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Preface

The classical theory of statistics was developed for parametric models with
finite-dimensional parameter spaces, building on fundamental ideas of C. F. Gauss, P. S.
Laplace, R. A. Fisher and L. Le Cam, among others. It has been successful in providing
modern science with a paradigm for making statistical inferences, in particular, in the
‘frequentist large sample size’ scenario. A comprehensive account of the mathematical
foundations of this classical theory is given in the monograph by A. van der Vaart,
Asymptotic Statistics (Cambridge University Press, 1998).

The last three decades have seen the development of statistical models that are infinite (or
‘high’) dimensional. The principal target of statistical inference in these models is a function
or an infinite vector f that itself is not modelled further parametrically. Hence, these models
are often called, in some abuse of terminology, nonparametric models, although f itself
clearly also is a parameter. In view of modern computational techniques, such models are
tractable and in fact attractive in statistical practice. Moreover, a mathematical theory of
such nonparametric models has emerged, originally driven by the Russian school in the
early 1980s and since then followed by a phase of very high international activity.

This book is an attempt to describe some elements of the mathematical theory of
statistical inference in such nonparametric, or infinite-dimensional, models. We will
first establish the main probabilistic foundations: the theory of Gaussian and empirical
processes, with an emphasis on the ‘nonasymptotic concentration of measure’ perspective
on these areas, including the pathbreaking work by M. Talagrand and M. Ledoux on
concentration inequalities for product measures. Moreover, since a thorough understanding
of infinite-dimensional models requires a solid background in functional analysis and
approximation theory, some of the most relevant results from these areas, particularly the
theory of wavelets and of Besov spaces, will be developed from first principles in this book.

After these foundations have been laid, we turn to the statistical core of the book.
Comparing nonparametric models in a very informal way with classical parametric models,
one may think of them as models in which the number of parameters that one estimates
from the observations is growing proportionally to sample size n and has to be carefully
selected by the statistician, ideally in a data-driven way. In practice, nonparametric modelling
is often driven by the honesty of admitting that the traditional assumption that n is large
compared to the number of unknown parameters is too strong. From a mathematical
point of view, the frequentist theory that validates statistical inferences in such models
undergoes a radical shift: leaving the world of finite-dimensional statistical models behind
implies that the likelihood function no longer provides ‘automatically optimal’ statistical
methods (‘maximum likelihood estimators’) and that extreme care has to be exercised when

xi



xii Preface

constructing inference procedures. In particular, the Gauss–Fisher–Le Cam efficiency theory
based on the Fisher information typically yields nothing informative about what optimal
procedures are in nonparametric statistics, and a new theoretical framework is required.
We will show how the minimax paradigm can serve as a benchmark by which a theory
of optimality in nonparametric models can be developed. From this paradigm arises the
‘adaptation’ problem, whose solution has been perhaps one of the major achievements of
the theory of nonparametric statistics and which will be presented here for nonparametric
function estimation problems. Finally, likelihood-based procedures can be relevant in
nonparametric models as well, particularly after some regularisation step that can be
incorporated by adopting a ‘Bayesian’ approach or by imposing qualitative a priori shape
constraints. How such approaches can be analysed mathematically also will be shown here.

Our presentation of the main statistical materials focusses on function estimation
problems, such as density estimation or signal in white-noise models. Many other
nonparametric models have similar features but are formally different. Our aim is to
present a unified statistical theory for a canonical family of infinite-dimensional models,
and this comes at the expense of the breadth of topics that could be covered. However,
the mathematical mechanisms described here also can serve as guiding principles for many
nonparametric problems not covered in this book.

Throughout this book, we assume familiarity with material from real and functional
analysis, measure and probability theory on the level of a US graduate course on the
subject. We refer to the monographs by G. Folland, Real Analysis (Wiley, 1999), and
R. Dudley, Real Analysis and Probability (Cambridge University Press, 2002), for relevant
background. Apart from this, the monograph is self-contained, with a few exceptions and
‘starred sections’ indicated in the text.

This book would not have been possible without the many colleagues and friends from
whom we learnt, either in person or through their writings. Among them, we would like to
thank P. Bickel, L. Birgé, S. Boucheron, L. Brown, T. Cai, I. Castillo, V. Chernozhukov,
P. Dawid, L. Devroye, D. Donoho, R. Dudley, L. Dümbgen, U. Einmahl, X. Fernique,
S. Ghosal, A. Goldenshluger, Y. Golubev, M. Hoffmann, I. Ibragimov, Y. Ingster,
A. Iouditski, I. Johnstone, G. Kerkyacharian, R. Khasminskii, V. Koltchinskii, R. Latala,
M. Ledoux, O. Lepski, M. Low, G. Lugosi, W. Madych, E. Mammen, D. Mason, P. Massart,
M. Nussbaum, D. Picard, B. Pötscher, M. Reiß, P. Rigollet, Y. Ritov, R. Samworth,
V. Spokoiny, M. Talagrand, A. Tsybakov, S. van de Geer, A. van der Vaart, H. van Zanten,
J. Wellner, H. Zhou and J. Zinn.

We are grateful to A. Carpentier, I. Castillo, U. Einmahl, D. Gauthier, D. Heydecker,
K. Ray, J. Söhl and B. Szabò for proofreading parts of the manuscript and providing helpful
corrections.

Moreover, we are indebted to Diana Gillooly of Cambridge University Press for her
support, patience and understanding in the process of this book project since 2011.

R.N. would also like to thank his friends N. Berestycki, C. Damböck, R. Dawid
and M. Neuber for uniquely stimulating friendships that have played a large role in the
intellectual development that led to this book (and beyond).
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Outline and Reading Guide

In principle, all the chapters of this book can be read independently. In particular, the
chapters on Gaussian and empirical processes, as well as the one on function spaces
and approximation theory, are mostly self-contained. A reader interested primarily in the
‘statistical chapters’ (5 through 8) may choose to read those first and then turn to the
mathematical foundations laid out in Chapters 2 through 4 later, when required. A short
outline of the contents of each chapter is given in the following paragraphs:

Chapter 1 introduces the kinds of statistical models studied in this book. In particular,
we will discuss why many common ‘regular’ regression models with normally distributed
error terms can be mathematically accommodated within one Gaussian function estimation
problem known as the Gaussian white noise model.

Chapters 2 and 3 lay the probabilistic foundations of much of the statistical theory that
follows: one chapter on Gaussian processes and one on empirical processes. The Gaussian
theory is mostly classical, presented with a focus on statistically relevant materials, such as
the isoperimetric inequality for Gaussian measures and its consequences on concentration,
as well as a study of suprema of Gaussian processes. The theory for empirical measures
reflects the striking recent developments around the concentration-of-measure phenomenon.
Effectively, here, the classical role of the central limit theorem in statistics is replaced by
nonasymptotic concentration properties of product measures, as revealed in fundamental
work by Talagrand, Ledoux, Massart and others. This is complemented by a treatment of
abstract empirical process theory, including metric entropy methods, Vapnik-Červonenkis
classes and uniform central limit theorems.

Chapter 4 develops from first principles some key aspects of approximation theory and
its functional analytic foundations. In particular, we give an account of wavelet theory and
of Besov spaces, with a focus on results that are relevant in subsequent chapters.

Chapter 5 introduces basic linear estimation techniques that are commonly used in
nonparametric statistics, based on convolution kernels and finite-dimensional projection
operators. Tools from Chapters 3 and 4 are used to derive a variety of probabilistic results
about these estimators that will be useful in what follows.

Chapter 6 introduces a theoretical paradigm – the minimax paradigm – that can be used
to objectively measure the performance of statistical methods in nonparametric models. The
basic information-theoretic ideas behind it are developed, and it is shown how statistical
inference procedures – estimators, tests and confidence sets – can be analysed and compared
from a minimax point of view. For a variety of common nonparametric models, concrete
constructions of minimax optimal procedures are given using the results from previous
chapters.

Chapter 7 shows how the likelihood function can still serve as a successful guiding
principle in certain nonparametric problems if a priori information is used carefully. This can
be done by imposing certain qualitative constraints on the statistical model or by formally
adopting a Bayesian approach which then can be analysed from a frequentist point of view.
The key role of the Hellinger distance in this theory (as pointed out in work by Le Cam,
Birgé, van de Geer, van der Vaart and others) is described in some detail.
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Chapter 8 presents the solution to the nonparametric adaptation problem that arises
from the minimax paradigm and gives a theory of statistical inference for ‘fully automatic’
statistical procedures that perform well over maximal collections of nonparametric statistical
models. Surprising differences are shown to arise when considering the existence of adaptive
estimation procedures in contrast to the existence of associated adaptive confidence sets. A
resolution of this discrepancy can be obtained by considering certain nonparametric models
of ‘self-similar’ functions, which are discussed in some detail and for which a unified theory
of optimal statistical inference can be developed.

Each chapter is organised in several sections, and historical notes complementing each
section can be found at the end of each chapter – these are by no means exhaustive and only
indicate our understanding of the literature.

At the end of each section, exercises are provided: these, likewise, complement the main
results of the text and often indicate interesting applications or extensions of the materials
presented.

Postscript

It is a terrible tragedy that Evarist Giné passed away shortly after we completed the
manuscript. His passion for mathematics was exceeded only by his love for his wife,
Rosalind; his daughters, Núria and Roser; and his grandchildren, Liam and Mireia. He
mentioned to me in September 2014, when I last met him in Cambridge (MA), that perhaps
he wanted to dedicate this book to all of them, but in an e-mail to me in January 2015,
he mentioned explicitly that he wanted it to be for Rosalind. I have honoured his decision;
however, I know that with this last work he wanted to thank all of them for having been his
wonderful family – who continue his infectious passion into new generations.

I am myself deeply grateful to my father, Harald, for all his support and inspiration
throughout my life in all domains. I dedicate this book to the memory of my mother,
Reingard, in loving gratitude for all her courage and everything she has done for me. And of
course, insofar as this book relates to the future, it is for Ana and our son, Julian, with love
and affection.

Postscript (2020)

In this paperback edition a large number of (mostly minor) corrections have been
incorporated. I would like to thank the various readers and students, specifically Kweku
Abraham, who pointed them out to me.



1

Nonparametric Statistical Models

In this chapter we introduce and motivate the statistical models that will be considered
in this book. Some of the materials depend on basic facts developed in subsequent
chapters – mostly the basic Gaussian process and Hilbert space theory. This will be hinted
at when necessary.

Very generally speaking, a statistical model for a random observation Y is a family

{P f : f ∈F}
of probability distributions P f , each of which is a candidate for having generated the
observation Y . The parameter f belongs to the parameter space F . The problem of
statistical inference on f , broadly speaking, can be divided into three intimately connected
problems of using the observation Y to

(a) Estimate the parameter f by an estimator T(Y ),
(b) Test hypotheses on f based on test functions �(Y ) and/or
(c) Construct confidence sets C(Y ) that contain f with high probability.

To interpret inferential results of these kinds, we will typically need to specify a distance, or
loss function on F , and for a given model, different loss functions may or may not lead to
very different conclusions.

The statistical models we will introduce in this chapter are, on the one hand, conceptually
closely related to each other in that the parameter space F is infinite or high dimensional
and the loss functions relevant to the analysis of the performance of statistical procedures are
similar. On the other hand, these models are naturally divided by the different probabilistic
frameworks in which they occur – which will be either a Gaussian noise model or an
independent sampling model. These frameworks are asymptotically related in a fundamental
way (see the discussion after Theorem 1.2.1). However, the most effective probabilistic
techniques available are based on a direct, nonasymptotic analysis of the Gaussian or product
probability measures that arise in the relevant sampling context and hence require a separate
treatment.

Thus, while many of the statistical intuitions are common to both the sampling and the
Gaussian noise models and in fact inform each other, the probabilistic foundations of these
models will be laid out independently.

1



2 Nonparametric Statistical Models

1.1 Statistical Sampling Models

Let X be a random experiment with associated sample space X . We take the mathematical
point of view of probability theory and model X as a random variable, that is, as a measurable
mapping defined on some underlying probability space that takes values in the measurable
space (X ,A), where A is a σ -field of subsets of X . The law of X is described by the
probability measure P on A. We may typically think of X equal to Rd or a measurable
subset thereof, equipped with its Borel σ -field A.

The perhaps most basic problem of statistics is the following: consider repeated outcomes
of the experiment X , that is, a random sample of independent and identically distributed
(i.i.d.) copies X1, . . . ,Xn from X . The joint distribution of the Xi equals the product
probability measure Pn = ⊗n

i=1P on (X n,An). The goal is to recover P from the n
observations. ‘Recovering P’ can mean many things. Classical statistics has been concerned
mostly with models where P is explicitly parameterised by a finite-dimensional parameter,
such as the mean and variance of the normal distribution, or the ‘parameters’ of the usual
families of statistical distributions (gamma, beta, exponential, Poisson, etc.). Recovering P
then simply means to use the observations to make inferences on the unknown parameter,
and the fact that this parameter is finite dimensional is crucial for this traditional paradigm
of statistical inference, in particular, for the famous likelihood principle of R. A. Fisher.
In this book, we will follow the often more realistic assumption that no such parametric
assumptions are made on P. For most sample spaces X of interest, this will naturally lead
to models that are infinite dimensional, and we will investigate how the theory of statistical
inference needs to be developed in this situation.

1.1.1 Nonparametric Models for Probability Measures

In its most elementary form, without imposing any parameterisations on P, we can simply
consider the problem of making inferences on the unknown probability measure P based on
the sample. Natural loss functions arise from the usual metrics on the space of probability
measures on X , such as the total variation metric

‖P−Q‖TV = sup
A∈A

|P(A)−Q(A)|

or weaker metrics that generate the topology of weak convergence of probability measures
on X . For instance, if X itself is endowed with a metric d, we could take the bounded
Lipschitz metric

β(X ,d)(P,Q) = sup
f ∈BL(1)

∣∣∣∣∫
X

f (dP− dQ)

∣∣∣∣
for weak convergence of probability measures, where

BL(M) =
{

f : X → R, sup
x∈X

| f (x)|+ sup
x	=y

| f (x)− f (y)|
d(x,y)

≤ M

}
, 0<M <∞.

If X has some geometric structure, we can consider more intuitive loss functions. For
example, if X = R, we can consider the cumulative distribution function

F(x) = P(X ≤ x), x ∈ R,
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or, if X takes values in Rd , its multivariate analogue. A natural distance function on
distribution functions is simply the supremum-norm metric (‘Kolmogorov distance’)

‖FP −FQ‖∞ = sup
x∈R

|FP(x)−FQ(x)|.

Since the indicators {1(−∞,x] : x ∈ R} generate the Borel σ -field of R, we see that, on R, the
statistical parameter P is characterised entirely by the functional parameter F, and vice versa.
The parameter space is thus the infinite-dimensional space of all cumulative distribution
functions on R.

Often we will know that P has some more structure, such as that P possesses a
probability-density function f : R → [0,∞), which itself may have further properties
that will be seen to influence the complexity of the statistical problem at hand. For
probability-density functions, a natural loss function is the L1-distance

‖ fP − fQ‖1 =
∫

R

| fP(x)− fQ(x)|dx

and in some situations also other Lp-type and related loss functions. Although in some sense
a subset of the other, the class of probability densities is more complex than the class of
probability-distribution functions, as it is not described by monotonicity constraints and does
not consist of functions bounded in absolute value by 1. In a heuristic way, we can anticipate
that estimating a probability density is harder than estimating the distribution function, just
as the preceding total variation metric is stronger than any metric for weak convergence
of probability measures (on nontrivial sample spaces X ). In all these situations, we will see
that the theory of statistical inference on the parameter f significantly departs from the usual
finite-dimensional setting.

Instead of P, a particular functional�(P) may be the parameter of statistical interest, such
as the moments of P or the quantile function F−1 of the distribution function F – examples
for this situation are abundant. The nonparametric theory is naturally compatible with such
functional estimation problems because it provides the direct plug-in estimate �(T) based
on an estimator T for P. Proving closeness of T to P in some strong loss function then gives
access to ‘many’ continuous functionals� for which�(T) will be close to�(P), as we shall
see later in this book.

1.1.2 Indirect Observations

A common problem in statistical sampling models is that some systematic measurement
errors are present. A classical problem of this kind is the statistical regression problem,
which will be introduced in the next section. Another problem, which is more closely related
to the sampling model from earlier, is where one considers observations in Rd of the form

Yi = Xi + εi, i = 1, . . . ,n, (1.1)

where the Xi are i.i.d. with common law PX , and the εi are random ‘error’ variables that
are independent of the Xi and have law Pε. The law Pε is assumed to be known to the
observer – the nature of this assumption is best understood by considering examples: the
attempt is to model situations in which a scientist, for reasons of cost, complexity or lack
of precision of the involved measurement device, is forced to observe Yi instead of the
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realisations Xi of interest. The observer may, however, have very concrete knowledge of
the source of the error, which could, for example, consist of light emissions of the Milky
Way interfering with cosmic rays from deeper space, an erratic optical device through
which images are observed (e.g., a space telescope which cannot be repaired except at very
high cost) or transmissions of signals through a very busy communication channel. Such
situations of implicit measurements are encountered frequently in the applied sciences and
are often called inverse problems, as one wishes to ‘undo’ the errors inflicted on the signal
in which one is interested. The model (1.1) gives a simple way to model the main aspects of
such statistical inverse problems. It is also known as the deconvolution model because the
law of the Yi equals

PY = PX ∗Pε,

the convolution of the two probability measures PX ,Pε, and one wishes to ‘deconvolve’ Pε.
As earlier, we will be interested in inference on the underlying distribution PX of the

signal X when the statistical model for PX is infinite dimensional. The loss functions in this
problem are thus typically the same as in the preceding subsection.

1.2 Gaussian Models

The randomness in the preceding sampling model was encoded in a general product measure
Pn describing the joint law of the observations. Another paradigm of statistical modelling
deals with situations in which the randomness in the model is described by a Gaussian
(normal) distribution. This paradigm naturally encompasses a variety of nonparametric
models, where the infinite-dimensional character of the problem does not necessarily derive
from the probabilistic angle but from a functional relationship that one wishes to model.

1.2.1 Basic Ideas of Regression

Perhaps the most natural occurrence of a statistical model in the sciences is the one in which
observations, modelled here as numerical values or vectors, say, (Yi,xi), arise according to a
functional relationship

Yi = f (xi)+ εi, i = 1, . . . ,n, (1.2)

where n is the number of observations (sample size), f is some function of the xi and the
εi are random noise. By ‘random noise’, we may mean here either a probabilistic model
for certain measurement errors that we believe to be intrinsic to our method of making
observations, or some innate stochastic nature of the way the Yi are generated from the
f (xi). In either case, we will model the εi as random variables in the sense of axiomatic
probability theory – the question of the genuine physical origin of this random noise will
not concern us here. It is sometimes natural to assume also that the xi are realisations of
random variables Xi – we can either take this into account explicitly in our analysis or make
statements conditional on the observed values Xi = xi.

The function f often will be unknown to the observer of observations (Yi,xi), and the
goal is to recover f from the (Yi,xi). This may be of interest for various reasons, for
instance, for predicting new values Yn+1 from f (xn+1) or to gain quantitative and qualitative
understanding of the functional relationship Yi = f (xi) under consideration.
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In the preceding context, a statistical model in the broad sense is an a priori specification
of both a parameter space for the functions f that possibly could have generated (1.2) and
a family of probability measures that describes the possible distributions of the random
variables εi. By ‘a priori’, we mean here that this is done independently of (e.g., before) the
observational process, reflecting the situation of an experimentalist.

A systematic use and study of such models was undertaken in the early nineteenth century
by Carl Friedrich Gauss, who was mostly interested in predicting astronomical observations.
When the model is translated into the preceding formalisation, Gauss effectively assumed
that the xi are vectors (xi1, . . . ,xip)T and thought of f as a linear function in that vector, more
precisely,

f (xi) = xi1θi + . . .xipθp, i = 1, . . . ,n,

for some real-valued parameters θj, j = 1, . . . , p. The parameter space for f is thus the
Euclidean space Rp expressed through all such linear mappings. In Gauss’s time, the
assumption of linearity was almost a computational necessity.

Moreover, Gauss modelled the random noise εi as independent and identically distributed
samples from a normal distribution N(0,σ 2) with some variance σ 2. His motivation
behind this assumption was twofold. First, it is reasonable to assume that E(εi) = 0 for
every i. If this expectation were nonzero, then there would be some deterministic, or
‘systematic’, measurement error ei =E(εi) of the measurement device, and this could always
be accommodated in the functional model by adding a constant x10 = ·· · = xn0 = 1 to the
preceding linear relationship. The second assumption that εi has a normal distribution is
deeper. If we think of each measurement error εi as the sum of many ‘very small’, or
infinitesimal, independent measurement errors εik ,k = 1,2, . . . , then, by the central limit
theorem, εi =

∑
k εik should be approximately normally distributed, regardless of the actual

distribution of the εik . By the same reasoning, it is typically natural to assume that the εi are
also independent among themselves. This leads to what is now called the standard Gaussian
linear model

Yi = f (xi)+ εi ≡
p∑

j=1

xijθj + εi, εi ∼i.i.d. N(0,σ 2), i = 1, . . . ,n, (1.3)

which bears this name both because Gauss studied it and, since the N(0,σ 2) distribution is
often called the Gaussian distribution, because Gauss first made systematic use of it. The
unknown parameter (θ ,σ 2) varies in the (p+ 1)-dimensional parameter space

	×
 = Rp × (0,∞).

This model constitutes perhaps the classical example of a finite-dimensional model, which
has been studied extensively and for which a fairly complete theory is available. For instance,
when p is smaller than n, the least-squares estimator of Gauss finds the value θ̂ ∈ Rp which
solves the optimisation problem

min
θ∈Rp

n∑
i=1

⎛⎝Yi −
p∑

j=1

xijθj

⎞⎠2

and hence minimises the Euclidean distance of the vector Y = (Y1, . . . ,Yn)T to the
p-dimensional subspace spanned by the p vectors (x1j, . . . ,xnj)T , j = 1, . . . ,p.
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1.2.2 Some Nonparametric Gaussian Models

We now give a variety of models that generalise Gauss’s ideas to infinite-dimensional
situations. In particular, we will introduce the Gaussian white noise model, which serves as
a generic surrogate for a large class of nonparametric models, including even non-Gaussian
ones, through the theory of equivalence of experiments (discussed in the next section).

Nonparametric Gaussian Regression

Gauss’s model and its theory basically consist of two crucial assumptions: one is that the εi

are normally distributed, and the other is that the function f is linear. The former assumption
was argued to be in some sense natural, at least in a measurement-error model (see also the
remarks after Theorem 1.2.1 for further justification). The latter assumption is in principle
quite arbitrary, particularly in times when computational power does not constrain us as
much any longer as it did in Gauss’s time. A nonparametric approach therefore attempts to
assume as little structure of f as possible. For instance, by the nonparametric regression
model with fixed, equally spaced design on [0,1], we shall understand here the model

Yi = f (xi)+ εi, xi = i

n
, εi ∼i.i.d. N(0,σ 2), i = 1, . . . ,n. (1.4)

where f is any function defined on [0,1]. We are thus sampling the unknown function f at
an equally spaced grid of [0,1] that, as n →∞, grows dense in the interval [0,1] as n →∞.

The model immediately generalises to bounded intervals [a,b], to ‘approximately’ equally
spaced designs {xi : i = 1, . . . ,n} ⊂ [a,b] and to multivariate situations, where the xi are
equally spaced points in some hypercube. We note that the assumption that the xi are equally
spaced is important for the theory that will follow – this is natural as we cannot hope to make
inference on f in regions that contain no or too few observations xi.

Other generalisations include the random design regression model, in which the xi are
viewed as i.i.d. copies of a random variable X . One can then either proceed to argue
conditionally on the realisations Xi = xi, or one takes this randomness explicitly into account
by making probability statements under the law of X and ε simultaneously. For reasonable
design distributions, this will lead to results that are comparable to the fixed-design
model – one way of seeing this is through the equivalence theory for statistical experiments
(see after Theorem 1.2.1).

A priori it may not be reasonable to assume that f has any specific properties other
than that it is a continuous or perhaps a differentiable function of its argument. Even if we
assumed that f has infinitely many continuous derivatives the set of all such f would be
infinite dimensional and could never be fully captured by a p-dimensional parameter space.
We thus have to expect that the theory of statistical inference in this nonparametric model
will be different from the one in Gauss’s classical linear model.

The Gaussian White Noise Model

For the mathematical development in this book we shall work with a mathematical
idealisation of the regression model (1.4) in continuous time, known as the Gaussian
white noise model, and with its infinite sequence space analogue. While perhaps at first
appearing more complicated than the discrete model, once constructed, it allows for a clean
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and intuitive mathematical exposition that mirrors all the main ideas and challenges of the
discrete case with no severe loss of generality.

Consider the following stochastic differential equation:

dY (t) ≡ dY (n)
f (t) = f (t)dt+ σ√

n
dW (t), t ∈ [0,1], n ∈ N, (1.5)

where f ∈ L2 ≡ L2([0,1]) is a square integrable function on [0,1], σ > 0 is a dispersion
parameter and dW is a standard Gaussian white noise process. When we observe a
realisation of (1.5), we shall say that we observe the function or signal f in Gaussian white
noise, at the noise level, or a signal-to-noise ratio σ/

√
n. We typically think of n large,

serving as a proxy for sample size, and of σ > 0 a fixed known value. If σ is unknown, one
can usually replace it by a consistent estimate in the models we shall encounter in this book.

The exact meaning of dW needs further explanation. Heuristically, we may think
of dW as a weak derivative of a standard Brownian motion {W (t) : t ∈ [0,1]}, whose
existence requires a suitable notion of stochastic derivative that we do not want to develop
here explicitly. Instead, we take a ‘stochastic process’ approach to define this stochastic
differential equation, which for statistical purposes is perfectly satisfactory. Let us thus
agree that ‘observing the trajectory (1.5)’ will simply mean that we observe a realisation
of the Gaussian process defined by the application

g �→
∫ 1

0
g(t)dY (n)(t) ≡ Y(n)

f (g) ∼ N

(
〈 f ,g〉, ‖g‖2

2

n

)
, (1.6)

where g is any element of the Hilbert space L2([0,1]) with inner product 〈·, ·〉 and norm
‖ ·‖2. Even more explicitly, we observe all the N(〈 f ,g〉,‖g‖2

2/n) variables, as g runs through
L2([0,1]). The randomness in the equation (1.5) comes entirely from the additive term dW ,
so after translating by 〈 f ,g〉 and scaling by 1/

√
n, this means that dW is defined through the

Gaussian process obtained from the action

g �→
∫ 1

0
g(t)dW (t) ≡ W(g) ∼ N(0,‖g‖2

2), g ∈ L2([0,1]). (1.7)

Note that this process has a diagonal covariance in the sense that for any finite set
of orthonormal vectors {ek} ⊂ L2 we have that the family {W(ek)} is a multivariate
standard normal variable, and as a consequence of the Kolmogorov consistency theorem
(Proposition 2.1.10), W and Y(n) indeed define Gaussian processes on L2.

The fact that the model (1.5) can be interpreted as a Gaussian process indexed by L2

means that the natural sample space Y in which dY from (1.5) takes values is the ‘path’ space
RL2([0,1]). This space may be awkward to work with in practice. In Section 6.1.1 we shall show
that we can find more tractable choices for Y where dY concentrates with probability 1.

Gaussian Sequence Space Model

Again, to observe the stochastic process {Y(n)
f (g) : g ∈ L2} just means that we observe Y(n)

f (g)
for all g ∈ L2 simultaneously. In particular, we may pick any orthonormal basis {ek : k ∈ Z}
of L2, giving rise to an observation in the Gaussian sequence space model

Yk ≡ Y (n)
f ,k = 〈 f ,ek〉+ σ√

n
gk , k ∈ Z, n ∈ N, (1.8)
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where the gk are i.i.d. of law W(ek) ∼ N(0,‖ek‖2
2) = N(0,1). Here we observe all the basis

coefficients of the unknown function f with additive Gaussian noise of variance σ 2/n. Note
that since the {ek : k ∈ Z} realise a sequence space isometry between L2 and the sequence
space �2 of all square-summable infinite sequences through the mapping f �→ 〈 f ,ek〉, the
law of {Y (n)

f ,k : k ∈ Z} completely characterises the finite-dimensional distributions, and thus

the law, of the process Y(n)
f . Hence, models (1.5) and (1.8) are observationally equivalent to

each other, and we can prefer to work in either one of them (see also Theorem 1.2.1).
We note that the random sequence Y = (Yk : k ∈Z) itself does not take values in �2, but we

can view it as a random variable in the ‘path’ space R�2 . A more tractable, separable sample
space on which (Yk : k ∈ Z) can be realised is discussed in Section 6.1.1.

A special case of the Gaussian sequence model is obtained when the space is restricted to
n coefficients

Yk = θk + σ√
n

gk , k = 1, . . . ,n, (1.9)

where the θk are equal to the 〈 f ,ek〉. This is known as the normal means model. While itself a
finite-dimensional model, it cannot be compared to the standard Gaussian linear model from
the preceding section as its dimension increases as fast as n. In fact, for most parameter
spaces that we will encounter in this book, the difference between model (1.9) and model
(1.8) is negligible, as follows, for instance, from inspection of the proof of Theorem 1.2.1.

Multivariate Gaussian Models

To define a Gaussian white noise model for functions of several variables on [0,1]d through
the preceding construction is straightforward. We simply take, for f ∈ L2([0,1]d),

dY (t) = f (t)dt+ σ√
n

dW (t), t ∈ [0,1]d , n ∈ N, σ > 0, (1.10)

where dW is defined through the action

g �→
∫

[0,1]d
g(t)dW (t) ≡ W(g) ∼ N(0,‖g‖2

2) (1.11)

on elements g of L2([0,1]d), which corresponds to multivariate stochastic integrals with
respect to independent Brownian motions W1(t1), . . . ,Wd(td). Likewise, we can reduce to a
sequence space model by taking an orthonormal basis {ek : k ∈ Zd} of L2([0,1]d).

1.2.3 Equivalence of Statistical Experiments

It is time to build a bridge between the preceding abstract models and the statistically
more intuitive nonparametric fixed-design regression model (1.4). Some experience with
the preceding models reveals that a statistical inference procedure in any of these models
constructively suggests a procedure in the others with comparable statistical properties.
Using a suitable notion of distance between statistical experiments, this intuition can be
turned into a theorem, as we show in this subsection. We present results for Gaussian
regression models; the general approach, however, can be developed much further to show
that even highly non-Gaussian models can be, in a certain sense, asymptotically equivalent
to the standard Gaussian white noise model (1.5). This gives a general justification for a
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rigorous study of the Gaussian white noise model in itself. Some of the proofs in this
subsection require material from subsequent chapters, but the main ideas can be grasped
without difficulty.

The Le Cam Distance of Statistical Experiments

We employ a general notion of distance between statistical experiments E (i), i = 1,2, due
to Le Cam. Each experiment E (i) consists of a sample space Yi and a probability measure
P(i)

f defined on it, indexed by a common parameter f ∈ F . Let T be a measurable space of
‘decision rules’, and let

L : F ×T → [0,∞)

be a ‘loss function’ measuring the performance of a decision procedure T (i)(Y (i)) ∈ T based
on observations Y (i) in experiment i. For instance, T (i)(Y (i)) could be an estimator for f so
that T = F and L( f ,T) = d( f ,T), where d is some metric on F , but other scenarios are
possible. The risk under P(i)

f for this loss is the P(i)
f -expectation of L( f ,T (i)(Y (i))), denoted by

R(i)( f ,T (i),L). Define also

|L| = sup{L( f ,T) : f ∈F ,T ∈ T ).

The Le Cam distance between two experiments is defined as

�F (E (1),E (2)) ≡ max

[
sup
T (2)

inf
T (1)

sup
f ,L:|L|=1

∣∣R(1)( f ,T (1),L)−R(2)( f ,T (2),L)
∣∣ , (1.12)

sup
T (1)

inf
T (2)

sup
f ,L:|L|=1

∣∣R(1)( f ,T (1),L)−R(2)( f ,T (2),L)
∣∣].

If this quantity equals zero, this means that any decision procedure T (1) in experiment E (1)

can be translated into a decision procedure T (2) in experiment E (2), and vice versa, and that
the statistical performance of these procedures in terms of the associated risk R(i) will be the
same for any bounded loss function L. If the distance is not zero but small, then, likewise,
the performance of the corresponding procedures in both experiments will differ by at most
their Le Cam distance.

Some useful observations on the Le Cam distance are the following: if both experiments
have a common sample space Y (1) = Y (2) = Y equal to a complete separable metric space,
and if the probability measures P(1)

f ,P(2)
f have a common dominating measure μ on Y , then

�F (E (1),E (2)) ≤ sup
f ∈F

∫
Y

∣∣∣∣∣dP(1)
f

dμ
− dP(2)

f

dμ

∣∣∣∣∣dμ≡ ‖P(1) −P(2)‖1,μ,F . (1.13)

This follows from the fact that in this case we can always use the decision rule T (2)(Y ) in
experiment E (1) and vice versa and from

|R(1)( f ,T ,L)−R(2)( f ,T ,L)| ≤
∫
Y
|L( f ,T(Y ))||dP(1)

f (Y )− dP(2)
f (Y )| ≤ |L|‖P(1) −P(2)‖1,μ,F .

The situation in which the two experiments are not defined on the sample space needs
some more thought. Suppose, in the simplest case, that we can find a bi-measurable
isomorphism B of Y (1) with Y (2), independent of f , such that

P(2)
f = P(1)

f ◦B−1, P(1)
f = P(2)

f ◦B ∀ f ∈F .
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Then, given observations Y (2) in Y (2), we can use the decision rule T (2)(Y (2))≡T (1)(B−1(Y (2)))
in E (2), and vice versa, and the risks R(i) in both experiments coincide by the image measure
theorem. We can conclude in this case that

�F (E (1),E (2)) =�F (E (1),B−1(E (2))) = 0. (1.14)

In the absence of such a bijection, the theory of sufficient statistics can come to our aid to
bound the Le Cam distance. Let again Y (i), i = 1,2, be two sample spaces that we assume to
be complete separable metric spaces. Let E (1) be the experiment giving rise to observations
Y (1) of law P(1)

f on Y (1), and suppose that there exists a mapping S : Y (1) →Y (2) independent
of f such that

Y (2) = S(Y (1)), Y (2) ∼ P(2)
f on Y (2).

Assume, moreover, that S(Y (1)) is a sufficient statistic for Y (1); that is, the conditional
distribution of Y (1) given that we have observed S(Y (1)) is independent of f ∈F . Then

�F (E (1),E (2)) = 0. (1.15)

The proof of this result, which is an application of the sufficiency principle from statistics,
is left as Exercise 1.1.

Asymptotic Equivalence for Nonparametric Gaussian Regression Models

We can now give the main result of this subsection. We shall show that the experiments

Yi = f (xi)+ εi, xi = i

n
, εi ∼i.i.d. N(0,σ 2), i = 1, . . . ,n, (1.16)

and

dY (t) = f (t)dt+ σ√
n

dW (t), t ∈ [0,1], n ∈ N, (1.17)

are asymptotically (n → ∞) equivalent in the sense of Le Cam distance. In the course of
the proofs, we shall show that any of these models is also asymptotically equivalent to the
sequence space model (1.8). Further models that can be shown to be equivalent to (1.17) are
discussed after the proof of the following theorem.

We define classes

F (α,M) =
{

f : [0,1] → R, sup
x∈[0,1]

| f (x)|+ sup
x	=y

| f (x)− f (y)|
|x− y|α ≤ M

}
,

0< α ≤ 1, 0<M <∞,

of α-Hölderian functions. Moreover, for (xi)n
i=1 the design points of the fixed-design

regression model (1.16) and for f any bounded function defined on [0,1], let πn( f ) be the
unique function that interpolates f at the xi and that is piecewise constant on each interval
(xi1 ,xi] ⊂ [0,1].

Theorem 1.2.1 Let (E (i)
n : n ∈ N), i = 1,2,3, equal the sequence of statistical experiments

given by i = 1 the fixed-design nonparametric regression model (1.16); i = 2, the standard
Gaussian white noise model (1.17); and i = 3, the Gaussian sequence space model (1.8),
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respectively. Then, for F any family of bounded functions on [0,1], for πn( f ) as earlier and
for any n ∈ N,

�F (E (2)
n ,E (3)

n ) = 0, �F (E (1)
n ,E (2)

n ) ≤
√

nσ 2

2
sup
f ∈F

‖ f −πn( f )‖2. (1.18)

In particular, if F = F (α,M) for any α > 1/2,M > 0, then all these experiments are
asymptotically equivalent in the sense that their Le Cam distance satisfies, as n →∞,

�F (E (i)
n ,E (j)

n ) → 0, i, j ∈ {1,2,3}. (1.19)

Proof In the proof we shall say that two experiments are equivalent if their Le Cam distance
is exactly equal to zero. The first claim in (1.18) immediately follows from (1.14) and the
isometry between L2([0,1]) and �2 used in the definition of the sequence space model (1.8).

Define Vn to equal the n-dimensional space of functions f : [0,1] →R that are piecewise
constant on the intervals

Iin = (xi−1,xi] =
(

i− 1

n
,

i

n

]
, i = 1, . . . ,n.

The indicator functions φin = 1Iin of these intervals have disjoint support, and they form an
orthonormal basis of Vn for the inner product

〈 f ,g〉n =
n∑

j=1

f (xj)g(xj),

noting that
∑n

j=1φ
2
in(xj) = 1 for every i. Given bounded f : [0,1] → R, let πn( f ) be the

〈·, ·〉n-projection of f onto Vn. Since

〈 f ,φin〉n =
n∑

j=1

f (xj)φin(xj) = f (xi) ∀i,

we see

πn( f )(t) =
n∑

i=1

f (xi)φin(t), t ∈ [0,1],

so this projection interpolates f at the design points xi, that is, πn( f )(xj) = f (xj) for all j.
Note that the functions {√nφin : i= 1, . . . ,n} also form a basis of Vn in the standard L2([0,1])
inner product 〈·, ·〉. This simultaneous orthogonality property will be useful in what follows.

Observing Yi = f (xi) + εi in Rn from model (1.16) with bounded f is, by (1.14),
equivalent to observations in the n-dimensional functional space Vn given by

n∑
i=1

Yiφin(t) =
n∑

i=1

f (xi)φin(t)+
n∑

i=1

εiφin(t), t ∈ [0,1]. (1.20)

We immediately recognise that
∑n

i=1 f (xi)φin is the interpolation πn( f ) of f at the xi.
Moreover, the error process is a scaled white noise process restricted to the space Vn: indeed,
its L2([0,1]) action on h ∈ Vn is given by∫ 1

0

n∑
i=1

εiφin(t)h(t)dt = 1√
n

n∑
i=1

εi〈h,
√

nφin〉 ∼ N

(
0,
σ 2

n

n∑
i=1

〈h,
√

nφin〉2

)
= N

(
0,
σ 2

n
‖h‖2

2

)
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using Parseval’s identity and that the
√

nφin form an L2([0,1]) orthonormal basis of Vn. If
�n is the L2([0,1]) projector onto Vn spanned by the {√nφin}, then one shows, by the same
arguments, that this process can be realised as a version of the Gaussian process defined
on L2 by the action h �→ W(�n(h)), where W is as in (1.7). In other words, it equals the
L2-projection of the standard white noise process dW onto the finite-dimensional space Vn,
justifying the notation

σ√
n

dWn(t) ≡
n∑

i=1

εiφin(t)dt.

To summarise, (1.16) is equivalent to model (1.20), which itself can be rewritten as

dỸ (t) ≡ πn( f )(t)+ σ√
n

dWn(t), t ∈ [0,1]. (1.21)

Next, consider the model

dȲ (t) = πn( f )(t)+ σ√
n

dW (t), t ∈ [0,1], (1.22)

which is the standard white noise model (1.17) but with f replaced by its interpolation
πn( f ) at the design points xi. Since πn( f ) ∈ Vn, we have �n(πn( f )) = πn( f ), and since
dWn =�n(dW ) ∈ Vn, the statistics

dỸ =�n(dȲ ) =
{∫ 1

0
h(t)dỸ (t) : h ∈ Vn

}
are sufficient for dȲ , so by (1.15) the models (1.21) and (1.22) are equivalent. [To use (1.15)
rigorously, we interpret dỸ ,dȲ as tight random variables in a large enough, separable Banach
space (see Section 6.1.1).]

To prove the second claim in (1.18), we relate (1.22) to (1.17), that is, to

dY (t) = f (t)+ σ√
n

dW (t), t ∈ [0,1].

Both experiments have the same sample space, which in view of Section 6.1.1 we can take
to be, for instance, the space of continuous functions on [0,1], and the standard white noise
W gives a common dominating measure PY

0 on that space for the corresponding probability
measures PY

f ,PY
πn( f ). In view of (1.13) and using Proposition 6.1.7a) combined with (6.16),

we see that the Le Cam distance is bounded by

sup
f ∈F

‖PY
f −PY

πn( f )‖2
1,μ,F ≤ n

σ 2
sup
f ∈F

‖ f −πn( f )‖2
2, (1.23)

which gives (1.18). Finally, for (1.19), uniformly in f ∈F (α,M),

‖ f −πn( f )‖2
2 =

n∑
i=1

∫ i/n

(i−1)/n
( f (x)− f (xi))

2dx ≤ M2
n∑

i=1

∫ i/n

(i−1)/n
|x− xi|2αdx

≤ M2n−2α
n∑

i=1

∫ i/n

(i−1)/n
dx = O(n−2α),

so for α > 1/2, the quantity in (1.23) converges to zero, completing the proof.
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In the preceding theorem the Hölder classes F (α,M) could be replaced by balls in the
larger Besov-Sobolev spaces Bα2∞ (defined in Chapter 4) whenever α > 1/2. The condition
on α, however, cannot be relaxed, as we discuss in the notes.

The theory of asymptotic equivalence can be taken much further, to include results like
the one preceding for random design regression experiments in possibly multivariate settings
and with possibly non-Gaussian noise ε. The theory also extends to non-Gaussian settings
that are not of regression type: one can show that nonparametric models for probability or
spectral densities, or ergodic diffusions, are asymptotically equivalent to a suitable Gaussian
white noise model. We discuss relevant references in the notes.

Asymptotic equivalence theory, which is a subject in its own, justifies that the Gaussian
white noise model is, in the sense of the Le Cam distance, a canonical limit experiment in
which one can develop some main theoretical ideas of nonparametric statistics. For Gaussian
regression problems, the closeness of the experiments involved is in fact of a nonasymptotic
nature, as shown by Theorem 1.2.1, and in this book we thus shall concentrate on the white
noise model as the natural continuous surrogate for the standard fixed-design regression
model. For other, non-Gaussian models, such as density estimation, asymptotic equivalence
theory is, however, often overly simplistic in its account of the probabilistic structure of
the problem at hand, and for the purposes of this book, we hence prefer to stay within the
product-measure setting of Section 1.1, such that a nonasymptotic analysis is possible.

Exercises

1.1 Prove (1.15). [Hint: Use the fact that the proof of the standard sufficiency reduction principle
extends to complete separable metric spaces (see Le Cam 1986).]

1.3 Notes

The modern understanding of statistical inference as consisting of the three related branches of
estimation, testing and confidence statements probably goes back, in its most fundamental form,
to the work of Fisher (1922; 1925a, b), who considered mostly parametric (finite-dimensional)
statistical models. The need to investigate nonparametric statistical models was realised not much
later, roughly at the same time at which the axiomatic approach to probability theory was put forward
by Kolmogorov (1933). Classic papers on fully nonparametric sampling models for the cumulative
distribution function are, for instance, Glivenko (1933), Cantelli (1933), Kolmogorov (1933a), and
Smirnov (1939). More recent developments will be reviewed in later chapters of this book.

The linear regression model with normally distributed errors was initiated by Gauss (1809), who
used it successfully in the context of observational astronomy. Gauss most likely was the first to use
the least-squares algorithm, although Legendre and even some others can claim priority as well. The
history is reviewed, for example, in Plackett (1972) and Stigler (1981).

Nonparametric regression models were apparently not studied systematically before the 1960s;
see Nadaraya (1964) and Watson (1964). The Gaussian white noise model and its sequence space
analogue were systematically developed in the 1970s and later by the Russian school – we refer
to the seminal monograph by Ibragimov and Khasminskii (1981). The asymptotic equivalence
theory for statistical experiments was developed by Le Cam; we refer to his fundamental book
Le Cam (1986) and also to Le Cam and Yang (1990). Landmark contributions in nonparametric
asymptotic equivalence theory are the papers Brown and Low (1996) and Nussbaum (1996), who
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treated univariate regression models with fixed design and density estimation, respectively. The
necessity of the assumption α ≥ 1/2 is the subject of the paper by Brown and Zhang (1998).
Asymptotic equivalence for random design regression is somewhat more involved: the univariate
case is considered in Brown et al. (2002), and the general, multivariate random design regression
case is considered in Reiß (2008). Further important results include asymptotic equivalence for
nonparametric regression with non-Gaussian error distributions in Grama and Nussbaum (2002),
asymptotic equivalence for spectral density estimation in Golubev, Nussbaum and Zhou (2010), and
asymptotic equivalence for ergodic diffusions in Dalalyan and Reiß (2006).



2

Gaussian Processes

This chapter develops some classical theory and fundamental tools for Gaussian random
processes. We start with the basic definitions of Gaussian processes indexed by abstract
parameter spaces and, by way of introduction to the subject, derive some elementary yet
powerful properties. We present the isoperimetric and log-Sobolev inequalities for Gaussian
measures in Rn and apply them to establish concentration properties for the supremum of
a Gaussian process about its median and mean, which are some of the deepest and most
useful results on Gaussian processes. Then we introduce Dudley’s metric entropy bounds
for moments of suprema of (sub-) Gaussian processes as well as for their a.s. modulus of
continuity. The chapter also contains a thorough discussion of convexity and comparison
properties of Gaussian measures and of reproducing kernel Hilbert spaces and ends with an
exposition of the limit theory for suprema of stationary Gaussian processes.

2.1 Definitions, Separability, 0-1 Law, Concentration

We start with some preliminaries about stochastic processes, mainly to fix notation and
terminology. Then these concepts are specialised to Gaussian processes, and some first
properties of Gaussian processes are developed. The fundamental observation is that a
Gaussian process X indexed by a set T induces an intrinsic distance dX on T (dX (s, t) is
the L2-distance between X (s) and X (t)), and all the probabilistic information about X is
contained in the metric or pseudo-metric space (T ,d). This is tested on some of the first
properties, such as the 0-1 law and the existence of separable versions of X . One of the main
properties of Gaussian processes, namely, their concentration about the mean, is introduced;
this subject will be treated in the next section, but a first result on it, which is not sharp but
that has been chosen for its simplicity, is given in this section.

2.1.1 Stochastic Processes: Preliminaries and Definitions

Let (�,
,Pr ) be a probability space, and let T be a set. A stochastic process X indexed by T
and defined on the probability space (�,
,Pr ) is a function X : T ×� �→R, (t,ω) �→X (t,ω)
such that, for each t ∈ T , X (t, ·) is a random variable. Then, for any finite set F ⊂ T , the
maps� �→RF given by ω �→ {X (t,ω) : t ∈ F} are also measurable, and their probability laws
μF = Pr◦{X (t, ·) : t ∈ F}−1 are the finite-dimensional distributions (or finite-dimensional
marginal distributions or finite-dimensional marginals) of X . If F ⊂ G ⊂ T and G is
finite and πGF is the natural projection from RG onto RF , then, obviously, the consistency

15
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conditions μF =μG ◦π−1
GF are satisfied (πGF({X (t) : t ∈ G}) = {X (t) : t ∈ F}). Conversely, the

Kolmogorov consistency theorem shows that any collection of Borel probability measures
μF on RF , indexed by the finite subsets F ⊂ T and satisfying the consistency conditions,
is the collection of finite-dimensional distributions of a stochastic process X indexed by
T . In other words, a consistent family of probability measures μF , F ⊂ T , F finite,
defines a unique probability measure μ on the cylindrical σ -algebra C of RT such that
μF = μ ◦ π−1

TF . (The cylindrical σ -algebra C is the σ -algebra generated by the cylindrical
sets with finite-dimensional base, π−1

TF (A), A ∈ B(RF), F ⊂ T , F finite.) Then the map
X : T × RT �→ R, (t,x) �→ x(t), is a process defined on the probability space (RT ,C,μ).
If μ is the probability measure on (RT ,C) defined by the finite-dimensional distributions of
a process X , then we say that μ is the probability law of X (which can be thought of as a
‘random variable’ taking values on the measurable space (RT ,C)). See almost any probability
textbook, for example, Dudley (2002).

Definition 2.1.1 Two processes X and Y of index set T are said to be a version of
each other if both have the same finite-dimensional distributions L(X (t1), . . . ,X (tn)) =
L(Y (t1), . . . ,Y (tn)) for all n ∈ N and ti ∈ T or, what is the same, if both have the same
probability law on (RT ,C). They are said to be a strict version or a modification of each
other if Pr{X (t) = Y (t)} = 1 for all t.

It is convenient to recall the definition of pseudo-distance and pseudo-metric space. A
pseudo-distance d on T is a nonnegative symmetric function of two variables s, t ∈ T that
satisfies the triangle inequality but for which d(s, t) = 0 does not necessarily imply s = t.
A pseudo-metric space (T ,d) is a set T equipped with a pseudo-distance d. Clearly, a
pseudo-metric space becomes a metric space by taking the quotient with respect to the
equivalence relation s � t iff d(s, t) = 0. For instance, the space Lp of functions is a
pseudo-metric space for the Lp (pseudo-)norm, and the space of equivalence classes, Lp,
is a metric space for the same norm. One only seldom needs to distinguish between the two.

If the index set T of a process X is a metric or pseudo-metric space (T ,d), we say that
X is continuous in probability if X (tn) → X (t) in probability whenever d(tn, t) → 0. In this
case, if T0 is a d-dense subset of T , the law of the process on (RT ,C) is determined by the
finite-dimensional distributions L(X (t1), . . . ,X (tn)) for all n ∈ N and ti ∈ T0.

Here are two more definitions of interest.

Definition 2.1.2 A process X (t), t ∈ T , (T ,d) a metric or pseudo-metric space, is separable
if there exists T0 ⊂ T , T0 countable, and �0 ⊂� with Pr(�0) = 1 such that for all ω ∈�0,
t ∈ T and ε > 0,

X (t,ω) ∈ {X (s,ω) : s ∈ T0 ∩Bd(t,ε)},
where Bd(t,ε) is the open d-ball about t of radius ε. X is measurable if the map (�×T ,
⊗
T )→R given by (ω, t)−→X (ω, t) is jointly measurable, where T is the σ -algebra generated
by the d-balls of T .

By definition, if X (t), t ∈ T , is separable, then there are points from T0 in any
neighborhood of t, t ∈ T ; hence (T ,d) is separable; that is, (T ,d) possesses a countable dense
subset. Note that if X is separable, then supt∈T X (t)= sups∈T0

X (s) a.s., and the latter, being a
countable supremum, is measurable; that is, suprema over uncountable sets are measurable.
The same holds for |X (t)|.



2.1 Definitions, Separability, 0-1 Law, Concentration 17

Often we require the sample paths t �→ X (t,ω) to have certain properties for almost every
ω, notably, to be bounded or bounded and uniformly continuous ω a.s.

Definition 2.1.3 A process X (t), t∈T , is sample bounded if it has a version X̃ whose sample
paths t �→ X̃ (t,ω) are almost all uniformly bounded, that is, supt∈T |X̃ (t)| <∞ a.s. If (T ,d)
is a metric or pseudo-metric space, then X is sample continuous (more properly, sample
bounded and uniformly continuous) if it has a version X̃ (t) whose sample paths are almost
all bounded and uniformly d-continuous.

Note that if X is sample continuous, then the finite-dimensional distributions of X
are the marginals of a probability measure μ defined on the cylindrical σ -algebra C ∩
Cu(T ,d) of Cu(T ,d), the space of bounded uniformly continuous functions on (T ,d),
L(X (t1), . . . ,X (tk)) = μ ◦ (δt1 , . . . ,δtk )−1, ti ∈ T , k < ∞ (here and in what follows, δt is
unit mass at t). The vector space Cu(T ,d), equipped with the supremum norm ‖ f ‖∞ =
supt∈T | f (t)|, is a Banach space, that is, a complete normed space for which the vector
space operations are continuous. The Banach space Cu(T ,d) is separable if (and only if)
(T ,d) is totally bounded, and in this case, Cu(T ,d) is isometric to C(T̄ ,d), where (T̄ ,d)
is the completion of (T ,d), which is compact. Then, assuming (T ,d) totally bounded, we
have ‖ f ‖∞ = supt∈T0

| f (t)|, where T0 is any countable dense subset of T ; in particular, the
closed balls of Cu(T ,d) are measurable for the cylindrical σ -algebra: { f : ‖ f − f0‖∞ ≤ r} =
∩t∈T0{ f : | f (t)− f0(t)| ≤ r}. This implies that the open sets are also measurable because, by
separability of Cu(T ,d), every open set in this space is the union of a countable number of
closed balls. This proves that the Borel and the cylindrical σ -algebras of Cu(T ,d) coincide
if (T ,d) is totally bounded. Hence, in this case, the finite-dimensional distributions of X
are the marginal measures of a Borel probability measure μ on Cu(T ,d). Since Cu(T ,d) is
separable and complete (for the supremum norm), the probability law μ of X is tight in view
of the following basic result that we shall use frequently in this book (see Exercise 2.1.6 for
its proof). Recall that a probability measure μ is tight if for all ε > 0 there is K compact such
that μ(Kc)< ε.

Proposition 2.1.4 (Oxtoby-Ulam) If μ is a Borel probability measure on a complete
separable metric space, then μ is tight.

In general, given a Banach space B, a B-valued random variable X is a Borel measurable
map from a probability space into B. Thus, the preceding considerations prove the following
proposition. It is convenient to introduce an important Banach space: given a set T , �∞
(T) ⊂ RT will denote the set of bounded functions x : T �→ R. Note that this is a Banach
space if we equip it with the supremum norm ‖x‖T = supt∈T |x(t)| and that the inclusion of
Cu(T) into �∞(T) is isometric. Observe that �∞(T) is separable for the supremum norm if
and only if T is finite.

Proposition 2.1.5 If (T ,d) is a totally bounded metric or pseudo-metric space and X (t),
t ∈ T, is a sample continuous process, then X has a version which is a Cu(T ,d)-valued
random variable, and its probability law is a tight Borel measure with support contained in
Cu(T ,d) and hence a tight Borel probability measure on �∞(T).

Example 2.1.6 (Banach space–valued random variables as sample continuous pro-
cesses.) Let B be a separable Banach space, let B∗ be its dual space and let B∗

1 denote the
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closed-unit ball of B∗
1 about the origin. Then there exists a countable set D ⊂ B∗

1 such that
‖x‖ = sup f ∈D f (x) for all x ∈ B: if {xi} ⊂ B is a countable dense subset of B and fi ∈ B∗

1

are such that fi(xi) = ‖xi‖ (note that fi exists by the Hahn-Banach theorem), then D = { fi}
is such a set. The inclusion B �→ Cu(D,‖ · ‖), where ‖ · ‖ is the norm on B∗

1, is an isometric
imbedding, and every B-valued random variable X defines a process f �→ f (X ), f ∈D, with
all its sample paths bounded and uniformly continuous. Hence, any results proved for sample
bounded and uniformly continuous processes indexed by totally bounded metric spaces do
apply to Banach space–valued random variables for B separable.

If X (t), t ∈ T , is a sample bounded process, then its probability law is defined on the
cylindrical σ -algebra of �∞(T), 
 = C ∩ �∞(T). Since �∞(T) is a metric space for the
supremum norm, it also has another natural σ -algebra, the Borel σ -algebra. We conclude
with the interesting fact that if the law of the bounded process X extends to a tight Borel
measure on �∞(T), then X is sample continuous with respect to a metric d for which (T ,d)
is totally bounded.

Proposition 2.1.7 Let X (t), t ∈ T, be a sample bounded stochastic process. Then the
finite-dimensional probability laws of X are those of a tight Borel probability measure on
�∞(T) if and only if there exists on T a pseudo-distance d for which (T ,d) is totally bounded
and such that X has a version with almost all its sample paths uniformly continuous for d.

Proof Let us assume that the probability law of X is a tight Borel measure μ on �∞(T); let
Kn, n ∈ N, be an increasing sequence of compact sets in �∞(T) such that μ

(∪∞
n=1Kn

) = 1;
and set K =∪∞

n=1Kn. Define a pseudo-metric d as

d(s, t) =
∞∑

n=1

2−n
(
1∧ dn(s, t)

)
,

where
dn(s, t) = sup

{| f (t)− f (s)| : f ∈ Kn

}
.

To prove that (T ,d) is totally bounded, given ε > 0, let m be such that
∑∞

n=m+1 2−n < ε/4.
Since the set ∪m

n=1Kn is compact, it is totally bounded, and therefore, it contains a finite
subset { f1, . . . , fr} which is ε/4 dense in ∪m

n=1Kn for the supremum norm; that is, for each
f ∈ ∪m

n=1Kn, there is i ≤ r such that ‖ f − fi‖∞ ≤ ε/4. Since ∪m
n=1Kn is a bounded subset

of �∞(T) (as it is compact), it follows that the subset A = {( f1(t), . . . , fr(t)) : t ∈ T} of Rr

is bounded, hence precompact, hence totally bounded, and therefore there exists a finite set
Tε = {ti : 1 ≤ i ≤ N} such that for each t ∈ T there is i = i(t) ≤ N such that max1≤s≤r | fs(t)−
fs(ti)| ≤ ε/4. It follows that Tε is ε dense in T for the pseudo-metric d: for n ≤ m, t ∈ T and
ti = ti(t), we have

dn(t, ti) = sup
f ∈Kn

| f (t)− f (ti)| ≤ max
s≤r

| fs(t)− fs(ti)|+ ε/2 ≤ 3ε

4

and therefore

d(t, ti) ≤ ε
4
+

m∑
n=1

2−ndn(t, ti) ≤ ε,

proving that (T ,d) is totally bounded.
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Next, since μ(K) = 1, the identity map of (�∞(T),B,μ) is a version of X with almost
all its trajectories in K. Thus, to prove that X has a version with almost all its sample paths
bounded and uniformly d-continuous, it suffices to show that the functions from K have these
properties. If f ∈Kn, then | f (s)− f (t)| ≤ dn(s, t)≤ 2nd(s, t) for all s, t ∈ T with d(s, t)< 2−n,
proving that f is uniformly continuous, and f is bounded because Kn is bounded.

Conversely, let X (t), t ∈ T , be a process with a version whose sample paths are almost
all in Cu(T ,d) for a distance or pseudo-distance d on T for which (T ,d) is totally bounded,
and let us continue denoting X such a version (recall the notation Cu(T ,d) as the space of
bounded uniformly continuous functions on (T ,d)). Then X is a random variable taking
values in Cu(T ,d), and its marginal laws correspond to a Borel probability measure on
Cu(T ,d) (see the argument following Definition 2.1.3). But since (T ,d) is precompact,
Cu(T ,d) is separable, and the law of X is in fact a tight Borel measure by the Oxtoby-Ulam
theorem (Proposition 2.1.4). But a tight Borel probability measure on Cu(T ,d) is a tight
Borel measure on �∞(T) because the inclusion of Cu(T ,d) into �∞ is continuous.

2.1.2 Gaussian Processes: Introduction and First Properties

We now look at Gaussian processes. Recall that a finite-dimensional random vector or a
multivariate random variable Z = (Z1, . . . ,Zn), n ∈ N, is an n-dimensional Gaussian vector,
or a multivariate normal random vector, or its coordinates are jointly normal, if the random
variables 〈a,Z〉 =∑n

i=1 aiZi, a = (a1, . . . ,an) ∈ Rn, are normal variables, that is, variables
with laws N(m(a),σ 2(a)), σ (a) ≥ 0, m ∈ R. If m = m(a) = 0 for all a ∈ Rn, we say that the
Gaussian vector is centred.

Definition 2.1.8 A stochastic process X (t), t ∈ T , is a Gaussian process if for all n ∈ N,
ai ∈ R and ti ∈ T , the random variable

∑n
i=1 aiX (ti) is normal or, equivalently, if all the

finite-dimensional marginals of X are multivariate normal. X is a centred Gaussian process
if all these random variables are normal with mean zero.

Definition 2.1.9 A covariance � on T is a map � : T × T → R such that for all n ∈ N and
t1, . . . , tn ∈ T , the matrix (�(ti, tj))n

i,j=1 is symmetric and nonnegative definite (i.e., �(ti, tj) =
�(tj, ti) and

∑
i,j aiaj�(ti, tj) ≥ 0 for all ai).

The following is a consequence of the Kolmogorov consistency theorem.

Proposition 2.1.10 Given a covariance � on T and a function f on T, there is a Gaussian
process X (t) such that E(X (t)) = f (t) and E[(X (t) − f (t))(X (s) − f (s))] = �(s, t) for all
s, t ∈ T. � is called the covariance of the process and f its expectation, and we say that X
is a centred Gaussian process if and only if f ≡ 0.

Proof If F ⊂ T is finite, take μF = N (( f (t) : t ∈ F),�|F×F) . It is easy to see that the set
{μF : F ⊂ T , F finite} is a consistent system of marginals. Hence, by the Kolmogorov
consistency theorem, there is a probability on (RT ,C), hence a process, with {μF} as its
set of finite-dimensional marginals.

Example 2.1.11 A basic example of a Gaussian process is the isonormal or white noise
process on a separable Hilbert space H , where {X (h) : h ∈ H} has a covariance diagonal
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for the inner product 〈·, ·〉 of H : EX (h) = 0 and EX (h)X (g) = 〈h,g〉H for all g,h ∈ H . The
existence of this process does not even require the Kolmogorov consistency theorem but only
the existence of an infinite sequence of random variables (i.e., the existence of an infinite
product probability space): if {gi} is a sequence of independent N(0,1) random variables and
{ψi} is an orthonormal basis of H , the process defined by linear and continuous extension
of X̃ (ψi) = gi (i.e., by X̃ (

∑
aiψi) =

∑
aigi whenever

∑
a2

i <∞) is clearly a version of X .
Note for further use that if V ⊂ L2(�,
,Pr ) is the closed linear span of the sequence {gi},
then the map X̃ : H �→ V is an isometry.

From now on, all our Gaussian processes will be centred, even if sometimes we omit
mentioning it. If X is a centred Gaussian process on T , the L2-pseudo-distance between X (t)
and X (s) defines a pseudo-distance dX on T

d2
X (s, t) := E (X (t)−X (s))2 =�(t, t)+�(s,s)− 2�(s, t)

that we call the intrinsic distance of the process. With this pseudo-metric, T is isometric
to the subspace {X (t) : t ∈ T} of L2(�,
,Pr). Clearly, a centred Gaussian process X is
continuous in probability for the pseudo-distance dX ; in particular, its probability law in
(RT ,C) is determined by the finite-dimensional marginals based on subsets of any dX -dense
subset T0 of T .

It is important to note that the probability law of a centred Gaussian process X is
completely determined by its intrinsic distance dX (or by the covariance �). Thus, all the
probabilistic information about a centred Gaussian process is contained in the metric (or
pseudo-metric) space (T ,dX ). This is a very distinctive feature of Gaussian processes.

Here is a first, albeit trivial, example of the exact translation of a property of the metric
space (T ,dX ) into a probabilistic property of X , actually, necessarily of a version of X .

Proposition 2.1.12 For a Gaussian process X indexed by T, the following are equivalent:

1. The pseudo-metric space (T ,dX ) is separable, and
2. X , as a process on (T ,dX ), has a separable, measurable (strict) version.

Proof If point 2 holds, let X̄ be a separable and measurable version of X (in particular,
dX̄ = dX ), and let T0 be a countable set as in the definition of separability. Then, as mentioned
earlier, the very definition of separability implies that T0∩BdX (t,ε) 	= ∅ for all t∈T and ε> 0.
Thus, T0 is dense in (T ,dX ), and therefore, (T ,dX ) is separable.

Assume now that (T ,dX ) is separable, and let T0 be a countable dX -dense subset of T .
Also assume, as we may by taking equivalence classes, that dX (s, t) 	= 0 for all s, t ∈ T0, s 	= t.
If T0 = {si : i ∈ N}, define, for each n, the following partition of T :

Cn(sm) = B
(
sm,2−n

) \⋃
k<m

B
(
sk ,2−n

)
, m ∈ N.

For each t∈T , let sn(t) be the only s∈T0 such that t∈Cn(s), and define Xn(t)=X (sn(t)). Now
Xn(t,ω) is jointly measurable because X−1

n (A) =⋃
i∈N

[Cn(si)×{ω : X (si,ω) ∈ A}] . Since,
for any t ∈ T , Pr{|Xn(t) − X (t)| > 1/n} ≤ n2 E (X (sn(t)) − X (t))2 ≤ n2/22n, it follows by
Borel-Cantelli that Xn(t) → X (t) a.s.

Define X̄ (t,ω) = limsupn Xn(t,ω), which, for each t, is ∞ at most on a set of measure 0.
Then the process X̄ (t,ω) is measurable because it is a limsup of measurable functions. Also,
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for each t, X̄ (t)= X (t) on a set of measure 1; that is, X̄ is a strict version of X . Next we show
that X̄ is separable. Given r ∈ N, there exists nr large enough that dX (sr,sl) > 1/2nr for all
l< r; hence, for n ≥ nr, Xn(sr) = X (sr). This shows that X̄ (s) = X (s) for all s ∈ T0. Then, for
all ω ∈�,

X̄ (t,ω) = limsup Xn(t,ω) = limsupX (sn(t),ω) = limsup X̄ (sn(t),ω),

proving that X̄ is separable.

Just as with normal random variables, Gaussian processes also satisfy the Gaussian
stability property, namely, that if two Gaussian processes with index set T are independent,
then their sum is a Gaussian process with covariance the sum of covariances (and mean the
sum of means); in particular, if X and Y are independent and equally distributed Gaussian
processes (meaning that they have the same finite-dimensional marginal distributions or,
what is the same, the same law on the cylindrical σ -algebra C of RT ), then the process
αX + βY has the same law as (α2 + β2)1/2X . This property has many consequences, and
here is a nice instance of its use.

Theorem 2.1.13 (0-1 law) Let F ⊂ RT be a C-measurable linear subspace, and let X be a
(centred) Gaussian process indexed by T. Then

Pr{X ∈ F} = 0 or 1.

Proof Let X1 and X2 be independent copies of X . Define sets

An = {X1 + nX2 ∈ F} and Bn = {X2 	∈ F}∩An, n ∈ N.

Since X1 + nX2 is a version of
√

1+ n2X and F is a vector space, we have

Pr{Bn} = Pr{An}−Pr[An ∩{X2 ∈ F}]
= Pr{X ∈ F}−Pr{X1 + n X2 ∈ F, X2 ∈ F}
= Pr{X ∈ F}−Pr{X1 ∈ F,X2 ∈ F}
= Pr{X ∈ F}− [Pr{X ∈ F}]2.

Clearly, Bn ∩ Bm = ∅ if n 	= m; hence, since by the preceding equalities Pr{Bn} does not
depend on n, it follows that Pr{Bn} = 0 for all n. But then, again by the same inequalities,
Pr{X ∈ F} can only be 0 or 1.

Corollary 2.1.14 Let X be a centred Gaussian process on T and ‖ · ‖ be a C-measurable
pseudo-norm on RT . Then

P{‖X‖<∞}= 0 or 1.

Proof The set {x ∈ RT : ‖x‖ <∞} = ∪n{x ∈ RT : ‖x‖ < n} is a measurable vector space,
and the 0-1 law yields the result.

Example 2.1.15 If X is Gaussian, separable and centred, then there exists T0 ⊂ T ,
T0 countable, such that supt∈T |X (t)| = supt∈T0

|X (t)| a.s, but ‖x‖T0 := supt∈T0
|x(t)| is a

measurable pseudo-norm, and hence it is finite with probability 0 or 1.
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Example 2.1.16 The B-valued Gaussian variables where B is a separable Banach space
constitute a very general and important class of Gaussian processes, and we define them
now. Given a separable Banach space B, a B-valued random variable X is centred Gaussian
if f (X ) is a mean zero normal variable for every f ∈ B∗, the topological dual of B. By
linearity, this is equivalent to the statement that f1(X ), . . . , fn(X ) are jointly centred normal
for every n ∈ N and fi ∈ B∗. In particular, if X is a B-valued centred Gaussian random
variable, then the map X : B∗ �→ L2(�,
,Pr ), defined by X ( f ) = f (X ), is a centred
Gaussian process. If B = E has dimension d, X is centred Gaussian iff the coordinates of X
in a basis of E are jointly normal with mean zero (hence, the same is true for the coordinates
of X in any basis).

Now we turn to a very useful property of Gaussian processes X , namely, that the
supremum norm of a Gaussian process concentrates about its mean, as well as about its
median, with very high probability, in fact as if it were a real normal variable with variance
the largest variance of the individual variables X (t). This result is a consequence of an even
deeper result, the isoperimetric inequality for Gaussian measures, although it has simpler
direct proofs, particularly if one is allowed some latitude and does not aim at the best result.
Here is one such proof that uses the stability property in an elegant and simple way.

We should recall that a function f : V �→ R, where V is a metric space, is Lipschitz
with Lipschitz constant c = ‖ f ‖Lip if c := supx	=y | f (x)− f (y)|/d(x,y) <∞. Rademacher’s
theorem asserts that if f : Rn �→R is Lipschitz, then it is a.e. differentiable and the essential
supremum of the norm of its derivative is bounded by its Lipschitz constant ‖ f ‖Lip. We
remark that although we will use this result in the theorem that follows, it is not needed
for its application to a concentration of maxima of jointly normal variables because one can
compute by hand the derivative of the Lipschitz function x �→ maxi≤d |xi|, x ∈ Rd .

Theorem 2.1.17 Let (B,‖ · ‖B) be a finite-dimensional Banach space, and let X be an
B-valued centred Gaussian random variable. Let f : B �→ R be a Lipschitz function. Let
� : R �→ R be a nonnegative, convex, measurable function. Then the following inequality
holds:

E[�( f (X )−E f (X ))] ≤ E
[
�
(π

2
〈 f ′(X ),Y 〉

)]
, (2.1)

where Y is an independent copy of X (X and Y have the same probability law and are
independent), and 〈·, ·〉 denotes the duality action of B∗ on B.

Proof Since the range of X is a full subspace, we may assume without loss of generality
that B equals the range of X (i.e., the support of the law of X is B). This has the effect
that the law of X and Lebesgue measure on B are mutually absolutely continuous (as the
density of X is strictly positive on its supporting subspace). For θ ∈ [0,2π ), define X (θ) =
X sinθ+Y cosθ . Then X ′(θ) = X cosθ −Y sinθ , and notice that X (θ) and X ′(θ) are (normal
and) independent: it suffices to check covariances, and if f ,g ∈ B∗, we have

E[ f (X (θ))g(X ′(θ))] = E( f (X )g(X )) sinθ cosθ −E( f (Y )g(Y )) sinθ cosθ = 0.

In other words, the joint probability laws of X and Y and of X (θ) and X ′(θ) coincide.
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Since for any increasing sequence θi∑
| f (X (θi))− f (X (θi−1))| ≤ ‖ f ‖Lip

∑
‖X (θi)−X (θi−1)‖

≤ ‖ f ‖Lip(‖X‖+‖Y‖)
∑

|θi − θi−1|,
it follows that the function θ �→ f (X (θ)) is absolutely continuous, and therefore, we have

f (X )− f (Y ) = f (X (π/2))− f (X (0)) =
∫ π/2

0

d

dθ
f (X (θ))dθ .

Using convexity of �, Fubini’s theorem and the preceding, we obtain

E�( f (X )−E f (X )) = E�( f (X )−E f (Y )) ≤ E�( f (X )− f (Y ))

= E�

(∫ π/2

0

d

dθ
f (X (θ))dθ

)
≤ 2

π
E

∫ π/2

0
�

(
π

2

d

dθ
f (X (θ))

)
dθ

= 2

π

∫ π/2

0
E�

(
π

2

d

dθ
f (X (θ))

)
dθ .

Now f is m a.e. differentiable with a bounded derivative by Rademacher’s theorem, where
m is Lebesgue measure on B, and since L(X (θ)) is absolutely continuous with respect to
Lebesgue measure for every θ ∈ [0,π/2) (X (θ) has the same support as X ), f ′ exists a.s.
relative to the law of X (θ). Since X ′(θ) exists for each θ , it follows from the chain rule that
given θ , d f (X (θ))/dθ = 〈 f ′(X (θ)),X ′(θ)〉 a.s. Then, since L(X ,Y ) = L(X (θ),X ′(θ)), we
have

E�

(
π

2

d

dθ
f (X (θ))

)
= E�

(π
2
〈 f ′(X ),Y 〉

)
,

which, combined with the preceding string of inequalities, proves the theorem.

Remark 2.1.18 It turns out, as we will see in the next section, that Lipschitz functions are
the natural tool for extracting concentration results from isoperimetric inequalities, on the
one hand, and on the other, as we will see now, the supremum norm of a vector in Rn is a
Lipschitz function, so concentration inequalities for Lipschitz functions include as particular
cases concentration inequalities for the supremum norm and for other norms as well.

Example 2.1.19 (Concentration for the maximum of a finite number of jointly normal
variables) To estimate the distribution of maxi≤n |gi| for a finite sequence g1, . . . ,gn of jointly
normal variables using the preceding theorem, we take B = �n

∞, which is Rn with the norm
f (x) = maxi≤n |xi|, where x = (x1, . . . ,xn), which we take as our function f , and we take
X = (g1, . . . ,gn). f is obviously Lipschitz, so the previous theorem will apply to it. We also
have that for each 1≤ i ≤ n, f (x) = xi on the set {x : xi > |xj|,1≤ j ≤ n, j 	= i} and f (x) =−xi

on {x : −xi > |xj|,1 ≤ j ≤ n, j 	= i}. It follows that m a.s. the gradient of f has all but one
coordinate equal to zero, and this coordinate is 1 or −1. If gi 	= ±gj for i 	= j, which we can
assume without loss of generality (by deleting repeated coordinates without changing the
maximum), then this also holds a.s. for the law of X . Let σ 2

i = Eg2
i and σ 2 = maxi≤nσ

2
i .

For almost every X = x fixed, 〈 f ′(x),Y 〉 is ±gi for some i, that is, in law, the same as
σig, g standard normal. Therefore, if we assume that the function � is as in the preceding
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theorem and that, moreover, it is even and nondecreasing on [0,∞), then, letting EY denote
integration with respect to the variable Y only, the preceding observation implies that, X a.s.,

EY�
(π

2
〈 f ′(x),Y 〉

)
≤ E�

(π
2
σg
)

.

We conclude that for any n ∈ N, if g1, . . . ,gn are jointly normal random variables and if
σ 2 = maxi≤n Eg2

i , then for any nonnegative, even, convex function � nondecreasing on
[0,∞),

E�

(
max

i≤n
|gi|−E max

i≤n
|gi|

)
≤ E�

(π
2
σg
)

, (2.2)

where g denotes a standard normal random variable.
Now Eet|g| ≤ E(etg + e−tg) = 2et2/2. Thus, if �λ(x) = eλ|x|, we have

E�λ
(π

2
σg
)
≤ 2eλ

2π2σ 2/8

and, by (2.2) and Chebyshev’s inequality,

Pr

{∣∣∣∣max
i≤n

|gi|−E max
i≤n

|gi|
∣∣∣∣> u

}
≤ 2e−λu+λ2π2σ 2/8, u ≥ 0.

With λu/2 = λ2π2σ 2/8, that is, λ = 4u/(π2σ 2), this inequality gives the following
approximate concentration inequality about its mean for the maximum of any finite number
of normal random variables:

Pr

{∣∣∣∣max
i≤n

|gi|−E max
i≤n

|gi|
∣∣∣∣> u

}
≤ 2e

− 4
π2

u2

2σ2 , u ≥ 0. (2.3)

The last inequality and the one in the next theorem are suboptimal: the factor 4/π2 in
the exponent is superfluous, as we will see in two of the sections that follow. We can
translate (2.2) and (2.3) into a concentration inequality for the supremum norm of a separable
Gaussian process (and draw as well some consequences).

Theorem 2.1.20 Let {X (t), t ∈ T} be a separable centred Gaussian process such that

Pr{sup
t∈T

|X (t)|<∞}> 0.

Let � be an even, convex, measurable function, nondecreasing on [0,∞). Let g be
N(0,1).Then,

a. σ = σ (X ) := supt∈T

(
EX 2(t)

)1/2
<∞ and E supt∈T |X (t)|<∞ and

b. The following inequalities hold:

E�

(
sup
t∈T

|X (t)|−E sup
t∈T

|X (t)|
)
≤ E�

(π
2
σg
)

and

Pr

{∣∣∣∣sup
t∈T

|X (t)|−E sup
t∈T

|X (t)|
∣∣∣∣> u

}
≤ 2e−(Ku2/2σ 2),

where K = 4
π2 .

(As mentioned earlier, the optimal constant K in this theorem will be shown to be 1.)
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Proof By assumption and the 0-1 law (Theorem 2.1.13; see the example following
Corollary 2.1.14), supt∈T |X (t)|<∞ a.s. Let 0< z1/2 < 1 be such that Pr{|g|> z1/2} = 1/2,
and let M <∞ be such that Pr

{
supt∈T |X (t)|>M

}
< 1/2. Then, for each t,

1/2> Pr{|X (t)|>M} = Pr{|g|>M/(EX (t)2)1/2},
which implies that σ = supt∈T (EX 2(t))1/2 ≤ M/z1/2 <∞.

Let T0 = {ti}∞i=1 be a countable set such that supt∈T |X (t)| = supt∈T0
|X (t)|. For every n∈N,

we have, by inequality (2.3),

Pr

{∣∣∣∣max
i≤n

|X (ti)|−E max
i≤n

|X (ti)|
∣∣∣∣> σu

}
≤ 2e−2u2/π2

.

Since supt∈T |X (t)|<∞ a.s., this variable has a finite median m, and also for all n,

Pr

{
max

i≤n
|X (ti)| ≤ m

}
≥ 1

2
.

If u0 is such that 2e−2u2
0/π

2
< 1/2, these two inequalities imply that for all n ∈ N, the

intersection of the two sets
{
x :
∣∣E maxi≤n |X (ti)|− x

∣∣≤ σu0

}
and {x : x ≤ m} is not empty

and hence that E maxi≤n |X (ti)| ≤ m+σu0 <∞. a) is proved.
We have supt∈T |X (t)| = limn→∞ maxi≤n |X (ti)| a.s. and, by monotone convergence, also

in L1(Pr ). Hence, the first inequality in (b) follows by inequality (2.2), continuity of � and
Fatou’s lemma. The second inequality follows from the first by Chebyshev’s inequality in the
same way as (2.3) follows from (2.2).

Exercises

In Exercises 2.1 to 2.4 we write ‖X‖ for supt∈T |X (t)|, and X denotes a separable, centred Gaussian
process such that Pr

{
supt∈T |X (t)|<∞}

> 0. Also, for any random variable ξ , ‖ξ‖p will denote its
Lp-norm.

2.1.1 Prove that there exists α > 0 such that Eeα‖X‖2
<∞.

2.1.2 Use results from this section to show that for all p ≥ 1,

(E‖X‖p)1/p ≤ K
√

pE‖X‖
for a universal constant K <∞. Hint: Integrating the exponential inequality in Theorem 2.1.20
with respect to ptp−1dt yields ‖‖X‖− E‖X‖‖p ≤ cσ‖g‖p, where g is standard normal and c a
universal constant. Check that ‖g‖p is of the order of

√
p.

2.1.3 Prove that the median m of ‖X‖, satisfies KE‖X‖ ≤ m ≤ 2E‖X‖ for a universal constant K > 0.
Hint: The second inequality is obvious, and the first is contained in the proof of Theorem 2.1.20.

2.1.4 Prove that if Xn are separable, centred Gaussian processes such that Pr {‖Xn(t)‖<∞}> 0, then
‖Xn‖ → 0 in pr. iff ‖Xn‖ → 0 in Lp for some p ≥ 1 iff ‖Xn‖ → 0 in Lp for all p ≥ 1. Hint: Lp

convergences for different p are equivalent by Exercise 2.1.2, and the equivalence extends to
convergence in probability by Exercise 2.1.2 and the Paley-Zygmund argument as follows: for
any 0< τ < 1,

E‖X‖ ≤ τE‖X‖+E(‖X‖I‖X‖>τE‖X‖) ≤ τE‖X‖+ (
E‖X‖2

)1/2
(Pr{‖X‖> τE‖X‖})1/2 ,

so

Pr{‖X‖> τE‖X‖} ≥
[

(1− τ )E‖X‖(
E‖X‖2

)1/2

]2

≥ K(1− τ )2
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for a universal constant K. Thus, if ‖Xn‖→ 0 in probability, then E‖Xn‖→ 0.
2.1.5 Let B be a separable Banach space, and let X be a B-valued Gaussian (centred) random variable.

Show that the previous theorems apply to ‖X‖ where now ‖ · ‖ is the Banach space norm. Hint:
Use Example 2.1.6.

2.1.6 Prove Proposition 2.1.4. Hint: Recall that a subset of a complete separable metric space S is
compact if and only if it is closed and totally bounded. Given ε > 0, by separability, for each n
there exists a finite collection {Fn,k}kn

k=1 of closed sets of diameter not exceeding n−1 and such

that μ
(
∪kn

k=1Fn,k

)c
< ε/2n. The set K =∩∞

n=1 ∪kn
k=1 Fn,k is compact and satisfies μ(Kc)< ε.

2.2 Isoperimetric Inequalities with Applications to Concentration

The Gaussian isoperimetric inequality, in its simplest form, identifies the half-spaces as the
sets of Rn with the smallest Gaussian perimeter among those with a fixed Gaussian measure,
where the Gaussian measure in question is the standard one, that is, the probability law of n
independent standard normal random variables, and where the Gaussian perimeter of a set
is taken as the limit of the measure of the difference of an ε-enlargement of the set and the
set itself divided by ε. The proof of this theorem was obtained originally by translating the
isoperimetric inequality on the sphere to the Gaussian setting by means of Poincaré’s lemma,
which states that the limiting distribution of the orthogonal projection onto a Euclidean
space of fixed dimension n of the uniform distribution on the sphere of Rm+1 with radius√

m is the standard Gaussian measure of Rn. The isoperimetric inequality on the sphere is
a deep result that goes back to P. Lévy and E. Schmidt, ca. 1950 (although the equivalent
isoperimetric problem on the plane goes back to the Greeks–recall, for instance, ‘Dido’s
problem’). The Gaussian isoperimetric inequality does imply best possible concentration
inequalities for Lipschitz functions on Rn and for functions on RN that are Lipschitz ‘in
the direction of �2’, although concentration inequalities have easier proofs, as seen in the
preceding section and as will be seen again in further sections. The Gaussian isoperimetric
inequality in general Banach spaces requires the notion of reproducing kernel Hilbert space
and will be developed in a further section as well. This section contains proofs as short as
we could find of the isoperimetric inequalities on the sphere and for the standard Gaussian
measure on Rn, n≤∞, with applications to obtain the best possible concentration inequality
with respect to the standard Gaussian measure for Lipschitz functions f about their medians
and for the supremum norm of a separable Gaussian process X when supt∈T |X (t)|<∞ a.s.

2.2.1 The Isoperimetric Inequality on the Sphere

Let Sn =
{

x ∈ Rn+1 : ‖x‖2 =∑n+1
i=1 x2

i = 1
}

, where x = (x1, . . . ,xn+1); let p be an arbitrary

point in Sn that we take to be the north pole, p = (0, . . . ,0,1); and let μ be the uniform
probability distribution on Sn (equal to the normalized volume element – surface area for S2

– equal also to the normalized Haar measure of the rotation group). Let d be the geodesic
distance on Sn, defined, for any two points, as the length of the shortest segment of the great
circle joining them.

A closed cap centred at a point x∈ Sn is a geodesic closed ball around x, that is, a set of the
form C(x,ρ) := {y : d(x,y) ≤ ρ}. Here ρ is the radius of the cap, and clearly, the μ-measure
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of a cap is a continuous function of its radius, varying between 0 and 1. Often we will not
specify the centre or the radius of C = C(x,ρ), particularly if the centre is the north pole.

The isoperimetric inequality on the sphere states that the caps are the sets of shortest
perimeter among all the measurable sets of a given surface area. What we will need is an
equivalent formulation, in terms of neighbourhoods of sets, defined as follows: the closed
ε neighbourhood of a set A is defined as Aε = {x : d(x,A) ≤ ε}, with the distance between
a point and a set being defined, as usual, by d(x,A) = inf{d(x,y) : y ∈ A}. The question is:
among all measurable subsets of the sphere with surface area equal to the surface area of A,
find sets B for which the surface areas of their neighbourhoods Bε, 0< ε < 1, are smallest.
The following theorem shows that an answer are the caps (they are in fact the answer, but
uniqueness will not be considered: we are only interested in the value of infμ(Aε), ε > 0).

Theorem 2.2.1 Let A 	= ∅ be a measurable subset of Sn, and let C be a cap such that
μ(C) = μ(A). Then, for all ε > 0,

μ(Cε) ≤ μ(Aε). (2.4)

The proof is relatively long, and some prior digression may help. The idea is to construct
transformations A �→ A∗ on measurable subsets of the sphere that preserve area, that is,
μ(A) =μ(A∗), and decrease perimeter, a condition implied by μ((A∗)ε) ≤μ(Aε) =μ((Aε)∗),
ε > 0, because the perimeter of A is the limit as ε → 0 of μ(Aε \ A)/ε. Then iterating
transformations that satisfy these two properties should eventually produce the solution, in
our case a cap. Or, more directly, one may obtain a cap using a more synthetic compactness
argument instead of iteration. In the sense that A∗ concentrates the same area as A on a
smaller perimeter, A∗ is closer to the solution of the problem than A is. A∗ is called a
symmetrisation of A.

Proof If μ(A)= 0, then C consists of a single point, and (2.4) holds. Next, we observe that
by regularity of the measure μ, it suffices to prove the theorem for A compact. By regularity,
there exist Am compact, Am ⊂ A, Am increasing and such that μ(Am) ↗ μ(A). Let Cm be
caps with the same centre as C and with μ(Cm) = μ(Am). Since the measure of a cap is a
continuous one-to-one function of its geodesic radius, we also have μ(Cm

ε ) ↗ μ(Cε), and if
the theorem holds for compact sets, then

μ(Aε) ≥ limμ(Am
ε ) ≥ limμ(Cm

ε ) = μ(Cε),

and the theorem holds in general. Thus, we will assume that A is compact and that μ(A) 	= 0.
We divide the proof into several parts.

Part 1: Construction and main properties of the symmetrisation operation. Given an
n-dimensional subspace H ⊂ Rn+1 that does not contain the point p, let σ = σH be
the reflection about H ; that is, if x = u + v with u ∈ H and v orthogonal to H , then
σ (x) = u − v. Clearly, σ is an isometry (so it preserves μ-measure), and it is involutive;
that is, σ 2 = σ . It also satisfies a property that, together with the preceding two, is crucial
for the symmetrisation operation to work, namely, that if x and y are on the same half-space
with respect to H , then

d(x,y) ≤ d(x,σ (y)). (2.5)
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To see this, observe that the geodesic distance is an increasing function of the Euclidean
distance, so it suffices to prove (2.5) for the Euclidean distance. Changing orthogonal
coordinates if necessary, we may and do assume that H ={x : xn+1 = 0}, so if x and y are in the
same hemisphere, then sign(xn+1) = sign(yn+1), which implies that the (n+ 1)th coordinate
of x− y is dominated in absolute value by the (n+ 1)th coordinate of x− σ (y), whereas the
first n coordinates of these two vectors coincide. Hence,

∑n+1
i=1 (xi−yi)2 ≤∑n+1

i=1 (xi−σ (y)i)2.
H divides Sn into two open hemispheres, and we denote by S+ the open hemisphere that

contains p, S− the other hemisphere, and S0 = Sn ∩H . The symmetrisation of A with respect
to σ = σH , sH (A) = A∗ is defined as

sH (A) = A∗ := [A∩ (S+ ∪ S0)]∪{a ∈ A∩ S− : σ (a) ∈ A} ∪ {σ (a) : a ∈ A∩ S−,σ (a) 	∈ A} .
(2.6)

Note that A∗ is obtained from A by reflecting towards the northern hemisphere every
a ∈ A ∩ S− for which σ (A) is not already in A. It is easy to see (Exercise 2.2.1) that
if A is compact, then so is A∗ and that if C is a cap with centre at p or at any other
point in the northern hemisphere, then C∗ = C. Next, observe that the three sets in the
definition are disjoint and that, σ being an isometry, the measure of the third set equals
μ{a ∈ A∩ S− : σ (a) 	∈ A}, which implies that

μ(A∗) =μ(A), A ∈B(Sn+1). (2.7)

This is one of the two properties of the symmetrisation operation that we need.
We now show that the ε-neighbourhoods of A∗ are less massive than those of A (thus

making A∗ ‘closer’ to being a cap than A is), actually, we prove more, namely, that for all
A ∈ B(Sn) and ε > 0, then

(A∗)ε ⊆ (Aε)
∗, hence μ((A∗)ε) ≤μ((Aε)

∗) = μ(Aε). (2.8)

To see this, let x ∈ (A∗)ε and let y ∈ A∗ be such that d(x,y) ≤ ε (such a y ∈ A∗ exists by
compactness). Then, using (2.5) and that σ is an involutive isometry, we obtain, when x and
y lay on different half-spaces,

d(σ (x),y) = d(x,σ (y)) ≤ d(σ (x),σ (y)) = d(x,y) ≤ ε.
Thus, since y ∈ A∗ implies that either y ∈ A or σ (y) ∈ A, in either case we have that both
x∈ Aε and σ (x)∈ Aε; hence, x∈ (Aε)∗. If x and y are in S−, then y and σ (y) are both in A, and
therefore, by the last identity earlier, x ∈ Aε and σ (x) ∈ Aε; hence, x ∈ (Aε)∗ in this case as
well. If x and y are in S+, then either y or σ (y) is in A; hence, either x or σ (x) is in Aε, which
together with x ∈ S+ implies that x ∈ (Aε)∗. The cases where x and/or y are in S0 are similar,
even easier, and they are omitted. The inclusion in (2.8) is proved, and the inequality there
follows from the inclusion and from (2.7).

Part 2: Preparation for the compactness argument. Let (K,h) denote the set of nonempty
compact subsets of Sn equipped with the Hausdorff distance, defined as h(A,B) = inf{ε :
A ⊆ Bε, B ⊆ Aε}, A,B ∈ K. (K,h) is a compact metric space (Exercise 2.2.2). Given a
compact nonempty set A ⊆ Sn, let A be the minimal closed subset of K that contains A
and is preserved by sH for all n-dimensional subspaces H of Rn+1 that do not contain the
north pole p (meaning that if A ∈K, then sH (A) ∈K for all H with p 	∈ H). A exists and is
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nonempty because K is a closed {sH}-invariant collection of sets that contains A. Also note
that since (K,h) is compact and A closed, A is compact. We have

Claim: If B ∈A, then (a) μ(B) = μ(A), and (b) for all ε > 0, μ(Bε) ≤μ(Aε).
Proof of the claim. It suffices to show that the collection of closed sets F satisfying a) and
b) is preserved by sH for all H not containing p and is a closed subset of K because then
A⊆F follows by minimality of A. That sH (F⇒⊆F follows from (2.7) and (2.8). Let now
Bn ∈ F and h(Bn,B) → 0. Let ε > 0 be fixed. Given δ > 0, there exists nδ such that B ⊆ Bn

δ

for all n ≥ nδ; hence, Bε ⊆ Bn
δ+ε and μ(Bε) ≤μ(Bn

δ+ε) ≤μ(Aδ+ε). Letting δ↘ 0 shows that B
satisfies condition (b). Letting ε↘ 0 in condition (b) for B shows that μ(B) ≤ μ(A). Using
that for all n large enough we also have Bn ⊆ Bδ, we get that μ(A) = μ(Bn) ≤ μ(Bδ) and,
letting δ↘ 0, that μ(A) ≤μ(B), proving condition (a). The claim is proved.

Part 3: Completion of the proof of Theorem 2.2.1. Clearly, because of the claim about A, it
suffices to show that if C is the cap centred at p such that μ(A) = μ(C), then C ∈A.

Define f (B) = μ(B∩C), B ∈A. We show first that f is upper semicontinuous on A. If
h(Bn,B) → 0, then, given δ > 0, for all n large enough, Bn ⊆ Bδ, which, as is easy to see,
implies that Bn ∩C ⊆ (B∩Cδ)δ. Hence, limsupnμ(Bn ∩C) ≤ μ((B∩Cδ)δ), but because B
and C are closed, if δn ↘ 0, then ∩n(B∩Cδn)δn = B∩C, thus obtaining limsupnμ(Bn ∩C) ≤
μ(B∩C).

Since f is upper semicontinuous on A and A is compact, f attains its maximum at
some B ∈ A. The theorem will be proved if we show that C ⊆ B. Assume that C 	⊂ B.
Then, since μ(C) = μ(A) = μ(B) and both C and B are closed, we have that both B \C and
C \B have positive μ-measure. Thus, the Lebesgue density theorem, which holds on Sn (see
Exercise 2.2.3 for definitions and a sketch of the proof), implies that there exist points of
density x ∈ B \ C and y ∈ C \ B. Let H be the subspace of dimension n orthogonal to the
vector x− y, and let us keep the shorthand notation σ for the reflection with respect to H ,
D∗ for sH (D), S+, S− for the two hemispheres determined by H , and S0 for Sn ∩ H . Then
σ (y) = x. Since y ∈ C and x 	∈ C, we have both, that p is not in H (the reflection of a point
in C with respect to a hyperplane through p is necessarily in C) and that y is closer to p than
x is; that is, d(y,p) ≤ d(x,p) = d(σH (y),p). Then it follows from this last obsesrvation and
(2.5) that y ∈ S+ and x ∈ S−.

Let x ∈ (B∩C)∗. Then, if x ∈ B∩C ∩ (S+ ∪ S0) or if x ∈ B∩C ∩ S− and σ (x) ∈ B∩C, we
obviously have x∈ B∗ ∩C. Now, if z ∈C∩S−, then σ (z)∈C (as σ (z) is closer to p than z is);
hence, if x = σ (z) with z ∈ B∩C ∩ S− and σ (z) 	∈ B∩C, then σ (z) is not in B and therefore
x ∈ B∗ ∩C. We conclude that (B∩C)∗ ⊆ B∗ ∩C and, in particular, that

μ(B∩C) = μ((B∩C)∗) ≤μ(B∗ ∩C). (2.9)

By definition of density point, for δ > 0 small enough, C(x,δ) ⊂ S−, σ (C(x,δ)) = C(y,δ) ⊂
S+, μ((B \ C) ∩ C(x,δ)) ≥ 2μ(C(x,δ))/3, and μ((C \ B) ∩ C(y,δ)) ≥ 2μ(C(y,δ))/3. Then
the set

D = ((B \C)∩C(x,δ))∩σ ((C \B)∩C(y,δ))

satisfies

μ(D) ≥ μ(C(x,δ))/3> 0, D ⊂ (B \C)∩ S− and σ (D) ⊂ C \B. (2.10)
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The inclusions in (2.10) imply that σ (D) ⊂ B∗ ∩C and σ (D)∩ (B∩C)∗ = ∅ (as z ∈ (B∩C)∗

implies either z ∈ B∩C or σ (z) ∈ B∩C). This together with (2.9) and μ(D)> 0 proves

μ(B∗ ∩C) ≥μ((B∩C)∗ ∪σ (D)) = μ((B∩C)∗)+μ(D)>μ((B∩C)∗),

which, because B∗ ∈A, contradicts the fact that f attains it maximum at B.

2.2.2 The Gaussian Isoperimetric Inequality for the Standard
Gaussian Measure on RN

In this subsection we translate the isoperimetric inequality on the sphere to an isoperimetric
inequality for the probability law γn of n independent N(0,1) random variables by means
of Poincaré’s lemma, which states that this measure can be obtained as the limit of the
projection of the uniform distribution on

√
mSn+m onto Rn when m → ∞. We also let

n →∞.
In what follows, gi, i ∈ N, is a sequence of independent N(0,1) random variables, and

as mentioned earlier, γn = L(g1, . . . ,gn). We call γn the standard Gaussian measure on Rn.
We also set γ = L({gi}∞i=1), the law of the process i �→ gi, i ∈ N, a probability measure on
the cylindrical σ -algebra C of RN, which we also refer to as the standard Gaussian measure
on RN.

Here is the Gaussian isoperimetric problem: for a measurable subset A of Rn, and ε > 0,
define its Euclidean neighbourhoods Aε as Aε := {x ∈ Rn : d(x,A) ≤ ε} = A+ εOn, where d
denotes Euclidean distance and On is the closed d-unit ball centred at 0 ∈ Rn. The problem
is this: given a Borel set A, find among the Borel sets B⊂Rn with the same γn-measure as A
those for which the γn-measure of the neighbourhood Bε is smallest, for all 0<ε< 1/2. The
solution will be shown to be the affine half-space ({x : 〈x,u〉 ≤ λ}, u any unit vector, λ ∈ R)
of the same measure as A. Note that γn{x : 〈x,u〉 ≤ λ} = γ1{x ≤ λ}.

Prior to stating and proving the main results, we describe the relationship between the
uniform distribution on the sphere of increasing radius and dimension and the standard
Gaussian measure on Rn.

Lemma 2.2.2 (Poincaré’s lemma) Let μn+m be the uniform distribution on
√

mSn+m, the
sphere of Rn+m+1 of radius

√
m and centred at the origin. Let πm be the orthogonal projection

Rn+m+1 �→Rn = {x ∈ Rn+m+1 : xi = 0,n< i ≤ n+m+ 1}, and let π̃m be the restriction of πm

to
√

mSn+m. Let νm = μn+m ◦ π̃−1
m be the projection onto Rn of μn+m. Then νm has a density

fm such that if φn is the density of γn, limm→∞ fm(x) = φn(x) for all x ∈ Rn. Therefore,

γn(A) = lim
m→∞

μn+m(π̃−1
m (A)) (2.11)

for all Borel sets A of Rn.

Proof Set Gn := (g1, . . . ,gn) and Gn+m+1 := (g1, . . . ,gn+m+1). The rotational invariance
of the standard Gaussian law on Euclidean space implies that μn+m is the law of the
vector

√
mGn+m+1/|Gn+m+1|1/2. Hence, νm is the law of

√
mGn/|Gn+m+1|1/2. This allows

for computations with normal densities that we only sketch. For any measurable set
A of Rn,

νm(A) = 1

(2π)(n+m+1)/2

∫
Rm+1

∫
Ã(y)

e−(|z|2+|y|2)/2dzdy
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where z ∈ Rn and y ∈ Rm+1, and Ã =
{

z ∈ Rn :
√

m/(|z|2 +|y|2) z ∈ A
}

. Make the change

of variables z �→ x, x =√
m/(|z|2 +|y|2) z or z = |y|x/

√
m−|x|2, |x| ≤ √

m. Its Jacobian is
∂(z)/∂(x) = m|y|n/(m−|x|2)1+n/2, thus obtaining

νm(A) = 1

(2π)(n+m+1)/2

∫
A

I(|x|2 <m)
m

(m−|x|2)n/2+1

∫
Rm+1

|y|n exp

(
−1

2

m|y|2
m−|x|2

)
dydx

= E(|Gm+1|n)

mn/2

1

(2π)n/2

∫
A

(
1− |x|2

m

)(m−1)/2

I(|x|2 <m)dx.

Hence, the density of νm is fm(x) = Cn,m(2π)−n/2(1 − |x|2/m)(m−1)/2I(|x|2 < m), x ∈ Rn.
Clearly, (2π)−n/2(1 − |x|2/m)(m−1)/2I(|x|2 < m) → (2π)−n/2e−|x|2/2 for all x as m → ∞.
Moreover, since for 0 ≤ a < m and m ≥ 2 we have 1 − a/m ≤ e−a/2(m−1), it follows that
(1− |x|2/m)(m−1)/2I(|x|2 < m) is dominated by the integrable function e−|x|2/4. Thus, by the
dominated convergence theorem, fm(x)/Cn,m → (2π)−n/2e−|x|2/2 in L1, which implies that
C−1

n,m → 1, proving the lemma. (Alternatively, just show that Cn,m = E(|Gm+1|n)/mn/2 → 1 as
m →∞ by taking limits on well-known expressions for the moments of chi-square random
variables.) Now the limit (2.11) for any Borel set follows by dominated convergence.

Theorem 2.2.3 For n <∞, let γn be the standard Gaussian measure of Rn, let A be a
measurable subset of Rn, and let H be a half-space H = {x ∈Rn : 〈x,u〉 ≤ a}, u a unit vector,
such that γn(H) = γn(A) and hence with a := �−1(γn(A)), where � denotes the standard
normal distribution function. Then, for all ε > 0,

γn(H + εOn) ≤ γn(A+ εOn), (2.12)

which, by the definition of a, is equivalent to

γn(A+ εOn) ≥�(�−1(γn(A))+ ε). (2.13)

Proof First, we check the behaviour of distances under π̃m. If dn+m denotes the geodesic
distance of

√
mSn+m, it is clear that the projection π̃m is a contraction from the sphere onto

Rn; that is, |π̃m(x)− π̃m(y)| ≤ dn+m(x,y) for any x,y∈√
mSn+m. Moreover, if in the half-space

Hb := {x ∈ Rn : 〈x,u〉 ≤ b}, we have −√
m < b <

√
m; then its pre-image π̃−1(Hb) is a

nonempty cap, and for 0 < ε <
√

m − b, we have (π̃−1(Hb))ε = π̃−1(Hb + τ (b,ε)On) =
π̃

−1(Hb+τ (b,ε)), where

b+ τ =√
mcos

(
cos−1 b√

m
± ε√

m

)
,

which, taking limits in the addition formula for the cosine, immediately gives
limm→∞ τ (b,ε) = ε.

Let now b< a=�−1(γn(A)) so that Hb = {x : 〈x,u〉 ≤ b} ⊂H . Then, by Poincaré’s lemma,

lim
m
μn+m(π̃−1

m (A)) = γn(A)> γn(Hb) = lim
m
μn+m(π̃−1

m (Hb)),

so for all m large enough, we have both b ∈ (−√
m,

√
m), such that π̃−1

m (Hb) is a nonempty
cap in the sphere, and μn+m(π̃−1

m (A)) ≥ μn+m(π̃−1
m (Hb)). Then the isoperimetric inequality

for μn+m (Theorem 2.2.1) yields that for each ε > 0, b+ ε <√
m, for all m large enough,

μn+m

(
(π̃−1

m (A))ε
)
≥μn+m

(
(π̃−1

m (Hb))ε
)
=μn+m

(
π̃

−1
m (Hb+τ (b,ε))

)
,
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so by Poincaré’s lemma again,

γn(A+ εOn) ≥ limsup
m

μn+m

(
(π̃−1

m (A))ε
)
≥ limsup

m
μn+m

(
(π̃−1

m (Hb+τ (b,ε))
)
= γn(Hb+ε).

Since this holds for all b< a, it also holds with b replaced by a.

Theorem 2.2.3 extends to infinite dimensions, as will be shown in Theorem 2.6.12. An
extension to the standard Gaussian measure on RN, that is, for the law γ of a sequence of
independent standard normal random variables, can be obtained directly. Before stating the
theorem, it is convenient to make some topological and measure-theoretic considerations.
The distance ρ(x,y) =∑∞

k=1 min(|xk − yk|,1)/2k metrises the product topology of RN, and
(RN,ρ) is a separable and complete metric space, as is easy to see. That is, RN is a Polish
space (a topological space that admits a metric for which it is separable and complete).
Then the cylindrical σ -algebra C coincides with the Borel σ -algebra of RN, and any finite
cylindrical (hence Borel) measure is tight (Radon). The product space RN×�2 is also Polish,
and for each t∈R, the map ft : RN×�2 �→RN, ft(x,y)= x+ ty is continuous. Then the image
of ft is universally measurable, that is, measurable for any Radon measure, in particular, in
our case, measurable for any finite measure on the cylindrical σ -algebra C of RN. See, for
example, theorem 13.2.6 in section 13.2 in Dudley (2002).

Theorem 2.2.4 Let A be a Borel set of RN (i.e., A ∈ C), and let γ be the probability law
of (gi : i ∈ N), gi independent standard normal. Let O denote the unit ball about zero of
�2 ⊂ RN, O = {x ∈ RN :

∑
i x

2
i ≤ 1}. Then, for all ε > 0,

γ (A+ εO) ≥�(�−1(γ (A))+ ε). (2.14)

The proof is indicated in Exercises 2.2.5 through 2.2.7.

2.2.3 Application to Gaussian Concentration

We would like to translate the isoperimetric inequality in Theorem 2.2.4 into a concentration
inequality for functions of {gi}n

i=1 about their medians, that is, into a bound for γ {| f (x)−
M | > ε} for all ε > 0. The following definition describes the functions for which such a
translation is almost obvious.

Definition 2.2.5 A function f : RN �→ R is Lipschitz in the direction of �2, or �2-Lipschitz
for short, if it is measurable and if

‖ f ‖Lip2 := sup

{ | f (x)− f (y)|
|x− y| : x,y ∈ RN,x 	= y,x− y ∈ �2

}
<∞,

where |x− y| is the �2 norm of x− y.

For a measurable function f on RN, we denote by M f the median of f with respect to the
Gaussian measure γ , defined as M f = inf{t : γ {x : f (x) ≤ t}> 1/2}. Then γ ( f ≤ M f ) ≥ 1/2
and γ ( f ≥ M f ) ≥ 1/2, and M is the largest number satisfying these two inequalities.
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Theorem 2.2.6 If f is an �2-Lipschitz function on RN, and if M f is its median with respect
to γ , then

γ {x : f (x) ≥ M f + ε} ≤ (1−�(ε/‖ f ‖Lip2)),

γ {x : f (x) ≤ M f − ε} ≤ (1−�(ε/‖ f ‖Lip2)), (2.15)

in particular

γ {x : | f (x)−M f | ≥ ε} ≤ 2(1−�(ε/‖ f ‖Lip2)) ≤ e−ε
2/2‖ f ‖Lip2 , (2.16)

for all ε > 0.

Proof Let A+ = {x ∈ RN : f (x) ≥ M f } and A− = {x ∈ RN : f (x) ≤ M f }. Then γ (A+) ≥
1/2, γ (A−) ≥ 1/2. Moreover, if x ∈ A+ + εO, then there exists h ∈ O such that x − εh ∈
A+; hence, f (x − εh) ≥ M f and f (x) + ε‖ f ‖Lip2 ≥ f (x − εh) ≥ M f ; that is, A+ + εO ⊂{
x : f (x) ≥ M f − ε‖ f ‖Lip2

}
. Then the Gaussian isoperimetric inequality (2.14) for A = A+

gives (recall �−1(1/2) = 0)

γ { f <M f − ε‖ f ‖Lip2} ≤ 1− γ (A+ + εO) ≤ 1−�(ε),

which is the second inequality in (2.15). Likewise, A− + εO ⊂ {
x : f (x) ≤ M f + ε‖ f ‖Lip2

}
,

and the isoperimetric inequality applied to A+ gives the first inequality in (2.15). Finally,
(2.16) follows by combination of the previous two inequalities and a known bound for the
tail probabilities of a normal variable (Exercise 2.2.8).

Let now X (t), t ∈ T , be a separable centred Gaussian process such that Pr{supt∈T |X (t)|<
∞}> 0. Then supt∈T |X (t)| = supt∈T0

|X (t)|<∞ a.s., where T0 ={tk}∞k=1 is a countable subset
of T (see Example 2.1.15). Ortho-normalizing (in L2(Pr )), the jointly normal sequence
{X (tk)} yields X (tk) =∑k

i=1 akigi, where gi are independent standard normal variables, and∑k
i=1 a2

ki = EX 2(tk). Then the probability law of the process X (tk), k ∈ N, coincides with
the law of the random variable defined on the probability space (RN,C,γ ), X̃ : RN �→ R,
X̃ (tk ,x) = ∑k

i=1 akixi. This is so because the coordinates of RN, considered as random
variables on the probability space (RN,C,γ ), are i.i.d. N(0,1). Now define a function
f : RN �→ R by

f (x) = sup
k

∣∣∣∣∣
k∑

i=1

akixi

∣∣∣∣∣ .
The probability law of f under γ is the same as the law of supt∈T0

|X (t)|, which, in turn, is the
same as the law of supt∈T |X (t)|. Moreover, if h ∈ O, the unit ball of �2, by Cauchy-Schwarz,

| f (x+ h)− f (x)|2 = sup
k

∣∣∣∣∣
k∑

i=1

akihi

∣∣∣∣∣
2

≤ sup
k

[
k∑

i=1

a2
ki

k∑
i=1

h2
i

]
≤ sup

k

k∑
i=1

a2
ki = sup

k
EX 2(tk).

Therefore,
‖ f ‖Lip2 ≤ σ 2(X ), where σ 2 = σ 2(X ) := sup

t∈T
EX 2(t).

Recall from an argument at the beginning of the proof of Theorem 2.1.20 that for the
processes X we are considering here, σ 2 <∞ and the median M <∞. Then Theorem 2.2.6
applies to the function f and gives the following concentration inequality:
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Theorem 2.2.7 (The Borell-Sudakov-Tsirelson concentration inequality for Gaus-
sian processes) Let X (t), t ∈ T, be a centred separable Gaussian process such that
Pr{supt∈T |X (t)|<∞}> 0, and let M be the median of supt∈T |X (t)| and σ 2 the supremum of
the variances EX 2(t). Then, for all u> 0,

Pr

{
sup
t∈T

|X (t)|>M + u

}
≤ 1−�(u/σ ), Pr

{
sup
t∈T

|X (t)|<M − u

}
≤ 1−�(u/σ ), (2.17)

and hence,

Pr

{∣∣∣∣sup
t∈T

|X (t)|−M

∣∣∣∣> u

}
≤ 2(1−�(u/σ )) ≤ e−u2/2σ 2

. (2.18)

Inequality (2.18) is also true with the median M of supt∈T |X (t)| replaced by the
expectation E

(
supt∈T |X (t)|), as we will see in Section 2.5 as a consequence of the Gaussian

logarithmic Sobolev inequality (other proofs are possible; see Section 2.1 for a simple proof
of a weaker version). But such a result, in its sharpest form, does not seem to be obtainable
from (2.18). However, notice that if we integrate in (2.18) and let g be a N(0,1) random
variable, we obtain∣∣∣∣E sup

t∈T
|X (t)|−M

∣∣∣∣≤ E

∣∣∣∣sup
t∈T

|X (t)|−M

∣∣∣∣≤ σE|g| =
√

2/π σ , (2.19)

an inequality which is interesting in its own right and which gives, by combining with the
same (2.18),

Pr

{∣∣∣∣sup
t∈T

|X (t)|−E sup
t∈T

|X (t)|
∣∣∣∣> u+

√
2/πσ

}
≤ e−u2/2σ 2

, (2.20)

which is of the right order for large values of u.
Theorem 2.2.7, or even (2.20), expresses the remarkable fact that the supremum of a

Gaussian process X (t), centred at its mean or at its median, has tail probabilities not worse
than those of a normal variable with the largest of the variances EX 2(t), t∈T . In particular, if
we knew the size of E supt∈T |X (t)|, we would have a very exact knowledge of the distribution
of supt∈T |X (t)|. This will be the object of the next two sections.

We complete this section with simple applications of Theorem 2.2.7 to integrability and
moments of the supremum of a Gaussian processes.

Corollary 2.2.8 Let X (t), t ∈ T, be a Gaussian process as in Theorem 2.2.7. Let M and σ
also be as in this theorem, and write ‖X‖ := supt∈T |X (t)| to ease notation. Then there exists
K <∞ such that with the same hypothesis and notation as in the preceding corollary, for
all p ≥ 1,

(E‖X‖p)1/p ≤ 2E‖X‖+ (E|g|p)1/pσ ≤ K
√

pE‖X‖
for some absolute constant K.

Proof Just integrate inequality (2.18) with respect to ptp−1dt and then use that M ≤ 2E‖X‖
(by Chebyshev) and that σ ≤√

π/2supt∈T E|X (t)|. See Exercise 2.1.2.
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Corollary 2.2.9 Let X (t), t ∈ T, be a Gaussian process as in Theorem 2.2.7, and let ‖X‖,
M and σ be as in Corollary 2.2.8. Then

lim
u→∞

1

u2
logPr{‖X‖> u} = − 1

2σ 2

and

Eeλ‖X‖2
<∞ if and only if λ <

1

2σ 2
.

Proof The first limit follows from the facts that the first inequality in (2.17) can be rewritten
as

1

(u−M)2
logPr{‖X‖> u} ≤ − 1

σ 2

and that Pr{‖X‖ > u} ≥ Pr{|X (t)| > u} for all t ∈ T (as, for a N(0,1) variable g, we do
have u−2 logPr{|g| > u/a} → −1/2a2, e.g., by l’Hôpital’s rule). For the second statement,

just apply the first limit to Eeλ‖X‖ = 1+ ∫∞
0

∫ λ‖X‖2

0 evdv dL(‖X‖)(u) = 1+ ∫∞
0 ev Pr{‖X‖>√

v/λ}dv.

Exercises

2.2.1 Prove that if A is closed, so is sH (A) for any subspace H of dimension n. Hint: Conveniently
enlarge some of the components in the definition of sH (A) to make them compact and still keep
the same union.

2.2.2 Prove that (K,h), the space of nonempty compact subsets of Sn with the Hausdorff distance,
is a compact metric space. Hint: Show that the map K �→ C(Sn), A �→ d(·,A), is an isometry
between (K,h) and its image in (C(Sn),‖ · ‖∞) and that this image is compact in C(Sn) (note
that x �→ d(x,A) is bounded and Lipschitz or see Beers (1993)).

2.2.3 Show that the Lebesgue density theorem holds in Sn for the uniform measure; that is, show
that ifμ(E)> 0, thenμ-almost all points of E satisfy limρ→0 [μ(E∩C(x,ρ))]/[μ(C(x,ρ))]= 1.
Hint: First adapt the usual proof of the Vitali covering theorem to the sphere, using that Ln<∞
such that any cap of radius 2ρ can be covered by Ln caps of radius ρ. Then use the Vitali
covering theorem to show that if for each 0 < α < 1, Aα is the set of those points in E for
which liminfρ→0 [μ(E∩C(x,ρ))]/[μ(C(x,ρ))] < α < 1, then μ(Aα) = 0 as follows: if G is
an open set containing Aα with μ(G) < μ(Aα)/α, let V be the set of caps C(x,ρ) that satisfy
[μ(E∩C(x,ρ))]/[μ(C(x,ρ))]< α and are contained in G; get a Vitali subcover and show that
its total measure, which is at most μ(G), is larger than or equal than μ(Aα)/α, a contradiction.
Or refer to Mattila (1995).

2.2.4 Prove that for n≥ 2, ifμ(A)≥ 1/2, thenμ(Aε)≥ 1−(π/8)1/2e−(n−1)ε2/2, whereμ is the uniform
probability measure on Sn.

2.2.5 Let πn : RN �→ Rn be the projection πn(x) = πn(xk : k ∈ N) = (x1, . . . ,xn). Then show that (a)
γn = γ ◦π−1

n , (b) if K ⊂ RN is compact, then K = ∩∞
n=1π

−1
n (πn(K)), and (c) K + tO, where O

is the closed unit ball of �2, is compact if K is.
2.2.6 Use Theorem 2.2.3 and Exercise 2.2.5 to prove Theorem 2.2.4 in the particular case where A

is a compact set.
2.2.7 Since RN is Polish, it follows that γ is tight (Proposition 2.1.4). Use this and Exercise 2.2.2 to

prove Theorem 2.2.4 for any A ∈ C.
In the remaining exercises, the process X is as in Theorem 2.2.7.
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2.2.8 Let � be the N(0,1) distribution function. Then, for all u ≥ 0, show that 2(1−�(u)) ≤ e−u2/2.
Hint: Use the well-known bound

∫∞
u e−t2/2dt ≤ u−1e−u2/2 for u≥√

2/π and differentiation for
0 ≤ u ≤√

2/π .
2.2.9 Prove the analogue of Theorem 2.2.7 for supt∈T X (t) and its median.

2.2.10 Show that Pr
{
supt∈T |X (t)|> u

}≤ 2Pr
{
supt∈T X (t)> u

}
.

2.2.11 Show that: (a) The random variable supt∈T |X (t)| has a unique median, meaning that M is the
only number for which both Pr

{
supt∈T |X (t)| ≥ M

}
and Pr

{
supt∈T |X (t)| ≤ M

}
are larger than

or equal to 1/2. In particular, the distribution function of supt∈T |X (t)| is continuous at M . Hint:
The second equation in (2.15) implies that no number below the largest median of f for the
measure γ can be a median; now apply this to the appropriate f . (b) Use the same reasoning
to conclude that if Ma = inf

{
u : Pr

{
supt∈T |X (t)| ≤ u

}
> a

}
, 0 < a < 1, then the distribution

function of supt∈T |X (t)| is continuous at Ma.
2.2.12 Let B be a Banach space whose norm ‖ · ‖ satisfies the following: there exists a countable

subset D of the unit ball of its (topological) dual space B∗ such that ‖x‖ = sup f ∈D | f (x)| for
all x ∈ B. For instance, this is true for separable Banach spaces as well as for �∞. Define a
Gaussian random variable X with values in B as a map from some probability space (�,
,Pr )
into B such that f (X ) is a centred normal random variable for every f ∈ B∗. Prove that if ‖X‖
is finite almost surely, if M is a median of ‖X‖ and σ 2 = sup f ∈D E f 2(X ), then

Pr{|‖X‖−M |> u} ≤ 2(1−�(u/σ )) ≤ e−u2/2σ 2
. (2.21)

2.2.13 Let B be a Banach space as in Exercise 2.2.12, and let X be a centred Gaussian B-valued
random variable. Use Exercise 2.2.12 to show that the distribution function F‖X‖ of ‖X‖
is continuous at Ma for all 0 < a < 1, where Ma is as defined in Exercise 2.2.11 with the
supremum of the process replaced by ‖X‖.

2.3 The Metric Entropy Bound for Suprema of Sub-Gaussian Processes

In this section we define sub-Gaussian processes and obtain the celebrated Dudley’s entropy
bound for their supremum norm. We are careful about the constants, as they are of some
consequence in statistical estimations, at the expense of making the ‘chaining argument’
(proof of Theorem 2.3.6) slightly more complicated than it could be. Combined with
concentration inequalities, these bounds yield good estimates of the distribution of the
supremum of a Gaussian process. They also constitute sufficient conditions for sample
boundedness and sample continuity of Gaussian and sub-Gaussian processes and provide
moduli of continuity for their sample paths which are effectively sharp in light of Sudakov’s
inequality derived in the next section.

A square integrable random variable ξ is said to be sub-Gaussian with parameter σ > 0
if for all λ ∈ R,

Eeλξ ≤ eλ
2σ 2/2.

Developing the two exponentials, dividing by λ > 0 and by λ < 0 and letting λ→ 0 in each
case yield Eξ = 0; that is, sub-Gaussian random variables are automatically centred. Then,
if in the two developments once the expectation term is cancelled, we divide by λ2 and let
λ→ 0, we obtain Eξ 2 ≤ σ 2.

Aside from normal variables, perhaps the main examples of sub-Gaussian variables
are the linear combinations of independent Rademacher (or symmetric Bernoulli) random
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variables ξ =∑n
i=1 aiεi, where εi are independent identically distributed and Pr{εi = 1} =

Pr{εi = −1} = 1/2. To see that these variables are sub-Gaussian, just note that by Taylor
expansion, if ε is a Rademacher variable,

Eeλε = (eλ+ e−λ)/2 ≤ eλ
2/2, λ ∈ R,

so that, by independence,

Eeλ
∑

aiεi ≤ eλ
2∑a2

i /2.

Both for Gaussian and for linear combinations of independent Rademacher variables,
σ 2 = Eξ 2.

The distributions of sub-Gaussian variables have sub-Gaussian tails: Chebyshev’s
inequality in exponential form, namely,

Pr{ξ ≥ t} = Pr
{
eλξ ≥ eλt

}≤ eλ
2σ 2/2−λt, t> 0, λ > 0,

with λ= t/σ 2 and applied as well to −ξ , gives that if ξ is sub-Gaussian for σ 2, then

Pr{ξ ≥ t} ≤ e−t2/2σ 2
and Pr{ξ ≤−t} ≤ e−t2/2σ 2

, hence,

Pr{|ξ | ≥ t} ≤ 2e−t2/2σ 2
, t> 0. (2.22)

The last inequality in (2.22) in the case of linear combinations of independent Rademacher
variables is called Hoeffding’s inequality. Of course, we can be more precise about the tail
probabilities of normal variables: simple calculus gives that for all t> 0,

t

t2 + 1
e−t2/2 ≤

∫ ∞

t
e−u2/2du ≤ min

(
t−1,

√
π/2

)
e−t2/2, (2.23)

(see Exercise 2.2.8).
Back to the inequalities (2.22), we notice that if they hold for ξ , then ξ/c enjoys square

exponential integrability for some 0< c<∞: if c2 > 2σ 2, then

Eeξ
2/c2 − 1 =

∫ ∞

0
2tet2 Pr {|ξ |> ct}dt ≤ 2

c2/2σ 2 − 1
<∞. (2.24)

The collection of random variables ξ on (�,
,Pr ) that satisfy this integrability property
constitutes a vector space, denoted by Lψ2 (�,
,Pr ), and the functional

‖ξ‖ψ2 = inf{c> 0 : Eψ2(|ξ |/c) ≤ 1},
where ψ2(x) := ex2 − 1 (a convex function which is zero at zero) is a pseudo-norm on it for
which Lψ2 , with identification of a.s. equal functions, is a Banach space (Exercise 2.3.5).
With this definition, inequality (2.24) shows that

Pr{|ξ | ≥ t} ≤ 2e−t2/2σ 2
for all t> 0 implies ‖ξ‖ψ2 ≤

√
6σ . (2.25)

To complete the set of relationships developed so far, suppose that ξ ∈ Lψ2 and Eξ = 0, and
let us show that ξ is sub-Gaussian. We have

Eeλξ − 1 ≤ E
∞∑

k=2

|λkξ k|/k ≤ λ
2

2
E
(
ξ 2e|λξ |

)
.
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Now we estimate the exponent |λξ | on the region |ξ |> 2λ‖ξ‖2
ψ2

and on its complement to
obtain, after multiplying and dividing by ‖ξ‖2

ψ2
and using that a< ea/2 for all a> 0,

λ2

2
E
(
ξ 2e|λξ |

)≤ λ2‖ξ‖2
ψ2

2
e

2λ2‖ξ‖2
ψ2 E

(
ξ 2

‖ξ‖2
ψ2

e
ξ2/2‖ξ‖2

ψ2

)

≤ λ2‖ξ‖2
ψ2

e
2λ2‖ξ‖2

ψ2 Ee
ξ2/‖ξ‖2

ψ2 /2 ≤ λ2‖ξ‖2
ψ2

e
2λ2‖ξ‖2

ψ2 .

Using 1+ a ≤ ea, the last two bounds give

Eeλξ ≤ e
3λ2‖ξ‖2

ψ2 , (2.26)

showing that ξ is sub-Gaussian with σ ≤ √
6‖ξ‖ψ2 . If ξ is symmetric, just developing the

exponential gives the better inequality Eeλξ ≤ e
λ2‖ξ‖2

ψ2
/2

.
We collect these facts:

Lemma 2.3.1 If ξ is sub-Gaussian for a constant σ > 0, then it satisfies the sub-Gaussian
tail inequalities (2.22), and therefore, ξ ∈ Lψ2 , with ‖ξ‖ψ2 ≤

√
6σ . Conversely, if ξ is in Lψ2

and is centred, then it is sub-Gaussian for the constant σ ≤√
6‖ξ‖ψ2 , and in particular, it

also satisfies the inequalities (2.22) for σ =√
6‖ξ‖ψ2 .

In other words, ignoring constants, for ξ centred, the conditions (a) ξ ∈ Lψ2 and (b) ξ
satisfies the sub-Gaussian tail inequalities (2.22) for some σ1 and (c) ξ is sub-Gaussian for
some σ2 are all equivalent.

Lemma 2.3.1 extends to random variables whose tail probabilities are bounded by a
constant times the sub-Gaussian probabilities in (2.22) as follows.

Lemma 2.3.2 Assume that

Pr{|ξ | ≥ t} ≤ 2Ce−t2/2σ 2
, t> 0, (2.27)

for some C ≥ 1 and σ > 0, a condition implied by the Laplace transform condition

Eeλξ ≤ Ceλ
2σ 2/2, λ ∈ R. (2.28)

Then ξ also satisfies
‖ξ‖ψ2 ≤

√
2(2C + 1)σ . (2.29)

Moreover, if in addition Eξ = 0, then also

Eeλξ ≤ e3λ2(2(2C+1))σ 2
, λ ∈ R, (2.30)

that is, ξ is sub-Gaussian with constant σ̃ 2 = 12(2C + 1)σ 2.

Proof The proof of inequality (2.22) shows that (2.28) implies (2.27). The preceding proof
showing that (2.22) implies (2.25), with only formal changes, proves that (2.27) implies
(2.29). Finally, inequality (2.30) follows from (2.29) and (2.26).

This lemma is useful in that showing that a variable ξ is sub-Gaussian reduces to proving
the tail probability bounds (2.27) for some C > 1, which may be easier than proving them
for C = 1.
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Lemma 2.3.1 (or, more precisely, the inequalities that make it possible) has many
important consequences on the size of maxima of sub-Gaussian stochastic processes. The
simplest examples of such processes are finite collections of sub-Gaussian variables. The
following lemma contains a maximal inequality for variables in ξi ∈ Lψ2 not necessarily
centred, and it applies by Lemma 2.3.1 to finite collections of sub-Gaussian variables.

Lemma 2.3.3 Let ξi ∈ Lψ2 , i = 1, . . . ,N, 2 ≤ N <∞. Then∥∥∥∥max
i≤N

|ξi|
∥∥∥∥
ψ2

≤ 4
√

logN max
i≤N

‖ξi‖ψ2 , (2.31)

and, in particular, there exist Kp <∞, 1 ≤ p<∞, such that∥∥∥∥max
i≤N

|ξi|
∥∥∥∥

Lp

≤ Kp

√
logN max

i≤N
‖ξi‖ψ2 . (2.32)

Proof To prove (a), we may assume that max‖ξi‖ψ2 = 1. Then the definition of the ψ2

norm together with the exponential Chebyshev’s inequality gives

E max
i≤N

eξ
2
i /(16 logN) =

∫ ∞

0
Pr

{
max
i≤N

eξ
2
i /(16 logN) ≥ t

}
dt

≤ e1/8 +
N∑

i=1

∫ ∞

e1/8
Pr
{

eξ
2
i /(16 logN) ≥ t

}
dt

≤ e1/8 + 2N

∫ ∞

e1/8
e−8( logN)( log t)dt = e1/8 + 2N

∫ ∞

e1/8
t−8logN dt

= e1/8

(
1+ 2

8( logN)− 1

)
< 2,

proving (2.31). For part (b), use that ‖ζ‖L2k ≤ (k)1/2k‖ζ‖Lψ2 for any random variable ζ ∈ Lψ2

(as observed earlier) and part (a) to obtain inequality (2.32).

It is convenient to have sensible values of Kp at hand, particularly for p = 1. The method
to obtain the following bound is quite simple and general: let � be a nonnegative, strictly
increasing, convex function on a finite or infinite interval I , and let ξi, 1 ≤ i ≤ N , be random
variables taking values in I and such that E�(ξi)<∞. We then have, by Jensen’s inequality
and the properties of �,

�

(
E max

i≤N
ξi

)
≤ E�

(
max
i≤N
ξi

)
= E max

i≤N
�(ξi)

≤
N∑

i=1

E�(ξi) ≤ N max
i≤N

E�(ξi), (2.33)

and, inverting �,

E max
i≤N
ξi ≤�−1

(
N max

i≤N
E�(ξi)

)
. (2.34)
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Lemma 2.3.4 For any N ≥ 1, if ξi, i ≤ N, are sub-Gaussian random variables admitting
constants σi, then

E max
i≤N
ξi ≤

√
2logN max

i≤N
σi, E max

i≤N
|ξi| ≤

√
2log2N max

i≤N
σi. (2.35)

Proof We take �(x) = eλx in (2.34). Since ξi is sub-Gaussian, we have E�(ξi) ≤ eλ
2σ 2

i /2,
and (2.34) gives

E max
i≤N
ξi ≤ logN

λ
+ 1

2
λmax

i≤N
σ 2

i .

The first inequality in the lemma follows by minimizing in λ in this inequality (i.e., by
taking λ= (2 logN)1/2/maxi≤N σi). The second inequality follows by applying the first to the
collection of 2N random variables ηi = ξi, ηn+i =−ξi, 1 ≤ i ≤ N .

We now consider more general sub-Gaussian processes.

Definition 2.3.5 A centred stochastic process X (t), t ∈ T , is sub-Gaussian with respect to a
distance or pseudo-distance d on T if its increments satisfy the sub-Gaussian inequality, that
is, if

Eeλ(X (t)−X (s)) ≤ eλ
2d2(s,t)/2 λ ∈ R, s, t ∈ T . (2.36)

If instead of condition (2.36) the centred process X satisfies

Eeλ(X (t)−X (s)) ≤ Ceλ
2d2(s,t)/2 or Pr{|X (t)−X (s)| ≥ u} ≤ 2Ce−u2/2d2(s,t),

for all λ ∈ R, u> 0 and s, t ∈ T and some C > 1, then, by Lemma 2.3.2, X is sub-Gaussian
for the distance d̃(s, t) := √

12(2C + 1)d. Then all the results that follow for sub-Gaussian
processes apply as well to processes X satisfying this condition, and the effects on the results
themselves of the dilation of the distance d can be easily quantified.

Gaussian processes, that is, processes X (t) such that for every finite set of indices
t1, . . . , tk , k <∞, the vectors (X (ti) : 1 ≤ i ≤ k) are multivariate normal and are sub-Gaussian
with respect to the L2-distance dX (s, t) = ‖X (t)−X (s)‖L2 . Randomized empirical processes
constitute another important class of examples. Let (S,S ,P) be a probability space, and
let Xi : SN �→ S, i ∈ N, be the coordinate functions (which are i.i.d. with law P). Given a
collection F of measurable functions on (S,S), the empirical measures indexed by F and
based on {Xi} are defined as{

Pn( f ) := 1

n

n∑
i=1

f (Xi) : f ∈F
}

, n ∈ N,

and a related process that has turned out to be an excellent tool in the study of empirical
measures is the randomized empirical process, defined for each n ∈ N as{

1√
n

n∑
i=1

εi f (Xi) : f ∈F
}

,

where {εi} is a sequence of independent Rademacher variables, independent of the variables
Xi. Since linear combinations of independent Rademacher variables are sub-Gaussian with
respect to their variance, it follows that randomized empirical processes are sub-Gaussian
with respect to d( f ,g) = ‖ f − g‖L2(Pn) conditionally on the variables Xi.
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Here are two useful observations about sub-Gaussian processes: if X is a Gaussian
process with respect to d, then the definition immediately implies that

E(X (t)−X (s))2 ≤ d2(s, t)

(as observed earlier, just after the definition of sub-Gaussian variables). Moreover, since
for any s, t, (X (t)− X (s))/d(s, t) is a sub-Gaussian variable with variance not exceeding 1,
Lemma 2.3.4 implies that if F is a finite subset of T ×T of cardinality N , then

E max
(s,t)∈F

|X (t)−X (s)| ≤
√

2log2N max
(s,t)∈F

d(s, t). (2.37)

Inequalities analogous to those in Lemma 2.3.3 for these maxima hold as well.
Given a sub-Gaussian process X (t), t ∈ T , it is of great interest to determine the

(stochastic) size of supt∈T |X (t)| or of sups,t∈T ,dX (s,t)≤δ |X (t)−X (s)| or whether X has a version
with bounded sample paths or with uniformly dX -continuous sample paths (or perhaps
continuous in another metric). For Gaussian processes, these questions should and have
been answered exclusively in terms of the properties of the metric space (T ,d), and for
sub-Gaussian processes, properties of this metric space do provide good control of these
quantities and good sufficient conditions for sample boundedness and continuity. Although
there are much more refined analyses (see the notes at the end of the section), we will develop
only the very neat and useful chaining method based on Dudley’s metric entropy. The reason
for not presenting this subject in more generality is that it is not needed in this book.

The following theorem indicates a way to control supt∈T |X (t)| based on a combination of
the bound in Lemma 2.3.4 with the size of the (pseudo-) metric space (T ,d), measured in
terms of the size of the most economical coverings. Given a metric or pseudo-metric space
(T ,d), for any ε > 0, its covering number N(T ,d,ε) is defined as the smallest number of
closed d-balls of radius ε needed to cover T , formally, if B(t,ε) := {s ∈ T : d(s, t) ≤ ε},

N(T ,d,ε) := min
{

n : there exist t1, . . . , tn ∈ T such that T ⊆∪n
i=1B(ti,ε)

}
,

where we take the minimum of the empty set to be infinite. The packing numbers

D(T ,d,ε) := max
{

n : there exist t1, . . . , tn ∈ T such that min
1≤i,j≤n

d(ti, tj)> ε
}

are sometimes useful and are equivalent to the covering numbers: it is easy to see (and we
will use it without explicit mention) that, for all ε > 0,

N(T ,d,ε) ≤ D(T ,d,ε) ≤ N(T ,d,ε/2).

The logarithm of the covering number of (T ,d) is known as its metric entropy.

Theorem 2.3.6 Let (T ,d) be a pseudo-metric space, and let X (t), t ∈ T, be a stochastic
process sub-Gaussian with respect to the pseudo-distance d, that is, one whose increments
satisfy condition (2.36). Then, for all finite subsets S ⊆ T and points t0 ∈ T, the following
inequalities hold:

E max
t∈S

|X (t)| ≤ E|X (t0)|+ 4
√

2
∫ D/2

0

√
log2N(T ,d,ε) dε, (2.38)
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where D is the diameter of (T ,d), and

E max
s,t∈S

d(s,t)≤δ
|X (t)−X (s)| ≤ (16

√
2+ 2)

∫ δ

0

√
log2N(T ,d,ε) dε, (2.39)

for all δ > 0, where the integrals are taken to be 0 if D = 0.

Proof If the d-diameter D of T is zero, or if
∫ D/2

0

√
logN(T ,d,ε) dε=∞, there is nothing

to prove. Thus, we assume that D > 0 and that the entropy integral is finite, in which case
(T ,d) is totally bounded and, in particular, D <∞. By taking (X (t) − X (t0))/((1 + δ)D)
instead of X (t) and d/((1+ δ)D) for any small δ instead of d, we may assume that X (t0) = 0
and 1/2 < D < 1. Given S ⊂ T finite, since d(s, t) = 0 implies X (t) = X (s) a.s., we can
identify points of S at d-distance zero from each other; that is, we can assume that d is a
proper distance on S. We also can assume that S has cardinality at least 2. Since S is finite,
there is k1 ∈ N such that for each t ∈ T , the ball B(t,2−k1 ) contains at most one point from
S. Set Tk1 = S, which has cardinality at most N(T ,d,2−k1 ), set T0 = {t0} and for 1 ≤ k < k1,
let Tk be a set of centres of N(T ,d,2−k) d-balls of radius 2−k covering T . For each s ∈ S,
we construct a chain (πk1 (s),πk1−1(s), . . . ,π0(s)) with links πk(s) ∈ Tk , 0≤ k ≤ k1, as follows:
πk1 (s)= s and, given πk(s), k1 ≥ k> 0, πk−1(s) is taken to be a point in Tk−1, for which the ball
B(πk−1(s),2−(k−1)) contains πk(s), this being done in such a way that πk−1(s) depends only
on πk(s) in the sense that if πk(s) = πk(t), then πk−1(s) = πk−1(t). Note that π0(s) = t0 for
all s. In particular, for each 0 ≤ k ≤ k1, the number of ‘subchains’ (πk(s),πk−1(s), . . . ,π0(s)),
s ∈ S, is exactly Card{πk(s) : s ∈ S} ≤ N(T ,d,2−k). In particular, for k = 1, . . . ,k1,

Card{(X (πk(s))−X (πk−1(s))) : s ∈ S} = Card{πk(s) : s ∈ S} ≤ N(T ,d,2−k).

Moreover, since πk(s) ∈ B(πk−1(s),2−(k−1)),[
E(X (πk(s))−X (πk−1(s)))2

]1/2 ≤ d(πk(s),πk−1(s)) ≤ 2−k+1, k = 1, . . . ,k1.

Hence, by inequality (2.37),

E max
s∈S

|X (πk(s))−X (πk−1(s))| ≤ 2−k+1
√

2log2N(T ,d,2−k), k = 1, . . . ,k1.

(Note that N(T ,d,2−k) ≥ 2 for k ≥ 1 because D > 1/2, so this inequality holds even if
Card(πk(s) : s ∈ S} = 1.) Therefore, noting that X (π0(s)) = X (t0) = 0 and X (πk1 (s)) = X (s),
we have

E max
s∈S

|X (s)| ≤
k1∑

k=1

E max
s∈S

|X (πk(s))−X (πk−1(s))|

≤
∞∑

k=1

2−k+1
√

2log2N(T ,d,2−k)

≤ 4
∫ 1/2

0

√
2log2N(T ,d,ε) dε.

Replacing X (t) by (X (t) − X (t0))/D and d by d/(1 + δ)D and letting δ → 0, we obtain
inequality (2.38).
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Given δ < diam(T), let k(δ) = min{k ∈ N : 2−k ≤ δ}. Define

U = {
(x,y) ∈ Tk(δ) ×Tk(δ) : ∃ u,v ∈ S,d(u,v) ≤ δ,πk(δ)(u) = x,πk(δ)(v) = y

}
,

and given (x,y) ∈ U , fix ux,y, vx,y ∈ S, such that πk(δ)(ux,y) = x, πk(δ)(vx,y) = y, d(ux,y,vx,y) ≤ δ.
For s, t ∈ S such that d(s, t) ≤ δ, obviously, (x,y) := (πk(δ)(s),πk(δ)(t)) ∈ U , and we can write

|X (t)−X (s)| ≤ |X (t)−X (πk(δ)(t))|+ |X (πk(δ)(t))−X (vx,y)|+ |X (vx,y)−X (ux,y)|+ |X (ux,y)

−X (πk(δ)(s))|+ |X (πk(δ)(s))−X (s)|
≤ sup

(x,y)∈U
|X (ux,y)−X (vx,y)|+ 4max

r∈S
|X (r)−X (πk(δ)(r))|.

Since Card(U) ≤ (N(T ,d,2−k(δ)))2 and, for (x,y) ∈ U , d(ux,y,vx,y) ≤ δ, inequality (2.37) gives

E sup
(x,y)∈U

|X (ux,y)−X (vx,y)| ≤ δ
√

2log2N2(T ,d,2−k(δ)).

Next, the proof of (2.38) gives

E max
r∈S

|X (r)−X (πk(δ)(r))| ≤
∑

k>k(δ)

2−k+1
√

2log2N(T ,d,2−k).

We then conclude from the last three inequalities that

E max
s,t∈S

d(s,t)≤δ
|X (t)−X (s)| ≤ 2δ

√
log

√
2N(T ,d,2−k(δ))+ 4

∑
k>k(δ)

2−k+1
√

2log2N(T ,d,2−k)

≤ (16
√

2+ 2)
∫ δ

0

√
log2N(T ,d,ε) dε.

Theorem 2.3.6 implies the existence of versions of X (t) whose sample paths are bounded
and uniformly continuous for d, actually, that this holds for all the separable versions of X ,
and they do exist (recall Proposition 2.1.12 complemented by Exercise 2.3.6, and note that
the entropy condition obviously implies that (T ,d) is a separable pseudo-metric space). For
the next theorem, recall the definition of sample bounded and sample continuous processes
(Definition 2.1.3).

Theorem 2.3.7 Let (T ,d) be a metric or pseudo-metric space, and let X (t), t ∈ T, be a
sub-Gaussian process relative to d. Assume that∫ ∞

0

√
logN(T ,d,ε) dε <∞. (2.40)

Then

(a) X (t), t ∈ T, is sample d-continuous (in particular, X admits a separable version), and
(b) Any separable version of X (t), t ∈ T, that we keep denoting by X (t) has almost all its

sample paths bounded and uniformly d-continuous, and satisfies the inequalities

E sup
t∈T

|X (t)| ≤ E|X (t0)|+ 4
√

2
∫ D/2

0

√
log2N(T ,d,ε) dε, (2.41)
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where t0 ∈ T, D is the diameter of (T ,d) and

E sup
s,t∈T

d(s,t)≤δ

|X (t)−X (s)| ≤ (16
√

2+ 2)
∫ δ

0

√
log2N(T ,d,ε) dε, (2.42)

for all δ > 0.

Proof The entropy condition implies that (T ,d) is totally bounded, in particular,
separable. Then, if T0 is a countable dense set and Tn ↗ T0, Tn finite, the monotone
convergence theorem together with inequality (2.38) implies that both this inequality holds
for supt∈T0

|X (t)| and this random variable is almost surely finite. Likewise, monotone
convergence also proves inequality (2.39) for T0 and, in particular, that for any sequence
δn ↘ 0,

E sup
s,t∈T0

d(s,t)≤δn

|X (t)−X (s)| ↘ 0.

This implies not only that these random variables are finite a.s. but also that
sups,t∈T0,d(s,t)≤δn |X (t)−X (s)| ↘ 0 a.s. Hence, there exists a set �0 ⊆� with Pr(�0) = 1 such
that the restriction X |T0 of X to T0 has bounded and d-uniformly continuous sample paths
t �→ X (t,ω), t ∈ T0, for all ω ∈ �0. If we extend each of these paths to T by continuity, we
obtain a separable version X̃ of the process X with almost all its sample paths bounded and
d-uniformly continuous and such that the inequalities (2.38) and (2.39) hold for supt∈T |X̃ (t)|
and sups,t∈T ,d(s,t)≤δ |X̃ (t) − X̃ (s)|, respectively (as these suprema equal the corresponding
suprema over T0 for all ω ∈ �0). This proves part (a) and the inequalities in part (b) for
the version just constructed. Now, if X̄ is any separable version of X and T0 is the countable
set from Definition 2.1, we can apply to them the same reasoning as earlier and conclude
part (b).

The chaining argument also can be adapted to obtain a metric entropy bound on the
modulus of continuity of a sample continuous Gaussian or sub-Gaussian process.

Theorem 2.3.8 (Dudley’s theorem) If X (t), t∈T, is a Gaussian process for a pseudo-metric
d such that (T ,d) has positive d-diameter and satisfies the metric entropy condition (2.40),
then, for any separable version of X (still denoted by X ), we have, with the convention
0/0 = 0,

E

[
sup
s,t∈T

|X (t)−X (s)|∫ d(s,t)
0

√
logN(T ,d,ε) dε

]
<∞. (2.43)

Proof The main part of the proof consists of showing that

sup
s,t∈T

|X (t)−X (s)|∫ d(s,t)
0

√
logN(T ,d,ε) dε

<∞ a.s. (2.44)

Once this is proved, (2.43) will follow from general properties of Gaussian processes.
The proof of (2.44) (which in fact applies also to sub-Gaussian processes) consists of a
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delicate chaining argument. Set H(ε) = logN(T ,d,ε). Instead of discretising at ε = 2−k as
in the proof of Theorem 2.3.6, we define ε1 = 1 and, inductively, δk ↘ 0 and εk ↘ 0 as

δk = 2inf{ε : H(ε) ≤ 2H(εk)}, εk+1 = min(εk/3,δk), k ∈ N.

Then, since εk+1 ≤ εk/3, we have εk ≤ 3(εk − εk+1)/2; also, if εk+1 = δk , then H(εk+1) ≤
H(2δk/3) ≤ 2H(εk), so

∫ εk
εk+1

H1/2(x)dx ≤ 2εkH1/2(εk), whereas if εk+1 = εk/3, then∫ εk
εk+1

H1/2(x)dx ≤ 2εk+1H1/2(εk+1). This gives, for each n,

2

3

∞∑
k=n

εkH1/2(εk) ≤
∞∑

k=n

(εk − εk+1)H1/2(εk) ≤
∫ εn

0
H1/2(x)dx ≤ 4

∞∑
k=n

εkH1/2(εk), (2.45)

and the sums converge because, by (2.40), so does the integral. We also have, for each k,

H(εk+2) ≥ H(εk+1/3) ≥ H(δk/3) ≥ 2H(εk). (2.46)

Finally, {δk} relates to {εk} as follows: by definition, if τ < δk/2, then H(τ )> 2H(εk)≥H(εk)
so that δk ≤ 2εk , which gives

εk+1 ≤ δk ≤ 6εk+1. (2.47)

For each k, let Tk be a set of cardinality N(δk) = N(T ,d,δk) and δk-dense in T for d, and
let Gk = {(s, t) : s ∈ Tk−1, t ∈ Tk}. Then Card(Tk)= eH(δk ) ≤ e2H(εk ) by definition of δk , and
Card(Gk)≤ e4H(εk ). Then the sub-Gaussian tail bound (2.22) combined with the bound on the
cardinality of Gk gives

∑
k

Pr

{
max

s∈Tk−1,t∈Tk

|X (t)−X (s)|
d(s, t)

≥ 3H1/2(εk)

}
≤ 2

∑
k

e4H(εk )−9H(εk )/2 ≤ 2
∑

k

e−H1/2(εk )/2,

which is finite because by (2.46) this last series is dominated by the sum of two convergent
geometric series. Hence, by the Borel-Cantelli lemma, there exists n0(ω)<∞ a.s. such that

|X (t,ω)−X (s,ω)|
d(s, t)

≤ 3H1/2(εn), for all (s, t) ∈ Gn and n ≥ n0(ω). (2.48)

Next, given n ∈ N, and t ∈ T , let πn(t) ∈ Tn be such that d(t,πn(t)) < δn. The metric
entropy being finite, any separable version of X has almost all its sample paths continuous by
Theorem 2.3.7; hence, there is a set of measure one �1 such that if ω ∈�1, both n0(ω)<∞
and X (πk(t),ω) converges to X (t,ω) for all t ∈ T (actually, there is no need to invoke this
theorem because it is easy to see that {X (πk(t),ω))} is a Cauchy sequence for all ω such that
n0(ω)<∞ by (2.48) and finiteness of the entropy integral. Hence, we can take a version of
X such that, for these ω, X (t,ω) = limX (πn(t),ω)).
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Then, if n≥ n0(ω) and εn−1 < d(s, t)≤ εn, s, t ∈ T , the preceding two observations and the
fact that d(πk(s),πk(t)) ≤ d(s, t)+ 2δk , give

|X (t,ω)−X (s,ω)| ≤ |X (πn(t),ω)−X (πn(s),ω)|+
∞∑

k=n

|X (πk(t),ω)−X (πk(t),ω)|

+
∞∑

k=n

|X (πk(s),ω)−X (πk(s),ω)|

≤ 3(d(s, t)+ 2δn)H1/2(εn)+ 12
∞∑

k=n

δkH1/2(εk+1)

≤ 39d(s, t)H1/2(d(s, t))+ 108
∫ d(s,t)

0
H1/2(x)dx

≤ 147
∫ d(s,t)

0
H1/2(x)dx,

where, besides (2.48) and the convergence of X (πk(t)), we have used (2.47) and (2.45).
Thus, the modulus

∫ d(s,t)
0 H1/2(x)dx for X (t,ω) is valid for d(s, t) ≤ εn0(ω), and hence, by total

boundedness of T , it is valid for all d(s, t) and for all ω ∈�1. This proves (2.44)
Next, we show how (2.44) implies (2.43). Set

U = {u = (u1,u2) : u1,u2 ∈ T ,d(u1,u2) 	= 0},
and define on U the pseudo-metric D(u,v) = d(u1,v1)+d(u2,v2). Then (U ,D) is a separable
metric or pseudo-metric space because (T ,d) is separable by Proposition 2.1.12. Consider
the Gaussian process

Y (u) = X (u2)−X (u1)

J (d(u1,u2))
, u ∈ U ,

where J (x) = ∫ x
0

√
logN(T ,d,ε)dε, and note that J (x)> 0 for all x> 0 (as the diameter of T

is not zero). This is a Gaussian process on U with bounded sample paths (by (2.44)). It also
has continuous paths for D because

|Y (u)−Y (u0)| ≤ |X (u2)−X (u1)− (X (u0
2)−X (u0

1))|
J ((d(u0

1,u0
2))

+
(

sup
s,t∈T

|X (t)−X (s)|
)∣∣∣∣ 1

J ((d(u1,u2))
− 1

J ((d(u0
1,u0

2))

∣∣∣∣
tends to zero as u → u0 in the D-distance because of (a) the sample continuity of X , (b) the
first part of the theorem, (c) the continuity of J (x) and (d) J (d(u0

1,u0
2)> 0. In particular, Y is

a separable Gaussian process on (U ,D) with bounded sample paths; hence,

E sup
u∈U

|Y (u)|<∞

by part (a) of Theorem 2.1.20, proving (2.43).

In fact, Theorem 2.1.20 yields more than just first-moment integrability in (2.43) once
(2.44) is proved, namely, square exponential integrability.
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Exercises

2.3.1 The main ingredient in the basic estimates of Theorem 2.3.6 is clearly the first maximal
inequality in (2.37) (hence, Lemma 2.3.4). Replace this inequality with the maximal inequality
(2.31) for the ψ2-norm from Lemma 2.3.3 in the proof of Theorem 2.3.6 to obtain that if X (t),
t ∈ T , is a sub-Gaussian process for a pseudo-distance d for which (T ,d) satisfies the entropy
condition (2.40), then the following inequalities hold for any separable version of X :∥∥∥∥sup

t∈T
|X (t)|

∥∥∥∥
ψ2

≤ ‖X (t0)‖ψ2 + 16
√

6
∫ D

0

√
logN(T ,d,ε) dε,

where t0 ∈ T is arbitrary and D is the d-diameter of T , and∥∥∥∥∥∥ sup
s,t∈T

d(s,t)≤δ

|X (t)−X (s)|
∥∥∥∥∥∥
ψ2

≤ 128
√

3
∫ δ

0

√
logN(T ,d,ε) dε,

for any δ > 0 In particular, these inequalities also hold for the Lp-norms of these random
variables, p<∞, possibly with different constants.

2.3.2 Brownian motion on [0,1] is defined as a centred Gaussian process X (t) with continuous
sample paths and such that X (0) = 0 a.s., E(X (s) − X (t))2 = |t − s|, s, t ∈ [0,1]. Prove the
existence of Brownian motion, and show that sups,t∈[0,1] |X (t)−X (s)|/√|t− s|| log |t− s||<∞
almost surely.

2.3.3 For real random variables Xi, give an upper bound for E supt∈R

∣∣1/√n
∑n

i=1 εiI(Xi ≤ t)
∣∣, n ∈N;

in particular, prove that E supt∈R

∣∣1/n∑n
i=1 εiI(Xi ≤ t)

∣∣→ 0 (Glivenko-Cantelli theorem). Hint:
Conditionally on {Xi}, take d2(s, t) = 1/n

∑n
i=1 (I(Xi ≤ t)− I(Xi ≤ s)|)2, and notice that if X(i),

i = 1, . . . ,n, are the order statistics, d(s, t) = 0 if (and only if) both s and t belong to one of
the sets (−∞,X(1)], (X(n),∞) or (X(i),X(i+1)], i = 1, . . . ,n− 1. Note also that d(s, t) ≤ 1 for all
s, t. Deduce that N(R,d,ε) ≤ n+ 1 for all ε > 0 and that D ≤ 1. The bound follows from this
estimate and the entropy integral bound.

2.3.4 (Alternate proof of inequality (2.39) with a slightly larger constant.) Define V ={(s, t)∈T×T :
d(s, t) ≤ δ} and on V the process Y (u) = X (tu)−X (su), where u = (su, tu) ∈ V . Take on V the
pseudo-distance ρ(u,v) := ‖Y (u)−Y (v)‖ψ2 . One has that Y (v) is sub-Gaussian for

√
6ρ on V ,

that 2maxu∈V ‖Y (u)‖ψ2 ≤ 2
√

6δ and that ρ(u,v)≤√
6(d(tu, tv)+d(su,sv)), all by Lemma 2.3.1.

Thus, one can apply inequality (2.38) to Y for ρ, using that the first of the preceding two
inequalities gives a bound for the ρ-diameter of V and that the second implies N(V ,ρ,4

√
6ε)≤

N2(T ,d,ε).
2.3.5 Use the fact that the function ex2 − 1 is convex and zero at zero to show that ‖ · ‖ψ2 is a

(pseudo-)norm on the space Lψ2 of all the random variables ξ : � �→ R such that Eeλξ
2
<∞

for some λ > 0 (with identification of a.s. equal functions). Show that the resulting normed
space is complete.

2.3.6 Show that Proposition 2.1.12 holds true for sub-Gaussian processes.
2.3.7 Show that a separable stochastic process X (t), t ∈ T , is sample continuous on (T ,d) iff there

exists a Borel probability measure on Cu(T ,d), the Banach space of bounded and uniformly
continuous functions on (T ,d), whose finite-dimensional marginals μ ◦ (δt1 , . . . ,δtn )−1 are the
marginals L(X (t1), . . . ,X (tn)), for all ti ∈ T , i ≤ n, n ∈ N.

2.3.8 Prove the following inequality, which is a qualitative improvement on (2.31) as it does not
assume a finite number of variables: there exists a universal constant K <∞ such that∥∥∥sup

k

|ξk |
ψ−1

2 (k)

∥∥∥
ψ2

≤ K sup
k
‖ξk‖ψ2
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with ‖ξk‖ψ2 replaced by ‖ξk‖L2 if the variables ξi are normal. Hint: Assume ‖ξk‖ψ2 ≤ 1. Then
using a union bound,

Pr

{
exp

[
sup
k≥9

( |ξk |√
6logk

)2
]
> t

}
≤

∞∑
k=9

Pr
{

e|ξk |
2
> e6( logk)( log t)

}
,

and then apply inequality (2.22) together with the fact that for t ≥ 3/2 and k ≥ 9, log(kt) ≤
3( logk)( log t). Use the resulting bound to show that

E exp

[
sup
k≥9

(
|ξk |/(

√
6logk)

)2
]
< 2.

2.3.9 Let Xi, i ≤ n, be separable centred Gaussian processes such that E‖Xi‖∞ <∞ (where ‖ · ‖∞
denotes the supremum norm), and let σ 2

i and Mi be, respectively, their sup of second moments
and median. Prove that

E max
i≤n

‖Xi‖∞ ≤ max
i≤n

E‖Xi‖∞ + (8
√

logn+
√

2/π )max
i≤n
σi.

Hint: By Theorem 2.2.7 and Lemma 2.3.2, the variables |‖Xi‖−Mi| have ψ2-norm bounded
by 2σi, and the result then follows from Lemma 2.3.3 and inequality (2.19).

2.3.10 Show that there exists K <∞ such that if Y (t), t ∈ T , is a centred Gaussian process such that
d2

Y (s, t) = E(Y (t)−Y (s))2 ≤ d2(s, t) and (T ,d) is totally bounded, then

E sup
d(s,t)<δ

|Y (t)−Y (s)| ≤ K

[
sup
t∈T

E sup
s∈T :d(s,t)<δ

|Y (t)−Y (s)|+ δ( logN(T ,d,δ))1/2

]
.

Hint: Let U be the set of centres of N(T ,d,δ) d-balls of radius δ covering T . Apply the
result in Exercise 2.3.9 to the processes Yu = Y − Y (u), u ∈ U , and inequality (2.35) to

max
u,v∈U :d(u,v)<3δ

|Y (u)−Y (v)|.

2.4 Anderson’s Lemma, Comparison and Sudakov’s Lower Bound

In this section we deal with the general question of how comparison of the distributions
of the supremum of two Gaussian processes follows from comparison of their covariances
or of their induced metric structures. Perhaps the most important results of this kind are
Anderson’s inequality regarding the probability, relative to a centred Gaussian measure on
Rn, of a convex symmetric set and its translates, and Slepian’s lemma that allows comparing
the distributions of the suprema of X (t) and Y (t) if the covariance of one of the processes
dominates the other. Anderson’s lemma is related to the fact that centred Gaussian measures
on Rn are log-concave.

These results have several important consequences, and we will examine two particularly
interesting ones, the Khatri-Sidak inequality and Sudakov’s inequality, that compare, for
a jointly normal variable (g1, . . . ,gn), the distribution of max1≤i≤n |gi| with the maximum
of related independent normal random variables. Sudakov’s inequality shows that Dudley’s
entropy bound is effectively sharp and, in this sense, complements it.

2.4.1 Anderson’s Lemma

A set C in a vector space is convex and symmetric if
∑n

i=1λixi ∈ C whenever xi ∈ C and
λi ∈ R satisfy

∑n
i=1 |λi| = 1, n<∞. Example: Balls centred at the origin in Banach spaces,
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{x : ‖x‖ ≤ c}. Anderson’s lemma states that for a centred Gaussian measure μ on Rn, if C is
a measurable, convex, symmetric set, then

μ(C+ x) ≤μ(C),

for all x ∈ Rn. Suppose now that X = Y + Z, where Y and Z are two independent centred
Gaussian random vectors in Rn, which holds if and only if the difference of covariances
CX −CY is nonnegative definite. Then

Pr{X ∈ C} =
∫

Pr{Y ∈ C− z}dL(Z)(z) ≤ Pr{Y ∈ C}.

This inequality is stronger than E‖Y +Z‖p ≥ E‖Y‖p for all p ≥ 1, which follows from it and
also from Jensen’s inequality. Both Anderson’s inequality and its corollary on comparison
of Gaussian probabilities are quite useful. The modern proof of Anderson’s lemma uses the
Brunn-Minkowski inequality, or inequalities similar to it, expressing the log-concavity of
the function A �→ m(A), where m is Lebesgue measure and, as a consequence (of a slightly
stronger inequality) of A �→μ(A), μ-Gaussian and centred.

We start with the Brunn-Minkowski inequality for Lebesgue measure in R. Given two
sets A and B in a vector space, their Minkowski addition is A+B= {x+y : x ∈ A,y∈ B}, and
λA is defined as λA = {λx : x ∈ A}. In this subsection, m will stand for Lebesgue measure on
Rn for any n.

Lemma 2.4.1 Let A and B be Borel measurable sets in R. Then

m(A+B) ≥ m(A)+m(B).

Proof Note that A+B is Lebesgue measurable as it is the image by a continuous function
of the Borel set A×B, hence, analytic. Regularity of m by compact sets reduces the problem
to A and B compact. Since m is invariant by translations, neither side of the inequality
changes if we translate the sets A and/or B; hence, by taking A+{−supA} and B+{− infB}
instead of A and B, we can assume A ⊂ {x ≤ 0}, B ⊆ {x ≥ 0} and A ∩ B = {0}. But then
m(A+B) ≥ m(A∪B) = m(A)+m(B).

Theorem 2.4.2 (Précopa-Leindler theorem) Let f ,g,ϕ be Lebesgue measurable functions
on Rn taking values in [0,∞] and satisfying, for some 0< λ< 1 and all u,v ∈ Rn,

ϕ(λu+ (1−λ)v) ≥ f λ(u)g1−λ(v). (2.49)

Then ∫
ϕ dm ≥

(∫
f dm

)λ(∫
g dm

)1−λ
. (2.50)

Proof The proof is by induction on the dimension n. Assume that n= 1. We can divide both
sides of inequality (2.49) by ‖ f ‖λ∞‖g‖1−λ

∞ ; that is, we can assume without loss of generality
that ‖ f ‖∞ = ‖g‖∞ = 1. Then, for 0 ≤ t < 1, the sets {x : f (x) ≥ t} and {x : g(x) ≥ t} are not
empty, and we have

λ{ f ≥ t}+ (1−λ){g ≥ t} ⊆ {ϕ ≥ t},
since, by (2.49), if f (u)≥ t and g(v)≥ t, then ϕ(λu+(1−λ)v)≥ t. But then, by Lemma 2.4.1,

m{ϕ ≥ t} ≥ λm{ f ≥ t}+ (1−λ)m{g ≥ t}.
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Integrating with respect to t and using the concavity of the logarithm, we obtain∫
ϕ dm ≥ λ

∫
f dm+ (1−λ)

∫
g dm ≥

(∫
f dm

)λ(∫
g dm

)1−λ
,

proving the theorem for n = 1. Assume now that the result holds for n − 1, and let ϕ, f ,
g, λ be as in the statement of the theorem. Fix a coordinate, say, xn = x, and consider
ϕx : Rn−1 �→ [0,∞], defined by ϕx(t) = ϕ(t,x), and likewise define fx and gx. Then, for x1, x2

such that x = λx1 + (1−λ)x2 and for any u,v ∈ Rn−1,

ϕx(λu+ (1−λ)v) = ϕ(λ(u,x1)+ (1−λ)(v,x2)) ≥ f λ(u,x1)g1−λ(v,x2) = f λx1
(u)g1−λ

x2
(v).

Hence, induction gives∫
Rn−1

ϕx dm ≥
(∫

Rn−1
fx1 dm

)λ(∫
Rn−1

gx2 dm

)1−λ
,

and (2.50) now follows by application of the very same result in dimension one.

We sketch in Exercise 2.4.1 how to obtain the Brunn-Minkowski inequality from
Theorem 2.4.2. Of course, we are primarily interested in using this theorem to prove that
centred Gaussian measures are logarithmically concave.

Theorem 2.4.3 (Log-concavity of Gaussian measures in Rn) Let μ be a centred Gaussian
measure on Rn. Then, for any Borel sets A, B in Rn and 0 ≤ λ≤ 1, we have

μ(λA+ (1−λ)B)≥ (μ(A))λ(μ(B))1−λ. (2.51)

Proof Let μ be a centred Gaussian measure on Rn. Then μ is supported by a subspace
V ⊂ Rn, and the density of the restriction of μ to V with respect to Lebesgue measure on
V is φ(x) = ce−|�x|2/2, where � : V �→ V is the positive square root of the inverse of the
restriction to V of the covariance of μ and is a strictly positive definite operator. It is easy
to see, for example, by diagonalising �, that the function x �→ logφ(x) =−|�x|2, x ∈ V , is
concave and therefore that

φ(λu+ (1−λ)v) ≥ φλ(u)φ1−λ(v), u,v ∈ V . (2.52)

Now, if A and B are Borel sets of Rn, we define, on V ,

ϕ = φIλ(A∩V )+(1−λ)(B∩V ), f = φIA∩V , g = φIB∩V .

Note that the set λ(A ∩ V ) + (1 − λ)(B ∩ V ) is the image by a continuous function of a
Borel set on V ×V ; hence, it is measurable for the completion of any Borel measure on V
(e.g., Dudley (2002), section 13.2)). Inequality (2.52) shows that these functions satisfy the
hypothesis (2.49) with Rn replaced by V . Hence, Theorem 2.4.2 applies to give∫

λ(A∩V )+(1−λ)(B∩V )
φ dm ≥

(∫
A∩V
φ dm

)λ(∫
B∩V
φ dm

)1−λ
,

where m is Lebesgue measure on V . This inequality implies the theorem because

μ(λA+ (1−λ)B) = μ[(λA+ (1−λ)B)∩V ]

≥ μ(λ(A∩V )+ (1−λ)(B∩V )) =
∫
λ(A∩V )+(1−λ)(B∩V )

φ dm,

and μ(A) = ∫
A∩V φ dm and likewise for μ(B).
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An immediate consequence of this theorem is Anderson’s inequality for any centred
Gaussian measure on Rn.

Theorem 2.4.4 (Anderson’s lemma) Let X = (g1, . . . ,gn) be a centred jointly normal vector
in Rn, and let C be a measurable convex symmetric set of Rn. Then, for all x ∈ Rn,

Pr{X + x ∈ C} ≤ Pr{X ∈ C}. (2.53)

Proof Let μ = L(X ). Let A = C + x, B = C − x and λ = 1/2 in (2.51), and note that by
symmetry of μ and symmetry of C, μ(A) = μ(B), so we obtain μ(C) ≥ μ(C + x), which
is (2.53).

The assumption of measurability for C in the statement of the preceding theorem is
superfluous because the boundary of a convex set C has μ-measure zero (whereas obviously
its closure and its interior are measurable), but in applications, C is usually open or closed
and hence measurable.

Theorem 2.4.4 extends to infinite dimensions, both for B-valued random variables, B
separable (next theorem) and processes (Exercise 2.4.3).

Theorem 2.4.5 Let B be a separable Banach space, let X be a B-valued centred Gaussian
random variable and let C be a closed, convex, symmetric subset of B. Then, for all x ∈ B,

Pr{X + x ∈ C} ≤ Pr{X ∈ C}.
In particular, Pr(‖X‖ ≤ ε)> 0, for all ε > 0.

Proof By the Hahn-Banach separation theorem in locally convex topological spaces, there
exists a set DC ⊂ B∗ such that C =∩ f ∈DC {| f | ≤ 1}. Then Cc =∪ f ∈DC {| f |> 1}. Since Cc is
separable, its topology has a countable base, and therefore, this covering admits a countable
subcovering; that is, there exists a countable subset TC ⊂ DC such that Cc =∪ f ∈TC {| f |> 1}
or C =∩ f ∈TC {| f | ≤ 1}. Then, if Tn ↗ TC, Tn finite, we have

Pr{X ∈ C} = Pr{ sup
f ∈TC

| f (X )| ≤ 1} = lim
n→∞

Pr

{
max
f ∈Tn

| f (X )| ≤ 1

}
≥ lim

n→∞
Pr

{
max
f ∈Tn

| f (X + x)| ≤ 1

}
= Pr{X + x ∈ C},

where the inequality follows from Theorem 2.4.4 applied to the Gaussian vector ( f (X ) :
f ∈ Tn) and the convex set {x ∈ RCard(Tn) : |xi| ≤ 1, i = 1, . . . ,Card(Tn)}. For the last claim,
apply the first part to closed balls Ci = {x : ‖x− xi‖ ≤ ε} for xi a countable dense subset of
B.

Anderson’s lemma applies to the comparison of the probabilities that X = Y + Z and Y
fall in convex symmetric sets C, where Y and Z are independent centred Gaussian Rn-valued
random vectors (Exercise 2.4.2), and gives

Pr{X ∈ C} ≤ Pr{Y ∈ C}.
Here is another application of Anderson’s lemma, in the version of Exercise 2.4.5, to
comparison of Gaussian processes, concretely, to proving the simplest yet useful instance
of the famous Gaussian correlation conjecture, known as the Khatri-Sidak inequality. The
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Gaussian correlation conjecture itself states that for symmetric convex sets A, B, if X and Y
are arbitrary centred Gaussian vectors, Pr{X ∈ A,Y ∈ B} ≥ Pr{X ∈ A}Pr{Y ∈ B}; that is, the
independent case gives the smallest probability of the intersection of two symmetric convex
sets.

Corollary 2.4.6 (Khatri-Sidak inequality) Let n ≥ 2, and let g1, . . . ,gn be jointly normal
centred random variables. Then, for all x ≥ 0,

Pr{max
1≤i≤n

|gi| ≤ x} ≥ Pr{|g1| ≤ x}Pr{max
2≤i≤n

|gi| ≤ x},

and hence, iterating,

Pr{max
1≤i≤n

|gi| ≤ x} ≥
n∏

i=1

Pr{|gi| ≤ x}.

Proof Note that Pr{max2≤i≤n |gi| ≤ x} = limt→∞ Pr{max2≤i≤n |gi| ≤ x, |g1| ≤ t}. Hence, it
suffices to show that for any convex symmetric subset A of Rn−1, the function

f (t)/g(t) := Pr{|g1| ≤ t, (g2, . . . ,gn) ∈ A}/Pr{|g1| ≤ t}
is monotone decreasing. Let φ1 denote the density of g1, and set X = (g2, . . . ,gn). Since

Pr{X ∈ A||g1| ≤ t} =
∫ t

−t
Pr{X ∈ A|g1 = u}dL(g1||g1| ≤ t)(u)

=
∫ t

−t
Pr{X ∈ A|g1 = u}φ1(u)du/Pr{|g1| ≤ t},

we have (using symmetry of the different laws) that

f (t) =
∫ t

−t
Pr{X ∈ A|g1 = u}φ1(u)du, f ′(t) = 2Pr{X ∈ A|g1 = t}φ1(t)

and that, by Exercises 2.4.5 and 2.4.6,

Pr{X ∈ A||g1| ≤ t} ≥ Pr{X ∈ A|g1 = t}.
These two observations give

g2(t)( f/g)′(t) = 2φ1(t)Pr{X ∈ A|g1 = t}Pr{|g1| ≤ t}− 2Pr{|g1| ≤ t, (g2, . . . ,gn) ∈ A}φ1(t)

= 2φ1(t)Pr{|g1| ≤ t} [Pr{X ∈ A|g1 = t}−Pr{X ∈ A||g1| ≤ t}] ≤ 0.

Thus, the function f/g is monotone decreasing, proving the corollary.

2.4.2 Slepian’s Lemma and Sudakov’s Minorisation

Before proving the basic comparison result, it is convenient to consider a useful
identity regarding derivatives of the multidimensional normal density. Let f (C,x) =
((2π)n detC)−1/2e−xC−1xT /2 be the N(0,C) density in Rn, where C = (Cij) is an n × n
symmetric strictly positive definite matrix x = (x1, . . . ,xn) and xT is the transpose of x.
Consider f as a function of the real variables Cij, 1 ≤ i ≤ j ≤ n, and xi, 1 ≤ i ≤ n. Then

∂ f (C,x)

∂Cij
= ∂

2 f (C,x)

∂xi∂xj
= ∂

2 f (C,x)

∂xj∂xi
, 1 ≤ i< j ≤ n. (2.54)
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To see this, just note that by the inversion formula for characteristic functions,

f (C,x) = 1

(2π)n

∫
Rn

e−ixuT
e−uCuT /2du

and that differentiation under the integral sign is justified by dominated convergence, so the
three partial derivatives in (2.54) are all equal to −xixj f (C,x).

We can now prove the following comparison result:

Theorem 2.4.7 Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be centred normal vectors in Rn

such that EX 2
i =EY 2

j = 1, 1≤ i, j≤ n. Set, for each 1≤ i< j≤ n, C1
ij =E(XiXj), C0

ij =E(YiYj)
and ρij = max{|C0

ij|, |C1
ij|}. Then, for any λi ∈ R,

Pr
n⋂

i=1

{Xi ≤ λi}−Pr
n⋂

i=1

{Yi ≤ λi} ≤ 1

2π

∑
1≤i<j≤n

(C1
ij −C0

ij)
+ 1

(1−ρ2
ij)1/2

exp

(
− (λ2

i +λ2
j )/2

1+ρij

)
.

(2.55)

Moreover, if μi ≤ λi and v = min{|λi|, |μi| : i = 1, . . .n}, then∣∣∣∣∣Pr
n⋂

i=1

{μi ≤ Xi ≤ λi}− Pr
n⋂

i=1

{μi ≤ Yi ≤ λi}
∣∣∣∣∣≤ 2

π

∑
1≤i<j≤n

|C1
ij −C0

ij|
1

(1−ρ2
ij)1/2

× exp

(
− v2

1+ρij

)
. (2.56)

Proof We may assume that the covariances of X and Y are invertible (so that both X and
Y have densities): just take, if necessary, Xε = (1− ε2)1/2X + εG, Yε = (1− ε2)1/2Y + εG
instead, where G is a standard normal random vector on Rn independent of X and Y . Then
the result for Xε and Yε implies the result for X and Y by letting ε→ 0. Moreover, since both
the hypotheses and the conclusions of the theorem involve the probability laws of X and Y
but not their joint law, we may also assume that X and Y are independent.

Under these two assumptions, define X (t)= t1/2X + (1− t)1/2Y . Then X (0)= Y , X (1)=X
and Ct :=Cov(X (t))= tC1+(1−t)C0. This curve in Rn(n−1)/2 has a neighbourhood consisting
only of (symmetric) strictly positive definite matrices. Let ft denote the density of X (t), and
define

F(t) =
∫ λ1

−∞
· · ·
∫ λn

−∞
ft(x)dx, (2.57)

which can be easily seen to be in C([0,1]). Then the left-hand side of (2.55) is precisely

F(1)−F(0) =
∫ 1

0
F ′(t) dt.

We can still differentiate under the integral sign in (2.57), and since by (2.54)

d ft

dt
=

∑
1≤i<j≤n

∂ ft

∂Cij

dCij

dt
=

∑
1≤i<j≤n

(C1
ij −C0

ij)
∂2 ft

∂xi∂xj
,

we obtain

F ′(t) =
∑

1≤i<j≤n

(C1
ij −C0

ij)
∫ λ1

−∞
· · ·
∫ λn

−∞

∂2 ft

∂xi∂xj
dx.
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Integrating ∂ ft/(∂xi∂xj) with respect to xi and xj, we obtain ft(x′), where x′k = xk if k 	= i, j,
x′i = λi, x′j = λj. Moreover, we can bound the integrals with respect to the other coordinates,∫ λk
−∞, by integrals over R and obtain∫ λ1

−∞
· · ·
∫ λn

−∞

∂2 ft

∂xi∂xj
dx ≤

∫
Rn−2

ft(x1, . . . ,xi−1,λi,xi+1, . . . ,xj−1,λj,xj+1, . . . ,xn)dx.

This last integral is just the evaluation at the point (λi,λj) of the joint density of Xi(t) and
Xj(t), that is, the density of the centred normal probability law in R2 with covariance(

1 Ct
ij

Ct
ij 1

)
,

1

2π(1− (Ct
ij)2)1/2

exp

(
−λ

2
i − 2Ct

ijλiλj +λ2
j )

2(1− (Ct
ij)2)

)
.

Replacing Ct
ij with its absolute value and noting that the minimum of the func-

tion of u, (a2 − 2uab + b2)/(1 − u) on [0,∞), is attained at u = 0, to obtain
(λ2

i − 2Ct
ijλiλj +λ2

j )/(2(1− (Ct
ij)

2)) ≥ (λ2
i + λ2

j )/2(1+ |Ct
ij|), and then using that ρij ≥ |Ct

ij|,
we see that the quantity in the last display is dominated by

1

2π(1−ρ2
ij)1/2

exp

(
− (λ2

i +λ2
j )/2

1+ρij

)
.

This shows that

F ′(t) ≤ 1

2π

∑
1≤i<j≤n

(C1
ij −C0

ij)
+ 1

(1−ρ2
ij)1/2

exp

(
− (λ2

i +λ2
j )/2

1+ρij

)
and that this is a bound for its integral over [0,1] as well, that is, for F(1)− F(0), proving
(2.55).

To prove (2.56), we define

F̃(t) =
∫ λ1

μ1

· · ·
∫ λn

μn

ft(x)dx

and proceed as before to obtain, as a result of the double integration
∫ λi
μi

∫ λj
μj

(∂2 ft)/(∂xi∂xj),
the sum of four functions of n− 2 variables, two of them obtained from ft by, respectively,
setting (xi,xj) = (λi,λj) and (xi,xj) = (μi,μj) and the other two from − ft by, respectively,
setting (xi,xj) = (λi,μj) and (xi,xj) = (μi,λj). Then, on integrating over Rn−2 as earlier
(instead of between μk and λk for each k 	= i, j), we obtain

|F̃ ′
(t)| ≤ 4

2π

∑
1≤i<j≤n

|C1
ij −C0

ij|
1

(1−ρ2
ij)1/2

exp

(
− v2

1+ρij

)
,

which yields inequality (2.56) by integrating between 0 and 1.

In this section we need a little less, in fact, only the following consequence of
Theorem 2.4.7:
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Theorem 2.4.8 (Slepian’s lemma) Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be centred
jointly normal vectors in Rn such that

E(XiXj) ≤ E(YiYj) and EX 2
i = EY 2

i f or 1 ≤ i, j ≤ n. (2.58)

Then, for all λi ∈ R, i ≤ n,

Pr

(
n⋃

i=1

{Yi > λi}
)
≤ Pr

(
n⋃

i=1

{Xi > λi}
)

, (2.59)

and therefore,
E max

i≤n
Yi ≤ E max

i≤n
Xi. (2.60)

Proof Under assumptions (2.58), the right-hand side of (2.55) is less than or equal to zero,
so (2.59) follows from Theorem 2.4.7. Inequality (2.60) follows from (2.58) by integration
by parts (E|ξ | = ∫∞

0 Pr{|ξ |> λ}dλ).

Remark 2.4.9 Sometimes one wishes to compare expected values of the maximum of the
absolute values, and to this end, the following may be useful: for Xi symmetric, for any
i0 ∈ {1, . . . ,n},

E max
i≤n

Xi ≤ E max
i≤n

|Xi| ≤ E|Xi0 |+E max
i,j

|Xi −Xj| ≤ E|Xi0 |+ 2E max
i≤n

Xi,

where the last inequality follows because

E max
i,j

|Xi −Xj| = E max
i,j

(Xi −Xj) = E max
i

Xi +E max
j

(−Xj) = 2E max
i

Xi.

It is also worth mentioning that for any real random variable with mean zero, E maxi (Xi +
Z) = EZ +E maxi Xi = E maxi Xi.

The following corollary of Slepian’s lemma is sometimes easier to apply than Theo-
rem 2.4.8 because it does not require EX 2

i = EY 2
i , i ≤ n.

Corollary 2.4.10 Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be two centred, jointly normal
vectors in Rn, and assume that

E(Yi −Yj)
2 ≤ E(Xi −Xj)

2, i, j ∈ {1, . . . ,n}.
Then

E max
i≤n

Yi ≤ 2E max
i≤n

Xi.

Proof Replacing Xi by Xi −X1 and Yi by Yi −Y1, we may assume that X1 = Y1 = 0 (see the
preceding remark), which in particular implies that EY 2

i ≤ EX 2
i . Set σ 2

X = maxi≤n EX 2
i , and

let X̄ and Ȳ be Gaussian vectors whose coordinates are defined by

X̄ i = Xi + (σ 2
X +EY 2

i −EX 2
i )1/2g, Ȳ i = Yi +σX g, i = 1, . . . ,n,

where g is standard normal and independent of X and Y . Then

EX̄
2
i = EȲ

2
i = EY 2

i +σ 2
X

and
E(Ȳ i − Ȳ j)

2 = E(Yi −Yj)
2 ≤ E(Xi −Xj)

2 ≤ E(X̄ i − X̄ j)
2.


