

PIC16F1847
Microcontroller-Based
Programmable Logic

Controller

https://taylorandfrancis.com/

PIC16F1847
Microcontroller-Based
Programmable Logic

Controller
Hardware and Basic Concepts

Murat Uzam

First edition published 2021

by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742
and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

First edition published by CRC Press 2021

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication and
apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system, with-
out written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www .copyright .com or
contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
For works that are not available on CCC please contact mpkbookspermissions @tandf .co .uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

ISBN: 9780367506391 (hbk)
ISBN: 9781003050605 (ebk)

Typeset in Times
by Deanta Global Publishing Services, Chennai, India

Visit the Routledge website: https://www.routledge.com/9780367506391

https://www.routledge.com
www.copyright.com

To the memory of my beloved father, Mehmet Uzam (1937–2017)

to my mother Zeynep Uzam

to my family

who love and support me

and

to my teachers and students

who enriched my knowledge

https://taylorandfrancis.com/

vii

Contents
Prologue ... xiii
Preface..xv
About the Author ...xvii
Background and Use of the Book ...xix

Chapter 1 Hardware of the PIC16F1847-Based PLC ..1

Chapter 2 Basic Software .. 13

Introduction .. 13
2.1 Definition and Allocation of Variables 14
2.2 Contents of the File “PICPLC _PIC16F1847 _memory .inc”29
2.3 Contents of the File “PICPLC _PIC16F1847 _main .asm”30
2.4 Contents of the File “PICPLC _PIC16F1847 _user _Bsc .inc” ... 38
2.5 Contents of the File “PICPLC _PIC16F1847 _subr .inc” 38
2.6 Contents of the File “PICPLC _PIC16F1847 _macros

_Bsc .inc” .. 41
2.6.1 Macro “initialize” .. 43
2.6.2 Macro “ISR” ..46
2.6.3 Elimination of Contact Bouncing Problem in the

PIC16F1847-Based PLC ... 47
2.6.3.1 Contact Bouncing Problem 47
2.6.3.2 Understanding a Generic Single I/O

Contact Debouncer48
2.6.3.3 Debouncer Macro “dbncrN” 52

2.6.4 Macro “get_inputs” ... 55
2.6.5 Low-Pass Digital Filter Macro “lpf_progs” 70
2.6.6 Macro “send_outputs” ..77

2.7 Example Programs ..87
2.7.1 Example 2.1 ..88
2.7.2 Example 2.2 .. 89
2.7.3 Example 2.3 ..90
2.7.4 Example 2.4 ..92
2.7.5 Example 2.5 ..95
2.7.6 Example 2.6 ..99

Reference .. 104

Chapter 3 Contact and Relay-Based Macros .. 105

Introduction .. 105
3.1 Macro “ld” (load) .. 106

viii Contents

3.2 Macro “ld_not” (load_not) ... 107
3.3 Macro “not” .. 108
3.4 Macro “or” .. 108
3.5 Macro “or_not” ... 109
3.6 Macro “nor” .. 111
3.7 Macro “and” ... 111
3.8 Macro “and _not” ... 113
3.9 Macro “nand” ... 115
3.10 Macro “xor” .. 116
3.11 Macro “xor_not” ... 116
3.12 Macro “xnor” .. 118
3.13 Macro “out” .. 118
3.14 Macro “out_not” ... 119
3.15 Macro “mid_out” (Midline Output) 122
3.16 Macro “mid_out_not” (Inverted Midline Output) 122
3.17 Macro “in_out” ... 123
3.18 Macro “inv_out” ... 125
3.19 Macro “_set” ... 126
3.20 Macro “_reset” ... 127
3.21 Macro “SR” (Set–Reset) .. 128
3.22 Macro “RS” (Reset–Set) ... 128
3.23 Macro “r_edge” (Rising Edge Detector) 130
3.24 Macro “f_edge” (Falling Edge Detector) 132
3.25 Macro “r_toggle” (Output Toggle with Rising Edge

Detector) .. 132
3.26 Macro “f_toggle” (Output Toggle with Falling Edge

Detector) .. 133
3.27 Macro “adrs_re” (Address Rising Edge Detector) 134
3.28 Macro “adrs_fe” (Address Falling Edge Detector) 135
3.29 Macro “setBF” (Set Bit Field) ... 136
3.30 Macro “resetBF” (Reset Bit Field) .. 149
3.31 Examples for Contact and Relay-Based Macros 149

3.31.1 Example 3.1 .. 156
3.31.2 Example 3.2 .. 157
3.31.3 Example 3.3 .. 159
3.31.4 Example 3.4 .. 160
3.31.5 Example 3.5 .. 165
3.31.6 Example 3.6 .. 165
3.31.7 Example 3.7 .. 165
3.31.8 Example 3.8 .. 167

Chapter 4 Flip-Flop Macros .. 171

Introduction .. 171
4.1 Macro “latch1” (D Latch with Active High Enable) 171
4.2 Macro “latch0” (D Latch with Active Low Enable) 172

ixContents

4.3 Macro “dff_r” (Rising Edge–Triggered D Flip-Flop) 173
4.4 Macro “dff_r_SR” (Rising Edge–Triggered D Flip-Flop

with Active High Preset [S] and Clear [R] Inputs) 174
4.5 Macro “dff_f” (Falling Edge–Triggered D Flip-Flop) 177
4.6 Macro “dff_f_SR” (Falling Edge–Triggered D Flip-Flop

with Active High Preset [S] and Clear [R] Inputs) 179
4.7 Macro “tff_r” (Rising Edge–Triggered T Flip-Flop) 182
4.8 Macro “tff_r_SR” (Rising Edge–Triggered T Flip-Flop

with Active High Preset [S] and Clear [R] Inputs) 182
4.9 Macro “tff_f” (Falling Edge–Triggered T Flip-Flop) 185
4.10 Macro “tff_f_SR” (Falling Edge–Triggered T Flip-Flop

with Active High Preset [S] and Clear [R] Inputs) 187
4.11 Macro “jkff_r” (Rising Edge–Triggered JK Flip-Flop) 188
4.12 Macro “jkff_r_SR” (Rising Edge–Triggered JK Flip-

Flop with Active High Preset [S] and Clear [R] Inputs) 191
4.13 Macro “jkff_f” (Falling Edge–Triggered JK Flip-Flop) 193
4.14 Macro “jkff_f_SR” (Falling Edge–Triggered JK Flip-

Flop with Active High Preset [S] and Clear [R] Inputs) 194
4.15 Examples for Flip-Flop Macros ... 197

4.15.1 Example 4.1 ..203
4.15.2 Example 4.2 ..206
4.15.3 Example 4.3 ..209
4.15.4 Example 4.4 .. 211
4.15.5 Example 4.5: 4-Bit Asynchronous Up Counter 212
4.15.6 Example 4.6: 4-Bit Asynchronous Down Counter ... 217
4.15.7 Example 4.7: Asynchronous Decade Counter220
4.15.8 Example 4.8: 4-Bit Asynchronous Up/Down

Counter ... 222
4.15.9 Example 4.9: Synchronous Decade Counter 227
4.15.10 Example 4.10: 4-Bit Synchronous Up/Down

Counter ... 232
4.15.11 Example 4.11: 4-Bit Serial-in, Parallel-out Shift

Right Register ... 236
4.15.12 Example 4.12: 4-Bit Serial-in, Serial-out Shift

Right Register ...242
4.15.13 Example 4.13: 4-Bit Serial-In, Parallel-Out Shift

Right or Shift Left Register245
4.15.14 Example 4.14: 4-Bit Parallel-in, Serial-out Shift

Right Register ...249
4.15.15 Example 4.15: 4-Bit Parallel-in, Parallel-out

Register ... 251
4.15.16 Example 4.16: 74164 8-Bit Serial-in, Parallel-out

Shift Register .. 252
4.15.17 Example 4.17: 74165 8-Bit Parallel-in, Serial-out

Shift Register .. 257

x Contents

4.15.18 Example 4.18: 74194 4-Bit Bidirectional
Universal Shift Register ... 261

4.15.19 Example 4.19: 74595 8-Bit Serial-in, Serial- or
Parallel-out Shift Register ..266

4.15.20 Example 4.20: 4-Bit Johnson Counter 271
4.15.21 Example 4.21: 8-Bit Ring Counter 278

Chapter 5 Timer Macros ...287

Introduction ..287
5.1 On-Delay Timer (TON) ...288
5.2 Macro “TON_8” (8-Bit On-Delay Timer)288
5.3 Macro “TON_16” (16-Bit On-Delay Timer)..........................296
5.4 Retentive On-Delay Timer (RTO) ... 301
5.5 Macro “RTO_8” (8-Bit Retentive On-Delay Timer)302
5.6 Macro “RTO_16” (16-Bit Retentive On-Delay Timer)306
5.7 Off-Delay Timer (TOF) ... 311
5.8 Macro “TOF_8” (8-Bit Off-Delay Timer) 311
5.9 Macro “TOF_16” (16-Bit Off-Delay Timer) 316
5.10 Pulse Timer (TP) ... 321
5.11 Macro “TP_8” (8-Bit Pulse Timer) 321
5.12 Macro “TP_16” (16-Bit Pulse Timer) 326
5.13 Extended Pulse Timer (TEP) .. 331
5.14 Macro “TEP_8” (8-Bit Extended Pulse Timer) 332
5.15 Macro “TEP_16” (16-Bit Extended Pulse Timer) 336
5.16 Oscillator Timer (TOS) ... 341
5.17 Macro “TOS_8” (8-Bit Oscillator Timer) 342
5.18 Macro “TOS_16” (16-Bit Oscillator Timer) 347
5.19 Examples for Timer Macros .. 353

5.19.1 Example 5.1 .. 353
5.19.2 Example 5.2 .. 359
5.19.3 Example 5.3 ..364
5.19.4 Example 5.4 .. 370
5.19.5 Example 5.5 .. 375
5.19.6 Example 5.6 .. 381

Chapter 6 Counter Macros .. 387

Introduction .. 387
6.1 Up Counter (CTU) ...390
6.2 Macro “CTU_8” (8 Bit Up Counter) 395
6.3 Macro “CTU_16” (16 Bit Up Counter)402
6.4 Down Counter (CTD) ..407
6.5 Macro “CTD_8” (8 Bit Down Counter)407
6.6 Macro “CTD_16” (16 Bit Down Counter) 413
6.7 Up/Down Counter (CTUD) ... 417

xiContents

6.8 Macro “CTUD_8” (8 Bit Up/Down Counter) 418
6.9 Macro “CTUD_16” (16 Bit Up/Down Counter) 426
6.10 Generalized Up/Down Counter (GCTUD) 435
6.11 Macro “GCTUD_8” (Generalized 8 Bit

Up/Down Counter) .. 437
6.12 Macro “GCTUD_16” (Generalized 16 Bit Up/Down

Counter) ...444
6.13 Examples for Counter Macros ... 453

6.13.1 Example 6.1 .. 454
6.13.2 Example 6.2 ..460
6.13.3 Example 6.3 ..466
6.13.4 Example 6.4 .. 471
6.13.5 Example 6.5 .. 476
6.13.6 Example 6.6 .. 479

About the Downloadable Files for Hardware and Basic Concepts485

Index ..487

https://taylorandfrancis.com/

xiii

Prologue

Think globally, act locally.

Never give up.

No pain, no gain.

Practice makes perfect.

If we hear, we forget
If we see, we remember
If we do, we understand.

Success is not an accident, excellence is not a coincidence.

Think out of the box.

https://taylorandfrancis.com/

xv

Preface
Programmable Logic Controllers (PLC) have been extensively used in industry for
the past five decades. PLC manufacturers offer different PLCs in terms of func-
tions, program memories, and the number of inputs/outputs (I/O), ranging from
a few to thousands of I/Os. The design and implementation of PLCs have long
been a secret of the PLC manufacturers. A serious project was reported by the
author of this book in his previous book, entitled Building a Programmable Logic
Controller with a PIC16F648A Microcontroller, published by CRC Press in 2014,
to describe a microcontroller-based implementation of a PLC. The current proj-
ect, called PIC16F1847 Microcontroller-Based Programmable Logic Controller,
is based on the improved version of the project reported in the above-mentioned
book. The improvements include both hardware and software elements. The cur-
rent project is reported in three books and a downloadable document explaining
application examples:

 1. PIC16F1847 Microcontroller-Based Programmable Logic Controller:
Hardware and Basic Concepts (this book)

 2. PIC16F1847 Microcontroller-Based Programmable Logic Controller:
Intermediate Concepts

 3. PIC16F1847 Microcontroller-Based Programmable Logic Controller:
Advanced Concepts

The current project is presented for students attending the related departments of
engineering or technology faculties, for practicing engineers, and for hobbyists
who want to learn how to design and use a microcontroller-based PLC. The book
assumes the reader has taken courses on digital logic design, microcontrollers,
and PLCs. In addition, the reader is expected to be familiar with the PIC16F
series of microcontrollers and to have been exposed to writing programs using
PIC assembly language within the MPLAB integrated development environment.

The contents of this book may be used to construct two different courses. The first
one may involve teaching the use of the PLC technology as described in this book.
This course may well fit in the related departments of both engineering and technol-
ogy faculties. The second one may involve teaching how to design the PLC technol-
ogy. This second course may be taught in electrical and electronics engineering and
computer engineering departments.

Source and example files defined for the basic concepts of the PIC16F1847-Based
PLC project are downloadable from this book’s webpage under the downloads section.

xvi Preface

In addition, PCB files of the CPU and I/O extension boards of the PIC16F1847-Based
PLC can also be downloaded from the same link.

Prof. Dr. Murat UZAM
Yozgat Bozok Üniversitesi

Mühendislik-Mimarlık Fakültesi
Elektrik-Elektronik Mühendisliği Bölümü

Yozgat
Turkey

xvii

About the Author
Murat Uzam was born in Söke, Turkey, in 1968. He
received his B.Sc. and M.Sc. degrees from the Electrical
Engineering Department, Yıldız Technical University,
İstanbul, Turkey, in 1989 and 1991, respectively, and his
Ph.D. degree from the University of Salford, Salford, U.K.,
in 1998. He was with Niğde University, Turkey, from 1993
to 2010 in the Department of Electrical and Electronics
Engineering as a Research Assistant, Assistant Professor,
Associate Professor, and Professor. He was a Professor in
the Department of Electrical and Electronics Engineering at

Melikşah University in Kayseri, Turkey, from 2011 to 2016. Since 15 April 2020,
he has been serving as a Professor in the Department of Electrical and Electronics
Engineering at Yozgat Bozok University in Yozgat, Turkey.

He was a Visiting Researcher with INRIA, University of Metz and University of
Rennes, France, in 1999, with the University of Toronto, Toronto, ON, Canada, in
2003, and with Xidian University, Xi’an, China, in 2013, 2015, and 2019.

He has published 47 conference papers and 106 journal and magazine papers, 70
of which are indexed by Science Citation Index Expanded (SCIE). He has published
two books in Turkish and five books in English by CRC Press (Taylor & Francis
Group). According to Publons, his H-Index is 16 and his papers have been cited more
than 1370 times by the papers indexed in the SCIE. Dr. Uzam has been serving as a
reviewer for prestigious journals and conferences. According to Publons, the number
of his verified reviews is 70. His current research interests include design and imple-
mentation of discrete event control systems modelled by Petri nets and, in particular,
deadlock prevention/liveness enforcing in flexible manufacturing systems, program-
mable logic controllers (PLCs), microcontrollers (especially PIC microcontrollers),
and the design of microcontroller-based PLCs. The details of his studies are acces-
sible from his web page: https :/ /pb s .boz ok .ed u .tr/ goste r .php ?l ook up =10 74

https://pbs.bozok.edu.tr

https://taylorandfrancis.com/

xix

Background and Use
of the Book
This project has been completed during the search for an answer to the following
question: “How could one design and implement a programmable logic control-
ler (PLC)?”. An answer to this question was provided by the author in his previ-
ous book entitled Building a Programmable Logic Controller with a PIC16F648A
Microcontroller, published by CRC Press in 2014. This project is based on the
improved version of the PLC project reported in the above-mentioned book. So many
new features have been included within the PIC16F1847-Based PLC project to make
it an almost perfect PLC. The reader should be aware of the fact that this project does
not include a graphical interface PC software as in commercial PLCs for developing
PLC programs. Rather, PLC programs are developed by using macros as done in the
Instruction List (IL) PLC programming language. An interested and skilled reader
could well (and is encouraged to) develop a graphical interface PC software for easy
use of the PIC16F1847-Based PLC.

The improvements of the PLC project reported in this book (Hardware and Basic
Concepts) compared with the previous version are summarized as follows.

 1. The current version of the PLC explained in this book is based on the
PIC16F1847 microcontroller with: 8,192 words of flash program memory,
1,024 bytes of SRAM data memory, 256 bytes of EEPROM data memory,
the maximum operating speed of 32 MHz, a 16-level-deep hardware stack,
and an enhanced instruction set consisting of 49 single-word instructions,
while the previous one was based on the PIC16F648A microcontroller with:
4,096 words of flash program memory, 256 bytes of SRAM data memory,
256 bytes of EEPROM data memory, the maximum operating speed of 20
MHz, an 8-level-deep hardware stack, and an instruction set consisting of
35 single-word instructions.

 2. The hardware explained in this book consists of 1 CPU board and 4 digital
I/O extension boards, while the previous one consisted of 1 CPU board and
2 digital I/O extension boards.

 3. The clock frequency is 32 MHz in the current version of PLC, while it was
20 MHz in the previous version.

 4. The current version of the PLC supports up to 32 digital inputs and 32 digi-
tal outputs, while the previous one supported 16 digital inputs and 16 digital
outputs.

 5. The current version of the PLC supports up to 4 analog inputs and 1 analog
output, while the previous one did not support analog inputs/outputs.

 6. The current version of the PLC supports 1,024 internal relays (memory
bits), while the previous one supported only 32 internal relays.

xx Background and Use of the Book

 7. The current version of the PLC provides 30 contact and relay-based instruc-
tions (macros), while the previous version provided 18 contact and relay-
based instructions.

 8. The current version of the PLC provides 14 flip-flop instructions (macros),
while the previous version provided 8 flip-flop instructions.

 9. The current version of the PLC provides 80 timers in total. These timers can be
chosen from on-delay timers (TON_8 or TON_16), retentive on-delay timers
(RTO_8 or RTO_16), off-delay timers (TOF_8 or TOF_16), pulse timers (TP_8
or TP_16), extended pulse timers (TEP_8 or TEP_16), and oscillator timers
(TOS_8 or TOS_16). The timers with the suffix “_8” have 8-bit resolution, i.e.,
they are based on 8-bit registers, while the timers with the suffix “_16” have
16-bit resolution, i.e., they are based on 16-bit registers. On the other hand, the
previous version of the PLC provided 8 on-delay timers (TON_8), 8 off-delay
timers (TOF_8), 8 pulse timers (TP_8), and 8 oscillator timers (TOS_8). All
these timers had 8-bit resolution, i.e., they were based on 8-bit registers.

 10. The current version of the PLC provides 80 counters in total. These coun-
ters can be chosen from up counters (CTU_8 or CTU_16), down counters
(CTD_8 or CTD_16), up/down counters (CTUD_8 or CTUD_16), and gen-
eralized up/down counters (GCTUD_8 or GCTUD_16). The counters with
the suffix “_8” have 8-bit resolution, i.e., they are based on 8-bit registers,
while the counters with the suffix “_16” have 16-bit resolution, i.e., they
are based on 16-bit registers. On the other hand, the previous version of the
PLC provided in total only 8 counters (CTU8 or CTD8 or CTUD8). They
had 8-bit resolution, i.e., they were based on 8-bit registers.

 11. The current version of the PLC provides 30 comparison instructions (mac-
ros), while the previous version provided 12 comparison instructions.

 12. Almost all macros are improved compared with the previous versions, in terms
of flexibility. For example, there is no restriction on the SRAM Banks, i.e.,
Boolean variables, 8-bit variables, and 16-bit variables used as a parameter in
an instruction can be in any Bank. This was not the case in the previous version.

 13. Flowcharts are provided to help the understanding of macros (instructions).

In order to follow the topics explained in this book properly, it is expected that the
reader will construct his/her own PIC16F1847-Based PLC consisting of the CPU
board and 4 I/O extension boards using the PCB files provided on the book’s web-
page under the downloads section. In addition, the reader should also download
and make use of the PLC project files from the book’s webpage. In this project, as
the PIC Assembly is used as the programming language within the MPLAB inte-
grated development environment (IDE), the reader is referred to the homepage of
Microchip (http://www .microchip .com/) to obtain the latest version of MPLAB IDE.
References [R1 and R2] may be useful to understand some aspects of the PIC16F1847
microcontroller and MPASMTM Assembler, respectively.

The contents of this book’s 7 chapters are explained briefly, as follows.

 1. Hardware of the PIC16F1847-Based PLC: In this chapter, the hardware
structure of the PIC16F1847-Based PLC, consisting of 32 discrete inputs,

http://www.microchip.com

xxi Background and Use of the Book

32 discrete outputs, 4 analog inputs, 1 analog output, and 2 PWM outputs is
explained in detail.

 2. Basic Software: This chapter explains the basic software structure of the
PIC16F1847-Based PLC. A PLC scan cycle includes the following: (1)
obtain the inputs, (2) run the user program, (3) update the outputs. In addi-
tion, it is also necessary to define and initialize all variables used within a
PLC. Necessary functions are all described as PIC Assembly macros to be
used in the PIC16F1847-Based PLC. The source files of the PIC16F1847-
Based PLC are as follows: “PICPLC _PIC16F1847 _memory .inc” (the indi-
vidual bits of 8-bit SRAM registers M0, M1, …, M127 are defined in this
file), “PICPLC _PIC16F1847 _main .asm” (processor-specific variable defi-
nitions, PICPLC definitions, the user program, and subroutines are included
in the project by using this file), “PICPLC _PIC16F1847 _user .inc” (this file
contains two macros, namely “user_program_1” and “user_program_2”,
in order to accommodate user programs), “PICPLC _PIC16F1847 _subr .inc”
(this file contains the “subroutines” macro and it is defined to obtain time
delays at the expense of CPU clocks; the “subroutines” macro contains
two time delay–related subroutines: “pause_1ms” and “pause_10us”), and
“PICPLC _PIC16F1847 _macros .inc”. The file “PICPLC _PIC16F1847 _mac-
ros .inc” contains the following macros: “initialize” (for PLC initialization),
“ISR” (interrupt service routines), “get_inputs” (for handling the inputs),
“lpf_progs” (low-pass digital filter macros for analog inputs), and “send_
outputs” (for sending the outputs).

 3. Contact and Relay-Based Macros: The following contact and relay-based
macros are described in this chapter: “ld” (load), “ld_not” (load_not), “not”,
“or”, “or_not”, “nor”, “and”, “and_not”, “nand”, “xor”, “xor_not”, “xnor”,
“out”, “out_not”, “mid_out” (midline output), “mid_out_not” (inverted
midline output), “in_out”, “inv_out”, “_set”, “_reset”, “SR” (set–reset),
“RS” (reset–set), “r_edge” (rising edge detector), “f_edge” (falling edge
detector), “r_toggle” (output toggle with rising edge detector), “f_toggle”
(output toggle with falling edge detector), “adrs_re” (Address rising edge
detector), “adrs_fe” (Address falling edge detector), “setBF” (set bit field),
and “resetBF” (reset bit field). These macros are defined to operate on 1-bit
(Boolean) variables.

 4. Flip-Flop Macros: The following flip-flop macros are described in this
chapter: “latch1” (D latch with active high enable), “latch0” (D latch with
active low enable), “dff_r” (rising edge–triggered D flip-flop), “dff_r_SR”
(rising edge–triggered D flip-flop with active high preset [S] and clear [R]
inputs), “dff_f” (falling edge–triggered D flip-flop), “dff_f_SR” (falling
edge–triggered D flip-flop with active high preset [S] and clear [R] inputs),
“tff_r” (rising edge–triggered T flip-flop), “tff_r_SR” (rising edge–trig-
gered T flip-flop with active high preset [S] and clear [R] inputs), “tff_f”
(falling edge–triggered T flip-flop), “tff_f_SR” (falling edge–triggered
T flip-flop with active high preset [S] and clear [R] inputs), “jkff_r” (ris-
ing edge–triggered JK flip-flop), “jkff_r_SR” (rising edge–triggered JK
flip-flop with active high preset [S] and clear [R] inputs), “jkff_f” (falling

xxii Background and Use of the Book

edge–triggered JK flip-flop), and “jkff_f_SR” (falling edge–triggered JK
flip-flop with active high preset [S] and clear [R] inputs). Flip-flop mac-
ros are defined to operate on Boolean (1-bit) variables. 21 examples are
provided to show the applications of these flip-flop macros, including the
implementation of asynchronous and synchronous counters, and shift reg-
isters constructed by using the flip-flop macros.

 5. Timer Macros: The following timer macros are described in this chap-
ter: “TON_8” (8-bit on-delay timer), “TON_16” (16-bit on-delay timer),
“RTO_8” (8-bit retentive on-delay timer), “RTO_16” (16-bit retentive on-
delay timer), “TOF_8” (8-bit off-delay timer), “TOF_16” (16-bit off-delay
timer), “TP_8” (8-bit pulse timer), “TP_16” (16-bit pulse timer), “TEP_8”
(8-bit extended pulse timer), “TEP_16” (16-bit extended pulse timer),
“TOS_8” (8-bit oscillator timer), and “TOS_16” (16-bit oscillator timer).

 6. Counter Macros: The following counter macros are described in this chap-
ter: “CTU_8” (8-bit up counter), “CTU_16” (16-bit up counter), “CTD_8”
(8-bit down counter), “CTD_16” (16-bit down counter), “CTUD_8” (8-bit
up/down counter), “CTUD_16” (8-bit up/down counter), “GCTUD_8”
(8-bit generalized up/down counter), and “GCTUD_16” (16-bit generalized
up/down counter).

 7. Comparison Macros: In this chapter, the majority of the comparison mac-
ros are described according to the following notation: GT (Greater Than—
“>”), GE (Greater than or Equal to—“≥”), EQ (EQual to—“=”), LT
(Less Than—“<”), LE (Less than or Equal to—“≤”), or NE (Not Equal
to—“≠”). The contents of two 8-bit registers (R1 and R2) are compared
with the following comparison macros: “R1_GT_R2” (Is R1 greater than
R2?), “R1_GE_R2” (Is R1 greater than or equal to R2?), “R1_EQ_R2” (Is
R1 equal to R2?), “R1_LT_R2” (Is R1 less than R2?), “R1_LE_R2” (Is
R1 less than or equal to R2?), and “R1_NE_R2” (Is R1 not equal to R2?).
Similar comparison macros are also described for comparing the contents
of an 8-bit register (R) with an 8-bit constant (K): “R_GT_K” (Is R greater
than K?), “R_GE_K” (Is R greater than or equal to K?), “R_EQ_K” (Is R
equal to K?), “R_LT_K” (Is R less than K?), “R_LE_K” (Is R less than or
equal to K?), and “R_NE_K” (Is R not equal to K?).

 The contents of two 16-bit registers (R1 and R2) are compared with the
following comparison macros: “R1_GT_R2_16” (Is R1 greater than R2?),
“R1_GE_R2_16” (Is R1 greater than or equal to R2?), “R1_EQ_R2_16” (Is
R1 equal to R2?), “R1_LT_R2_16” (Is R1 less than R2?), “R1_LE_R2_16” (Is
R1 less than or equal to R2?), and “R1_NE_R2_16” (Is R1 not equal to R2?).
Similar comparison macros are also described for comparing the contents of
a 16-bit register (R) with a 16-bit constant (K): “R_GT_K_16” (Is R greater
than K?), “R_GE_K_16” (Is R greater than or equal to K?), “R_EQ_K_16”
(Is R equal to K?), “R_LT_K_16” (Is R less than K?), “R_LE_K_16” (Is R
less than or equal to K?), and “R_NE_K_16” (Is R not equal to K?). In addi-
tion, the following comparison macros are also provided: “in_RANGE” (Is
the value within the given range?), “in_RANGE_16” (Is the value within
the given range?), “out_RANGE” (Is the value out of the given range?),

xxiii Background and Use of the Book

TABLE 1
General Characteristics of the PIC16F1847-Based PLC

Inputs/Outputs/Functions Byte addresses/Related bytes
Bit addresses or function

names/numbers

32 discrete inputs
(external inputs: 5 or 24V DC)

I0,
I1,
I2,
I3

I0.0, I0.1, …, I0.7
I1.0, I1.1, …, I1.7
I2.0, I2.1, …, I2.7
I3.0, I3.1, …, I3.7

32 discrete outputs
(relay-type outputs)

Q0,
Q1,
Q2,
Q3

Q0.0, Q0.1, …, Q0.7
Q1.0, Q1.1, …, Q1.7
Q2.0, Q2.1, …, Q2.7
Q3.0, Q3.1, …, Q3.7

4 analog inputs AI0H:AI0L,
AI1H:AI1L,
AI2H:AI2L,
AI3H:AI3L

AI0H,1, AI0H,0, …, AI0L,0
AI1H,1, AI1H,0, …, AI1L,0
AI2H,1, AI2H,0, …, AI2L,0
AI3H,1, AI3H,0, …, AI3L,0

1 analog output - RA2

1 high speed counter input - RB6

2 PWM outputs - RA4 & RA7

Drum sequencer instruction
with up to 16 steps and 16
outputs on each step

Details are available in Chapter 4 of
Volume III - Advanced Concepts

Details are available in
Chapter 4 of Volume III
- Advanced Concepts

1,024 internal relays
(memory bits)

M0,
M1,
.
.
M127

M0.0, M0.1, …, M0.7
M1.0, M1.1, …, M1.7
.
.
M127.0, M127.1, …,
M127.7

80 8-bit on-delay timers
(TON_8)

TV_L, TV_L+1, …, TV_L+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 8-bit retentive on-delay
timers

(RTO_8)

TV_L, TV_L+1, …, TV_L+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 8-bit off-delay timers
(TOF_8)

TV_L, TV_L+1, …, TV_L+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 8-bit pulse timers
(TP_8)

TV_L, TV_L+1, …, TV_L+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 8-bit extended pulse timers
(TEP_8)

TV_L, TV_L+1, …, TV_L+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 8-bit oscillator timers
(TOS_8)

TV_L, TV_L+1, …, TV_L+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 16-bit on-delay timers
(TON_16)

TV_L, TV_L+1, …, TV_L+79
TV_H, TV_H+1, …, TV_H+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

(Continued)

xxiv Background and Use of the Book

“out_RANGE_16” (Is the value out of the given range?), “Hbit_CaC” (high
bit count and compare), and “Lbit_CaC” (low bit count and compare). Note
that this chapter is provided as downloadable ancillary material.

Application Examples: In total there are 20 application examples considered. For
some application examples, more than one solution is provided in order to point out

TABLE 1 (CONTINUED)
General Characteristics of the PIC16F1847-Based PLC

Inputs/Outputs/Functions Byte addresses/Related bytes
Bit addresses or function

names/numbers

80 16-bit retentive on-delay
timers (RTO_16)

TV_L, TV_L+1, …, TV_L+79
TV_H, TV_H+1, …, TV_H+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 16-bit off-delay timers
(TOF_16)

TV_L, TV_L+1, …, TV_L+79
TV_H, TV_H+1, …, TV_H+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 16-bit pulse timers
(TP_16)

TV_L, TV_L+1, …, TV_L+79
TV_H, TV_H+1, …, TV_H+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 16-bit extended pulse
timers

(TEP_16)

TV_L, TV_L+1, …, TV_L+79
TV_H, TV_H+1, …, TV_H+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 16-bit oscillator timers
(TOS_16)

TV_L, TV_L+1, …, TV_L+79
TV_H, TV_H+1, …, TV_H+79
T_Q0, T_Q1, …, T_Q9

TQ0, TQ1, …, TQ79

80 8-bit up counters
(CTU_8)

CV_L, CV_L+1, …, CV_L+79
C_Q0, C_Q1, …, C_Q9

CQ0, CQ1, …, CQ79

80 8-bit down counters
(CTD_8)

CV_L, CV_L+1, …, CV_L+79
C_Q0, C_Q1, …, C_Q9

CQ0, CQ1, …, CQ79

80 8-bit up/down counters
(CTUD_8)

CV_L, CV_L+1, …, CV_L+79
C_Q0, C_Q1, …, C_Q9

CQ0, CQ1, …, CQ79

80 8-bit generalized up/down
counters (GCTUD_8)

CV_L, CV_L+1, …, CV_L+79
C_Q0, C_Q1, …, C_Q9

CQ0, CQ1, …, CQ79

80 16-bit up counters
(CTU_16)

CV_L, CV_L+1, …, CV_L+79
CV_H, CV_H+1, …, CV_H+79
C_Q0, C_Q1, …, C_Q9

CQ0, CQ1, …, CQ79

80 16-bit down counters
(CTD_16)

CV_L, CV_L+1, …, CV_L+79
CV_H, CV_H+1, …, CV_H+79
C_Q0, C_Q1, …, C_Q9

CQ0, CQ1, …, CQ79

80 16-bit up/down counters
(CTUD_16)

CV_L, CV_L+1, …, CV_L+79
CV_H, CV_H+1, …, CV_H+79
C_Q0, C_Q1, …, C_Q9

CQ0, CQ1, …, CQ79

80 16-bit generalized up/down
counters (GCTUD_16)

CV_L, CV_L+1, …, CV_L+79
CV_H, CV_H+1, …, CV_H+79
C_Q0, C_Q1, …, C_Q9

CQ0, CQ1, …, CQ79

xxv Background and Use of the Book

how different methods can be used for controlling the same problem. When the three
books are purchased separately, application examples 1–9 (or 10–11 and 13–18; 7–12
and 20, respectively) are provided as downloadable ancillary material for the book
PIC16F1847 Microcontroller-Based Programmable Logic Controller: Hardware
and Basic Concepts (Intermediate Concepts; Advanced Concepts, respectively). On
the other hand, when the three books are purchased as a set, all application examples
are provided as a single ancillary material.

Appendix A: The list of components for all boards and modules developed in this
project as reported in this book, together with the photographs of all components,
are provided in Appendix A.

Table 1 shows the general characteristics of the PIC16F1847-Based PLC.

IMPORTANT NOTES

 1. At any time, at most 80 different timers can be used. A unique timer number
from 0 to 79 can be assigned to only one of the macros “TP_8”, “TEP_8”,
“TOS_8”, “TON_16”, “RTO_16”, “TOF_16”, “TP_16”, “TEP_16”, and
“TOS_16”.

 2. At any time, at most 80 different counters can be used. A unique counter
number from 0 to 79 can be assigned to only one of the macros “CTU_8”,
“CTD_8”, “CTUD_8”, “GCTUD_8”, “CTU_16”, “CTD_16”, “CTUD_16”,
and “GCTUD_16”.

REFERENCES

 R1. PIC16(L)F1847 Data Sheet, DS40001453F, 2011–2017, Microchip Technology Inc.
http: / /ww1 .micr ochip .com/ downl oads/ en /De viceD oc /40 00145 3F .pd f

 R2. MPASMTM Assembler, MPLINKTM Object Linker, MPLIBTM Object Librarian User’s
Guide DS33014J, 2005, Microchip Technology Inc. http: / /ww1 .micr ochip .com/ downl
oads/ en /de viced oc / 33 014j. pdf

http://ww1.microchip.com
http://ww1.microchip.com
http://ww1.microchip.com

https://taylorandfrancis.com/

1

1 Hardware of the
PIC16F1847-Based PLC

The hardware of the PIC16F1847-Based PLC consists of mainly two parts: the CPU
board and the I/O extension board. The schematic diagram and the photograph of
the PIC16F1847-Based PLC CPU board are shown in Figures 1.1 and 1.2, respec-
tively. The CPU board contains mainly three sections: power, programming, and
CPU (central processing unit).

The power section accepts 12V DC input used as the operating voltage of relays.
5V DC is also used for ICs, inputs, etc. An adjustable LM2596 step-down voltage
regulator module is used to obtain 5V DC voltage from the 12V DC input voltage.
It has the following specifications—conversion efficiency: up to 92%; switching fre-
quency: 150 KHz; rectifier: nonsynchronous rectification; module properties: non-
isolated step-down module (buck); operating temperature: industrial grade (–40 to
+85); load regulation: ± 0.5%; voltage regulation: ± 2.5%; dynamic response speed:
5% 200 µs; input voltage: 3–40V; output voltage: 1.5–35V (adjustable); output cur-
rent: maximum 3A; size: 43mm*21mm*14mm (length*width*height).

It is important to note that the output voltage (OUT+) of the adjustable LM2596
step-down voltage regulator module must be set to 5.00V by adjusting the potentiom-
eter on the module before inserting the CPU. 12V DC input voltage can be subjected
to electric surge or electrostatic discharge on the external terminal connections. The
TVS (transient voltage suppressor) 1.5KE13A shown in the circuit provides highly
effective protection against such discharges. It is also used to protect the circuit from
accidental reverse polarity of the DC input voltage. For a proper operation of the
PIC16F1847-Based PLC make sure that the DC input voltage < 13V DC.

The programming section deals with the programming of the PIC16F1847
microcontroller. For programming the PIC16F1847 in circuit, it is necessary to
use a PIC programmer hardware and a software with ICSP (in-circuit serial pro-
gramming) capability. In this project, Microchip’s PICkit 3 In-Circuit Debugger/
Programmer (www .microchip .com /PICkit3) is used as the PIC programmer hard-
ware. MPLAB X IDE software (www .microchip .com /mplab /mplab -x -ide), freely
available by Microchip (www .microchip .com), is used for the program development
and for programming the PIC16F1847 microcontroller. The ICSP connector takes
the lines VPP (MCLR), VDD, VSS (GND), DATA (RB7), and CLOCK (RB6) from
the PIC programmer hardware through a properly prepared cable and it connects
them to a 4PDT (four pole double throw) switch. There are two positions of the
4PDT switch. As seen from Figure 1.1, in the PROG position of the 4PDT switch,
PIC16F1847 is ready to be programmed and in the RUN position, the loaded pro-
gram is run. For programming the PIC16F1847 properly by means of a PIC program-
mer and the 4PDT switch, it is also a necessity to switch off the power switch. The
CPU section consists of the PIC16F1847 microcontroller. In the project reported in

Programmable Logic Controller Hardware of the PIC16F1847-Based PLC

www.microchip.com
www.microchip.com
www.microchip.com

2 Programmable Logic Controller

FI
G

U
R

E
1.

1
Sc

he
m

at
ic

 d
ia

gr
am

 o
f

th
e

PI
C

16
F1

84
7-

B
as

ed
 P

L
C

 C
PU

 b
oa

rd
.

3Hardware of the PIC16F1847-Based PLC

this book, the PLC is fixed to run at 32 MHz with an internal oscillator (oscillator
frequency = 8 MHz and PLL = 4). This frequency is fixed because time delays are
calculated based on this speed. RB1, RB3, and RB4 pins are all reserved to be used
for 8-bit parallel-to-serial converter registers 74HC/LS165. Through these three pins
and with added 74HC/LS165 registers we can describe as many inputs as neces-
sary. RB1, RB3, and RB4 are the “data in”, the “shift/load”, and the “clock in” pins,
respectively. Similarly, the RB2, RB4, and RB0 pins are all reserved to be used for
8-bit serial-to-parallel converter register/drivers TPIC6B595. Through these three
pins and with added TPIC6B595 registers we can describe as many outputs as nec-
essary. RB2, RB4, and RB0 are the “data out”, the “clock out”, and the “latch out”
pins, respectively.

The RA0, RA1, RB5, and RB7 pins are described and used as analog inputs. They
are called AI0, AI1, AI2, and AI3, respectively. The RA2 pin is used as an analog
output and it is called DACOUT. The RA3 pin is used as VREF+ (ADC voltage ref-
erence input). The RB6 pin is used as the clock input of the high speed counter and it
is called HSCI. The RA4 and RA7 pins are used as PWM (pulse width modulation)
outputs. Therefore, they are called PWM_RA4 and PWM_RA7, respectively. The
RA6 pin is not used. The PIC16F1847 provides the following—flash program mem-
ory (words): 8K; SRAM data memory (bytes): 1,024; and EEPROM data memory
(bytes): 256. The PIC16F1847-Based PLC macros make use of registers defined in
SRAM data memory.

Figures 1.3 and 1.4 show the schematic diagram and the photograph of the I/O
extension board, respectively. The I/O extension board contains mainly two sec-
tions: 8 digital inputs and 8 digital outputs. The I/O extension connector DB9M,
seen on the left, connects the I/O extension board to the CPU board or to a previous

FIGURE 1.2 Photograph of the CPU board.

4 Programmable Logic Controller

I/O extension board. Similarly, the I/O extension connector DB9F, seen on the right,
connects the I/O extension board to a next I/O extension board. In this way we can
connect as many I/O extension boards as necessary. 5V DC and 12V DC are taken
from the CPU board or from a previous I/O extension board and they are passed to
the next I/O extension boards. All I/O data are sent to and taken from all the con-
nected extension I/O boards by means of I/O extension connectors DB9M and DB9F.

The inputs section of each I/O extension board introduces 8 digital inputs for the
PIC16F1847-Based PLC (called I0.0, I0.1, …, I0.7 for the first I/O extension board,
called I1.0, I1.1, …, I1.7 for the second I/O extension board, called I2.0, I2.1, …, I2.7
for the third I/O extension board, and called I3.0, I3.1, …, I3.7 for the fourth and last
I/O extension board). 5V DC or 24V DC input signals can be accepted by each input.
These external input signals are isolated from the other parts of the hardware by
using NPN-type optocouplers (e.g., 4N25). For simulating input signals, one can use
on-board push buttons as temporary inputs and slide switches as permanent inputs.
In the beginning of each PLC scan cycle (get_inputs), the 74HC/LS165 of each I/O
extension board is loaded (RB3 [shift/load] = 0) with the level of 8 inputs, and then
these data are serially clocked in (when RB3 = 1, through the RB1 “data in” and RB4

FIGURE 1.3 Schematic diagram of the I/O extension board.

5Hardware of the PIC16F1847-Based PLC

“clock in” pins). If there is only one I/O extension board used, then 8 clock_in sig-
nals are enough to get the 8 input signals. For each additional I/O extension board, 8
more clock_in signals are necessary. The serial data coming from the I/O extension
board(s) are taken from the “SI” input of the 74HC/LS165.

The outputs section of each I/O extension board introduces 8 discrete relay
outputs for the PIC16F1847-Based PLC (called Q0.0, Q0.1, …, Q0.7 for the first
I/O extension board, called Q1.0, Q1.1, …, Q1.7 for the second I/O extension board,
called Q2.0, Q2.1, …, Q0.7 for the third I/O extension board, and called Q3.0, Q3.1,
…, Q3.7 for the fourth and last I/O extension board). Each relay operates with 12V
DC and driven by an 8-bit serial-to-parallel converter register/driver TPIC6B595.
Relays have SPDT (single pole double throw) contacts with C (common), NC (nor-
mally closed), and NO (normally open) terminals. At the end of each PLC scan cycle
(send_outputs), the output data are serially clocked out (through the RB4 “clock
out” and RB2 “data out” pins) and finally latched within the TPIC6B595. If there is
only one I/O extension board used, then 8 clock_out signals are enough to send the
8 output signals. For each additional I/O extension board, 8 more clock_out signals
are necessary. The serial data going to the I/O extension board(s) are sent out from
the “SER OUT” (pin 18) of the TPIC6B595.

FIGURE 1.4 Photograph of the I/O extension board.

6 Programmable Logic Controller

The PCB Gerber files of both the CPU board and the I/O extension board are down-
loadable from this book’s webpage under the downloads section. Note that in the PCB
design of the CPU board and the I/O extension board, some lines of I/O extension
connectors DB9M and DB9F are different from the ones shown in Figures 1.1 and 1.3.

The project reported in this book makes use of a CPU board and four I/O exten-
sion boards. Thus, in total there are 32 digital inputs and 32 digital outputs. Figure 1.5
shows the PIC16F1847-Based PLC consisting of a CPU board, four I/O extension
boards, a 12V DC adapter, and a PICkit 3 PIC programmer.

In addition to the CPU board and I/O extension boards, in this section let us briefly
consider some additional input and output modules to be used with the PIC16F1847-
Based PLC, as shown in Figure 1.6. The following is the list of these additional input
and output modules:

 1. Analog input modules
 2. Analog output modules
 3. RC low-pass filters module
 4. 5.00V voltage reference module
 5. Voltage regulator module

Analog input modules designed within this project are as follows:

 1. 0V to 5V Analog Input Module 1
 2. 0V to 5V Analog Input Module 2

FIGURE 1.5 Photograph of the CPU board plus four I/O extension boards and a PICkit 3
PIC programmer.

7Hardware of the PIC16F1847-Based PLC

 3. 0V to 5V Analog Input Module 3
 4. 0V to 5V Analog Input Module 4
 5. 0V to 5V Analog Input Module 5
 6. 0–10V to 0–5V Signal Converter—Analog Input Module 1
 7. 0–10V to 0–5V Signal Converter—Analog Input Module 2
 8. –5V – +5V to 0–5V Signal Converter—Analog Input Module 1
 9. –5V – +5V to 0–5V Signal Converter—Analog Input Module 2
 10. –10V – +10V to 0–5V Signal Converter—Analog Input Module 1
 11. –10V – +10V to 0–5V Signal Converter—Analog Input Module 2
 12. 0–5V or 4–20mA to 0–5V Signal Converter—Analog Input Module 1
 13. 0–5V or 4–20mA to 0–5V Signal Converter—Analog Input Module 2

Analog output modules designed within this project are as follows:

 1. 0V to 5V Analog Output Module
 2. 0–5V to 0–10V Signal Converter—Analog Output Module
 3. 0–5V to –5V – +5V Signal Converter—Analog Output Module 1
 4. 0–5V to –5V – +5V Signal Converter—Analog Output Module 2

FIGURE 1.6 Photograph of the CPU board together with 13 analog input modules and 7
analog output modules.

8 Programmable Logic Controller

 5. 0–5V to –10V – +10V Signal Converter—Analog Output Module 1
 6. 0–5V to –10V – +10V Signal Converter—Analog Output Module 2
 7. 0–5V to 4–20mA Signal Converter—Analog Output Module

These analog input and analog output modules are explained in detail in Chapter 6
of the Advanced Concepts book.

An RC low-pass filter is a filter circuit, composed of a resistor and a capacitor,
which passes low-frequency signals and blocks high-frequency signals. When a
resistor is placed in series with the power source and a capacitor is placed parallel to
that same power source, this type of circuit forms a low-pass filter. Figure 1.7 depicts
the schematic diagram of RC low-pass filters constructed for analog inputs AI0, AI1,
AI2, and AI3, with the cut-off frequency of 48Hz.

An external 5.00V voltage reference is necessary to be used with the analog-to-
digital converter (ADC) module and the digital-to-analog converter (DAC) module
of the PIC16F1847. To satisfy this requirement, a low-cost solution is obtained by
using the REF02 voltage reference from Analog Devices. Figure 1.8(a) shows the
schematic diagram of the 5.00V voltage reference REF02 with a trim adjustment
circuit consisting of R1, R2, and POT, while Figure 1.8(b) depicts the photograph of
the 5.00V voltage reference module.

In analog input modules and analog output modules (see Chapter 6 of the Advanced
Concepts book) +5.00V and +6.26V power supplies are necessary, and in the DC
motor control examples with an L298N dual full-bridge driver (see “Application
Examples”), a +6.00V power supply is necessary. As considered before, LM2596
step-down voltage regulators can be used to obtain these DC voltages from the 12V
DC input voltage. To address this need, a voltage regulator module is designed.
Figure 1.9(a) shows the schematic diagram of the voltage regulator module, consist-
ing of three LM2596 step-down voltage regulators, while Figure 1.9(b) depicts the
photograph of the voltage regulator module. By using this voltage regulator module,

FIGURE 1.7 Schematic diagram of RC low-pass filters for analog inputs AI0, AI1, AI2,
and AI3.

9Hardware of the PIC16F1847-Based PLC

FIGURE 1.8 (a) Schematic diagram of the 5.00V voltage reference REF02 with a trim
adjustment circuit consisting of R1, R2, and POT; (b) Photograph of the 5.00V voltage refer-
ence module.

10 Programmable Logic Controller

three independent voltage values can be adjusted and used. D1 is used to make sure
that the polarity of the DC input voltage is correct. Switches S1, S2, and S3 (imple-
mented by using jumpers) are used to turn on or off the LM2596S voltage regulators
1, 2, and 3, respectively.

FIGURE 1.9 (a) Schematic diagram of the voltage regulator module, consisting of three
LM2596 step-down voltage regulators; (b) Photograph of the voltage regulator module.

11Hardware of the PIC16F1847-Based PLC

FIGURE 1.10 Three types of Dupont cables used in the project described in this book.

Last but not least, in order to connect the above-mentioned input and output mod-
ules with the PIC16F1847-Based PLC input/output terminals, it is necessary to use
some cables. For this purpose, three types of Dupont cables, shown in Figure 1.10,
are used.

https://taylorandfrancis.com/

13

2 Basic Software

INTRODUCTION

In this chapter, the basic software of the PIC16F1847-Based PLC is explained. A
PLC scan cycle includes the following: obtain the inputs, run the user program, and
update the outputs. It is also necessary to define and initialize all variables used
within a PLC. Necessary functions are all described as PIC Assembly macros to be
used in the PIC16F1847-Based PLC. As can be seen from Figure 2.1, the source files
and their macros developed in the PICPLC_PIC16F1847 project file are as follows:

 1. PICPLC _PIC16F1847 _memory .inc
 2. PICPLC _PIC16F1847 _main .asm
 3. PICPLC _PIC16F1847 _user _Bsc .inc
 4. PICPLC _PIC16F1847 _subr .inc
 5. PICPLC _PIC16F1847 _macros _Bsc .inc
 5.1 initialize (for PLC initialization)
 5.2 ISR (interrupt service routines)
 5.3 get_inputs (for handling the inputs)
 5.4 lpf_progs (low-pass digital filter macros for analog inputs)
 5.5 send_outputs (for sending the outputs)

The basic software of the PIC16F1847-Based PLC makes use of general-purpose
8-bit registers (GPR) of SRAM data memory of the PIC16F1847 microcontroller.
1,024 SRAM bytes of PIC16F1847 are allocated in 13 banks, namely Bank0, Bank1,
…, Bank12. In this PLC project, 695 SRAM bytes are defined and reserved to be
used within the PLC functions. GPRs in banks Bank0, Bank1, Bank2, and Bank3
are intentionally left unused for general use. Thus there are 329 GPRs ready to be
used. The directory called “PICPLC_PIC16F1847_Bsc”, downloadable from this
book’s webpage under the downloads section, contains all project files, macros, defi-
nitions, and examples necessary for the PIC16F1847-Based PLC project explained in
this book (Hardware and Basic Concepts).

Note that files “PICPLC _PIC16F1847 _macros _Bsc .inc” and “PICPLC _
PIC16F1847 _user _Bsc .inc” refer to the macros and user program files of the basic
concepts developed in the PIC16F1847-Based PLC project, respectively. They do
not contain files related to the intermediate and advanced concepts. These files are
intended for the readers who purchased this book as a standalone book. On the other
hand, when this book is purchased as a part of the set of three books, all project
files including basic, intermediate, and advanced concepts are put in the same direc-
tory and the reader is entitled to download and use the whole of the project files
in one directory, the name of which becomes “PICPLC_PIC16F1847” instead of
“PICPLC_PIC16F1847_Bsc”. Therefore, in the second case, the name of the file

Programmable Logic Controller Basic Software

14 Programmable Logic Controller

“PICPLC _PIC16F1847 _macros _Bsc .inc” (and PICPLC _PIC16F1847 _user _Bsc
.inc, respectively) becomes “PICPLC _PIC16F1847 _macros .inc” (and PICPLC _
PIC16F1847 _user . inc, respectively).

In this section the contents of the source files depicted in Figure 2.1 are explained.
In addition, the concept of a “contact bouncing” problem and how it is solved in the
PIC16F1847-Based PLC are explained in detail.

2.1 DEFINITION AND ALLOCATION OF VARIABLES

The definitions of all 8-bit variables to be used for the PIC16F1847-Based PLC proj-
ect and their allocation in SRAM data memory are shown in Figures 2.2 and 2.3,
respectively. These definitions are placed in the “PICPLC _PIC16F1847 _macros
_Bsc .inc” file. Although detailed explanations for these variables are provided in the
related sections of this book, let us now briefly consider these 8-bit variables. In this
project, we define four 8-bit registers (I0, I1, I2, and I3) to hold the debounced state
of physical digital input registers (74HC/LS165) and four 8-bit registers (Q0, Q1, Q2,
and Q3) to hold the state of physical digital output registers. Temp_1 and Temp_2 are
general temporary registers declared to be used in some macros. SMB1 is declared to
be used for obtaining special memory bits. SMB2 is declared to be used for obtain-
ing reference timing signals.

It is well known that digital inputs taken from contacts always suffer from “con-
tact bouncing”. To circumvent this problem, we define a “debouncing” mechanism
for the digital inputs, and this will be explained later. In the “get_inputs” stage of the

FIGURE 2.1 Screenshot of the “PICPLC_PIC16F1847” project, showing the five source
files developed and used in the project.

15Basic Software

PLC scan cycle, digital input signals are serially taken from the related 74HC/LS165
registers and stored in the SRAM registers. As a result, bI0, bI1, bI2, and bI3 will
hold these bouncing digital input signals. After applying the debouncing mechanism
to the bouncing digital input signals bI0, bI1, bI2, and bI3, we obtain “debounced”
input signals and they are stored in SRAM registers I0, I1, I2, and I3 respectively.
In the “send_outputs” stage of the PLC scan cycle, the output information stored in

FIGURE 2.2 (1 of 5) Definition of 8-bit variables.

16 Programmable Logic Controller

the 8-bit SRAM registers Q0, Q1, Q2, and Q3 is serially sent out to and stored in
the related TPIC6B595 registers. This means that the Q0, Q1, Q2, and Q3 registers
will hold output information and their contents will be copied into the TPIC6B595
registers at the end of each PLC scan cycle.

160 8-bit registers, namely TV_L, TV_L+1, …, TV_L+79 and TV_H, TV_H+1,
…, TV_H+79, are defined to be used in timer macros (see Chapter 5 of this book)
for holding current timing values of timers. Ten 8-bit registers, namely T_Q0, T_Q1,
…, T_Q9 are defined to be used in timer macros for holding timer status bits (timer
outputs). 160 8-bit registers, namely CV_L, CV_L+1, …, CV_L+79 and CV_H,
CV_H+1, …, CV_H+79, are defined to be used in counter macros (see Chapter 6 of
this book) for holding current count values of counters. 20 8-bit registers, namely
C_Q0, C_Q1, …, C_Q9 and C_QD0, C_QD1, …, C_QD9, are defined to be used in
counter macros for holding counter status bits (counter outputs). 128 8-bit registers,
namely M0, M1, …, M127, are defined for obtaining 1,024 memory bits (internal
relays, in PLC jargon). The following 43 8-bit registers are defined to be used in
drum sequencer instruction: drum_TVL, drum_TVL+1, …, drum_TVL+15, drum_
TVH, drum_TVH+1, …, drum_TVH+15, drum_TQL, drum_TQH, drum_stepsL,
drum_stepsH, drum_eventsL, drum_eventsH, drum_QL, drum_QH, drum_tmp,
drum_tmpL, and drum_tmpH. The following 54 8-bit registers are defined to be

FIGURE 2.2 Continued

17Basic Software

used in SFC (sequential function charts)-related macros (see Chapter 5 of Advanced
Concepts): step_1.TL, step_1.TL+1, …, step_1.TL+24, step_1.TH, step_1.TH+1, …,
step_1.TH+24, SF0, SF1, SF2, MB0, MB1, and MB2. 40 8-bit registers, namely LPF,
LPF+1, …, LPF+39, are defined to be used in low-pass digital filter macros for hold-
ing current timing values of low-pass digital filters. The following eight 8-bit regis-
ters hold four 10-bit noisy digital values for 4 analog inputs: nAI0L, nAI0H, nAI1L,
nAI1H, nAI2L, nAI2H, nAI3L, and nAI3H. The following eight 8-bit registers hold
four 10-bit filtered digital values for 4 analog inputs: AI0L, AI0H, AI1L, AI1H, AI2L,
AI2H, AI3L, and AI3H. Registers HSC_B2 and HSC_B3 are defined to be used in
the HSC_RB6 macro (see Chapter 2 of Advanced Concepts) to hold the most signifi-
cant two bytes of 32-bit count values. 32 8-bit registers, namely DBNCR, DBNCR+1,
…, DBNCR+31, are defined to be used in the debouncer macro “dbncrN” for holding
current timing values of debouncer macros. 8-bit registers CNT1, CNT2, and CNT3
are defined to be used in the “ISR” macro in order to obtain reference timing sig-
nals T_2ms, T_10ms, T_100ms, and T_1s. 8-bit registers TenK, Thou, Hund, Tens,
and Ones are defined to be used in the following macros: “Conv_UInt_2_BCD_P”,

FIGURE 2.2 Continued

18 Programmable Logic Controller

“Conv_BCD_U_2_Uint”, “Conv_BCD_P_2_Uint”, “Conv_UsInt_2_BCD_U”, and
“Conv_UsInt_2_BCD_P”. The 8-bit register “STP_bits” is defined to be used in the
PWM macros and the HSC macro. 8-bit registers i, j, and k are defined to be used in
the selection macros (see Chapter 2 of Advanced Concepts).

The individual bits (1-bit variables) of 8-bit SRAM registers M0, M1, M2, …,
M127 are all considered in the next section. The definitions of 1-bit (Boolean) vari-
ables are placed in the “PICPLC _PIC16F1847 _macros _Bsc .inc” file. The definitions
of 32 bouncing digital input signals bI0.0, bI0.1, …, bI3.7 by using all bits of 8-bit
SRAM registers bI0, bI1, bI2, and bI3 are shown in Figure 2.4.

The allocation of individual bits (1-bit variables) of 8-bit SRAM registers bI0, bI1,
bI2, and bI3 is shown in Table 2.1.

FIGURE 2.2 Continued

19Basic Software

The definitions of 32 debounced digital input signals I0.0, I0.1, …, I3.7 by using
all bits of 8-bit SRAM registers I0, I1, I2, and I3 are shown in Figure 2.5.

The allocation of individual bits (1-bit variables) of 8-bit SRAM registers I0, I1,
I2, and I3 is shown in Table 2.2.

The definitions of 32 digital output signals Q0.0, Q0.1, …, Q3.7 by using all bits
of 8-bit SRAM registers Q0, Q1, Q2, and Q3 are shown in Figure 2.6.

FIGURE 2.2 Continued

20 Programmable Logic Controller

The allocation of individual bits (1-bit variables) of 8-bit SRAM registers Q0, Q1,
Q2, and Q3 is shown in Table 2.3.

The definitions of special memory bits and for 74HC165 and TPIC6B595 ICs are
depicted in Figure 2.7(a) and (b), respectively. Tables 2.4 and 2.5 show the allocation
of individual bits of the SMB1 register and SMB2 register, respectively.

FIGURE 2.3 (1 of 7) Allocation of 8-bit variables in SRAM data memory.

21Basic Software

The variable “LOGIC0” is defined to hold a logic “0” value throughout the PLC
operation. At the initialization stage it is deposited with this value. Similarly, the
variable “LOGIC1” is defined to hold a logic “1” value throughout the PLC opera-
tion. At the initialization stage it is deposited with this value. The special memory
bit “FRSTSCN” is arranged to hold the value of “1” at the first PLC scan cycle only.

FIGURE 2.3 Continued

22 Programmable Logic Controller

In the other PLC scan cycles following the first one, it is reset. The special memory
bit “SCNOSC” is arranged to work as a “scan oscillator”. This means that in one
PLC scan cycle this special bit will hold the value of “0”, in the next one the value
of “1”, in the next one the value of “0”, and so on. This will keep on going for every
PLC scan cycle.

FIGURE 2.3 Continued

23Basic Software

Let us now consider the four reference timing signals, namely T_2ms, T_10ms,
T_100ms, and T_1s. As will be explained later, timer TMR6 of PIC16F1847 is set
up to count ¼ of the 32-MHz oscillator signal, i.e., 8 MHz with a prescaler arranged
to divide the signal to 64. Then the TMR6 interrupt flag, i.e., TMR6IF, will be set
at every 1 ms. When TMR6IF is set, Boolean variables T_2ms, T_10ms, T_100ms,
and T_1s will be processed within the “ISR” to obtain timing signals with periods

FIGURE 2.3 Continued

24 Programmable Logic Controller

of 2 milliseconds, 10 milliseconds, 100 milliseconds, and 1 second, respectively.
Timing diagrams of the reference timing signals T_2ms, T_10ms, T_100ms, and
T_1s are depicted in Figure 2.8. Note that the evaluation of TMR6 is independent
from PLC scan cycles. When the PLC is switched on, four reference timing signals
(clock pulses), namely T_2ms, T_10ms, T_100ms, and T_1s, will start their operation
automatically as shown in Figure 2.8.

FIGURE 2.3 Continued

25Basic Software

Time delays are obtained by using one of these four reference timing signals. For
example, if, say, we need 5 seconds’ time delay, we can obtain it by counting the
T_10ms signal 500 times (10 ms × 500 = 5,000 ms = 5 s) or by counting the T_100ms
signal 50 times (100 ms × 50 = 5000 ms = 5 s). The counting process is carried
out by using the rising edge signals instead of using the original reference timing
signals. The time interval from one rising edge of a reference timing signal to the

FIGURE 2.3 Continued

26 Programmable Logic Controller

next one is equal to the period of that signal. As a result, in this project, rising edge
signals re_T2ms, re_T10ms, re_T100ms, and re_T_1s are obtained from reference
timing signals T_2ms, T_10ms, T_100ms, and T_1s, respectively, to be used in tim-
ing-related functions. Figure 2.9 shows timing diagrams of a reference timing signal
(RTS) (T[period] = 2 ms, 10 ms, 100 ms, 1 s) and the rising edge signal of the RTS.

FIGURE 2.3 Continued

