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Preface

On April 14 and 16, 2016, two consecutive large earthquakes occurred in 
Kumamoto, Japan. In most countries, it is a common understanding that 
building structures are designed to resist once to the ground motion from a 
large earthquake, e.g., one with the intensity level 7 (the highest level on the 
Japan Meteorological Agency scale; approximately X–XII on the Mercalli 
scale), during its service life. However, in case of the Kumamoto earth-
quakes, a number of buildings were subjected to such large ground motions 
twice in a few days. This phenomenon was unpredictable, and the authors 
were convinced during and immediately after the earthquake that the criti-
cal excitation method is absolutely necessary for enhancing the earthquake 
resilience of building structures and engineering systems.

The senior author believed for a long time that near-fault ground motions 
have peculiar characteristics with a few simple waves (see Figure 0.1), and 
the response of buildings to such ground motions can be characterized by 
the response to such a simple wavelet. Furthermore, the response to such a 
simple wavelet can be substituted by the response to the equivalent impulse 
set (see Figure 0.2). The response to impulses can be described by the con-
tinuation of free vibration components, and this fact leads to the straightfor-
ward derivation of responses of even elastic-plastic structures.

In this monograph, the critical excitation problems for elastic-plastic 
structures under double and triple impulses are explained with the interval 
of impulses as a variable parameter (Kojima and Takewaki 2015a, b). 
Furthermore, the critical excitation problems for elastic-plastic structures 
under multiple impulses as a representative of long-period and long-dura-
tion ground motions are tackled with the interval of impulses as a variable 
parameter (Kojima and Takewaki 2015c, Kojima and Takewaki 2017). This 
approach can overcome the difficulty, called the nonlinear resonance, 
encountered first around 1960 in the field of nonlinear vibration, and the 
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critical excitation problems for elastic-plastic structures are tackled in a 
more direct way than the conventional methods including laborious compu-
tation (see Table 0.1). It can be said that the approach explained newly in 
this monograph opened the door for an innovative field of nonlinear 
dynamics.

In principle, the method explained in this monograph is based on the 
energy balance law, which is taught as part of a high school physics course. 
Therefore, undergraduate students can read and understand this work. The 
authors hope that this monograph is also useful for graduate students for 
research and structural designers/engineers for practice.

Izuru Takewaki
Kotaro Kojima

Kyoto, 2020

Figure 0.1  Simple modeling of Rinaldi Station fault-normal component 
(Northridge EQ. 1994) as representative of near-fault ground motion: 
(a) one-cycle sinusoidal wave modeling, (b) 1.5-cycle sinusoidal wave 
modeling.
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Table 0.1 Conventional method and proposed method.

Conventional method
(1960s Caughey, Iwan)

Proposed method
(2015 Kojima and Takewaki)

① Steady-state ① Transient and steady-state
②  Difficulty in elastic-perfectly 

plastic model
②  Possible even for elastic-perfectly 

plastic (any model)
③  Inevitable repetition (equivalent 

parameters/resonant frequency) ③ No repetition required

<Proposed method enables>
→Closed-form critical response of elastic-plastic structure
→Derive resonant frequency (impulse interval) without repetition
→Closed-form noncritical response of elastic-plastic structure based on 

closed-form critical response
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1

Chapter 1

Introduction

1.1  MOTIVATION OF THE PROPOSED APPROACH

1.1.1  Simplification of near-fault pulse-type ground 
motion

The recording and documentation of earthquake ground motions started in 
the middle of the 20th century (PEER Center 2013). A classification of 
earthquake ground motions has been conducted (Abrahamson et al. 1998, 
Takewaki 1998, Bozorgnia and Campbell 2004), e.g., rock records, soil 
records, etc. Other classifications exist, namely (1) the near-fault ground 
motion and (2) the long-period, long-duration ground motion. While the 
former is well known and has been investigated for a long time, the latter is 
getting attention recently. In this book, both types are discussed.

Since the time typical earthquakes began to be recorded, the effects of 
near-fault ground motions on the structural responses have been investi-
gated extensively (Bertero et al. 1978, Hall et al. 1995, Sasani and Bertero 
2000, PEER Center et al. 2000, Mavroeidis et al. 2004, Alavi and Krawinkler 
2004, Kalkan and Kunnath 2006, 2007, Xu et al. 2007, Rupakhety and 
Sigbjörnsson 2011, Yamamoto et al. 2011, Vafaei and Eskandari 2015, 
Khaloo et al. 2015, Kojima and Takewaki 2015). The concepts of fling-step 
and forward-directivity discussed in the field of engineering seismology are 
widely used to characterize such near-fault ground motions (Mavroeidis and 
Papageorgiou 2003, Bray and Rodriguez-Marek 2004, Kalkan and Kunnath 
2006, Mukhopadhyay and Gupta 2013a, b, Zhai et al. 2013, Hayden et al. 
2014, Yang and Zhou 2014, Kojima and Takewaki 2015). In particular, the 
San Fernando earthquake in 1971, the Northridge earthquake in 1994, the 
Hyogoken-Nanbu (Kobe) earthquake in 1995, and the Chi-Chi (Taiwan) 
earthquake in 1999 drew special attention to many earthquake structural 
engineers.

The fling-step (fault-parallel) and forward-directivity (fault-normal) 
inputs have been characterized by two or three wavelets. For this class of 
ground motions many useful researches have been conducted. Mavroeidis 
and Papageorgiou (2003) investigated the characteristics of this class of 
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ground motions in detail and proposed some wavelets (for example, Gabor 
wavelet and Berlage wavelet). Xu et al. (2007) used a kind of Berlage wave-
let and applied it to the evaluation of performances of passive energy dissi-
pation systems. Takewaki and Tsujimoto (2011) employed the Xu’s approach 
and proposed a method for scaling ground motions from the viewpoints of 
story drift and input energy demand. Takewaki et al. (2012) made use of a 
sinusoidal wave for simulating pulse-type waves. Kojima and Takewaki 
(2015) started a new approach using the double impulse (Kojima et al. 
2015a) by picking up the principal properties of those ground motions. 
They focused on the intrinsic response characteristics by the near-fault 
ground motion (Kojima and Takewaki 2015).

Most of the previous works on the near-fault ground motions deal with 
the elastic response, because the number of parameters (e.g., duration and 
amplitude of a pulse, ratio of pulse frequency to structure natural frequency, 
change of equivalent natural frequency for the increased input level) to be 
considered is huge, and even the computation of elastic-plastic response is 
quite complicated.

To tackle such important but complicated problem, the double impulse 
input was introduced as a substitute of the fling-step near-fault ground 
motion, and a closed-form solution was derived of the elastic-plastic 
response of a structure by the “critical double impulse input” (Kojima and 
Takewaki 2015). It was shown that, since only the free-vibration is induced 
under such double impulse input, the energy balance approach plays an 
important role in the derivation of the closed-form solution of a compli-
cated elastic-plastic response. It is also shown that the maximum inelastic 
deformation can occur either after the first impulse or after the second 
impulse depending on the input level of the double impulse. The validity and 
accuracy of the theory were investigated through the comparison with the 
response analysis result to the corresponding equivalent one-cycle sinusoi-
dal input as a representative of the fling-step near-fault ground motion. The 
amplitude of the double impulse was modulated so that its maximum 
Fourier amplitude coincided with that of the corresponding one-cycle sinu-
soidal input. The validity and accuracy of the theory were also checked 
through the comparison with the elastic-plastic responses under the actual 
recorded near-fault ground motions.

1.1.2  Resonant response in nonlinear structural 
dynamics and earthquake-resistant design

The closed-form or nearly closed-form expressions for the elastic-plastic 
earthquake response have been obtained so far only for the steady-state 
response to sinusoidal input or the transient response to an extremely simple 
sinusoidal input (Caughey 1960a, b, Iwan 1961, 1965, Roberts and Spanos 
1990, Liu 2000). In the approach explained in this book, the following 
motivation was drawn based on the observation that the main part of a 
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near-fault ground motion is usually characterized by a one-cycle or a few-
cycle sinusoidal wave as shown in Figure 1.1, and this part greatly influences 
the maximum deformation of building structures. If such one-cycle or a few-
cycle sinusoidal wave as the main part of the near-fault ground motion can 
be represented by a double impulse as shown in Figure 1.2, the elastic-plas-
tic response (continuation of free-vibrations) can be derived by using the full 
advantage of an energy balance approach without solving the equation of 
motion directly. The input of impulse is expressed by the instantaneous 
change of velocity of the structural mass leading to the instantaneous input 
of kinetic energy.

In the earthquake-resistant design, the resonance and the role of damping 
are two key issues, and they have been investigated extensively. In particular, 
since the resonance brings worse and critical effects to structures, it has been 
treated as a main theme in the earthquake-resistant design of structures. 
While the resonant equivalent frequency has to be computed for a specified 
input level by changing the excitation frequency in a parametric manner in 
case of treating the sinusoidal input (Caughey 1960a, b, Iwan 1961, 1965, 
Roberts and Spanos 1990, Liu 2000), no iteration is required in the method 
for the double impulse explained in this book. This is because the resonant 
equivalent frequency can be obtained directly without repetitive procedure. 

Figure 1.1  Recorded ground motions with pulse-type main parts modeled by 
simple sinusoidal wavelets, (a) Rinaldi Station FN (Northridge 1994) 
vs one-cycle sine wave, (b) Rinaldi Station FN (Northridge 1994) vs 
1.5-cycle sine wave, (c) Kobe Univ. NS (Hyogoken-Nanbu 1995) vs 
one-cycle sine wave, (d) Mashiki EW (Kumamoto 2016, April 16) vs 
one-cycle sine wave.
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In the double impulse, the analysis can be done without the input frequency 
(timing of impulses) before the second impulse is inputted. The resonance 
can be proved by using energy investigation, and the critical timing of the 
second impulse can be characterized as the time with zero restoring force. 
The maximum elastic-plastic response after impulse can be obtained by 
equating the initial kinetic energy computed by the initial velocity to the 
sum of hysteretic and elastic strain energies. It should be pointed out that 
only critical response (upper bound) is captured by the method explained in 
this book, and the critical resonant frequency can be obtained automatically 
for the increasing input level of the double impulse.

In the history of the seismic-resistant design of building structures, the 
earthquake input energy has played an important role together with defor-
mation and acceleration (for example, Housner 1959, 1975, Berg and 
Thomaides 1960, Housner and Jennings 1975, Zahrah and Hall 1984, 
Akiyama 1985, Leger and Dussault 1992). While deformation and accelera-
tion can predict and evaluate the local performance of a building structure 
mainly for serviceability, the energy can evaluate the global performance of 
a building structure mainly for safety. Especially energy is appropriate for 
describing the performance of building structures of different sizes in a uni-
fied manner because energy is a global index different from deformation and 
acceleration as local indices. In fact, in Japan, there are three criteria in 
parallel: force, deformation, and energy. In 1981, the force was introduced 

Figure 1.2  Simplification of ground motion (acceleration, velocity, displacement): 
(a) Fling-step input and double impulse, (b) Forward-directivity input 
and triple impulse (Kojima and Takewaki 2015).
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as a criterion for safety, and in 2000, the deformation was introduced as a 
criterion for safety. More recently, in 2005, the input energy evaluated from 
the design velocity response spectrum was used as a criterion. These three 
criteria are used now in parallel (BSL in Japan 1981, 2000, 2005).

A theory of earthquake input energy to building structures under single 
impulse was shown to be useful for disclosing the property of the energy trans-
fer function (Takewaki 2004, 2007). This property means that the area of the 
energy transfer function is constant. The property of the energy transfer func-
tion similar to the case of a simple single-degree-of-freedom (SDOF) model 
has also been clarified for a swaying-rocking model. By using this property, the 
mechanism of earthquake input energy to the swaying-rocking model includ-
ing the soil amplification has been made clear under the input of single impulse 
(Kojima et al. 2015b). However single impulse may be unrealistic because the 
frequency characteristic of input cannot be expressed by this input. In order to 
resolve such an issue, the double impulse is introduced in this book. 
Furthermore, because the elastic-plastic response is treated, the time-domain 
formulation is introduced in this book (Kojima and Takewaki 2015).

1.2  DOUBLE IMPULSE AND CORRESPONDING  
ONE-CYCLE SINE WAVE WITH THE SAME FREQUENCY 
AND SAME MAXIMUM FOURIER AMPLITUDE

The velocity amplitude V of the double impulse is related to the maximum 
velocity of the corresponding one-cycle sine wave with the same frequency 
(the period is twice the interval of the double impulse) so that the maximum 
Fourier amplitudes of both inputs coincide (Kojima 2018, Akehashi et al. 
2018). The detail is explained in this section.

The double impulse is expressed by

 u t V t V t tg � � � � � � �� �� � 0  (1.1)

where V is the velocity amplitude of the double impulse and δ(t) is the Dirac 
delta function. The Fourier transform of Eq. (1.1) can be obtained as

 
U Vg

t� �� � � �� ��1 0e i

 
(1.2)

Let Ap, Tp, ωp= 2π/Tp denote the acceleration amplitude, the period and 
the circular frequency of the corresponding one-cycle sine wave, respec-
tively. The acceleration wave ug

SM of the corresponding one-cycle sine wave 
is expressed by 

 u A t t T tg p p p
SM � � � � � �� �sin � 0 2 0  (1.3)
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The time interval t0 of two impulses in the double impulse is related to the 
period Tp of the corresponding one-cycle sine wave by Tp = 2t0. Although 
the starting points of both inputs differ by t0/2, the starting time of one-cycle 
sine wave does not affect the Fourier amplitude. For this reason, the starting 
time of the one-cycle sine wave will be adjusted so that the responses of both 
inputs correspond well. In this section, the relation of the velocity amplitude 
V of the double impulse with the acceleration amplitude Ap of the corre-
sponding one-cycle sine wave is derived. The ratio a of Ap to V is introduced 
by 

 A aVp =  (1.4)

The Fourier transform of ug
SM in Eq. (1.3) is computed by 

 

U A t e dt
t A

t
eg

t

p p
i t p t iSM � �

�

� �
� �� � � � �� � �

� � �
�� � �

0

2
0

2
0

2
2

0
01sin �� �

 
(1.5)

From Eqs. (1.2) and (1.5), the Fourier amplitudes of both inputs are 
expressed by 

 
U V tg � �� � � � � �2 2 0cos

 
(1.6)

 

U A
t

t
tg p

SW � �
� �

�� � �
� � �

� �2 0

2
0

2 0sin
 

(1.7)

The coefficient a can be derived from Eqs. (1.4), (1.6), (1.7), and the 

equivalence of the maximum Fourier amplitude Ug �� � �
max

 Ug
SW �� �

max
. 

 

a t
A
V

t

t

t
t

p
0

0

0

2
0

2 0

2 2

2
� � � �

� � �

� � �
� �

max cos

max sin

�

�
� �

�
 

(1.8)

In the numerator of Eq. (1.8), max cos2 2 20� � � ��t  holds. The denom-

inator max∣2πt0 sin (ωt0)/{π2 − (ωt0)2}∣ in Eq. (1.8) will be evaluated next.
Let us define the function f(x) given by 

 
f x

x
x� � �

�
1

2 2�
sin

 
(1.9)

The maximum value fmax of f(x) and the corresponding argument x = x0 
can be obtained as follows. 
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 x0 2 63099585� �.  (1.10) 

 f f x xmax .� �� � � �0 0 165802809  (1.11)

The values in Eqs. (1.10) and (1.11) were obtained numerically. From 
Eqs. (1.8)–(1.11), the coefficient a is expressed as a function of the time 
interval t0 of two impulses. 

 a t t f0 01� � � � �/ � max  (1.12)

Figure 1.3(a) shows the relation between t0 and a. Furthermore, Figure 
1.3(b) presents examples of the Fourier amplitudes of both inputs with the 
same maximum Fourier amplitude. Since the Fourier amplitudes of both 
inputs differ greatly in larger frequencies, further investigation will be neces-
sary in dealing with multi-degree-of-freedom models.

Consider next the ratio of the maximum velocity Vp of the one-cycle sine 
wave to the velocity amplitude V of the double impulse. The velocity ug

SW of 
the one-cycle acceleration sine wave is expressed by 

 
 u u dt A t dt

A
tg

t

g

t

p p
p

p
p

SW SW� � � � � � � �� �� �0 0
1sin cos�

�
�

 
(1.13)

From Eq. (1.13), the maximum velocity Vp of the one-cycle sine wave can 
be expressed by 

 V Ap p p� 2 /�  (1.14)

Figure 1.3  Relation of amplitudes between double impulse and one-cycle sine 
wave, (a) Coefficient a  (=AP/V) with respect to impulse timing t0, (b) 
Fourier amplitude of double impulse and one-cycle sine wave 
(Akehashi et al. 2018).
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Eqs. (1.4), (1.12), (1.14), and ωp = π/t0 lead to the relation between Vp and 
V. 

 
V f Vp � � �� �2 2/ � max  

(1.15)

From Eqs. (1.11) and (1.15), Vp/V is expressed as 

 
V V fp / /� � � � �2 1 222188982� max .

 
(1.16)

It can be found from Eq. (1.16) that if the maximum Fourier amplitudes 
of both inputs are the same, the ratio of Vp to V becomes constant. The 
modulated one-cycle sine wave will be called “the corresponding one-cycle 
sine wave.”

1.3  ENERGY BALANCE UNDER EARTHQUAKE 
GROUND MOTION AND IMPULSE

The energy balance under an earthquake ground motion and the corre-
sponding impulse, which plays a central role in this book, is explained in 
this section.

1.3.1  Undamped model

Consider a single-degree-of-freedom (SDOF) model of mass m and stiffness 

k subjected to an earthquake ground acceleration u tg � � (see Figure 1.4(a)). 

Assume the initial condition x x0 0 0� � � � � � . Let x(t) denote the displace-
ment of the mass relative to the ground. The equation of motion of the 
model can be described by

 mx kx mug � � �  (1.17)

Figure 1.4 SDOF model, (a) Undamped model, (b) Damped model.
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Let’s consider the vibration of the model during t = [0, t0]. Multiplication 
of the velocity x on both sides of Eq. (1.17) and integration over t = [0, t0] 
provide

 
1 2 1 2

2

0

2

0 0

0 0 0

/ /� � � ��
�

�
� � � � � ��

�
�
� � � � � � ��mx t kx t mu t x t d

t t t

g  tt
 

(1.18)

With the initial condition, Eq. (1.18) leads to

 
1 2 1 20

2
0

2

0

0

/ /� � � � � � � � � � � � � � ��mx t kx t mu t x t dt
t

g 

 
(1.19)

The first term of the left-hand side of Eq. (1.19) indicates the kinetic 
energy and the second term is the strain energy. It is important to note that, 
only after the response x(t) is computed numerically, the energy balance can 
be evaluated.

On the other hand, consider that the model is subjected to the single 

impulse u t V tg � � � � �� . In this case, since x x V0 0 0� � � � � � �,  , Eq. (1.18) can 
be expressed as

 1 2 1 2 1 2 00
2 2

0
2

/ / /� � � � � � � � � � � � �mx t mV kx t  (1.20)

Assume that the maximum displacement occurs at t  =  t0 (see Figure 
1.5(a)). Since x t0 0� � � , Eq. (1.20) yields

 1 2 1 20
2 2/ /� � � � � � �kx t mV  (1.21)

Eq. (1.21) means that the maximum displacement can be obtained from 
the energy balance law.

This principle can be applied to an elastic-plastic model. Let f(x) denote 
the nonlinear restoring-force characteristic of the elastic-plastic model. For 
this model, Eq. (1.20) can be modified into

 
1 2 1 2 00

2 2

0

0

/ /� � � � � � � � � � ��mx t mV f x dx
x



 
(1.22)

where x0 = x(t0). Assuming again that the maximum displacement occurs at 
t = t0, Eq. (1.22) leads to

 0

2
0

1 2
x

f x dx mV� � � � � �/
 

(1.23)

By specifying an explicit expression of f(x), e.g., an elastic-perfectly plastic 
one (see Figure 1.5(b)) or a bilinear one, Eq. (1.23) provides the maximum 
displacement x0.
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1.3.2  Damped model

Consider next a SDOF model of mass m, stiffness k, viscous damping coef-
ficient c subjected to an earthquake ground acceleration u tg � � (see Figure 
1.4(b)). Assume again the initial condition x x0 0 0� � � � � � . The equation of 
motion of this model can be expressed by

 mx cx kx mug � � � �  (1.24)

Consider the vibration of the model during t = [0, t0]. Multiplication of 
the velocity x on both sides of Eq. (1.24) and integration over t  =  [0, t0] 
provide

1 2 1 2
2

0 0

2 2

0 0

0 0 0 0

/ /� � � ��
�

�
�

� � � � � � � ��
�

�
�

� �� �mx t cx t dt kx t
t t t t

  mmu t x t dtg � � � �
 

(1.25)

Application of the initial condition to Eq. (1.25) leads to

1 2 1 20
2

0

2
0

2

0

0 0

/ /� � � � � � � � � � � � � � � � �� �mx t cx t dt kx t mu t x t
t t

g   ��dt
 

(1.26)

The first term of the left-hand side of Eq. (1.26) indicates the kinetic 
energy and the third term is the strain energy. The second term is the energy 
dissipated by the viscous damping. As in the undamped case, it should be 
remarked that only after the response x(t) is computed numerically can the 
energy balance be evaluated.

On the other hand, consider that the model is subjected to the single 
impulse u t V tg � � � � �� . In this case, since x x V0 0 0� � � � � � �,  , Eq. (1.26) can 
be expressed as

 
1 2 1 2 1 2 00

2 2

0

2
0

20

/ / /� � � � � � � � � � � � � � � ��mx t mV cx t dt kx t
t

 

 
(1.27)

Figure 1.5  Input energy (kinetic energy) by impulse and strain energy, (a) Elastic 
model, (b) Elastic-plastic model.
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Assume that the maximum displacement occurs at t = t0. Since x t0 0� � � , 
Eq. (1.27) yields

 
1 2 1 20

2 2

0

20

/ /� � � � � � � � � ��kx t mV cx t dt
t



 
(1.28)

Eq. (1.28) indicates that the maximum displacement can be obtained 
from the energy balance law. However, the energy dissipated by the viscous 
damping has to be evaluated in an appropriate manner in this case. This 
principle can also be applied to an elastic-plastic model. The left-hand side 

of Eq. (1.28) can be replaced by 
0

0x

f x dx� � � . If the second term of the right-

hand side of Eq. (1.28) can be expressed approximately in terms of x0, x0 
can be evaluated by Eq. (1.28) after replacing the left-hand side of Eq. (1.28) 

by the term 
0

0x

f x dx� � � .

It can be shown that the right-hand side of Eq. (1.25) expresses the total 
input energy to the model. The work done by the ground input on the SDOF 
model (see Figure 1.6) can be expressed by

 0 0

0 0x

g

t

gm u t x t dx m u t x t x t dt� �� � � � �� � � � � � � �� � � �    

 
(1.29)

Integration by parts of Eq. (1.29) leads to

 0 0 0

0 0 0

1 2
t

g g
t t

m u t x t x t dt mxu mxu� �� � � � �� � � � � � ��� �� �     / gg g

t
dt mu� � ��� ��1 2 2

0

0
/ 

 
(1.30)

Figure 1.6  SDOF model subjected to earthquake ground motion (Kojima et al. 
2015a).
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The condition  u u tg g0 00� � � � � �  provides

 0 0

0 0t

g

t

gm u t x t x t dt mxu dt� �� � � � �� � � � � �   

 
(1.31)

This means that, if t0 indicates the final time of input ground motion, the 
right-hand side of Eq. (1.25) expresses the total input energy to the model.

1.4  CRITICAL INPUT TIMING OF SECOND IMPULSE IN 
DOUBLE IMPULSE

The energy balance approach explained in the above section is often used in 
the seismic-resistant design of structures. A more important aspect in the 
present approach is the critical timing of the second impulse in the double 
impulse input. The energy balance law explained in the above section (after 
the input of the first impulse until the maximum displacement) can also be 
used in a similar manner for the response process after the second impulse 
until the next (inverse-direction) maximum displacement. The initial veloc-
ity V just after the first impulse has to be changed to v Vmax

� �  where vmax
∗  is 

the velocity of mass just before the second impulse is applied (see Figure 
1.7). Because the velocity attains the maximum at the point of zero restoring 
force, the subscript “max” is given. Since it can be proved that the critical 
timing of the second impulse is the time when the restoring force attains 
zero (see Chapter 2), the area of the nonlinear restoring-force characteristic 
from the zero restoring force (applied point of the second impulse) to the 
next maximum displacement umax2 can be evaluated without difficulty. A 
more detailed explanation will be provided in Chapter 2.

Figure 1.7  Critical input timing of second impulse attaining maximum value of 
umax2.
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1.5  COMPARISON OF CONVENTIONAL METHODS 
AND THE PROPOSED METHOD FOR NONLINEAR 
RESONANT ANALYSIS

Table 1.1 shows the comparison of conventional methods and the proposed 
method for nonlinear resonant analysis. In the conventional methods repre-
sented by Caughey (1960a, b) and Iwan (1965), a steady state was treated 
and the analysis of the elastic–perfectly plastic model was impossible because 
of the computational stability. In addition, repetition was required for 
obtaining the convergent values or solving the transcendental equations. On 
the other hand, in the proposed method, both transient and steady-state 
responses can be dealt with. In addition, the analysis of the elastic–perfectly 
plastic model is possible and no iteration is required. Furthermore, the pro-
posed method enables (1) the derivation of closed-form critical response of 
elastic-plastic structures, (2) the capture of the resonant frequency without 
repetition, and (3) the derivation of closed-form expressions on the noncriti-
cal responses of elastic-plastic structures. The detail of these facts will be 
explained in subsequent chapters.

1.6  OUTLINE OF THIS BOOK

In Chapter 1, the motivation of the proposed earthquake energy balance 
approach using impulses is explained. The simplification of fling-step near-
fault ground motions into the double impulse is explained and the 

Table 1.1  Comparison of conventional methods and proposed method for 
nonlinear resonant analysis.

Conventional method
1960, 1961 Caughey, 
Iwan

Proposed method
2015 Kojima and Takewaki

 ① Steady state  ① Transient and steady state
 ② Impossible for elastic–

perfectly plastic
 ② Possible even for elastic–perfectly plastic 

(any bilinear)
 ③ Repetition required 

(equivalent parameters/
resonant frequency)

 ③ No repetition required

<Proposed method enables>

afterward, stochastic 
linearization(transient 
response)

→Closed-form critical response of elastic-
plastic structure

→Derive resonant frequency (impulse 
interval) without repetition

→Closed-form noncritical response of 
elastic-plastic structure based on closed-form 
critical response
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earthquake energy balance approach is introduced for undamped elastic–
perfectly plastic (EPP) single-degree-of-freedom (SDOF) models under the 
critical double impulse.

In Chapter 2, a closed-form expression is derived by using the energy bal-
ance law for the maximum response of an undamped EPP SDOF model 
under the critical double impulse input.

In Chapter 3, a closed-form expression is derived by using the energy bal-
ance law for the critical response of an undamped EPP SDOF model under 
the triple impulse input as a representative of forward-directivity near-fault 
ground motions. Complicated phenomena on the critical response under the 
triple impulse input are investigated. The existence of the third impulse 
brings such complicated phenomena on the critical response.

In Chapter 4, the multiple impulse input of equal time interval is intro-
duced as a substitute of long-duration earthquake ground motions which is 
expressed in terms of harmonic waves. A closed-form expression is derived 
by using the energy balance law for the maximum response of an EPP SDOF 
model under the critical multiple impulse input.

In Chapter 5, the double impulse is introduced as a good substitute for the 
one-cycle sinusoidal wave in representing the main part of a near-fault 
ground motion. A closed-form expression is derived by using the energy bal-
ance law for the maximum deformation of an EPP SDOF model with vis-
cous damping under the critical double impulse. It uses (1) a quadratic 
function to approximate the damping force-deformation relation, (2) the 
assumption that the zero restoring-force timing in the unloading process is 
the critical timing of the second impulse, and (3) the energy balance law for 
the elastic-plastic system with viscous damping.

In Chapter 6, the multi-impulse is introduced as a substitute of the long-
duration ground motion and the closed-form expression is derived for the 
steady-state elastic-plastic response of a bilinear hysteretic SDOF system 
under the critical multi-impulse. While the computation of the resonant 
equivalent frequency of the elastic-plastic system is a tough task in the con-
ventional method dealing directly with the sinusoidal wave (Iwan 1961), it 
is shown that the steady-state elastic-plastic response under the critical 
multi-impulse can be obtained in closed form (without repetition) by using 
the energy balance law and the critical time interval of the multi-impulse 
(the resonant frequency) can also be obtained in closed form for the increas-
ing input level.

In Chapter 7, the double impulse is introduced as a substitute of the fling-
step near-fault ground motion. A closed-form expression for the elastic-plas-
tic response of an EPP SDOF model on the compliant (flexible) ground by 
the “critical double impulse” is derived based on the expression for the cor-
responding EPP SDOF model with a fixed base. It is shown that the closed-
form expression for the critical elastic-plastic response of the superstructure 
enables the clarification of the relation of the critical elastic-plastic response 
of the superstructure with the ground stiffness.
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In Chapter 8, the closed-form expression for the maximum elastic-plastic 
response of a bilinear hysteretic SDOF model under the critical double 
impulse (Kojima and Takewaki 2016a) is extended to a dynamic stability 
(collapse) problem of elastic-plastic SDOF models with negative post-yield 
stiffness. Negative post-yield stiffness is treated to consider the P-delta effect. 
The double impulse is used as a substitute for the fling-step near-fault ground 
motion. The dynamic stability (collapse) limit of the velocity level is obtained 
for the critical input case by using the energy balance law.

In Chapter 9, an explicit limit on the input velocity level of the double 
impulse as a representative of the principal part of a near-fault ground 
motion is derived for the overturning of a rigid block. The energy balance 
law and the conservation law of angular momenta of the rigid block are 
used for describing and determining the rocking response under the critical 
double impulse.

In Chapter 10, because the response of 2DOF elastic-plastic building 
structures is quite complicated due to the phase lag between two masses 
compared to SDOF models for which a closed-form critical response can be 
derived, the upper bound of the critical response is introduced by using the 
convex model. The accuracy of the upper bound is then investigated.

In Chapter 11, an innovative method for optimal viscous damper place-
ment is explained for EPP multi-degree-of-freedom (MDOF) shear building 
structures subjected to the critical double impulse as a representative of 
near-fault ground motions. Simultaneous treatment of nonlinear MDOF 
structures and uncertainty in the selection of input is the most remarkable 
point that has never been overcome in the past.

In Chapter 12, some future directions are explained which include

 1. Treatment of noncritical case
 2. Extension to nonlinear viscous damper and hysteretic damper
 3. Treatment of uncertain fault-rupture model and uncertain deep 

ground property
 4. Application to passive control systems for practical tall buildings
 5. Stopper system for pulse-type ground motion of extremely large 

amplitude
 6. Repeated single impulse in the same direction for repetitive ground 

motion input
 7. Robustness evaluation
 8. Principles in seismic resistant design (constant energy law, constant 

displacement law, law for resonant case)

In particular, application of the proposed approach to more practical situa-
tions will certainly enhance the broad and profound significance of the pro-
posed innovative approach to earthquake structural engineering in nonlinear 
structural dynamics.


