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factorization may be lost in the process. To restore it, we need Dedekind’s concept of
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Preface

The history of mathematics, like the life of each individual mathematician, is a
story that begins with concrete experience and (generally) ends at high levels
of abstraction. A good example, which we follow in this book, is the story
of arithmetic. It begins with counting, then adding and multiplying; then it
symbolizes this experience in equations. Next, it investigates equations via the
abstract structures of groups, rings, and fields, and so on, to higher and higher
levels of abstraction. This is a typical story, but the story alone does not explain
why abstraction is necessary – or why it ever happened at all.

The reason is that abstract structures distill the essence of many concrete
structures, enabling us to see past a mass of distracting details. For example,
it is an impossible task to list all the facts about addition and multiplication
of numbers, and some specific questions about them were not answered for
hundreds of years. Mathematicians have been able to answer some of the hard
questions only by working with abstract concepts that encapsulate the nature
of addition and multiplication.

The art of algebra is the art of abstraction: choosing concepts that distill the
essence of questions that interest us. To some extent the proof that we have
chosen the “right” concepts is in the pudding. The right concepts answer many
questions and make the answers seem obvious. But a concept may be “right”
in the sharper sense that we can prove it is a necessary part of the answer. That
is, an answer or solution exists only in structures that exemplify the concept in
question.

A famous example is the discovery by Galois of the group concept,
which explains which polynomial equations have solutions by radicals. Galois
associated a group – now called the Galois group – with each equation and
showed that an equation is solvable by radicals if and only if its Galois group

xi



xii Preface

has a certain property, now called solvability. Thus the concept of solvable
group is the “right” concept to explain solvability of equations.

In this book we study a second famous example: Dedekind’s theory of
rings and ideals, which explains the phenomenon of unique prime factorization
in arithmetic and its generalizations. Again, there is an abstract algebraic
concept – now called a Dedekind domain – that exactly captures the property
of unique prime factorization. Dedekind domains are an equally good example
of the power of abstraction, and in some ways easier than the group concept,
since their algebra is commutative. They also have a natural motivation as an
outgrowth of arithmetic – which is why our path starts with Euclid.

The material in the book may be found in comprehensive graduate algebra
texts, such as Zariski and Samuel (1958), Jacobson (1985), and Rotman (2015),
but it is hard work to extract it from them. I prefer not to be comprehensive,
so as to tell the story with only the essential abstractions, and to make it
sufficiently self-contained to be accessible to undergraduates. This means
including enough number theory to motivate the problem of unique prime
factorization, which we do in the first three chapters. These chapters introduce
algebraic numbers to solve classical equations such as the Pell equation, and
the concepts of ring and field that abstract the algebra of these numbers.

Accessibility to undergraduates, in my opinion, also means including the
linear algebra needed to view number fields and number rings as vector spaces
and modules. I realize that this opinion is somewhat controversial. Modern
books on algebraic number theory commonly assume linear algebra is already
known, and indeed, every undergraduate takes a course in linear algebra these
days. But linear algebra is a multifaceted subject, and I doubt that many
undergraduates know the subject from the viewpoint needed here, which varies
the base field (or base ring) and relies on the trace, determinant, characteristic
polynomial, and discriminant. Those who do may skip the parts where these
topics are covered, but I believe they should at least be skimmed in order to
see where linear algebra fits in the bigger algebraic picture.

In fact the book closest to this one could be the classic telling of the story
by Dedekind in 1877, which may be seen in English translation in Dedekind
(1996). Dedekind’s account is at a lower level of generality than ours, being
concerned only with the needs of number theory, but it follows a similar
path. The advantage of raising the level of generality is that one sees how
close Dedekind came to the ultimate setting for unique prime factorization. As
Emmy Noether used to say: “Es steht alles schon bei Dedekind.” (“Everything
is already in Dedekind.”)
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I should say, however, that I raise the level of generality only in easy stages,
when it becomes necessary. As in the history of the subject, the general case
appears only after the important special cases.

To make the book useful to undergraduates and instructors, I have included
many exercises, distributed in small batches at the end of most sections.
These range from routine exercises, which test and reinforce understanding
of new concepts, to exercise “packages” leading to substantial theorems. These
theorems are often concrete consequences of the abstract machinery developed
in the main text. The aim of each “package” is to reach an interesting goal by
a sequence of easy steps, so the exercises include commentary to explain what
the goal is and (in some cases) where to look for help later in the book.

Although many important and useful results occur in exercises, it should be
stressed that these results are not assumed in the main text. In a few cases they
are later used in the main text, but only after the main text has proved them.

In fact, the technical prerequisites for this book are small, since the whole
point is to grow a big abstract structure from ideas in arithmetic. High
school algebra should suffice, if it includes the matrix concept, and otherwise
undergraduate linear algebra as far as matrices. Apart from these technical
skills, however, the reader will also need sufficient mathematical maturity to
be comfortable with abstractions. In most cases this will mean a couple of
years of undergraduate mathematics, even a first course in abstract algebra.
This book carries commutative algebra far beyond the typical first course, but
it certainly will not hurt to have a first impression of fields, rings, and ideals.
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1
Euclidean Arithmetic

Preview

Euclid’s Elements, from around 300 bce, is the source of many basic parts of
modern mathematics, such as geometry, the axiomatic method, and the theory
of real numbers. It is also the source of arithmetic as mathematicians know it:
the theory of addition and multiplication of natural numbers, with emphasis on
the concepts of divisibility and primes.

For Euclid, a natural number b is a divisor of a natural number a if

a = bc for some natural number c.

Then a natural number p > 1 is prime if its only divisors are itself and 1.
These concepts lead, as Euclid showed by a short but ingenious proof, to the
discovery that there are infinitely many primes.

Even more ingeniously, Euclid proved the prime divisor property: If a
prime p divides a product ab, then p divides a or p divides b. His proof is
based on the famous Euclidean algorithm for finding the greatest common
divisor of two natural numbers. The prime divisor property easily implies
what we now call the fundamental theorem of arithmetic, or unique prime
factorization: Every natural number greater than 1 may be expressed uniquely
(up to the order of factors) as a product of primes.

Unique prime factorization is so useful that mathematicians would like it
to hold wherever the concept of “factorization” makes sense. In fact, as we
will see in later chapters, even when it is lost they will try to recover it. In
this chapter we prepare to explore more general domains for factorization by
introducing the concepts (and some examples) of ring and field.

1



2 1 Euclidean Arithmetic

1.1 Divisors and Primes

In this chapter we will be working mainly with the set N = {0,1,2,3,4,5, . . .}
of natural numbers. These are the numbers obtained from 0 by “counting”:
that is, by repeatedly adding 1. It follows (informally) that from any natural
number n we can reach 0 in a finite number of steps by “counting backwards,”
and hence that any set of natural numbers has a least member. Since Euclid,
this so-called well-ordering property of N has been the basis of virtually
all reasoning about the natural numbers, so it is usually taken as an axiom.
In this section we will use it, as Euclid did, to prove results about divisibility
and primes.

We have already said what it means for a natural number b to divide a
natural number a; namely, a = bc for some natural number c. So if b does not
divide a, we necessarily have, for any natural number q,

a = bq + r, with r > 0.

When r is least possible, we call q the quotient (of a by b) and r the
remainder. It then follows that 0 < r < b, because if r = b + r ′, we would
have

a = b(q + 1) + r ′, contrary to the assumption that r is the least remainder.

The two cases, where b does and does not divide a, can be combined in
the following division property: For any natural numbers, there are natural
numbers q and r such that

a = bq + r, where 0 ≤ r < b. (*)

This property is often misleadingly called the “division algorithm.” (It is not
an algorithm, but it paves the way for the very important Euclidean algorithm,
as we will see in the next section.) Finding the quotient and remainder for a
given pair a,b is called division with remainder.

Another easy application of well-ordering of N tells us that every natural
number greater than 1 is divisible by a prime. Start with any natural number
a > 1. If a is not prime, then a = bc for some smaller numbers b and c. Then if
b is not prime, we have b = de for some smaller natural numbers d and e, and
so on. Since natural numbers cannot decrease forever, this process must halt –
necessarily with a prime p that divides a. It follows, by repeatedly finding
prime divisors, that every natural number has a prime factorization.

With these easy properties of divisors and primes, we are now ready for
something ingenious: Euclid’s proof that there are infinitely many primes.
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Infinitude of primes. For any prime numbers p1,p2, . . . ,pk , there is a prime
number pk+1 � p1,p2, . . . ,pk .

Proof. Consider the number N = (p1 · p2 · · · pk) + 1. None of p1,p2, . . . ,pk

divide N because they each leave remainder 1. But some prime divides N

because N > 1. This prime is the pk+1 we seek. �

The beauty of this proof is that it avoids having to find any pattern in the
sequence of primes, or finding divisors of a number, both of which are hard
problems.

1.1.1 The Euclidean Algorithm

Although it is hard to find the divisors of a given (large) natural number,
it is surprisingly quick and easy to find common divisors of two natural
numbers. This can be done by the Euclidean algorithm for finding the
greatest common divisor gcd(a,b) of two natural numbers a and b. As Euclid
described it, (Elements, Book VII, Proposition 1) the algorithm “repeatedly
subtracts the lesser number from the greater.” More formally, it repeatedly
replaces the pair {a,b}, where a > b, by the pair {b,a − b} until the members
of the pair become equal – at which stage each member is gcd(a,b).

For example, if we begin with the pair {34,21}, the pairs produced by the
algorithm are the following

{34,21} → {21,13} → {13,8} → {8,5} → {5,3} → {3,2} → {2,1} → {1,1}.

And we conclude that gcd(34,21) = 1.
In general, the correctness of the Euclidean algorithm is guaranteed by the

following theorem.

Euclidean algorithm produces the gcd. If the Euclidean algorithm is
applied to two natural numbers a,b > 0, then it terminates in a finite number
of steps with the pair whose members are both gcd(a,b).

Proof. Suppose that d is any common divisor of a and b, where a > b. This
means that a = a′d and b = b′d for some a′,b′ > 0, and hence that

a − b = (a′ − b′)d.

Thus, d is also a divisor of a − b. There is a similar proof that any common
divisor of two numbers is also a divisor of their sum, so a divisor of b and a−b

is also a divisor of b + (a − b) = a. It follows that each pair produced by the
Euclidean algorithm has the same common divisors, and hence the same gcd.
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Now, as long as the pairs produced by the algorithm are unequal, subtraction
occurs, and it will decrease the sum of the two members of the pair. By
the well-ordering of N, the sum cannot decrease forever, so the algorithm
necessarily halts with a pair of equal numbers. Being equal, they equal their
own gcd; hence they each equal gcd(a,b). �

In practice it is usual to speed up the Euclidean algorithm by doing division
with remainder instead of subtraction. That is, we replace the pair {a,b},
where a > b, with the pair {b,r}, where r is the remainder when a is divided
by b. This process is simply a shortening of repeated subtraction, because r

can be found by subtracting b repeatedly from a. However, the usual “long
division” process generally finds r more quickly than repeated subtraction.

In fact, by using division with remainder, we can be sure that the number of
steps required for the Euclidean algorithm to halt is roughly proportional to the
number of decimal digits in a. The example above, incidentally, is one where
each division with remainder is actually the same as a single subtraction. This
happens whenever a and b are a pair of consecutive Fibonacci numbers: the
numbers 0,1,1,2,3,5,8,13,21,34,55,89,144,233, . . . defined by

F0 = 0, Fn+2 = Fn+1 + Fn.

This is the case where the Euclidean algorithm runs most slowly. But even
here, the number of steps is roughly proportional to the number of decimal
digits.

Exercises

1. Explain why the Euclidean algorithm, applied to the pair {Fn+2,Fn+1},
yields all preceding pairs of consecutive Fibonacci numbers.

2. Deduce that gcd(Fn+2,Fn+1) = 1.

Division with remainder is the preferred way to run the Euclidean algorithm
in practice, because it is generally faster. But it also has advantages in theory,
since it applies in situations (such as division of polynomials) where division
with remainder is not achievable by repeated subtraction. In the case of
ordinary positive integers a,b, the process of repeated division with remainder
can be elegantly “frozen in time” by the so-called continued fraction for a/b.

Given positive integers a > b, the continued fraction process finds q1 > 0
and r1 ≥ 0 (“quotient” and “remainder”) such that a = bq1 + r1 with r1 < b1,
and we write down the equivalent equation

a

b
= q1 + r1

b
.
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If r1 = 0, then the process ends there, because we have found that b divides a

and hence that gcd(a,b) = b.
If r1 > 0, then we rewrite the above equation as

a

b
= q1 + 1

b/r1

and repeat the process on the fraction b/r1 (which we can do since b > r1 > 0).
In this way we can simulate the action of the Euclidean algorithm on a pair
(a,b) by the process of “continuing” a fraction a/b.

3. Explain why the continued fraction process terminates for any positive
integers a,b.

4. Applying the continued fraction process to 23 and 5, show that

23

5
= 4 + 1

1 + 1

1 + 1

2

Division with remainder also has a neat representation by 2 × 2 matrices, in
which division with remainder corresponds to extracting a matrix factor from a
column vector. In this setup, the pair {a,b} is represented by the column vector(

a

b

)
, where a > b.

5. If a = q1b + r1, show that

(
a

b

)
=
(

q1 1
1 0

)(
b

r1

)
.

Then, if b > r1 � 0, one can repeat the process on the column vector

(
b

r1

)
.

6. Show in particular that

(
23
5

)
=
(

4 1
1 0

)(
1 1
1 0

)(
1 1
1 0

)(
2 1
1 0

)(
1
0

)
.

1.2 The Form of the gcd

The correctness of the Euclidean algorithm says that gcd(a,b) results from the
pair {a,b} by repeated subtraction. This implies that gcd(a,b) has a very simple
symbolic form. Because subtraction is involved, the form involves integers;
that is, natural numbers and their negatives. The system of integers is denoted
by Z, from the German word “Zahlen” for numbers.
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Form of the gcd. For any natural numbers a,b > 0, there are m,n ∈ Z such
that

gcd(a,b) = ma + nb.

Proof. We show in fact that the numbers produced from a,b at each step of
the Euclidean algorithm are of the form ma + nb. This is certainly true at the
beginning, where a = 1 · a + 0 · b and b = 0 · a + 1 · b.

And if the pair at some stage is {m1a + n1b,m2a + n2b}, then the pair at
the next stage is {m2a + n2b,(m1 − m2)a + (n1 − n2)b}, which again consists
of numbers of the required form.

Thus, the numbers at all stages are of the form ma + nb. In particular, this
is true at the last stage, when each number is gcd(a,b). �

Given a pair of moderately sized numbers a,b (say, two-digit numbers), it
may be hard to spot m and n such that gcd(a,b) = ma+nb. However, m and n

are easily computed by running the Euclidean algorithm on the letters a and b,
doing exactly the same subtractions on the symbolic forms that we originally
did on numbers. For example, here is what happens when we run the numerical
and symbolic computations side by side in the case where a = 34 and b = 21.

{34,21} {a,b}
→ {21,34 − 21} = {21,13} → {b,a − b}
→ {13,21 − 13} = {13,8} → {a − b,b − (a − b)} = {a − b, − a + 2b}
→ {8,13 − 8} = {8,5} → {−a + 2b,a − b − (−a + 2b)} = {−a + 2b,2a − 3b}
→ {5,8 − 5} = {5,3} → {2a − 3b, − a + 2b − (2a − 3b)} = {2a − 3b, − 3a + 5b}
→ {3,5 − 3} = {3,2} → {−3a + 5b,2a − 3b − (−3a + 5b)} = {−3a + 5b,5a − 8b}
→ {2,3 − 2} = {2,1} → {5a − 8b, − 3a + 5b − (5a − 8b)} = {5a − 8b, − 8a + 13b}.

From the last line we read off 1 = gcd(a,b) = −8a + 13b, and it can be
checked that indeed 1 = −8 · 34 + 13 · 21.

The symbolic form of the Euclidean algorithm, and hence of the gcd,
was not known to Euclid. Indeed, written calculation with numbers did not
develop until centuries after him, because numerical calculation could be done
perfectly well with the abacus. And it was not until the sixteenth century that
mathematicians realized that written calculation with symbols (“algebra”) was
a powerful idea – in fact more powerful than written calculation with numbers.
Still, even with the primitive notation at his disposal, Euclid was able to prove
the prime divisor property, the main result of the next section.

1.2.1 Linear Diophantine Equations

The equation ax + by = c, where a,b,c are integers, becomes interesting
when integer solutions for x and y are sought. The equation obviously has no
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such solution when gcd(a,b) does not divide c, because in that case gcd(a,b)

divides ax + by but not c. However, this is the only obstruction.

Criterion for solvability. If gcd(a,b) divides c, then ax + by = c has an
integer solution.

Proof. It follows from the above that gcd(a,b) = ma + nb for some integers
m and n. Then, if c = d · gcd(a,b), it follows that ax + by = c for x = dm

and y = dn. �

This criterion for solvability generalizes to linear equations in more than
two variables. For example, ax + by + cz = d has an integer solution ⇔
gcd(a,b,c) divides d. The (⇒) direction is clear, for the same reason as above.
The (⇐) direction holds because

gcd(a,b,c) = la + mb + nc for some integers l,m,n,

which follows from the above because gcd(a,b,c) = gcd(gcd(a,b),c).
We also know that we can find the required m,n for gcd(a,b) by the

extended Euclidean algorithm described above. Finally, we can find all
solutions of ax + by = c by adding to any single solution the solutions of
ax + by = 0, which are x = kb/ gcd(a,b), y = −ka/ gcd(a,b) for all inte-
gers k.

With these observations we can move on to Diophantine equations of higher
degree. We begin in Section 1.5 with a quadratic equation in two variables.
Other examples, of degree 2 and 3, are discussed in the next chapter. But first,
let us see what the gcd can tell us about prime numbers.

Exercises

1. Using the symbolic Euclidean algorithm above, find integers m,n such
that 13m + 17n = 1.

The matrix version of division with remainder, explored in the previous set
of exercises, can be very elegantly “inverted” to give the integers m and n

such that gcd(a,b) = ma + nb. Recall that a = q1b + r1 is represented by the
matrix equation (

a

b

)
=
(

q1 1
1 0

)(
b

r1

)
.

2. Show that if repeated division with remainder on the pair a,b produces
successive quotients q1,q2, . . . ,qn and gcd(a,b) = d, then(

a

b

)
=
(

q1 1
1 0

)(
q2 1
1 0

)
· · ·

(
qn 1
1 0

)(
d

0

)
.
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3. Deduce that(
d

0

)
=
(

qn 1
1 0

)−1

· · ·
(

q2 1
1 0

)−1 (
q1 1
1 0

)−1 (
a

b

)
,

and show that (
q 1
1 0

)−1

=
(

0 1
1 −q

)
.

4. Deduce from exercise 6 of Section 1.1 that(
1
0

)
=
(

0 1
1 −2

)(
0 1
1 −1

)(
0 1
1 −1

)(
0 1
1 −4

)(
23
5

)
,

and hence express the gcd of 23 and 5 in the form 23m + 5n.

Another way to prove gcd(a,b) = ma + nb is by considering the smallest
positive value c of ma + nb for m,n ∈ Z. This idea will be used in Section 5.2
to prove that Z is a principal ideal domain.

5. Show that all values of ma + nb are multiples of c (this part uses the
division property of Z).

6. Deduce that c divides a and b, and that any divisor of a and b divides c.
7. Conclude that c = gcd(a,b).

1.3 The Prime Divisor Property

The relevance of the Euclidean algorithm to the theory of primes becomes clear
when we consider gcd(a,p), where p is prime. If p does not divide a, then we
must have gcd(a,p) = 1, because the only divisors of p are 1 and p itself.
This leads to a crucial result.

Prime divisor property. If a and b are natural numbers and p is a prime that
divides ab, then p divides a or p divides b.

Proof. Suppose that p does not divide a, so we must prove that p divides b.
First, as we have just remarked, gcd(a,p) = 1. Also, as we saw in the previous
section, gcd(a,p) = ma + np for some integers m and n, so

1 = ma + np for some integers m and n.

Multiplying both sides of this equation by b, we get

b = mab + npb for some integers m and n.
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Since p divides ab by hypothesis and p divides pb, obviously, b is a sum of
terms divisible by p. Hence, b itself is divisible by p. �

In proving this prime divisor property, Euclid came as close as he probably
could (given his poor notational resources) to proving what we now call the
fundamental theorem of arithmetic, or unique prime factorization. Unique
prime factorization easily follows from the prime divisor property if one has
notation for arbitrary products of primes.

Unique prime factorization. If p1,p2, . . . ,pk and q1,q2, . . . ,ql are prime
numbers such that

p1p2 · · · pk = q1q2 · · · ql,

then the same factors occur on each side, perhaps in a different order.

Proof. Since p1 divides the left side of the equation, it also divides the right
side, hence, it divides one of the factors qi by the prime divisor property.
It follows that p1 = qi , and we may cancel p1 and qi from the equation.
Repeating the argument with the factors that remain, we eventually find that
each pj equals some qk , and vice versa, so the factors on each side are exactly
the same, though perhaps in a different order. �

We sometimes express this theorem by saying that factorization of a natural
number greater than 1 into primes is unique “up to the order of factors.”
Later, we will see many other statements of unique prime factorization, and
the “uniqueness“ will be “up to order” and sometimes other trivial variations.
For example, prime factorization of integers is unique not only “up to order”
but also “up to sign” because, for example, 6 = 2 · 3 = (−2) · (−3).

The next section gives some applications of unique prime factorization. Due
to its usefulness and simplicity, unique prime factorization has been sought in
many other domains where “factorization” makes sense. In fact, a major theme
of this book is the search for appropriate concepts of “prime” in domains where
the obvious kind of factorization fails to be unique.

Exercises

In school you may have used prime factorization to find the gcd (“greatest
common divisor”) and the lcm (“least common multiple”) of given positive
integers. We can justify this idea with the help of unique prime factorization.

1. Find gcd of 60 and 84 by finding the common primes in their prime
factorizations.


