volume element d4x transform into d4x′ as

d4x′ =
||||𝜕x′

𝜕x

|||| d4x (1.12)
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From (1.11) and (1.12), we get √
−g′ d4x′ =

√
−gd4x.

Exercise 1.28

Find out the metric tensor of a three-dimensional Euclidean space in cylindrical and polar
coordinates.
Hint: Here, for cylindrical coordinates,

y1 = x1 cos x2, y2 = x1 sin x2, y3 = x3

The metric tensor in three-dimensional Euclidean space is

ds2 = dy12 + dy22 + dy32

Now,

dy1 = dx1 cos x2 − x1 sin x2dx2, dy2 = dx1 sin x2 + x1 cos x2dx2, dy3 = dx3

Substituting these we get

ds2 = dx12 + x12
dx22 + dx32

For polar coordinates,

y1 = x1 sin x2 cos x3, y2 = x1 sin x2 sin x3, y3 = x1 cos x2

Using the same procedure, one can find

ds2 = dx12 + x12
dx22 + x12

sin2 x2dx32

Exercise 1.29

A curve in spherical coordinates xi is given by

x1 = t, x2 = sin−1
(1

t

)
, x3 = 2

√
t2 − 1.

Find the length of arc for 1 ≤ t ≤ 2.
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Hint: In a spherical coordinate, the metric is given by

ds2 = (dx1)2 + (x1)2(dx2)2 + (x1sinx2)2(dx3)2

= (dt)2 + t2
(
− dt

t
√

t2 − 1

)2

+
(

t.1
t

)2
(

2t√
t2 − 1

dt

)2

= 5t2

t2 − 1
(dt)2

Therefore, the required length of the arc 1 ≤ t ≤ 2 is given by

∫
t2

t1

ds =
√

5∫
2

1

t√
t2 − 1

dt =
√

15 units.

1.6.1 Norm
Let A𝜇 (A𝜇) be any contravariant (covariant) vector. Then norm or magnitude or length l of the
vector A𝜇 (A𝜇) is defined as

l2 = A𝜇A𝜇 = g𝜇𝜈A
𝜇A𝜈 = g𝜇𝜈A𝜇A𝜈 .

Exercise 1.30

Magnitude l of a vector is an invariant.
Hint: Try to show

A𝜇A𝜇 = A
𝜇
A𝜇

1.6.2 Unit vector
A vector is said to be unit vector (unit covariant or unit contravariant) if

gijAiAj = 1 = gijA
iAj.

1.6.3 Null vector
A vector is said to be null vector (covariant or contravariant) if

gijAiAj = 0 = gijA
iAj.

1.6.4 Time-like vector
A vector is said to be time-like vector (covariant or contravariant) if

gijAiAj = gijA
iAj > 0 with signature (+,−,−,−).
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Alternatively,
A vector is said to be time-like vector (covariant or contravariant) if

gijAiAj = gijA
iAj < 0 with signature (−,+,+,+).

1.6.5 Space-like vector
A vector is said to be space-like vector (covariant or contravariant) if

gijAiAj = gijA
iAj < 0 with signature (+,−,−,−).

Alternatively, a vector is said to be space-like vector (covariant or contravariant) if

gijAiAj = gijA
iAj > 0 with signature (−,+,+,+).

The time-like, space-like, and null vectors have important physical relevance as follows: Two
events are causally connected by a time-like vector when they lie within a light cone, whereas a
space-like vector connects two events that lie outside the light cone, i.e., the events are causally
disconnected. Two events that lie on the light cone are connected by a null vector. Actually,
collection of all null vectors in a Lorentzian space forms a light cone.

Note 1.5

The signature (p, q) of a metric tensor g is defined as the number of positive and negative eigenvalues
of the real symmetric matrix gab of the metric tensor, with respect to a certain basis. However, in
practice, the signature of a nondegenerate metric tensor is denoted by a single number s = p − q,
e.g., s = 1 − 3 = −2 for (+,−,−,−) and s = 3 − 1 = +2 for (−,+,+,+). A metric with a positive
definite signature (p, 0) is known as a Riemannian metric, whereas a metric with signature (p, 1) or
(1, q) is called a Lorentzian metric.
A light cone in special and general relativity is the surface describing the temporal evolution of a
blaze of light originating from a sole event and roving in all directions in spacetime.
Two events are causally connected if one event in spacetime can influence the other event; in other
words, one can join one event to the other event with a time-like or null vector.

Exercise 1.31

(1, 0, 0,−1) is a null vector, whereas (1, 0, 0,
√

2) is a unit vector in Minkowski space

ds2 = dt2 − dx2 − dy2 − dz2.

Hint: Here in the first case,

g00 = 1, g11 = −1, g22 = −1, g33 = −1,



The Line Element 17

and

A0 = 1, A1 = 0, A2 = 0, A3 = −1.

Now,

l2 = gijA
iAj = g00A0A0 + g11A1A1 + g22A2A2 + g33A3A3 = 0, etc.

1.6.6 Angle between two vectors A𝜇 and B𝜇
In ordinary vector algebra, we know angle between two vectors ⃖⃗A and ⃖⃗B is defined as

cos 𝜃 =
⃖⃗A ⋅ ⃖⃗B

∣ ⃖⃗A ∣∣ ⃖⃗B ∣
.

Similarly, one can define the angle between two vectors A𝜇 and B𝜇 as

cos 𝜃 =
scalar product of A𝜇 and B𝜇

length of A𝜇 × length of B𝜇

=
A𝜇B𝜇√

(A𝜇A𝜇)(B𝜇B𝜇)

=
g𝜇𝜈A𝜇B𝜈√

(g𝛼𝛽A𝛼A𝛽)(g𝜌𝜎B𝜌B𝜎)
.

1.6.7 Orthogonal vectors
Two covariant vectors Ai, Bj or contravariant vectors Ai, Bj are said to be orthogonal if

gijAiBj = 0 = gijA
iBj.

Exercise 1.32

If 𝜃 be the angle between two non-null vectors Ai and Bi at a point, show that

sin2𝜃 =

(
gijgpq − gipgjq

)
AiBpAjBq(

gijAiAj
) (

gpqBpBq
) .

Hint: Let 𝜃 be the angle between two non-null vectors Ai and Bi at a point; then from the above
definition

cos 𝜃 =
gijA

iBj√
gijAiAj

√
gpqBpBq

.
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Now,

sin2 𝜃 = 1 − cos2 𝜃 = 1 −
gijA

iBj gpqApBq

(gijAiAj)(gpqBpBq)

=
gijgpqAiAjBpBq − gijgpqAiApBjBq

(gijAiAj)(gpqBpBq)

=
gijgpqAiBpAjBq − gipgjqAiBpAjBq

(gijAiAj)(gpqBpBq)
(Replacing the dummy indices j and p by p and j)

=

(
gijgpq − gipgjq

)
AiBpAjBq(

gijAiAj
) (

gpqBpBq
) .

Exercise 1.33

(1, 1, 0,−1) and (1, 0, 1,−1) are orthogonal vectors in Minkowski space

ds2 = dt2 − dx2 − dy2 − dz2.

Hint: Here

gijA
iBj = g00A0B0 + g11A1B1 + g22A2B2 + g33A3B3 = 0, etc.

1.7 Levi-Civita Tensor or Alternating Tensor
Levi-Civita tensor is a tensor of order three in three dimensions and is denoted by 𝜖abc and
defined as

𝜖abc = +1,

if a,b,c is an even permutation of 1, 2, 3, i.e., in cyclic order.

= −1,

if a,b,c is odd permutation of 1, 2, 3, i.e., not in cyclic order.

= 0

if any two indices are equal.
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Levi-Civita tensor is a tensor of order four in four dimensions and denoted by 𝜖abcd.

𝜖abcd = +1,

if a,b,c,d is an even permutation of 0, 1, 2, 3, i.e., in cyclic order.

= −1,

if a,b,c,d is odd permutation of 0, 1, 2, 3, i.e., not in cyclic order.

= 0

if any two indices are equal.

The components of 𝜖abcd can be found from 𝜖abcd by lowering the indices in a typical way, just
multiplying it by (−g)−1:

𝜖abcd = ga𝜇 gb𝜈 gc𝛾 gd𝜎(−g)−1𝜖𝜇𝜈𝛾𝜎 .

For example,

𝜖0123 = g0𝜇 g1𝜈 g2𝛾 g3𝜎 (−g)−1𝜖𝜇𝜈𝛾𝜎

= (−g)−1det g𝜇𝜈 = −1.

In general,

𝜖abcd = 1,

if a,b,c,d is an even permutation of 0, 1, 2, 3.

= −1,

if a,b,c,d is odd permutation of 0, 1, 2, 3.

= 0 otherwise.

Here,

𝜖abcd𝜖
abcd = −24.

Hints: The explicit form of 𝜖abcd𝜖pqnm is

𝜖abcd𝜖
pqnm = −gp

agq
bgn

cgm
d + gq

agn
bgm

c gp
d − gn

agm
b gp

cgq
d + gm

a gp
bgq

cgn
d + gq

agp
bgn

cgm
d − gp

agn
bgm

c gq
d

+ gn
agm

b gq
cgp

d − gm
a gq

bgp
cgn

d + gn
agq

bgp
cgm

d − gq
agp

bgm
c gn

d + gp
agm

b gn
cgq

d − gm
a gn

bgq
cgp

d

+ gm
a gq

bgn
cgp

d − gq
agn

bgp
cgm

d + gn
agp

bgm
c gq

d − gp
agm

b gq
cgn

d + gp
agn

bgq
cgm

d − gn
agq

bgm
c gp

d

+ gq
agm

b gp
cgn

d − gm
a gp

bgn
cgq

d + gp
agq

bgm
c gn

d − gq
agm

b gn
cgp

d + gm
a gn

bgp
cgq

d − gn
agp

bgq
cgm

d .


