

2D Game Development

with Unity

https://taylorandfrancis.com

2D Game Development

with Unity

Franz Lanzinger

First edition published 2021

by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press

2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Copyright Franz Lanzinger

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot

assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers

have attempted to trace the copyright holders of all material reproduced in this publication and apologize to

copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been

acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or

utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including

photocopying, microfilming, and recording, or in any information storage or retrieval system, without written

permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the

Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are

not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for

identification and explanation without intent to infringe.

ISBN: 978-0-367-34911-0 (hbk)

ISBN: 978-0-367-34907-3 (pbk)

ISBN: 978-0-429-32866-4 (ebk)

Typeset in Minion

by codeMantra

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk

v

Contents

Acknowledgments, xi

Author, xiii

Introduction and Overview, xv

Part I  The Basics of Game Development

Chapter 1    ◾   � First Steps	 3
VISUAL STUDIO	 4

WHAT IS C#	 7

NUMBERS	 7

INTS, FLOATS, AND DOUBLES	 8

RANDOM NUMBERS	 10

NUMBER GAME	 11

IMPORTANT: NOTES FOR MAC USERS	 14

INSTALLING UNITY	 15

Chapter 2    ◾   � Programming C# in Unity	 17
THE DEFAULT C# SCRIPT IN UNITY	 17

NUMERIC DATA TYPES	 20

MATH OPERATORS	 24

BITWISE OPERATORS	 27

MATH FUNCTIONS	 29

MORE C# DATA TYPES	 30

IF AND SWITCH	 33

LOOPS	 35

CLASSES AND METHODS	 37

C# PROGRAMMING STYLE	 38

vi    ◾    Contents

Chapter 3    ◾   � 2D Graphics with GIMP and Unity	 41
INTRODUCTION TO GIMP	 41

BOUNCING DONUTS DESIGN	 46

CREATING A WOODEN PLANK IN GIMP	 47

THREE PLANKS AND A DONUT IN UNITY	 49

Chapter 4    ◾   � 2D Graphics with Blender and Unity	 55
INTRODUCTION TO BLENDER	 55

CREATING THE DONUT BOX IN BLENDER	 56

EXPORTING FROM BLENDER TO UNITY	 68

BOUNCING DONUTS PROTOTYPE: FIRST GAMEPLAY!	 72

Chapter 5    ◾   � The Unity Interface	 75
THE UNITY EDITOR	 75

THE SCENE VIEW	 80

THE HIERARCHY WINDOW	 83

THE PROJECT WINDOW	 84

THE INSPECTOR WINDOW	 86

RENDERING: MATERIALS AND SHADERS	 88

LIGHTS	 90

COLLISION: DONUT VS. SPHERE	 91

CAMERAS	 91

Chapter 6    ◾   � Bouncing Donuts Prototype 2	 95
TITLE SCREEN	 95

SCORING	 102

GAME OVER	 107

IMPROVED DONUT BOX COLLISION	 112

PREFABS	 113

REFACTORING	 114

A SECOND LEVEL	 116

FIVE LEVELS	 120

RELEASE: BOUNCING DONUTS PROTOTYPE 2	 128

Contents ◾ vii

CHAPTER 7 ◾ Sound Effects with Audacity 131
INTRODUCTION TO SOUND IN GAMES 131

INSTALLING AUDACITY 131

MAKING SOUND EFFECTS IN AUDACITY 132

RECORDING SOUND EFFECTS 135

USING SOUND EFFECTS FROM THE INTERNET 136

SOUND EFFECTS PROGRAMMING IN UNITY 138

CHAPTER 8 ◾ Music with MuseScore 143
INTRODUCTION TO MUSIC IN VIDEO GAMES 143

INSTALLING MUSESCORE 144

CREATING YOUR OWN SCORE 144

USING THIRD-PARTY MUSIC 149

IMPORTING MUSIC INTO UNITY 150

CHAPTER 9 ◾ Bouncing Donuts 1.0 153
BUG FIXES 153

SHELVE OR GO ON? 155

RELEASE: BOUNCING DONUTS 1.0 156

POSTMORTEM 156

PART II 2D Game Development from Concept to Release

CHAPTER 10 ◾ 2D Tools in Unity 161
UNITY 2D SETTINGS 161

SPRITES 164

TILES 166

2D SPRITE SHEET ANIMATION 173

2D SKELETAL ANIMATION 177

CHAPTER 11 ◾ Designing a 2D Maze Game 179
FAMOUS MAZE GAMES 180

SETTING UP THE PROJECT 180

PLAYER CHARACTER: DOTTIMA DOT 181

viii ◾ Contents

MAZES AND BACKGROUNDS 184

THE STORY 185

ENEMIES: ROBOTS AND QUESTION MARKS 185

GAME DESIGN DOCUMENT 186

CHAPTER 12 ◾ Building the Level 1 Maze 189
USING GIMP TO MAKE TILES FOR LEVEL 1 189

MAZE LAYOUT IN UNITY 192

CHAPTER 13 ◾ Source Control 197
INSTALLING SOURCETREE, GIT, AND BITBUCKET 197

SOURCE CONTROL WITH SOURCETREE AND GIT 198

REPOSITORIES ON BITBUCKET 201

USING SOURCETREE WITH UNITY 202

CHAPTER 14 ◾ Menus 205
SOURCE CONTROL SETUP 205

MAIN MENU LAYOUT 206

SETTINGS MENU LAYOUT 214

MAINMENU FUNCTIONALITY 217

SETTINGS MENU FUNCTIONALITY 220

CHAPTER 15 ◾ Animating the Player Character 225
SIMPLE PLAYER MOVEMENT 225

WALL COLLISIONS 228

IDLE ANIMATION 229

MOVEMENT ANIMATIONS 232

MAKING THE ANIMATIONS WORK IN THE GAME 237

CHAPTER 16 ◾ Enemies: Using Blender to Make Robot Sprites 241
BOX MODELING IN BLENDER 242

LIGHTING IN BLENDER 254

THE 3D VIEWPORT 257

BLENDER BASIC ANIMATION TUTORIAL 263

ROBOT SWINGING ARM ANIMATION 266

ROBOT WALK ANIMATION 275

Contents    ◾    ix

Chapter 17    ◾   � Making Textured Enemies with Blender	 285
SPIKERS	 285

TEXTURES FOR BLENDER	 292

BLOCKADE	 294

QUESTION MARKS	 300

Chapter 18    ◾   � Enemy Movement and Collisions	 307
DOTROBOT MOVEMENT AND COLLISIONS	 307

SPIKER MOVEMENT AND COLLISIONS	 313

BLOCKADE AND QUESTIONMARK COLLISIONS	 317

Chapter 19    ◾   � Weapons and Projectiles	 321
ARROWS	 321

SHOOTING ARROWS	 329

BOMBS	 336

THROWING BOMBS	 346

ARROWS REVISITED	 352

PARTICLE SYSTEMS IN UNITY	 352

FUSE SPARKS AND EXPLOSIONS	 355

Chapter 20    ◾   � Lives, Level Design, and Old School Scoring	 365
THE UNITY GUI	 365

LIVES	 366

LEVELS	 371

SCORING	 376

LEVEL DESIGN	 379

Chapter 21    ◾   � Sound and Music for DotGame	 385
RECORDING SPEECH	 385

MORE FREE SOUND EFFECTS ONLINE	 386

MORE SOUND EFFECTS IN AUDACITY	 386

SOUND EFFECTS CODING FOR DOTGAME	 388

BACKGROUND MUSIC IN DOTGAME	 393

Chapter 22    ◾   � Cutscenes	 395
AN ANIMATED TITLE SCENE	 395

MORE CUTSCENES	 397

x ◾ Contents

CHAPTER 23 ◾ Testing 399
A BRIEF HISTORY OF VIDEO GAME TESTING 399

TESTING DURING DEVELOPMENT 400

TESTING BEFORE RELEASE 400

CHAPTER 24 ◾ Release 403
RELEASING A UNITY GAME 404

LOCALIZATION 405

GAMES AS A SERVICE 405

THE END? 406

APPENDIX I: GAME DEVELOPMENT GLOSSARY, 407

APPENDIX II: RULES FOR GAME DEVELOPERS, 415

APPENDIX III: GAME DEVELOPMENT CHECKLIST, 417

APPENDIX IV: LEGAL, 419

APPENDIX V: THE C# CODING STANDARD FOR THIS BOOK, 421

INDEX, 423

xi

Acknowledgments

A big thank you to the many people and organizations who made this book

possible.

First and foremost, thank you Atari Coin-Op! That’s where I got my start in the game

industry at the ripe old age of 26 in 1982. Unfortunately, Atari Coin-Op no longer exists,

but the unparalleled influence of that small group of pioneers continues to this day.

A HUGE thank you to the thousands of people who built and continue to build Unity,

Blender, GIMP, Audacity, and MuseScore. This book relies heavily upon their contribution

and generosity for making this valuable software available at no cost to the developer.

Thank you to the millions of players who love games and play them maybe just a little

too much. Without you, none of this would exist, not the games, the game companies, nor

the thousands of jobs and careers in game development.

Thank you to Rick Adams of CRC Press, who has been a real joy to work with.

If I forgot to thank you, please insert your name here. You know who you are.

Finally, thank you Susan for your love and support throughout the years.

https://taylorandfrancis.com

xiii

Author

Franz Lanzinger is an independent game developer, author,

and pianist. He is the owner of Lanzinger Studio located in

Sunnyvale, California. His game development career spans

almost forty years starting with the coin-op classic Crystal

Castles at Atari in 1982 and continuing with Ms. Pac-man

and Toobin’ for the NES, published by Tengen in 1990.

Mr. Lanzinger has been an indie game developer since

1991. He worked on SNES’ Rampart, Championship Pool, and

NCAA Final Four Basketball, as well as Gubble for the PC,

Mac, and Playstation. He is currently working on a remake of

Gubble for PC, Mac and consoles, using Unity and Blender.

In his spare time, he teaches piano and works as an accom-

panist for the Valley Chorale and the Serendipity Choir. Go to franzlanzinger.com for the

latest news about Mr. Lanzinger.

http://franzlanzinger.com

https://taylorandfrancis.com

xv

Introduction and Overview

In this book, you’ll learn to develop 2D games using Unity. 2D Game Development

with Unity combines a practical, hands-on, step-by-step approach with explanations of

the theory behind it all. This book covers the major aspects of 2D game development with

Unity. In addition to Unity, you’ll use Blender and GIMP for graphics creation, Audacity

for sound effects, MuseScore for music, and SourceTree for version control. All of this soft-

ware is free to use, and much of it is open source. If you carefully work through this book,

you’ll learn a great deal. You’ll be ready to make your own original games, whether as a

solo developer, as a contributor to a small team, or as an employee at a large game company.

This book is divided into two parts. Part I explores the tools and theory behind 2D

game development. You’ll make a few small games, and a larger one, to get started. Then,

in Part II, you’ll build a 2D game with many of the features typically found in commercial

games.

You’ll experience the joys and occasional frustrations of game development: The awe-

some feeling of making your character move for the first time, and the pain of thinking

it’s going to work, only that it doesn’t, and you have no clue as to why. It’s all part of the

process, and there’s nothing quite like it.

In the first two chapters, you’ll start with a thorough review of the foundations: math

and coding. You should already know some algebra, geometry, and trigonometry. A back-

ground in calculus and more advanced university level math is not needed for this book,

but it can be very helpful for advanced game development. You should have at least some

coding experience, preferably in some dialect of C. If you’re brand new to coding, you can

still follow along with this book, but you would benefit from learning more about coding

ahead of time before diving into this book.

In subsequent chapters, you’ll explore the creation of art, music, and sound for games.

And, of course, you’ll learn how to use Unity to put all that art, music, and sound together

to make games.

Part II is devoted to making a single, larger 2D game. You’ll learn about coding in C#,

using Unity, creating characters, controlling the characters, GUI creation, debugging,

 testing, and much more.

You are strongly encouraged to follow along and build the games as you’re reading this

book. That is the best way for you to learn. Actually, it’s the only way! All code and game

assets are available for download at franzlanzinger.com, so you don’t really need to type

in the code or draw anything, but you’ll learn much more if you build everything “from

http://franzlanzinger.com

xvi ◾ Introduction and Overview

scratch” along with this book. You’ll also have the opportunity to branch out and do things

a bit differently from this book. That’s the main advantage of doing game development

yourself. You then have total control over your game. Soon you’ll know enough to make

that next awesome, original hit game.

Game development can be a daunting, exciting, and highly rewarding endeavor. There’s

a lot to learn, and some aspects may seem difficult at first. Don’t let that stop you! It’s

incredibly fun and satisfying, so go and make some games!

1

I
The Basics of Game Development

https://taylorandfrancis.com

3

C H A P T E R 1

First Steps

In this chapter, you’ll take your first steps as a game developer. You’ll install Visual

Studio and Unity. You’ll explore C# and some basic mathematical concepts. Best of all,

you’ll make your first game, a simple game in Visual Studio. Your goal is to learn how to

use these game development tools. There’s no better way than to dive right in and make

something with them.

This book was written to let you follow along with a series of steps. By doing this, you

will experience firsthand what it’s like to be a game developer. There are hundreds of

 numbered steps in this book, requiring you to pay very close attention and to do them in

order, one by one. Many of the step descriptions are followed by additional explanations,

descriptions, or screen shots.

You’ll need to have access to a PC or Mac to follow along with the steps in this book.

Your system needs to meet the development system requirements for Unity. In January

2020, the Unity company released the 2019.3 version of Unity. That is the version used for

this book. Here is a summary of the system requirements for that version of Unity:

• OS: Windows 7 and Windows 10, 64-bit versions only; macOS 10.12.6+.

• CPU: X64 architecture with SSE2 instruction set support.

• Graphics API: DX10, DX11, and DX12-capable GPUs. Mac Metal capable.

Look at unity.com for details. While not strictly necessary, it’s highly recommended that

you have at least 1920 × 1080 resolution for your screen. A multiple monitor setup with a

fairly recent graphics card is a good idea in order to enjoy Unity even more. If you don’t

have multiple monitors, the use of Virtual Desktops in Windows, or Mission Control on

your Mac, is a worthwhile alternative.

If your system meets the requirements listed above, it will also meet the requirements

for the other software used in this book. And yes, you’ll need fairly fast internet access, the

faster the better. Some of your downloads will be large and time consuming, but once your

software is installed, you’ll be able to work on your game without internet access.

http://unity.com

4 ◾ 2D Game Development with Unity

If you’re like most game developers, you’ll have access to several systems, old and new,

laptops and desktops. Your older laptops may not be compatible with Unity, but they can

likely be used for doing Visual Studio projects and for the creation of graphics, sound, and

music. They may be good enough for testing your games. Testing on older systems is an

important facet of game development if you intend to distribute your game for play on PCs

or Macs.

This book focuses on the development of games for PCs and Macs. Unity got its name

from its ability to create games once and deploy them to many targets such as desktops,

consoles, and mobile devices. All games in this book will run on PCs and Macs, and most

of them can be modified to run on consoles and/or mobile devices with some effort. The

process of taking a game from an existing platform to another one is called porting. Porting

is easy in Unity when compared to writing your own game engine and getting it to work

on all of your target platforms. Each platform has a long list of specific requirements, espe-

cially if your goal is to produce a commercial release. The number of supported platforms

for Unity stands at 25 as of 2020. You’ll need to do your own research on the current details

of porting to, and developing for your intended target platforms.

It’s easier to learn the basics of C# inside of Visual Studio rather than Unity. You’ll want

to have Visual Studio installed anyhow when using Unity, so in the next section you’ll

install Visual Studio.

VISUAL STUDIO
Visual Studio is Microsoft’s suite of development tools. It supports a plethora of lan-

guages, among them C#. In this section, you’ll install the free version of Visual Studio.

The Visual Studio 2019 community edition can be downloaded at visualstudio.microsoft.

com. Go ahead and install this. Under Workloads select “Universal Windows Platform

development.” On a Mac, follow the specific instructions for Mac installation. This is

a somewhat large install, so be sure you have enough disk space and time to download

and install.

To test out whether the install worked, the first step is always to write a “Hello World!”

program. This is a minimal program that only displays the text “Hello World!”.

 <Step 1> Run Visual Studio 2019 Community Edition.

 <Step 2> Sign in or create a Microsoft Account, if necessary. This is only needed the first

time you run Visual Studio.

 <Step 3> Click on “Create a new project” in the Get started panel, as shown in Figure 1.1.

On a Mac, this interface looks different, but you’ll also see a way to create a

new project.

 <Step 4> Click on “Language” and select C#.

 <Step 5> Click on C# Console App (.NET Framework) or (.NET Core). Compare your

screen with Figure 1.2.

http://visualstudio.microsoft.com
http://visualstudio.microsoft.com

First Steps ◾ 5

FIGURE 1.1 The Get started panel in Visual Studio 2019.

FIGURE 1.2 Creating a new project in Visual Studio 2019.

6 ◾ 2D Game Development with Unity

 <Step 6> Click on Next.

 <Step 7> Enter Project Name “Hello World”.

On a Mac, use the project name “HelloWorld”. On a Mac, project names may

not contain spaces, nor can you have an exclamation mark.

 <Step 8> Optional: Enter a project location.

This would be a good time to set up a folder for all the projects for this book.

It’s up to you to name and create that if you wish.

 <Step 9> Click Create.

 <Step 10> Add this line of code inside the Main function:

Console.WriteLine("Hello World!");

Your screen should now look similar to Figure 1.3.

On a Mac, you won’t have to type in the Console.WriteLine line of code, as

it’s there already. Also, there’s only a single “using” line.

 <Step 11> Control-F5 to compile and run it.

This step automatically saves your work, compiles it, and runs it. When run-

ning the console app, a popup window appears and prints “Hello World!” in

the window followed by “Press any key to continue . . .”. And before you go

hunting for the “Any” key on your keyboard, just press the spacebar. There is no

FIGURE 1.3 Hello World program in Visual Studio.

First Steps ◾ 7

“Any” key on your keyboard. Search for “any key video” online for some very

funny videos about this dilemma.

 <Step 12> Exit.

You’re now ready to use Visual Studio 2019. In the next few sections, you’ll

learn the basics of C# and make a simple game using Visual Studio.

WHAT IS C#
C# (pronounced C Sharp) is the programming language used in this book and by Unity.

C# is one of the many descendants of the granddaddy of them all, C. As of 2019, C# is

one of the top programming languages in terms of both job demand and popularity.

As a side benefit to reading this book, you’ll learn the basics of C#, and programming

in general.

To get started with game development, it is helpful to first learn your programming

 language well enough to do the job. C# is a large language, but only a relatively small subset

of C# is necessary to make games in Unity.

Basic computations often look identical in C and C#. For example, the following code

runs and produces the same result in both languages:

 int i;
 int x = 0;
 for (i=0; i<10; i++)
 {
 x = x + i;
 }
 // the value of x is 45 at the end of this computation.

Before learning more about C#, you’ll start by examining different kinds of numbers and

how they are represented on computers.

NUMBERS
Numbers are the fundamental entities for Computer Game Development. Graphics, sound,

and game logic are all represented by numbers in a computer game. In this section, you’ll

review some of the different types of numbers in mathematics and then look at how they

are represented on your computer and in C#.

Here are some common types of numbers in mathematics: natural numbers, integers,

rational numbers, real numbers, and complex numbers. Let’s examine each of them.

Natural numbers are used for counting things. They start at one, so zero isn’t considered

a natural number. Mathematicians view numbers as unlimited. There is no such thing as a

largest natural number. The set of natural numbers is infinite.

Integers introduce the concept of negative number. They are used for counting things

that could possibly be zero or negative, such as a bank balance, for example.

Rational numbers are numbers of the form a/b with a and b integers, where b must

be non-zero. Examples are 1/3, 12/35, –1/1000, 34/–1. Decimal numbers such as 10.43 are

a special category of rational numbers because they can always be written as a rational

 number, for example 10.43 = 1043/100.

8 ◾ 2D Game Development with Unity

Real numbers are numbers with a possibly infinite number of decimal digits, such

as pi = 3.1415926… or the square root of 2 = 1.4142… Real numbers are important for

advanced mathematics, but because of their infinite nature, they cannot be directly

 represented on computers. Some real numbers are called irrational as they cannot be

 represented as a rational number, for example the aforementioned square root of 2.

Complex numbers are numbers of the form a + bi, where a and b are real numbers and

i is the square root of –1. Complex numbers are rarely used in game development, but are

commonly used in advanced mathematics.

It is important to distinguish between numbers in mathematics and numbers in

 computer programs. In mathematics, there is no upper limit for the size of numbers, but on

a computer, the fixed amount of available memory requires a limit on the size of numbers.

The next section shows the implications of this in C#.

INTS, FLOATS, AND DOUBLES
In this section, you’ll explore three types of numbers in C#. Here’s an example:

 int i = 17;
 float x = 17.0f;
 double y = 17.0;

What we have here is the number 17 represented in three different ways. The first is as

an int, the second as a float, and the third as a double. You would call all of these “sev-

enteen,” but on your computer, they are represented in three very different ways. The

int version is a 32-bit integer, stored in four consecutive bytes as 0x00000011. That x

stands for hexadecimal. The float version also uses up 32 bits, but it’s a different bit pattern:

0x41880000. The double version uses 64 bits stored in eight consecutive bytes as follows:

0x4031000000000000. You don’t need to understand the details of how this works, just

that floats and doubles are stored in this way. Game developers tend to use 32-bit integers

and floats, mainly because they are adequate for most games as well as faster and more

space-efficient than the alternatives.

Notice the letter f at the end of the float 17. That is the way you tell C# that the number

is a float rather than a double. When coding in Unity, this distinction becomes important

as you will see later on in this book.

It’s time to experiment with these numbers by writing some code using ints, floats, and

doubles.

 <Step 1> In Visual Studio, create a new C# console project and call it NumberTest.

 <Step 2> Insert the following code into Main:

int i = 17;
float x = 17.0f;
double y = 17.0;
Console.WriteLine("i={0},x={1},y={2}", i, x, y);

If you’re on a Mac, you can leave the Hello World! line at the beginning.

First Steps ◾ 9

 <Step 3a> For Mac users only: Visual Studio – Preferences – Key Bindings – Scheme.

Select Visual Studio (Windows). Click on OK.

This will make your keyboard shortcuts the same as for Windows. For

example, to save a file is <Ctrl> S rather than <command> S. In this way, the

keyboard shortcuts mentioned in this book work both on Windows and on

Macs. You may use the Mac Key Bindings instead if you prefer those, but then

you won’t match the book’s instructions in a few places. Be aware that this

setting applies to Visual Studio only, so on other applications such as Unity or

Audacity you’ll be using <command> instead of <Ctrl>.

 <Step 3b> Run NumberTest using <Ctrl>-F5. The output from this should be

i=17,x=17,y=17
Press any key to continue . . .

This really simple exercise shows how to declare variables, assign values to

them, and then to access those values in a Console.WriteLine statement.

All three variables show 17 as their value. Next, you’re going to do some

 computations with those numbers.

 <Step 4> Insert the following code at the end of Main after the existing Console.
WriteLine statement:

i = i + 1;
x = x * 2;
y = y / 3.0;
Console.WriteLine("i={0},x={1},y={2}", i, x, y);

 <Step 5> Again, run the code using <Ctrl>-F5. The output from this should be

i=17,x=17,y=17
i=18,x=34,y=5.66666666666667
Press any key to continue . . .

The variable i is one larger, x got doubled, and y divided by 3. y isn’t really

17/3 but rather a close approximation. Because y is declared as a double, it

has about 15 significant digits.

 <Step 6> Change the declaration of y to float and run the program again.

You probably got two errors when you did that. That’s because you also need

to add an f at the end of the 17.0 in the declaration, and the 3.0 in the divi-

sion. You are also seeing the location of the errors underlined in red. To see the

error messages, on a Mac, click on the red error message on top. On a PC, look

at the Error List in the panel at the bottom. You may need to expand the Error

list panel by dragging the boundary up.

Visual Studio can be helpful for avoiding C# coding errors. It won’t catch

all coding errors right away, but if you see a red squiggly underline in the code

editor, chances are high that you goofed. It’s useful to know that hovering the

mouse over a squiggly red line will pop up a short explanation.

10 ◾ 2D Game Development with Unity

 <Step 7> Fix the errors by adding f ’s after the constants and try again.

The value of y is now 5.666667. The number of printed digits for y is now

7 instead of 15 because you have only 32 bits instead of 64 bits available to

store the number. You’ll now move on and test out some additional ways to do

 computations in C#.

 <Step 8> Add the following code to Main:

double z;
i = 17 % 12; // remainder function
x = (float)i + 3.0f; // casting an integer to a float
z = Math.Sqrt(2.0); // square root of 2
y = 1.0f / (float)Math.Sin(Math.PI * 0.25); // sqrt(2)
Console.WriteLine("i={0},x={1},y={2},z={3}", i, x, y, z);

Then run it and compare your results with this:

i=5,x=8,y=1.414214,z=1.4142135623731

Try to understand what’s going on here. The variable i is computed as the

remainder of dividing 17 by 12, thus 5. The expression (float)i converts

the integer i to a float. This is called casting. The variable z, a double, is used

to store the result of the built-in Math.Sqrt function. The Math functions

use doubles, so if your code primarily uses floats, you’ll often need to cast the

results of Math functions to floats as indicated in the computation for y. That

strange expression to compute y also results in the square root of 2. Oh, and the

letters after the double slashes are comments and are ignored by C#.

 <Step 9> Save your project.

You have just experienced one of the basic principles of good programming

practice. Writing small bits of test code to try out features of a programming

language is the best way to learn to use these features. You can freely experi-

ment and even try to break things. When you’re comfortable with your test

code and fully understand it, you’ll be ready to use what you learned in your

actual project.

You’re now ready to tackle the next topic, random numbers.

RANDOM NUMBERS
In this section, you’ll learn about random numbers in game design. Random numbers

have been used in computer games since the very beginning. They are essential for any

game with random elements such as shuffling a virtual deck of cards, slot machines,

dice, and procedurally generated data. They are also great for fooling your players into

thinking that you created sophisticated AI, when in fact your creatures just got lucky

and acted smart.

The first thing to realize is this: Random numbers on computers aren’t really random.

They are generated using a deterministic algorithm which generates a sequence of num-

bers that appear to be random. The numbers appear random because these sequences pass

certain statistical tests, but under the hood, they aren’t random at all. It is possible to build

First Steps ◾ 11

hardware that generates truly random numbers, but this is actually a bad thing for soft-

ware development. You want to be able to recreate your “random” number sequence for

testing purposes.

This brings us to the concept of a seed. Computer generated pseudo-random number

sequences start with a seed, which is just another word for the first number in the ran-

dom sequence. The random number algorithm computes each number in the sequence

using only the previous number as input. If you want to recreate the same sequence, you

simply start with the same seed. If you want a different random sequence compared to

the last time you executed the program, you start with a different seed. Commonly used

techniques to make these random numbers seem more random are to base the seed on the

system clock or to increment the seed from game to game. Feel free to search the internet

for additional discussions about randomness and random number generators.

In the following project, you will explore how to create and use random numbers in

your C# based games.

 <Step 1> In Visual Studio, create a new C# console project with the name “RandomTest”.

 <Step 2> Enter the following code to Main and run it multiple times:

Random rnd = new System.Random();
int randomnumber = rnd.Next(1,10);
Console.WriteLine("randomnumber = {0}", randomnnumber);

It’s highly likely that you will see different numbers on subsequent program

executions.

This code needs some explanation. The first line creates a new random

 number generator and you called it “rnd”. The rnd.Next call returns a random

number between 1 and 10. The result will be greater than or equal to 1, but

strictly less than 10.

 <Step 3> Go and insert a seed number into the System.Random() call like this:

Random rnd = new System.Random(42516);

Now, when you run the code, you’ll get the same output every time because the

seed is the same.

In the next step, you’ll generate random doubles.

 <Step 4> Remove the seed, then insert the following code:

double randomdouble = rnd.NextDouble();
Console.WriteLine("randomdouble = {0}", randomdouble);

You should see random doubles greater than or equal to 0.0 and less than 1.0.

NUMBER GAME
This is a book about game development, so it’s about time for you to make your first game.

This is a simple number guessing game. There’s not much to the design, but don’t let that

fool you. It’s not going to be all that easy.

12 ◾ 2D Game Development with Unity

The core of the design is this: The game asks the player to guess an integer between 1

and 10 inclusive. The “inclusive” means that 1 and 10 are valid guesses. If the player guesses

correctly, he wins. If not, the game gives a hint about the number. If the player guesses too

low, the game prints “higher,” or else “lower.” Then, the player gets to try again.

This game is simple enough that you won’t need to use Unity. A small Visual Studio

Console app written in C# is perfectly adequate.

 <Step 1> Create a Visual Studio console app named “NumberGuess”.

 <Step 2> Add code which prints a message that asks the player to guess a number, then

exits. Run your code.

Here comes the most important lesson in this book. Are you ready? If

you learn nothing else, learn this: Write your code one small piece at a time,

and immediately test each piece before you go on to create the next one. This

isn’t a game at all yet, just a console app that prints some text and exits. It’s

 basically Hello World with different text. The book doesn’t tell you right

away how to code this. Here’s your chance to show that you remember how

to do this. Or, if you don’t remember how to output text in C#, you can

look it up from a previous code listing in this book. Your code should look

 similar to this:

static void Main(string[] args)
{
 Console.WriteLine("Guess the number from 1 to 10: ");
}

Next, you’ll generate the number that the player needs to guess.

 <Step 3> Put in code that generates a random integer from 1 to 10. Do this before asking

for the guess.

Here is the code for this step:

static void Main(string[] args)
{
 Random rnd = new Random();
 int number = rnd.Next(1, 10);
 Console.WriteLine("Guess the number from 1 to 10: ");
}

Well, this code runs, but it appears to execute the same way as the previous ver-

sion. To help test it you’ll temporarily put in a WriteLine statement so you can

see the value of number.

 <Step 4> Insert the following statement immediately after the rnd.Next statement:

Console.WriteLine("number = {0}",number);

You can now run the code and check that the number being generated is indeed

between 1 and 10. There is one problem though. How do you know that all the

possible numbers 1, 2, 3, …, 8, 9, 10 are being generated with equal frequency?

Here is some code that checks this:

First Steps ◾ 13

for (int i = 1; i <= 10; i++)
{
 int counter = 0;
 for (int j = 1; j < 1000; j++)
 {
 number = rnd.Next(1, 10);
 if (number == i) counter++;
 }
 Console.WriteLine("Frequency of {0} is {1} out of 1000",
 i, counter);
}

When you run this code, you’ll see a problem. The frequency for the numbers

from 1 to 9 is about 100, but 10 has a frequency of 0. The problem lies with the

rnd.Next(1,10) statement. It generates random numbers between 1 and 10,

but not 10 itself. To fix this, you need to change the 10 to an 11. Now when you

run the code everything looks good and you may remove the test code. Because

you hate to throw this code away, you do the following. Instead of deleting it,

comment it out by surrounding it with /* and */.

You’re finally ready to move on and do the next step.

 <Step 5> Insert the following code:

int guess;
bool valid;
valid = Int32.TryParse(Console.ReadLine(), out guess);
if (valid) if (guess == number)
{
 Console.WriteLine("You Win");
 return;
};
Console.WriteLine("You Lose");

This code lets the player enter one string, and if it matches the random number

the player wins, otherwise he loses. Then the game exits. This code introduces

several new C# concepts.

The variable valid is declared to be bool. A bool (pronounced Boolean

after George Boole) has just two possible values, true or false. The next line

reads a string from the console, converts it to a 32-bit integer, and stores the

result in the variable guess. If the players enter an invalid input the TryParse

call fails and returns false. Otherwise the code compares the guess with the

number and if they are equal the player wins.

As you can see, it took quite a bit of code to deal with something as simple

as getting an integer from the player and testing it, but that’s the nature of pro-

gramming. In coding, things are often quite a bit more difficult that you might

at first expect. This is why it’s so very difficult to predict the time it’ll take to

program something, even if it’s very simple.

To make matters worse, the game isn’t even done yet. There’s still the matter

of looping back to the beginning to give the player additional chances at guess-

ing the number. You also need to add code to explain to the player what went

wrong when the input isn’t a valid number.

14 ◾ 2D Game Development with Unity

 <Step 6> Replace the code after the declaration of valid with this:

while (true)
{
 valid = Int32.TryParse(Console.ReadLine(), out guess);
 if (valid) if (guess == number)
 { Console.WriteLine("You Win"); return; };
 if (!valid)
 {
 Console.WriteLine("Invalid input, try again");
 continue;
 }
 if (guess<number)
 Console.WriteLine("too low, please try again");
 else
 Console.WriteLine("too high, please try again");
}

Congratulations! You reached your first major milestone, the first playable ver-

sion of your first game! You’re almost finished with the game, and it’s playable.

It’s not really fun, but that doesn’t matter right now. Your goal was to learn how

to create a simple, playable game.

The next step will fix the most glaring problem: the code tells you what the

number is that you’re trying to guess, but that surely makes the game way too

easy.

 <Step 7> Remove the output of number. Then play the game and try to win.

Now you’re getting somewhere. It’s no longer totally obvious how to win.

Rather than continue the development of this game, it’s time to wrap things up

by putting in a quick title.

 <Step 8> Add the following line at the beginning of Main:

Console.WriteLine("Number Guess");

You’re going to shelve this game now. It’s just a small exercise on your way to

making games in Unity.

 <Step 9> Save and exit Visual Studio.

IMPORTANT: NOTES FOR MAC USERS
If you are following along with this book on a Mac, here are some important notes.

Macs can be wonderful development machines, so by all means, continue to use your

Mac if that is your preferred computer. You can skip this section if you’re only using

Windows.

All of the software tools used in this book are available both for Windows 10 and for

Mac OS. There can be slight differences between Mac and Windows versions, but for the

most part they are close to the same. The devil lies in the details. The keyboard short-

cuts are different sometimes, and the screenshots do not match exactly, or in some rare

instances not at all.

From here on in, this book will usually assume that you’re using Windows. You can still

follow along on your Mac, but you will need to adjust the keyboard shortcuts, and you’ll

First Steps ◾ 15

have to live with the slightly different screen shots. Occasionally, the Menu structures are

different, but the same set of choices is always available. It helps to use the same software

version numbers as the corresponding Windows version number recommended in the

book. Also, be sure to go to www.franzlanzinger.com for the latest compatibility notes and

additional help for Mac users.

INSTALLING UNITY
In this section, you’ll install Unity and take it for a quick spin. Go to www.unity.com and

install the Personal, Plus, or Pro edition of version 2019.3.0f6. You’ll need to check the

financial eligibility conditions to see which version you are eligible to use. This book is

compatible with all three editions. This book was produced and tested with the Personal

Edition, version 2019.3.0f6. Check the author website www.franzlanzinger.com for the lat-

est compatibility information if you are interested in following along with this book using

a different version of Unity.

This book was originally developed on Windows. The screen captures were done on the

author’s 4K monitor running Windows 10. On a Mac, your screen might look a little dif-

ferent from the corresponding Windows screen captures. Also, make sure to read or reread

the previous section for Mac users. Note that the author tested on a 2015 iMac using Unity

Version 2018.2.8f1, which is similar but not exactly the same as Windows Unity 2019.3.0f6.

See the author website for more details about this.

Unity is a real-time development platform for making games and similar applications

for a wide variety of targets. With Unity, you can develop for PCs, Macs, game consoles,

VR, and mobile devices. The name “Unity” implies that you can develop your game once

and then deploy it to many platforms. It is without a doubt the world’s most popular game

engine with half of all released games developed using Unity, according to a rough estimate

by Unity’s CEO in 2018. Only a few very large game development studios take the plunge

and write their own game engines for their games.

Now that you’ve installed Unity your logical next goal will be to create a “Hello World”

project. This will be quite a bit different from the Hello World project for Visual Studio.

No coding will be necessary. You’ll simply add a GUI object with the text “Hello World.”

Follow the next few steps to do this:

 <Step 1> Run the Unity Version that you just installed, click on New. Use the name

HelloUnity. Choose the 2D Template, select Location, Create Project. Wait

about a minute or two.

 <Step 2> GameObject – UI – Text. Set Pos X and Pos Y to 0 in Inspector Panel.

 <Step 3> Play the game by clicking on the Play arrow, middle top of the window.

You should see a blue screen with “New Text” in the middle. This “game” is

just a static screen.

 <Step 4> Stop playing the game by clicking the Play arrow again, and then change the

text from “New Text” to “Hello World!” in Inspector panel.

http://www.franzlanzinger.com
http://www.unity.com
http://www.franzlanzinger.com

16 ◾ 2D Game Development with Unity

 <Step 5> Play and then stop.

 <Step 6> File – Save. File – Exit. (On a Mac it’s Unity – Quit.)

Special instructions for Mac users may not be there in the remainder of the

book. Please read the previous section for Mac users if you haven’t done so

already.

In the next chapter, you’ll learn more about how to code in the Unity

 environment using C#.

17

C H A P T E R 2

Programming C# in Unity

This chapter covers the basics of programming C# in Unity. In each section, you’ll

create a small Unity project. Those projects explore some C# programming features as

well as how to use them in Unity. This book focuses on those portions of C# necessary for

coding games in Unity. C# as a whole is a much larger language. You’ll be just fine learning

a smaller subset and sticking with it as you work through the rest of this book. In the more

distant future, when you become more experienced as a game developer, you may wish to

learn more advanced C# techniques.

THE DEFAULT C# SCRIPT IN UNITY

 <Step 1> Create a 2D project in Unity and use “DataTypes” as the name.

You can use the Unity Hub to do this. In the hub you select which version of

Unity you’ll be using. It is recommended that you use 2019.3.0f6 so that you’re

using the same version as the one used during the creation of this book. Using

a more recent version will probably work, but there may be minor differences.

Creating a new Unity project may take some time, possibly a minute or two

depending on your system.

 <Step 2> Edit – Preferences… – External Tools – External Script Editor. (Unity –

Preferences on Mac.)

This step may be unnecessary for you. If necessary, select Visual Studio

2019 (Community). As mentioned earlier, this book assumes that you’re using

Visual Studio as your code editor.

 <Step 3> Layout – Revert Factory Settings…

This dropdown menu is at the top right corner of the Unity Editor window.

Your screen should look like Figure 2.1.

18 ◾ 2D Game Development with Unity

 <Step 4a> In the Project panel, click on the + icon below the Project tab. Then click on C#

Script. Type DataTypesTest and <Enter> (<Return> on Mac) to name it.

 <Step 4b> Expand the SampleScene in the Hierarchy by clicking on the small triangle to

the left of the bold text.

 <Step 4c> Drag the newly created script from the Assets panel on top of the Main Camera

in the Hierarchy panel.

 <Step 5a> Left-click on DataTypesTest in the Assets panel to select it.

Your screen should look like Figure 2.2.

In the Inspector panel on the right, in the Assembly Information section, you

see the current contents of the script. Your next step allows you to edit this

script in Visual Studio.

 <Step 5b> Double-click on DataTypesTest in the Assets panel.

You should see Visual Studio 2019 open as a separate window. If you’re doing

this for the first time, this might take a minute or so. If you have a multi-mon-

itor setup, this would be a good time to move the Visual Studio window to

another monitor. In Windows, the Visual Studio window should look similar

to Figure 2.3.

The Mac display is somewhat different, but it works similarly.

For the rest of this book, code won’t be displayed as a graphic figure, but as text:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

FIGURE 2.1 Unity Screen Default Layout.

Programming C# in Unity ◾ 19

FIGURE 2.2 Creating a script in Unity.

FIGURE 2.3 Visual Studio showing the DataTypesTest script.

20 ◾ 2D Game Development with Unity

public class DataTypesTest : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {

 }
}

The colors of the text may or may not match your screen. Using different colors for differ-

ent types of code entities is called Color-Coding. Color-coding the C# code in Visual

Studio is a useful automatic feature to help programmers make sense of it all and to help

prevent bugs. Before you move on, you’ll examine this script line by line.

At the beginning are three lines that start with using. These lines are examples of

using directives. These directives give you access to objects in System.Collections,
System.Collections.Generic, and UnityEngine. You can safely ignore these

directives for now, but you do need to have them at the top of all of your Unity C# files.

Before you continue your exploration of this file, you need to review your knowledge

of animations and frames. Unity is designed to create animations on the various sup-

ported target devices. Animations are a sequence of frames. Each frame is a graphic image

designed to be displayed quickly and in sequence. Movies usually run at 24 frames per

second, television broadcasts typically at 25 or 30 frames per second. Video game frame

rates vary. They look good at 60 frames per second, though 30 or a bit less is considered

acceptable depending on the type of game. Unity renders frames at a target framerate. The

default target framerate depends on the device. You can control this in code if you wish.

It’s time to return to examining the default file. After the three “using” directives, you

see the class definition DataTypesTest with two methods: Start and Update. The

Unity engine renders some number of frames each second. The Start method is called

some time before the first frame is rendered. The Update method is automatically called

once per frame. These methods contain no statements, so they don’t do anything yet. They

are there to speed up your editing later on when you insert code into them. If you know

you’ll never need them, it’s safe to delete them.

A note about the terminology for methods vs. functions: In this book, the words

“method” and “function” are used interchangeably. The word “function” sometimes desig-

nates a method that returns a value. For example, in mathematics, the square root function

takes a nonnegative number as input and returns the square root of that number. The offi-

cial term in C# is “method” but it’s OK to call methods “functions” whether they return a

value or not. When a method doesn’t return a value, it is declared with the keyword void.

NUMERIC DATA TYPES
In this section, you’ll explore some of the numeric data types in C#. Examples of numeric

data types are bytes, 32-bit integers, and floating point numbers. A good overview of all of

Programming C# in Unity ◾ 21

the data types for C# can be found at docs.microsoft.com. The C# section of that website is

a valuable reference resource straight from the company that created C#. That documenta-

tion is intended for experienced software engineers, so you may want to stay away if you’re

a beginner.

You’ll start by looking at the eight integer data types: sbyte, short, int, long, and

their unsigned cousins: byte, ushort, uint, and ulong. The code in the following

steps tests these data types. You will use the Console window to look at the output of your

code. You open it by selecting Window – General – Console in the Unity window.

 <Step 6> In the Visual Studio window, insert the following code in Start, <Ctrl> S to

save, open the Console window if necessary, and click play.

int i = 17;
Debug.Log($”i={i}”);
i = 2+2;
Debug.Log($”i={i}”);

In the Console window you should see the following output:

i=17
i=4

You might see additional text in the Console window, including a time stamp,

for example, or additional information about each line.

 <Step 7> Stop playing the game by clicking on the play arrow again.

It can sometimes be difficult to know whether or not a game is playing.

When in doubt, look at the play arrow at the top of the Unity window. The

play arrow has a dark background when the game is playing, and a light gray

background when it’s not.

The Unity Console window may start out as a detached window or as a panel

next to the Project panel. In the following steps, you’ll try out some of the fea-

tures of the Console window (or panel).

 <Step 8> Clear the Console window by clicking on the “Clear” tab of the Console

window.

 <Step 9> Deselect Clear on Play in the Console window if necessary.

 <Step 10> Run and stop the game several times.

You should get additional output in the Console every time you run the

game.

 <Step 11> Select Clear on Play and then repeat Step 10.

This time the console clears every time you run the game, and then the

Start method outputs the same text. The result is that the console appears to

do nothing.

 <Step 12> Insert the following lines:

 string Timenow = System.DateTime.Now.ToString();
 Debug.Log(Timenow);

http://docs.microsoft.com

22 ◾ 2D Game Development with Unity

When you run the game multiple times, you’ll see the output change slightly

where it displays the seconds in the Timenow string.

You’re ready to get back to exploring numeric data types.

 <Step 13> Replace the Start method with the code below, and then test it.

void Start()
{
 sbyte b_int;
 short s_int;
 int i_int;
 long l_int;

 b_int = 17;
 s_int = 17;
 i_int = 17;
 l_int = 17;

 Debug.Log($"b_int={b_int}");
 Debug.Log($"s_int={s_int}");
 Debug.Log($"i_int={i_int}");
 Debug.Log($"l_int={l_int}");
}

There’s not much to this code yet. Your next goal is to break it in various ways.

This is the best way to experience how your development environment deals

with errors. You’ll also gain a better understanding of these data types along

the way, which is, after all, your real goal.

 <Step 14> Replace the first 17 with 1000.

You’ll immediately get an error in Visual Studio: Constant value '1000'

cannot be converted to a 'byte'. That’s because the range of valid

numbers for unsigned bytes is 0 to 255. Below is a table which shows the valid

number ranges for the eight integral types in C#:

It’s helpful to understand this table. This will allow you to make an informed

decision when selecting which of the integral data types to use in your projects.

 <Step 15> Replace 1000 with 128, then with -128. Test this.

128 is too high for sbyte, -128 is OK. Notice that you get the error directly

in the Visual Studio Editor before even running the game. You can test the

other data types in a similar manner if you wish.

Data Type Bytes Lower Limit Upper Limit

Byte 1 0 255

Sbyte 1 −128 127

Ushort 2 0 65,535

Short 2 −32,768 32,767

Uint 4 0 4,293,967,295

Int 4 −2,127,483,648 2,147,483,647

Ulong 8 0 18,446,744,073,709,551,615

Long 8 −9,223,372,036,854,775,808 9,223,372,036,854,775,807

Programming C# in Unity ◾ 23

 <Step 16> Insert the following lines and test them:

 i_int = 2000000000;
 i_int = i_int * 2;

That big number is 2 billion, i.e. 2 followed by nine zeros. You might expect

4000000000 as the result of that computation, but instead you get −294967296,

which is clearly very wrong. This is an example of overflow. 32 bits are just not

quite enough storage to represent 4 billion. The next step shows how to fix this.

 <Step 17> Replace those last two lines with this:

 l_int = 2000000000;
 l_int = l_int * 2;

You now should get the expected result of 4000000000 because the variable

l_int is declared as a long. C# does have a feature that enables overflow check-

ing. With that feature enabled, you will get an error when an overflow occurs.

This feature is generally not used by programmers because it’s a little bit slower,

but it can be useful when searching for bugs. Search for “overflow detection

C#” in the C# language specification for more details.

As a general rule, using the int data type is a reasonable choice for represent-

ing integers. It’s unusual to have to count anything that reaches more than 2

billion. The int data type is probably faster than long and it uses half the stor-

age. The short and byte data types are rarely used except when storing large

arrays where the storage savings can be significant. The unsigned integral data

types are often used when storing bit patterns.

Next, you’re now going to look at floating point numbers. C# has two data

types for this, float and double. Here is the data type table for floating point

numbers in C#:

 <Step 18> Insert the following code into the Start method, and then test it:

 float x;
 double y;

 x = 2;
 y = 3;

 Debug.Log($"x = {x}");
 Debug.Log($"y = {y}");

There’s not much going on here. You’re displaying a float and a double.

 <Step 19> Set x and y to different values as follows, then test.

 x = 2.1f;
 y = 3.1;

Data Type Number of Bytes Approximate Range Precision

Float 4 ±1.5 × 10−45 to ±3.4 × 1038 6–9 digits

Double 8 ±5.0 × 10−324 to ±1.7 × 10308 15–17 digits

24 ◾ 2D Game Development with Unity

The x value now needs an f. In C#, when specifying a float like this it’s nec-

essary to append the letter f at the end, as you will see in the following step.

 <Step 20> Remove the f from 2.1f and see what happens.

You immediately get an error in Visual Studio. You’re likely going to see this

error in the future because it’s easy to forget to type that f when entering code.

Unity uses floats for most of its built-in data structures, but the default floating

point data type in C# is double.

The next steps do some simple computations with integers and floating point

numbers. It’s good for you to understand this code before going on to writing

actual games.

 <Step 21> Insert and test:

 // Conversion from int to float
 Debug.Log($"i_int={i_int}");
 x = i_int;
 Debug.Log($"x = {x}");

 // Conversion from float to int
 x = 3.14159f;
 i_int = (int)x;
 Debug.Log($"i_int = {i_int}");

When converting ints to floats and vice versa, you can just do an assignment

statement for int to float, but you need to do a cast when converting from

float to int. A cast looks like this: (data type) and it will explicitly convert

the following expression to the data type within the parentheses. The next step

shows more casting in action:

 <Step 22> Insert and test:

 x = (float)(3.3 * 5.7);
 Debug.Log($"x = {x}");

 i_int = (int)(3.3 * 5.7);
 Debug.Log($"i_int = {i_int}");

 x = (float)3 / (float)(2 + 5);
 Debug.Log($"x = {x}");

You should get 18.81 for x, 18 for i_int, and then 0.4285714 for x. The

first computation takes the double 3.3, multiplies it by the double 5.7, and

then converts it to a float. The second computation casts the 18.81 to an int,

which has the effect of dropping the fractional part of 18.81. The last compu-

tation is simply the floating point version of 3/7.

MATH OPERATORS
In C#, operators are sequences of one or more special characters such as + - * / & =.

Operators can be combined with variables and literals to form expressions. In this section,

you’ll explore the basic math operators in C#: addition, subtraction, multiplication, divi-

sion, modulus, increment, and decrement. A solid knowledge of these operators is essential

when developing in C#.

Programming C# in Unity ◾ 25

 <Step 1> Create a Unity project with the name Operators.

 <Step 2> Create a script with name OperatorTest and drag it onto the Main
Camera just as you did before in the previous project. Then insert the fol-

lowing code into the Start method:

 int i, j, k, answer;
 i = 2;
 j = 3;
 k = 4;
 answer = i + j;
 Debug.Log($"answer = {answer}");

The first thing to notice is that you’re getting a warning in Visual Studio. The

warning states that the variable k is assigned but never used. This warning can

be ignored for now because you intend to use the variable k in the very next

step. It’s a good habit to watch out for warnings and to fix them quickly. It is

considered poor programming practice to ignore warnings for any significant

length of time.

Your output from Step 2 should be “answer = 5”. It doesn’t get much easier

than that. You are now ready to do some more experimentation with the C#

arithmetic operators.

 <Step 3> Try out the following code:

 int i, j, k, answer;
 i = 2;
 j = 3;
 k = 4;
 answer = i + j + k;
 Debug.Log($"answer = {answer}");
 answer = i + j*k;
 Debug.Log($"answer = {answer}");
 answer = (i + j)*k;
 Debug.Log($"answer = {answer}");
 answer = i + j + k*1000;
 Debug.Log($"answer = {answer}");
 answer = (i + j + k)*1000;
 Debug.Log($"answer = {answer}");
 answer = k/3;
 Debug.Log($"answer = {answer}");
 answer = k%3;
 Debug.Log($"answer = {answer}");
 answer = (i + j + k)%7;
 Debug.Log($"answer = {answer}");

You should get the following answers: 9, 14, 20, 4005, 9000, 1, 1, 2. This code

tests the four basic arithmetic operators and the modulus operator. Addition,

multiplication, and subtraction are straightforward, but division and modulus

aren’t quite that easy to understand. The result of an integer division is always

an integer with any remainder dropped. The remainder can be obtained by

using the modulus operator %. The last answer in the above code example is

the remainder of dividing 9 by 7, which is 2. The modulus operator is quite

common and useful, so learning it right now is worthwhile.

26 ◾ 2D Game Development with Unity

The use of parentheses is critical when coding complicated expressions. If

you know the order of operation of the C# operators you can sometimes avoid

parentheses, for example, in the expression i+j*k. In that expression, the mul-

tiplication is done first, then the addition. That’s because multiplication has a

higher order of operation than addition. A good rule of thumb is to not rely

on your memory of the order of operations, but rather to put in the paren-

theses. This rule is often broken when it comes to multiplication vs. addition

because we are all used to that from algebra. Countless bugs are caused by

faulty knowledge of operator precedence, so it’s best to put in those parentheses

when there’s any doubt. Unnecessary parentheses can become necessary when

you or someone else modifies your code, so avoid relying on the order of opera-

tion rules if there’s a good chance that the code will be modified later on.

In the next step you’ll test out increment and decrement operators.

 <Step 4> Try out the following code:

 answer = 10;
 answer++;
 Debug.Log($"answer = {answer}");
 answer--;
 Debug.Log($"answer = {answer}");
 ++answer;
 Debug.Log($"answer = {answer}");
 --answer;
 Debug.Log($"answer = {answer}");

The answers should be 11, 10, 11, and 10. This code uses the increment and dec-

rement operators both in prefix and postfix mode. In prefix mode, the operator

appears before the expression that it affects, and in postfix mode, it appears

afterward. There is another difference between prefix and postfix: The postfix

version returns the expression and then operates. The prefix version operates

and then returns the expression. The following step tests this.

 <Step 5> Try out the following code:

 answer = 10;
 Debug.Log($"answer = {answer++}");
 Debug.Log($"answer = {answer}");
 answer = 20;
 Debug.Log($"answer = {++answer}");
 Debug.Log($"answer = {answer}");

The answers should be 10, 11, 21, and 21. Notice that in the postfix code the

variable answer is printed and then incremented. The second output state-

ment prints the incremented variable. In the prefix code, the variable answer

is incremented first, then printed, thus you get 21 right away.

The next step is really easy, and it’s only in here for completeness. The incre-

ment and decrement operators are examples of unary operators. Two additional

unary operators are the plus and the minus operator.

Programming C# in Unity ◾ 27

 <Step 6> Try the following code:

 answer = 10;
 Debug.Log($"answer = {+answer}");
 Debug.Log($"answer = {-answer}");

You will get 10 and −10 as the answers. The strange thing about the plus opera-

tor is that it doesn’t do anything. It’s included in C# for consistency and com-

pleteness. It complements the minus operator, which is used quite frequently.

Both the plus and minus operators are prefix only.

So far, you’ve only used the int data type for testing out these operators.

Amazingly, they also work for all of other numeric types, though there are

some subtle differences.

 <Step 7> Try this:

 Debug.Log("Floating Test");
 float x, y;
 double z;
 x = 10.1f;
 z = 50.12345123451234512345;
 y = x + 10;
 y = x + (float)z;
 Debug.Log($"x y z = {x} {y} {z}");

The output is x y z = 10.1 60.22345 50.1234512345123. What is

going on here? The assignment for x needs the f at the end of the literal 10.1f.

If you forget the f, you get an error. Oddly enough the similar statement x =
10; does not cause an error because C# can implicitly convert integer literals to

floats. That assignment for z has too many digits but C# quietly truncates the

extra ones, no error, no warning. This also happens for floats by the way. The

first addition statement implicitly converts the 10 to a float and then performs

the addition. The second addition statement needs to have a cast for z to con-

vert it to a float. If you remove the cast, there you get an error. The output for y

only has seven digits as that is the limit for floats.

The next step tests out compound assignment statements. For a binary oper-

ator op, a compound assignment statement looks like this: x op= y, which is the

same as x = x op y.

 <Step 8> Insert the following code and test it:

 int i = 2;
 i += 7;
 Debug.Log($"i = {i}");

The value of i will be 9. Compound assignment is a very commonly used fea-

ture of C#. It makes your code more readable, and in some cases more efficient,

so use it!

BITWISE OPERATORS
In this section, you’ll explore the bitwise operators including AND, OR, XOR, Complement,

and the Shifts. These operators correspond to very fast hardware instructions on your

28 ◾ 2D Game Development with Unity

device. These operators should be in every game programmer’s arsenal. In this section, you

will continue to use the Operators project in Unity.

 <Step 1> Create a script with name BitOperatorTest and drag it onto the Main
Camera just as you did in the previous section. Main Camera now has two

active scripts.

 <Step 2> Select the Main Camera object and disable the OperatorTest script in

the Inspector. You do this by clicking on the check box next to the name.

 <Step 3> Use Visual Studio to insert the following code into the Start method of

BitOperatorTest.

int a, b, c;
a = 32;
b = a >> 3;
c = a << 3;
Debug.Log($"a,b,c = {a} {b} {c}");

This code tests out the two shift operators: right shift >> and left shift <<.

The right shift operator shifts the bit pattern of the variable a to the right by

three positions, which has the effect of dividing it by 8. Left shift moves the bits

to the left, effectively multiplying the variable a by 8. The output of this code

should be
a,b,c = 32,4,256

The next step tests out the logical bitwise operators: & | ~ !.

 <Step 4> Insert the following code:

uint d, e, f;

a = 0x04700_8999;
b = 0x0ffff_0000;

c = a & b; // AND
d = a | b; // OR
e = a ^ b; // XOR
f = ~a; // Complement

Debug.Log($"a = {a:x}");
Debug.Log($"b = {b:x}");
Debug.Log($"c = {c:x}");
Debug.Log($"d = {d:x}");
Debug.Log($"e = {e:x}");
Debug.Log($"f = {f:x}");

This code tests the four bitwise operators AND, OR, XOR, and Complement.

Your output should look like this:

a,b,c = 32 4 256
a = 47008999
b = ffff0000
c = 47000000
d = ffff8999
e = b8ff8999
f = b8ff7666

