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Preface

Turbulence, and the associated turbulent transport of scalar and vector fields, is one
of the classical problems of physics. It has been studied systematically for more
than a hundred years. However, many fundamental questions related to the nature
of turbulence remain. Turbulent transport is a part of the field related to turbulence.
Many excellent books on turbulence that describe velocity fluctuations in detail
have been published over the last hundred years. Some of these books include
problems related to the turbulent transport of passive fields. However, there are no
books that systematically apply different analytical methods to turbulent transport
of temperature, particles and magnetic fields.

The current book is an introduction to the various analytical methods of the-
oretical physics and applied mathematics used to develop the mean-field theories
for studying the turbulent transport of particles, temperature and magnetic fields. In
particular, the following analytical methods are systematically applied in this book:
the dimensional analysis, the multi-scale approach, the quasi-linear approach,
the tau approach (the relaxation approach), the path-integral approach and anal-
yses based on the budget equations. One-way and two-way couplings between
turbulence and particles, or temperature, or magnetic fields are described.

This book is written for theoretical physicists, astrophysicists, geophysicists,
plasma physicists, space science physicists and also for researchers working in
fluid mechanics in engineering sciences. The current book can be useful for post-
graduate students, specialist researchers of turbulence and turbulent transport and
nonspecialist researchers from related fields. It can be presented as a source of
advanced teaching material for specialized seminars, courses and schools. This
book has appeared as a development and extension of the material of graduate and
postgraduate lecture courses given by the author at Ben-Gurion University of the
Negev. Some of these lectures have been given at the Nordic Institute of Theo-
retical Physics (Nordita) of KTH Royal Institute of Technology and Stockholm
University.

vii



viii Preface

The current book assumes prior knowledge of the basic equations and princi-
ples of fluid mechanics and magnetohydrodynamics, as well as initial knowledge
about turbulence. For instance, the first part of the textbook Turbulence by Peter
Davidson (Oxford University Press, 2015) provides a solid introduction to the field.
For educational purposes, the current book is written with detailed analytical cal-
culations and numerous practice problems and exercises. Every chapter ends with a
“Further Reading” section containing a short review in the field. The book contains
60 exercises of varying difficulty with solutions.

I would like to express my warmest thanks to my friend and coauthor, Nathan
Kleeorin, with whom I discussed various aspects related to turbulent transport dur-
ing our joint research. I am grateful to my friends and colleagues with whom
I collaborated in different areas of turbulent transport, magnetohydrodynamics
and plasma physics over the past 40 years: Alexey Boyarsky, Axel Brandenburg,
Steve Cowley, Oliver Gressel, Alexander Gurevich, Alex Eidelman, David Eich-
ler, Tov Elperin (1949–2018), Jürg Fröhlich, Nils Haugen, Maarit Käpylä, Petri
Käpylä, Alexander Khain, Kirill Kuzanyan, Avi Levy, Michael Liberman, Victor
L’vov, Baruh Meerson, Dhruba Mitra, Michael Mond, David Moss (1943–2020),
Karl-Heintz Rädler (1935–2020), Oleg Ruchayskiy, Alexander Ruzmaikin, Pavel
Sasorov, Alex Schekochihin, Jennifer Schober, Nishant Singh, Dmitry Sokoloff,
Andrew Soward, Jörn Warnecke and Sergej Zilitinkevich (1936–2021).

I appreciate valuable and illuminating discussions with Alexander Baklanov,
Akshay Bhatnagar, Erick Blackman, Fritz Busse, Pathric Diamond, Emmanuel
Dormy, Chris Jones, Gregory Falkovich, Joe Fernando, Peter Frick, Lazar Fried-
land, George Golitsyn, David Hughes, Leonid Kitchatinov, Dmitri Kharzeev,
Eliezer Kitt, Alex Liberzon, Larry Mahrt, Pablo Mininni, Keith Moffatt, Sergey
Nazarenko, Lev Ostrovsky, Eugene Parker, Jean-François Pinton, Valery Pipin,
Annick Pouquet, Michael Proctor, Matthias Rheinhardt, Paul Roberts, Anvar
Shukurov, Edward Spiegel (1932–2020), Kandu Subramanian, Steve Tobias,
Arkady Tsinober (1937–2020), Victor Yakhot, Nobu Yokoi and Vladimir
Zakharov.

I am grateful to my friend Michael Feldman, who convinced and encouraged me
to write this book and helped me a lot. I would like to express my warmest thanks
to Rimma Shekhtman for the painting of the cover image for the book. This book
is dedicated to my family.



1

Turbulent Transport of Temperature Fields

In this chapter, we consider a turbulent transport of temperature field in an isotropic
homogeneous and incompressible turbulence. We discuss the Kolmogorov theory
of hydrodynamic turbulence and obtain spectrum of velocity fluctuations for fully
developed turbulence using the dimensional analysis. We study isotropic and aniso-
tropic spectra of temperature fluctuations in different subranges of turbulent scales
and different Prandtl numbers applying the dimensional analysis. We derive mean-
field equations for the temperature field and obtain expressions for turbulent heat
flux, turbulent diffusion and level of temperature fluctuations for small and large
Péclet numbers by means of various analytical methods, namely the dimensional
analysis, the quasi-linear approach and the spectral tau approach (the relaxation
approach).

1.1 Hydrodynamic Turbulence: Dimensional Analysis

In this section, we consider a theory of hydrodynamic isotropic homogeneous and
incompressible turbulence using the dimensional analysis.

1.1.1 Governing Equations and Basic Parameters

The fluid velocity field in an incompressible flow is determined by the Navier1-
Stokes2 equation (Landau and Lifshits, 1987; Batchelor, 1967; Lighthill, 1986;
Tritton, 1988; Faber, 1995; Falkovich, 2011):

∂U
∂t

+ (U · ∇)U = −∇P

ρ
+ ν �U + f . (1.1)

1 Claude-Louis Navier (1785–1836) was a French engineer and physicist well-known for his works in
mechanics, fluid dynamics, theory of elasticity and structural analysis.

2 Sir George Gabriel Stokes (1819–1903) was a mathematician and physicist (who was born in Ireland and
worked at the University of Cambridge) well-known for his works in fluid dynamics, optics and mathematical
physics.

1



2 Turbulent Transport of Temperature Fields

Equation (1.1) is the second law of Newton3 for a unit mass of a fluid:

ρ
dU
dt

= −∇P + ∇ · (2ν ρ S(U)
)+ ρ f , (1.2)

where according to the chain rule of differentiation of the function U[t, r(t)], the
substantial time derivative dU/dt for the moving fluid element is the sum of a local
time derivative ∂U/∂t and convective derivative (U·∇)U. We take into account
here that most fluids obey Newton’s law of viscosity [see the second term on the
right-hand side of Eq. (1.2)], where S(U)

i j = 1
2(∇ jUi +∇iU j ) are the components of

the rate-of-strain-tensor S(U) for incompressible fluid, ν is the kinematic viscosity,
ρf is the external force, that, e.g., creates a turbulent random velocity field, and P
and ρ are the fluid pressure and density, respectively. The operators ∇ and � = ∇2

in the Cartesian coordinates are defined as

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
, � = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, (1.3)

and ex , ey and ez are unit vectors along the x-, y- and z-axes. When the vis-
cosity ν tends to zero, Eq. (1.1) is reduced to the Euler4 equation. The fluid
pressure and density are the macroscopic variables that determine the internal
state of the fluid, and they are related by the equation of state for the perfect gas,
P = (kB/mμ) ρ T ≡ (R/μ) ρ T , where kB = R/NA is the Boltzmann constant, R
is the gas constant, NA is the Avogadro number, μ = mμNA is the molar mass and
mμ is the mass of the molecules of the surrounding fluid. Generally for arbitrary
fluid flows, the continuity equation which is the conservation law for the fluid mass
reads

∂ρ

∂t
+ ∇ · (ρ U) = 0 . (1.4)

This equation implies that for any volume, the change of the fluid mass inside the
volume is compensated by the fluid flux through this volume.

For an incompressible fluid flow, the continuity equation (1.4) is reduced to

div U ≡ ∇ · U = 0 , (1.5)

where the fluid density ρ is constant in time and space. The second term (U · ∇)U
on the left-hand side of Eq. (1.1) is a nonlinear term that describes inertia. The

3 Sir Isaac Newton (1642–1726) was an English mathematician, physicist and astronomer who made key
contributions to the foundations of classical mechanics, optics and the infinitesimal calculus and built the first
practical reflecting telescope.

4 Leonhard Euler (1707–1783) is a Swiss mathematician, physicist, astronomer, geographer and engineer who
made influential discoveries in mathematics (infinitesimal calculus and graph theory, topology, analytic
number theory and mathematical analysis), mechanics, fluid dynamics, optics, astronomy and music theory.



1.1 Hydrodynamic Turbulence: Dimensional Analysis 3

dimensionless ratio of the nonlinear term to the viscous term in Eq. (1.1) is the
Reynolds5 number, which is a key parameter in the system:

Re = |(U · ∇)U|
|ν �U| . (1.6)

For very large Reynolds numbers, the fluid flow is turbulent. There are many exam-
ples of turbulent flows in nature, laboratory experiments and industrial applications
(Landau and Lifshits, 1987; Batchelor, 1953; Monin and Yaglom, 1971, 2013; Ten-
nekes and Lumley, 1972; Frisch, 1995; Pope, 2000; Bernard and Wallace, 2002;
Lesieur, 2008; Davidson, 2015). For instance, turbulence in laboratory experiments
is produced, e.g., by oscillating grids, propellers, shear flows, etc. The atmospheric
turbulence is produced by convective motions and large-scale shear flow (a non-
uniform wind). Turbulence inside the Sun is produced by convection in the solar
convective zone located under the solar surface. Turbulence in galaxies is produced
by random supernova explosions. In astrophysics, turbulence can be also produced
by shear motions and various plasma instabilities. Various pictures of turbulent
flows can be found in the book by Van Dyke (1982).

In turbulent flows, the fluid velocity is a random field. Large-scale effects caused
by small-scale turbulence can be studied using a mean-field approach. In the frame-
work of this approach velocity field can be decomposed into the mean velocity and
fluctuations, U = U + u, where according to the Reynolds rule velocity fluctua-
tions u have zero mean value, 〈u〉 = 0 and U = 〈U〉 is the mean fluid velocity. The
angular brackets 〈. . .〉 denote an averaging. Different kinds of averaging procedures
will be discussed in the next section.

The Reynolds number defined by Eq. (1.6) can be estimated using the dimen-
sional analysis. In particular, in Eq. (1.6) we replace operators |∇| by �−1

0 and �

by �−2
0 . This yields

Re = �0 u0

ν
, (1.7)

where �0 is the integral (energy-containing or maximum) scale of turbulence and
u0 = [〈u2〉�=�0

]1/2
is the characteristic turbulent velocity in the integral scale of

turbulence �0. For example, in Table 1.1 we give turbulence parameters for various
flows, e.g., for laboratory experiments in air flows, industrial flows in a wind tunnel
and a diesel engine, atmospheric turbulence in the low troposphere (about 1 or 2
kilometers height from the Earth surface), and astrophysical turbulence, e.g., in the
solar convective zone located under the solar surface with the depth about 1/3 of
the solar radius and inside a galactic disk with a high concentration of stars. Here

5 Osborne Reynolds (1842–1912) was an engineer (who was born in Ireland and worked at Owens College in
Manchester, now the University of Manchester), well-known for his works in fluid dynamics and heat transfer.



4 Turbulent Transport of Temperature Fields

Table 1.1 Parameters for engineering, geophysical and astrophysical turbulence

�0 (cm) u0 (cm/s) τ0 (s) ν (cm2/s) Re

Laboratory experiments 1–10 10–102 10−2–1 10−1 (air) 102–104

Diesel engine 0.3 3 × 102 10−3 10−2 104

Wind tunnel (1–3) × 102 (1–3) × 103 0.03–0.3 10−1 106–107

Atmospheric turbulence 104 102 102 10−1 107

Sun (r ≈ R�) 3 × 107 105 3 × 102 3 × 10−2 1014

Sun
(

r ≈ 2
3 R�

)
5 × 109 2 × 103 3 × 106 10−1 1014

Galactic disk 1020 106 1014 1018 108

τ0 = �0/u0 is the characteristic turbulent time in the scale �0, the radius r = 2
3 R�

corresponds to the bottom of the solar convective zone and R� = 6.96×1010 cm is
the solar radius.

A fully developed turbulence for very large Reynolds numbers can be qualita-
tively regarded as a sea of eddies, i.e., an ensemble of turbulent eddies of different
scales varying from the integral energy-containing scale �0 to very small viscous
scale �ν . Turbulent eddy can be considered as a blob of vorticity ∇× u. In the
scale �ν , the viscous dissipation of the turbulent kinetic energy becomes important.
The dynamics of the turbulent eddies is as follows. The large eddies are unsta-
ble, and they break down into the small eddies. The new small eddies are also
unstable and continue to breakdown into the very small eddies. This process is
called the Richardson6 energy cascade and implies the transfer of the turbulent
kinetic energy from the integral scale to smaller ones (Richardson, 1920). The
energy cascade stops when the size of the small eddies is of the order of the vis-
cous scale of turbulence. At this scale, turbulent kinetic energy is dissipated into
thermal energy. The rate of the dissipation of the turbulent kinetic energy ε can be
estimated as

ε = u2
0

τ0
= u3

0

�0
. (1.8)

1.1.2 Kolmogorov Theory of Hydrodynamic Turbulence

In this section, we consider Kolmogorov7 theory of hydrodynamic turbulence. Let
us assume that

6 Lewis F. Richardson (1881–1953) was an English mathematician, physicist and meteorologist, well-known
for his works in turbulence, mathematical physics and mathematical techniques of weather forecasting.

7 Andrey N. Kolmogorov (1903–1987) was a Russian mathematician, well-known for his works in theory of
random processes and probability theory, theory of turbulence, topology, theory of differential equations,
functional analysis and information theory.



1.1 Hydrodynamic Turbulence: Dimensional Analysis 5

● turbulence is homogeneous, i.e., ∇〈u2〉 = 0;
● turbulence is isotropic, i.e., there is no preferential direction;
● turbulent flow is incompressible, i.e., ∇·u = 0 and the fluid density ρ is constant

in time and in space;
● interactions in the turbulence are local, i.e., there are only interactions between

turbulent eddies of the same size, and there are no interactions between the
eddies of different sizes;

● in a subrange of turbulent scales �ν ≤ � ≤ �0, the dissipation rate of the turbulent
kinetic energy density is constant

ε = u3
0

�0
= u3

�

�
= . . . = u3

ν

�ν

= const, (1.9)

where u� = [〈u2〉�
]1/2

is the characteristic turbulent velocity at the scale � inside

the inertial subrange of turbulence scales �ν ≤ � ≤ �0 and uν = [〈u2〉�=�ν

]1/2

is the characteristic velocity at the viscous scale �ν . For the simplicity we assume
here that the constant fluid density is unity. Equation (1.9) allows us to determine
turbulent velocities in different scales,

u0 = (ε �0)
1/3, u� = (ε �)1/3, uν = (ε �ν)

1/3. (1.10)

Equation u� = (ε �)1/3 implies that the scaling for u2
� in the inertial subrange of

turbulent scales �ν 
 � 
 �0 is given by

u2
� = ε2/3 �2/3 (1.11)

[see Kolmogorov (1941), and its English translation in Kolmogorov (1991)], and
the characteristic time τ� = �/u� in the inertial subrange of scales is

τ� = ε−1/3 �2/3. (1.12)

Using Eq. (1.10), we rewrite the Reynolds number as

Re = �0 u0

ν
= ε1/3 �

4/3
0

ν
. (1.13)

We introduce the local Reynolds number:

Re� = � u�

ν
= ε1/3 �4/3

ν
. (1.14)

Equations (1.13)–(1.14) allow us to determine the ratio Re�/Re as

Re�

Re
=
(

�

�0

)4/3

. (1.15)
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The viscous scale �ν (the Kolmogorov scale) is defined as the scale in
which the local Reynolds number is 1. This implies that in the Kolmogorov scale,
the nonlinear term in the Navier-Stokes equation is of the order of the viscous
term. Therefore, Eq. (1.15) with the condition Re�=�ν

= 1 allow us to relate the
Kolmogorov scale �ν with the integral scale �0 of turbulence as

�ν = �0

Re3/4 . (1.16)

Substituting the Kolmogorov scale �ν given by Eq. (1.16) into Eq. (1.10) for uν =
(ε �ν)

1/3, we obtain the characteristic velocity in the Kolmogorov scale as uν =
(ε �0)

1/3 Re−1/4, so that

uν = u0

Re1/4 , (1.17)

where u0 = (ε �0)
1/3. Therefore, the characteristic viscous time τν = �ν/uν (the

Kolmogorov time) is given by

τν = τ0

Re1/2 . (1.18)

Next, we determine the spectrum of velocity fluctuations in the inertial subrange
of scales (the Kolmogorov-Obukhov8 spectrum). We define the energy spectrum
function of the velocity field as

u2
� =

∫ k

k0

Eu(k
′) dk ′, (1.19)

where wave numbers k0 = �−1
0 and k = �−1. Using the dimensional analysis, we

rewrite Eq. (1.19) as u2
� = Eu(k) k. Therefore, the Kolmogorov-Obukhov spec-

trum Eu(k) in the inertial subrange of turbulent scales k0 
 k 
 kν is given by
(Kolmogorov, 1941; Obukhov, 1941)

Eu(k) = ε2/3k−5/3, (1.20)

where kν = �−1
ν and we take into account that u� = (ε/k)1/3. Equation (1.20) also

directly follows from Eq. (1.11) using the relations � = k−1 and Eu(k) = u2
�/k.

Since ε = u2
�/τ� = Eu(k) k/τ(k), we obtain the scaling for the characteristic time

τ(k) in the inertial subrange of turbulent scales as

τ(k) = ε−1/3k−2/3. (1.21)

8 Alexander M. Obukhov (1918–1998) was a Russian geophysicist well-known for his works in atmospheric
physics, meteorology, turbulence and mathematical statistics.



1.2 Spectra of Temperature Fluctuations: Dimensional Analysis 7

Equation (1.21) also directly follows from Eq. (1.12) using the relation � = k−1.
The Kolmogorov-Obukhov spectrum has been detected in many laboratory exper-
iments where turbulence is produced by various sources. This spectrum also has
been observed in atmospheric turbulence, space experiments with solar wind, and
solar and galactic turbulence. The Kolmogorov-Obukhov spectrum can be consid-
ered as a universal spectrum since it is observed in various turbulent systems of
different origins.

1.2 Spectra of Temperature Fluctuations: Dimensional Analysis

In this section, we obtain various spectra of temperature fluctuations in a
hydrodynamic isotropic homogeneous and incompressible turbulence using the
dimensional analysis.

1.2.1 Governing Equations, Averaging and Basic Parameters

The equation for the evolution of fluid temperature field T (t, x) in an incompress-
ible fluid velocity field U(t, x) reads (Landau and Lifshits, 1987; Batchelor, 1967)

∂T

∂t
+ (U · ∇)T = D(θ) �T + IT , (1.22)

where D(θ) is the coefficient of the molecular diffusion of the temperature field and
IT is the heat source/sink that for simplicity is neglected below. Equation (1.22) is
the convective diffusion equation. The continuity equation for the incompressible
fluid velocity field is ∇·U = 0. We apply a mean-field approach, i.e., all quantities
are decomposed into the mean and fluctuating parts, where the fluctuating parts
have zero mean values. For example, the temperature field T = T + θ , where
T = 〈T 〉 is the mean fluid temperature, θ are temperature fluctuations, and 〈θ〉 = 0.
The angular brackets 〈. . .〉 denote an averaging. Similarly, U = U + u, where
U = 〈U〉 is the mean fluid velocity, u are velocity fluctuations and 〈u〉 = 0. There
are three main ways of averaging:

● The time averaging (i.e., the averaging over the time):

T = 1

tM

∫ tM

0
T (t, x) dt, (1.23)

where tM is the total time of measurements (e.g., in the case of laboratory or
field experiments) or the total time of calculations (e.g., in the case of numerical
simulations).
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● The spatial (volume) averaging:

T = 1

Lx L y Lz

∫ Lx

0
dx

∫ L y

0
dy

∫ Lz

0
T (t, x) dz, (1.24)

where Lx , L y, Lz are the sizes of the box along x, y, z directions. The plane
averaging,

T = 1

Lx L y

∫ Lx

0
dx

∫ L y

0
T (t, x) dy, (1.25)

is used or even the averaging along one direction,

T = 1

L y

∫ L y

0
T (t, x) dy, (1.26)

is also used.
● The ensemble averaging (e.g., averaging over independent spatial distributions

Tn = T (tn, x) of temperature fields taken in different times: t1, t2, . . . , tN ):

T = 1

N

N∑
n=1

Tn(x), (1.27)

where tn are the instants of measurements and N is the total number of data
points.

Averaging Eq. (1.22) over an ensemble of turbulent velocity field, we arrive at the
mean-field equation for the mean temperature field:

∂T

∂t
+ ∇ ·

(
T U + 〈θ u〉

)
= D(θ) �T , (1.28)

where 〈θ u〉 is the turbulent heat flux. In our derivation of Eq. (1.28), we take into
account that

● various operators, like the averaging 〈. . .〉, the partial derivative over time,
the spatial partial derivatives, the operators ∇ and �, are linear commutative
operators;

● 〈uT 〉 = T 〈u〉 = 0 and 〈Uθ〉 = U〈θ〉 = 0.

Let us consider for simplicity the case U = 0. The obtained results will be the same
for the constant mean fluid velocity due to the Galilean9 invariance.

9 Galileo Galilei (1564–1642) was an Italian astronomer, physicist, engineer, philosopher and mathematician,
well-known for his works in physics, astronomy and applied science.
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The equation for temperature fluctuations θ = T − T is obtained by subtracting
Eq. (1.28) from Eq. (1.22):

∂θ

∂t
+ ∇ · [θ u − 〈θ u〉] − D(θ)�θ = −(u · ∇)T . (1.29)

The second term, ∇ · (θ u − 〈θ u〉), on the left-hand side of Eq. (1.29) is the non-
linear term, while the first term, −(u · ∇)T , on the right-hand side of Eq. (1.29) is
the source of temperature fluctuations produced by the tangling of the gradient of
the mean temperature ∇T by random velocity fluctuations u. The dimensionless
ratio of the nonlinear term to the diffusion term in Eq. (1.29) is the Péclet10 number
which is a key parameter in the system:

Pe = |∇ · (θ u − 〈θ u〉) |
|D(θ)�θ | . (1.30)

The Péclet number, defined by Eq. (1.30), can be estimated using dimensional
analysis as

Pe = �0 u0

D(θ)
. (1.31)

Using Eq. (1.10) for the turbulent velocity u0 = (ε �0)
1/3 at the integral scale, we

rewrite the Péclet number as

Pe = ε1/3�
4/3
0

D(θ)
. (1.32)

Next, we introduce the local Péclet number Pe� = � u�/D(θ) at the scale � and use
Eq. (1.10) for the turbulent velocity u� = (ε �)1/3, so that the local Péclet number
is

Pe� = � u�

D(θ)
= ε1/3�4/3

D(θ)
. (1.33)

We determine the ratio Pe�/Pe as

Pe�

Pe
=
(

�

�0

)4/3

. (1.34)

We introduce a diffusion scale �D defined as the scale in which the local Péclet
number is 1. This implies that at the scale �D, the nonlinear terms in the equation

10 Jean Claude Eugène Péclet (1793–1857) was a French physicist well-known for his works in fluid dynamics,
heat transfer and theory of combustion.
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for temperature fluctuations equal the diffusion term. Therefore, Eq. (1.34) yields
the diffusion scale �D as

�D = �0

Pe3/4 . (1.35)

Let us consider the case when the diffusion scale is inside the inertial subrange of
turbulent scales, �0 ≥ �D ≥ �ν . This implies that uD = (ε �D)1/3 [see Eqs. (1.9)–
(1.10)]. Substituting the diffusion scale (1.35) into the equation for uD , we obtain
the characteristic velocity at the diffusion scale as uD = (ε �0)

1/3 Pe−1/4, so that

uD = u0

Pe1/4 , (1.36)

where u0 = (ε �0)
1/3. Using Eqs. (1.35) and (1.36), we determine the characteristic

diffusion time τD = �D/uD as

τD = τ0

Pe1/2 ≡ �2
D

D(θ)
, (1.37)

where we take into account that Pe�=�D = 1, i.e., u D�D = D(θ). Let us determine
the ratio of the diffusion scale to the viscous scale �D/�ν :

�D

�ν

=
(

Re

Pe

)3/4

=
(

D(θ)

ν

)3/4

= Pr−3/4, (1.38)

where

Pr = ν

D(θ)
(1.39)

is the Prandtl11 number. Small Prandtl numbers Pr 
 1 implies that �ν 
 �D ,
i.e., the viscous scale �ν is the smallest scale. In the opposite case of large Prandtl
numbers Pr  1, the diffusion scale �D 
 �ν is the smallest scale.

1.2.2 Isotropic Temperature Fluctuations

In this section, we consider the case of small Prandtl numbers (Pr 
 1) and study
temperature fluctuations in the inertial subrange of turbulence, �ν 
 �D < � < �0.
The energy spectrum function of the velocity field is defined as u2

� = ∫ k
k0

Eu(k ′) dk ′,
where k0 = �−1

0 and k = �−1. The Kolmogorov-Obukhov spectrum of velocity
fluctuations in the inertial subrange of turbulent scales is given by

Eu(k) = u2
�

k
= ε2/3 k−5/3, (1.40)

11 Ludwig Prandtl (1875–1953) was a German engineer and physicist well-known for his works in fluid
dynamics, aerodynamics, shock waves, plasticity, structural mechanics and meteorology.
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and the scaling for the turbulent time τ(k) is

τ(k) = �

u�

= �

(ε�)1/3
= ε−1/3 k−2/3. (1.41)

Equations (1.40)–(1.41) are only valid when the rate of dissipation of the turbulent
kinetic energy density is constant inside the inertial subrange of turbulent scales,
i.e.,

ε ≡ u2
�

τ�

= Eu(k) k

τ(k)
= const, (1.42)

and u� = (ε/k)1/3.
Spectrum function of temperature fluctuations is defined as

〈θ2〉� =
∫ k

k0

Ẽθ (k
′) dk ′. (1.43)

Using the dimensional analysis, we rewrite this expression as 〈θ2〉� = Ẽθ (k) k and
assume that the rate of dissipation of temperature fluctuations is constant inside the
subrange of scales �D < � < �0, i.e.,

εθ ≡
〈
θ2
〉
�

τ�

= Ẽθ (k) k

τ(k)
= const. (1.44)

The condition (1.44) for temperature fluctuations is analogous to condition (1.42)
for velocity fluctuations in the inertial range of turbulence. Equations (1.42)
and (1.44) yield the spectrum of isotropic temperature fluctuations inside the
scale-dependent turbulent diffusion range of scales, �D < � < �0:

Ẽθ (k) ∼ Eu(k) ∼ ε2/3 k−5/3. (1.45)

This spectrum was obtained by Obukhov (1949) and Corrsin (1951).12

Let us consider the case, Pr > 1, and study temperature fluctuations in the vis-
cous subrange of scales, �D < � < �ν . In this range of scales, Eq. (1.44) is valid,
but the time τ(k) does not have a universal scaling. If τ(k) = const, the spectrum
of temperature fluctuations is

Ẽθ (k) ∼ k−1. (1.46)

This spectrum was obtained by Batchelor (1959)13 and Kraichnan (1968).14

12 Stanley Corrsin (1920–1986) was an American physicist, well-known for his works in experimental and
theoretical fluid dynamics, turbulence and turbulent mixing.

13 George Keith Batchelor (1920–2000) was an applied mathematician (who was born in Australia and worked
at the University of Cambridge) well-known for his works in fluid dynamics, theory of turbulence and
turbulent transport.

14 Robert Harry Kraichnan (1928–2008) was an American theoretical physicist well-known for his works in the
theory of turbulence, turbulent transport and magnetohydrodynamics.
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1.2.3 Anisotropic Temperature Fluctuations in the Inertial-Diffusion Range

We consider anisotropic temperature fluctuations caused by the tangling of the
mean temperature gradient by velocity fluctuations in the inertial-diffusion sub-
range of scales, �ν < � < �D . This subrange of scales corresponds to the Prandtl
numbers, Pr < 1. We use dimensional analysis, taking into account that molecular
diffusion is a key effect in this subrange of scales. This implies that the molecu-
lar diffusion term, D(θ)�θ , in Eq. (1.29) should be balanced by the source term,
(u·∇)T , for temperature fluctuations, i.e.,

|D(θ)�θ | ∼ |(u · ∇)T |, (1.47)

which yields

〈
θ2
〉
�
∼ u2

�

(
�2∇T

D(θ)

)2

. (1.48)

In the k space, Eq. (1.48) implies that

Ẽθ (k) ∼ Eu(k) k−4

(
∇T

D(θ)

)2

, (1.49)

where Eu(k) is the spectrum function of velocity fluctuations. Since the subrange of
scales �ν < � < �D corresponds to the inertial range of scales, velocity fluctuations
have the Kolmogorov-Obukhov spectrum (1.40). Therefore, the spectrum of the
anisotropic temperature fluctuations in the inertial-diffusion range of scales is

Ẽθ (k) ∼ ε2/3 k−17/3

(
∇T

D(θ)

)2

. (1.50)

This spectrum was obtained by G. Batchelor, I. Howells and A. Townsend15

(Batchelor et al., 1959).

1.2.4 Anisotropic Temperature Fluctuations in the
Inertial-Turbulent Diffusion Range

We consider anisotropic temperature fluctuations caused by the tangling of the
mean temperature gradient by velocity fluctuations in the inertial-turbulent diffu-
sion range of scales, �D < � < �0. This subrange of scales corresponds to the small
Prandtl numbers, Pr < 1. We take into account that the main effect of turbulence

15 Albert Alan Townsend (1917–2010) was a physicist (who was born in Australia and worked at the University
of Cambridge) well-known for his works in fluid dynamics, experimental study of turbulence and turbulent
transport, meteorology and nuclear physics.
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on temperature fluctuations in incompressible flow is the scale-dependent turbulent
diffusion that is much larger than the molecular diffusion for large Péclet numbers.
Let us average Eq. (1.29) over an ensemble up to the scale �∗ that is inside the
interval: �D 
 �∗ 
 �0. This yields the renormalized equation for temperature
fluctuations:

∂θ

∂t
− DT (�) �θ = −(u · ∇)T , (1.51)

where DT (�) is the scale-dependent turbulent diffusion coefficient that can be
estimated as

DT (�) = � u�. (1.52)

In the subrange of scales �D 
 �∗ the turbulent diffusion term DT (�)�θ in
Eq. (1.51) should be balanced by the source term, (u·∇)T , for temperature
fluctuations, i.e.,

|DT (�) �θ | ∼ |(u · ∇)T |. (1.53)

This implies that

〈
θ2
〉
�
∼ u2

�

(
�2 ∇T

DT (�)

)2

∼ u2
�

(
�2 ∇T

� u�

)2

∼ (
�∇T

)2
, (1.54)

where we used Eq. (1.52). Equation (1.54) written in the k space yields the
spectrum of anisotropic temperature fluctuations in the inertial-turbulent diffusion
range of scales �D 
 � 
 �0:

Ẽθ (k) ∼ k−3
(∇T

)2
, (1.55)

where we take into account in Eq. (1.54) that according to dimensional analysis,
〈θ2〉� = Ẽθ (k) k and k = �−1. This spectrum is independent of the spectrum of the
turbulent velocity field because u2

� is canceled in Eq. (1.54). The spectrum (1.55)
was obtained by A. Wheelon using the dimensional analysis (Wheelon, 1957)
and by T. Elperin, N. Kleeorin and I. Rogachevskii, applying the renormalization
approach (Elperin et al., 1996a).

1.3 Turbulent Transport of Temperature Fields: Dimensional Analysis

1.3.1 Governing Equations

We consider incompressible fluid velocity field U(t, x) satisfying the continuity
equation: ∇ · U = 0. Since the velocity field is incompressible, Eq. (1.22) for the
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fluid temperature field T (t, x) can be rewritten in the following form:

∂T

∂t
+ ∇ · (T U) = D(θ) �T . (1.56)

The velocity field is a random turbulent field created, e.g., by external forcing.

1.3.2 Mean-Field Approach

Our goal is to study the long-term evolution of the temperature field in the large
scales, i.e., in spatial scales LT  �0, and the time scales tT  τ0, where τ0

is the characteristic turbulent time in the integral turbulent scale �0, LT is the
characteristic spatial scale of variations of the mean temperature field and tT is
the characteristic time-scale of variations of the mean temperature field. We use a
mean-field approach in which all quantities are decomposed into the mean and fluc-
tuating parts, where the fluctuating parts have zero mean values. In particular, the
temperature field T = T + θ , where T = 〈T 〉 is the mean fluid temperature, θ are
temperature fluctuations and 〈θ〉 = 0. The angular brackets 〈. . .〉 denote ensemble
averaging. In similar fashion, we decompose a velocity field, U = U + u, where
U = 〈U〉 is the mean fluid velocity, u are velocity fluctuations and 〈u〉 = 0. This
decomposition corresponds to the Reynolds rules. Averaging Eq. (1.56) over an
ensemble of turbulent velocity field, we arrive at the mean-field equation (1.28) for
the mean temperature field.

1.3.3 Equation for Temperature Fluctuations

Equation (1.28) is not closed because we do not know the turbulent heat flux F(θ) =
〈uθ〉. To determine the turbulent heat flux, we use the equation for temperature
fluctuations that is obtained by subtracting Eq. (1.28) from Eq. (1.56):

∂θ

∂t
+ ∇ · (θ u − 〈θ u〉) − D(θ)�θ = −(u · ∇)T . (1.57)

The terms, ∇ · (θ u − 〈θ u〉), on the left-hand side of Eq. (1.57) are the nonlin-
ear terms, while the first term, −(u · ∇)T , on the right-hand side of Eq. (1.57)
determines the source of temperature fluctuations produced by the tangling of the
gradient of the mean temperature, ∇T , by random velocity fluctuations, u. Since
Eq. (1.57) is nonlinear equation for temperature fluctuations, it cannot be solved
exactly for the arbitrary range of parameters and arbitrary velocity field. There-
fore, we have to use different approximate methods for the solution of Eq. (1.57).
First, we consider a one-way coupling, i.e., we take into account the effect of the
turbulent velocity on the temperature field, but neglect the feedback effect of the
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temperature field on the turbulent fluid flow. This implies that the temperature field
is a passive scalar.

1.3.4 Dimensional Analysis

The first method that we apply here is the dimensional analysis. The dimension of
the left-hand side of Eq. (1.57) is the rate of change of temperature fluctuations, i.e.,
θ/τθ , where τθ is the characteristic time of temperature fluctuations. We replace the
left-hand side of Eq. (1.57) by θ/τθ , that yields:

θ = −τθ (u · ∇)T . (1.58)

We consider two cases of large and small Péclet numbers:

● Large Péclet numbers, Pe = u0 �0/D(θ)  1. We also consider the case of large
Reynolds numbers, Re = u0 �0/ν  1. This implies that we consider fully
developed turbulence. In this case, the characteristic time of temperature fluctu-
ations, τθ , can be identified with the correlation time τ0 of the turbulent velocity
field. Therefore, in the framework of the dimensional analysis, we replace the
left-hand side of Eq. (1.57) with θ/τ0. This yields the expression for temperature
fluctuations:

θ = −τ0 (u · ∇)T . (1.59)

● Small Péclet numbers, Pe 
 1. In this case, the nonlinear terms are much
smaller than the diffusion terms. This implies that the molecular diffusion for
Pe 
 1 is the main process, which determines the dynamics of temperature
fluctuations. Therefore, we assume that the time τθ can be identified with the
molecular diffusion time τD = �2

0/D(θ), and the solution of Eq. (1.57) for
Pe 
 1 reads

θ = − �2
0

D(θ)
(u · ∇)T . (1.60)

1.3.5 Turbulent Heat Flux and Level of Temperature Fluctuations

Large Péclet Numbers

Let us consider the case of large Péclet numbers Pe  1 and determine the tur-
bulent heat flux and level of temperature fluctuations. Multiplying Eq. (1.59) by
velocity fluctuations, ui , and averaging over an ensemble of turbulent velocity field,
we obtain the turbulent heat flux:

〈θ ui 〉 = −τ0 〈ui (u · ∇)T 〉 = −τ0 〈ui u j 〉 ∇ j T , (1.61)

where we took into account that u · ∇ ≡ u j ∇ j = u1 ∇1 + u2 ∇2 + u3 ∇3 ≡
ux ∇x + uy ∇y + uz ∇z (i.e., there is summation in the repeating indexes). In
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isotropic turbulence, 〈ui u j 〉 = δi j 〈u2〉/3, where δi j is the Kronecker tensor (or the
unit matrix), that is defined as δi j = 1 for i = j , and δi j = 0 for i �= j . Therefore,
for an isotropic turbulence, the turbulent heat flux reads

F(θ) ≡ 〈θ u〉 = −DT ∇T , (1.62)

with the coefficient of turbulent diffusion of the temperature field for large Péclet
numbers:

DT = 1

3
τ0
〈
u2
〉
. (1.63)

Using Eq. (1.59) for θ2 and averaging over an ensemble of turbulent velocity field,
we determine the level of temperature fluctuations 〈θ2〉:〈

θ2
〉 = τ 2

0

〈[
(u · ∇)T

]2
〉
= τ 2

0 〈ui u j 〉
(∇i T

) (∇ j T
)
. (1.64)

Therefore, for an isotropic turbulence, 〈ui u j 〉 = δi j 〈u2〉/3, the level of temperature
fluctuations for large Péclet numbers is given by

〈
θ2
〉 = 1

3
�2

0

(∇T
)2

, (1.65)

where �0 = τ0 u0 and u0 ≡ urms = √〈u2〉 is the r.m.s. velocity fluctuations
(characteristic turbulent velocity).

Small Péclet Numbers

Now we consider the case of small Péclet numbers Pe 
 1 and determine the
turbulent heat flux and level of temperature fluctuations. Multiplying Eq. (1.60) by
ui and averaging this equation over a statistics of a random velocity field, we obtain

〈θ ui 〉 = − �2
0

D(θ)
〈ui u j 〉 (∇ j T ). (1.66)

Therefore, for isotropic turbulence, 〈ui u j 〉 = δi j 〈u2〉/3, the turbulent heat flux F (θ)
i

for small Péclet numbers is given by F(θ) ≡ 〈θ u〉 = −DT ∇T , which coincides
with Eq. (1.62) derived for large Péclet numbers, but with a different coefficient of
turbulent diffusion:

DT = u0 �0

3
Pe. (1.67)

Since Pe 
 1, the coefficient of turbulent diffusion DT is much smaller than
the molecular diffusion coefficient D(θ). Using Eq. (1.60) for θ2 and averaging
over an ensemble of turbulent velocity field, we determine the level of temperature
fluctuations 〈θ2〉:
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〈
θ2
〉 = (

�2
0

D(θ)

)2 〈[
(u · ∇)T

]2〉 =
(

�2
0

D(θ)

)2

〈ui u j 〉 (∇i T )(∇ j T ). (1.68)

Therefore, for isotropic turbulence the level of temperature fluctuations for small
Péclet numbers is given by

〈
θ2
〉 = 1

3
Pe2�2

0

(∇T
)2

. (1.69)

1.3.6 Mean-Field Equation

Substituting the turbulent heat flux (1.62) into Eq. (1.28), and taking into account
that for homogeneous turbulence the coefficient of turbulent diffusion is independ-
ent of coordinate, so that ∇·(DT ∇T

) = DT �T , we obtain the mean-field equation
for temperature field for homogeneous, isotropic and incompressible turbulence:

∂T

∂t
= (

D(θ) + DT

)
�T . (1.70)

Since the coefficient of turbulent diffusion DT is positive, Eq. (1.70) implies
that the main effect of turbulence is enhancement of the diffusion of the mean
temperature field, i.e., turbulence enhances the mixing.

1.3.7 Solving the Diffusion Equation

Let us solve the diffusion equation (1.70) with the initial condition T0(r) =
T (t = 0, r). We use the Fourier16 transform in the k space:

T (t, r) = 1

(2π)3

∫
T (t, k) exp(i k · r) dk, (1.71)

T (t, k) =
∫

T (t, r) exp(−i k · r) dr, (1.72)

where k is the wave vector. We seek a solution for Eq. (1.70) in the form given by
Eq. (1.71). Substituting solution (1.71) into Eq. (1.70), we obtain

∫ (
dT (t, k)

dt
+ D∗k2T (t, k)

)
exp(i k · r) dk = 0, (1.73)

16 Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician well-known for his works in
mathematical physics, algebra, etc.
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where D∗ = D(θ) + DT is the total diffusion coefficient that is independent of
the coordinate. Equation (1.73) yields the following ordinary differential equation
where k is considered as a parameter, and the time t is a variable:

dT (t, k)

dt
= −D∗k2T (t, k). (1.74)

Equation (1.74) with the initial condition T (t = 0, k) = T 0(k) has the following
solution:

T (t, k) = T 0(k) exp(−D∗k2t). (1.75)

The Fourier transform (1.72) for the initial temperature distribution T 0(k) reads:

T 0(k) =
∫

T 0(r′) exp(−i k · r′) dr′. (1.76)

Substituting Eq. (1.76) into Eq. (1.75), we obtain

T (t, k) =
∫

T 0(r′) exp(−i k · r′) exp(−D∗k2t) dr′. (1.77)

Now we substitute Eq. (1.77) for T (t, k) into Eq. (1.71), which yields

T (t, r) = 1

(2π)3

∫
dk

∫
T 0(r′) exp

[
i k · (r − r′) − D∗k2t

]
dr′. (1.78)

We use the following identity:

i k · (r − r′) − D∗k2t = −D∗t

[
k2 − i k · (r − r′)

D∗t
+
(

i (r − r′)
2D∗t

)2
]

− (r − r′)2

4D∗t

= −D∗t

(
k − i (r − r′)

2D∗t

)2

− (r − r′)2

4D∗t
. (1.79)

This identity allows us to rewrite solution (1.78) of the diffusion equation (1.70) in
the final form:

T (t, r) = 1

(4π D∗t)3/2

∫
T 0(r′) exp

[
−(r − r′)2

4D∗t

]
dr′, (1.80)

where we calculate the following integral,

I = 1

(2π)3

∫
exp

[
−D∗t

(
k − i (r − r′)

2D∗t

)2
]

dk = 1

(2π)3

∫
exp(−a2k̃

2
) dk̃

= 1

(2π)3

∫ ∞

0
exp(−a2k̃2) k̃2 dk̃

∫ π

0
sin θ dθ

∫ 2π

0
dϕ = 1

(4π D∗t)3/2
,

(1.81)


