—PIC16F1847

— MICROCONTROLLER-BASED
— PROGRAMMABLE LOGIC

— CONTROLLER

N~ ; 'HARDWARE AND BASIC CONCEPTS

MURAT UZAM _::E

CRC Press
Taylor & Francis Group

PIC16F1847
Microcontroller-Based
Programmable Logic
Controller

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com/

PIC16F1847
Microcontroller-Based
Programmable Logic
Controller

Hardware and Basic Concepts

Murat Uzam

CRC Press
Taylor &Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

First edition published 2021

by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742
and by CRC Press

2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC
First edition published by CRC Press 2021
CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication and
apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system, with-
out written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or
contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.

For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

ISBN: 9780367506391 (hbk)
ISBN: 9781003050605 (ebk)

Typeset in Times
by Deanta Global Publishing Services, Chennai, India

Visit the Routledge website: https://www.routledge.com/9780367506391

https://www.routledge.com
www.copyright.com

To the memory of my beloved father, Mehmet Uzam (1937-2017)
to my mother Zeynep Uzam
to my family
who love and support me
and
to my teachers and students

who enriched my knowledge

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com/

Contents

PIOIOZUE ...ttt ettt xiii
PrOEACE. .. e e es XV
ADOUL the AULNOT ...ttt ettt et eaeenes XVvii
Background and Use of the BOOKcccccooiriiiiniiiiniiiiicccecee Xix
Chapter 1 Hardware of the PIC16F1847-Based PLCccccooevieviirieecieeen. 1
Chapter 2 BasiC SOftWATE........cccueeiiiiieeieeiie ettt stee et ebeesaee e e s aeevee e 13
INErOAUCHION ...ttt e sae e e 13
2.1 Definition and Allocation of Variables............cccccueerueerveenneens 14
2.2 Contents of the File “PICPLC_PIC16F1847_memory.inc”.....29
2.3 Contents of the File “PICPLC_PIC16F1847 main.asm” 30
2.4 Contents of the File “PICPLC_PIC16F1847 user_Bsc.inc” ...38
2.5 Contents of the File “PICPLC_PIC16F1847 subr.inc” 38
2.6 Contents of the File “PICPLC_PIC16F1847 macros
B CNC e 41
2.6.1 Macro “INItialiZe”ccceevveerieeieerie e 43
2.6.2 Macro “ISR” ...oooiioiiecieeeecee et 46
2.6.3 Elimination of Contact Bouncing Problem in the
PIC16F1847-Based PLCcccccoeeviiiiieiecieeeeen 47
2.6.3.1 Contact Bouncing Problem......................... 47
2.6.3.2 Understanding a Generic Single 1/0
Contact Debouncercccccceeeeciveeenieeennen. 48
2.6.3.3 Debouncer Macro “dbnerN™........coeeveeneee. 52
2.6.4 Macro “get_iNputs”ccooceevereeriereeienieeenieeie e 55
2.6.5 Low-Pass Digital Filter Macro “Ipf_progs™ 70
2.6.6 Macro “send_Ooutputs”.........cccereeiereeienieeeneeenieane 77
2.7 Example Programscccoooemiieninieiieieseeeee e 87
2.7.1 EXample 2.1 oo 88
272 Example 2.2 ..o 89
273 Example 2.3 i 90
274 Example 2.4 ..o 92
2.7.5 Example 2.5 oo 95
2.7.6 EXample 2.0 ...c.coiiiiiniiiiieceeeee e 99
REFEIENCE ..ttt e 104
Chapter 3 Contact and Relay-Based Macroscc.ccoceeverienenienenieneeiencnn 105
TNErOAUCTION ..ottt e 105
3.1 Macro “Id” (Joad)cceeveeeeiieeeiiieeeee e 106

vii

viii

Chapter 4

Contents
3.2 Macro “lId_not” (10ad_not)ccceeeeeeiurreeeieiiiieee e 107
3.3 MACTO “NOL™ .iiiieeiiie ettt e et e et e e e e st e e eeaeeenaeeesneeeenes 108
3.4 MACTO “OI” oiiiiiieeiieeeeeee et e te e e re e e sree e st e e eeaeesnaaeesseeeenns 108
RIS T \Y/ £ Vo3 ¢ T) ol 1 Lo | AN 109
3.0 MACTO “NOT” ..eiiiieiiieeeiee ettt e e e e e e e e e eaae e neeeenns 111
3.7 MacCro “and”ooccciieeeiie e e 111
3.8 Macro “and _NOt”ooiiiiiiiieee e 113
3.9 Macro “Nand”cceeeeiieiiiieeeie e 115
3,10 MACTO “XOI” .iiiiieiiieeeieeeciteeetreeerree e eesieeeesaeeesnaeeesnseeennes 116
R Y, F: Vo3 (o T (o) ol 1 Lo | AN 116
3,12 MACTO “XINOT” ..iiiiiiieeeiiieeeiieeeieeeesreeesreeesteeeseaeesnaeeesseeeenes 118
3,13 MACTO “OUL” aiiiiieiiieeeieeeeite et eere e e ere e e et e e eereeeeaaeesneeeenes 118
I F Y] F: Vo) (o I 10 (A 1 o N 119
3.15 Macro “mid_out” (Midline Output)cccceeveervueerieereeennnenn 122
3.16 Macro “mid_out_not” (Inverted Midline Output) 122
3.17 MACIO “IN_OUL” .oiiiiiiiiiiiiieeeeeeeeeeeee e 123
3.18 MACro “INV_OUL” .ooiiiiiiiiiiiieeeeeeeeeeee e 125
RO LI \Y, £ Vo) ¢ I Y AN 126
RV Y, F: Vo) ¢ I (1 SN 127
3.21 Macro “SR” (Set—ReSet)ceeeurieerieieiieeeieeeiee e 128
3.22 Macro “RS” (ReSEt—SELl)cccvreerrireiiieeeiieeeiee e siee e 128
3.23 Macro “r_edge” (Rising Edge Detector)ccccceveuenee 130
3.24 Macro “f_edge” (Falling Edge Detector)cccceeeverenene 132

3.25 Macro “r_toggle” (Output Toggle with Rising Edge
| DS (Te1 101) SR 132

3.26 Macro “f_toggle” (Output Toggle with Falling Edge
| DS (Te1 101) SR 133
3.27 Macro “adrs_re” (Address Rising Edge Detector)................. 134
3.28 Macro “adrs_fe” (Address Falling Edge Detector) 135
3.29 Macro “setBF” (Set Bit Field)ccccoccvveeeiieeiiiieiieeeiees 136
3.30 Macro “resetBF” (Reset Bit Field)c.cccccvveeviieiiiiieniieens 149
3.31 Examples for Contact and Relay-Based Macros 149
3.31.1 Example 3.1 .o 156
3.31.2 Example 3.2 .o 157
3.31.3 Example 3.3 .. 159
3.31.4 Example 3.4 ..o 160
3315 Example 3.5. ..o 165
3.31.6 EXample 3.6....cccoiiiniiiiniiniiiccieeeeeeeeeese e 165
3317 Example 3.7 ..o 165
3.31.8 Example 3.8 ..o 167
FUP-FIOP MACIOS. c...cvieniiiiieiiiiiesieetesteeetee et 171
INErOAUCTION ..ttt 171
4.1 Macro “latchl” (D Latch with Active High Enable) 171
4.2 Macro “latch0” (D Latch with Active Low Enable) 172

Contents

4.3
4.4

4.5
4.6

4.7
4.8

4.9
4.10

4.11
4.12

4.13
4.14

4.15

Macro “dff r” (Rising Edge-Triggered D Flip-Flop) 173
Macro “dff r SR” (Rising Edge-Triggered D Flip-Flop

with Active High Preset [S] and Clear [R] Inputs)................ 174
Macro “dff_f” (Falling Edge-Triggered D Flip-Flop) 177
Macro “dff _f SR” (Falling Edge-Triggered D Flip-Flop

with Active High Preset [S] and Clear [R] Inputs)................ 179
Macro “tff_r” (Rising Edge-Triggered T Flip-Flop)............ 182
Macro “tff_r_SR” (Rising Edge-Triggered T Flip-Flop

with Active High Preset [S] and Clear [R] Inputs)................ 182
Macro “tff_f” (Falling Edge-Triggered T Flip-Flop) 185
Macro “tff f SR” (Falling Edge-Triggered T Flip-Flop

with Active High Preset [S] and Clear [R] Inputs)................ 187

Macro “jkff_r” (Rising Edge-Triggered JK Flip-Flop) 188
Macro “jkff_r_SR” (Rising Edge-Triggered JK Flip-
Flop with Active High Preset [S] and Clear [R] Inputs)........ 191
Macro “jkff_f” (Falling Edge-Triggered JK Flip-Flop) 193
Macro “jkff_f SR” (Falling Edge-Triggered JK Flip-
Flop with Active High Preset [S] and Clear [R] Inputs)........ 194

Examples for Flip-Flop Macrosccccccceeevvcivccninvcnccnenne. 197
4.15.1 Example 4.1 ..ccoooiiiiiiiiiiieiieeeeeeeeeeee 203
4.15.2 Example 4.2.....cccooiiiiiiiiiiieeeeeeeeeee 206
4.15.3 Example 4.3 . ..o 209
4.15.4 Example 4.4ccoooiiiiiiieiiiieeeeeeeeeee 211

4.15.5 Example 4.5: 4-Bit Asynchronous Up Counter........ 212
4.15.6 Example 4.6: 4-Bit Asynchronous Down Counter... 217

4.15.7 Example 4.7: Asynchronous Decade Counter 220
4.15.8 Example 4.8: 4-Bit Asynchronous Up/Down

COUNLET ..o 222
4.15.9 Example 4.9: Synchronous Decade Counter-............ 227
4.15.10 Example 4.10: 4-Bit Synchronous Up/Down

COUNLET ..o 232
4.15.11 Example 4.11: 4-Bit Serial-in, Parallel-out Shift

Right RegiSter.......ccoouiiiiiiiiiiciiiccecceee 236
4.15.12 Example 4.12: 4-Bit Serial-in, Serial-out Shift

Right RegISter......coveviiiiiiiiiiniieiiceiceccec e 242
4.15.13 Example 4.13: 4-Bit Serial-In, Parallel-Out Shift

Right or Shift Left Register.......c.ccccecveevverincncnnenne. 245
4.15.14 Example 4.14: 4-Bit Parallel-in, Serial-out Shift

Right Re@iSter.......ccooiiiiiiiiiiiiiiccecceeeiee 249
4.15.15 Example 4.15: 4-Bit Parallel-in, Parallel-out

REGISTET ..ot 251
4.15.16 Example 4.16: 74164 8-Bit Serial-in, Parallel-out

Shift REZIStEr....c.eeueeviririiriirieicrieceeeeeeeeeeee 252

4.15.17 Example 4.17: 74165 8-Bit Parallel-in, Serial-out
Shift REZIStEr....c.eeueeviririiriirieicrieceeeeeeeeeeee 257

X Contents
4.15.18 Example 4.18: 74194 4-Bit Bidirectional

Universal Shift Registercoccoevevieiiciicninincnnns 261

4.15.19 Example 4.19: 74595 8-Bit Serial-in, Serial- or
Parallel-out Shift Register.........ccccceevevirerinincnenne. 266
4.15.20 Example 4.20: 4-Bit Johnson Counter...................... 271
4.15.21 Example 4.21: 8-Bit Ring Counterccccuee. 278
Chapter 5 Timer MACIOS c..cocuvieiiieeieeiieeie ettt sae et e e ebeeseveeaeesenen 287
INErOAUCTION ..ttt 287
5.1 On-Delay Timer (TON).....ccccoctrrierirrenieienierieseeiesieeieeeens 288
5.2 Macro “TON_8” (8-Bit On-Delay Timer)........c.cccocereeruennns 288
5.3 Macro “TON_16" (16-Bit On-Delay Timer)...........cccceevuenneeee 296
5.4 Retentive On-Delay Timer (RTO)cccceoeriiieniencniiienns 301
5.5 Macro “RTO_8” (8-Bit Retentive On-Delay Timer)............. 302
5.6 Macro “RTO_16" (16-Bit Retentive On-Delay Timer).......... 306
5.7 Off-Delay Timer (TOF)......ccccceoirirriniiiinieneneeeneeeeeens 311
5.8 Macro “TOF_8” (8-Bit Off-Delay Timer)c.cccecevvevuennnnns 311
5.9 Macro “TOF_16" (16-Bit Off-Delay Timer)........cc.ccecvevueneene 316
5.10 Pulse Timer (TP) ..ccooeeiiiiiieeeeeee e 321
5.11 Macro “TP_8” (8-Bit Pulse Timer)c...cccceeeviiieeiinecennnenn. 321
5.12 Macro “TP_16" (16-Bit Pulse Timer)cccccceevvvreeneeeennnnn. 326
5.13 Extended Pulse Timer (TEP)cccooioiiiiiiiiiieiieeeeee, 331
5.14 Macro “TEP_8” (8-Bit Extended Pulse Timer)..................... 332
5.15 Macro “TEP_16" (16-Bit Extended Pulse Timer) 336
5.16 Oscillator Timer (TOS)ccoviieiiiieiiiieeee e 341
5.17 Macro “TOS_8” (8-Bit Oscillator Timer)c....cccuveennen.n. 342
5.18 Macro “TOS_16" (16-Bit Oscillator Timer)............cc...cu....... 347
5.19 Examples for Timer Macros.......ccocceveveereneeneneeneneeniennens 353
5.19.1 Example 5.1 .c.occoiiiiiiiniiiiicieeceeeeeee 353
5.19.2 Example 5.2....ccociviiiiiniiiinieiiieeeeeeeeeee 359
5.19.3 Example 5.3 ..ot 364
5.19.4 Example 54ccoooiiiiiniiiiiiieeeeeteee s 370
5.19.5 Example 5.5 ..ot 375
5.19.6 EXample 5.6....cccccoviviriininiiniiiiiciciceeeeeeee 381
Chapter 6 Counter MACTOSccvveiieeieiieierieeiesteete st eeeseeeaeeeeessessaesseessenseenes 387
TNEFOAUCTION ..t 387
6.1 Up Counter (CTU).c.cevuieiiiiieiieeieerieeieeste e 390
6.2 Macro “CTU_8” (8 Bit Up Counter)cceceeevveerveerurennennne 395
6.3 Macro “CTU_16” (16 Bit Up Counter)........ccceeceevveeruvennennne. 402
6.4 Down Counter (CTD)cccuvveiiieeiieiiee e 407
6.5 Macro “CTD_8” (8 Bit Down Counter)ccccceeeeeeeeuvveeennn. 407
6.6 Macro “CTD_16" (16 Bit Down Counter)..............cccevvveennn. 413
6.7 Up/Down Counter (CTUD)cccceevuierieriieiieeienieeieesee e 417

Contents xi
6.8 Macro “CTUD_8” (8 Bit Up/Down Counter)ce.c..... 418
6.9 Macro “CTUD_16” (16 Bit Up/Down Counter).................... 426
6.10 Generalized Up/Down Counter (GCTUD)ccoovvvuvennnenne. 435
6.11 Macro “GCTUD_8” (Generalized 8 Bit
UpP/DowWn COUNLET) ..ottt 437
6.12 Macro “GCTUD_16" (Generalized 16 Bit Up/Down
(@10 1111 7]) SRS 444
6.13 Examples for Counter Macros.........cocccueeveeeeeinvenenenenennens 453
6.13.1 Example 6.1ccoocoiiiiniiiiiiiie 454
6.13.2 Example 6.2.......ccccoooiiiiiiiiiiiieeeee 460
6.13.3 Example 6.3cccociiiiiiiiiiciee 466
6.13.4 Example 6.4........cccooiiniiiiiiiiee 471
6.13.5 Example 6.5......cccocoiiiniiiiiiiiceee 476
6.13.6 EXample 0.0......cccceeririniniiniiiiieieeeteeeeeese e 479
About the Downloadable Files for Hardware and Basic Concepts 485

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com/

Prologue

Think globally, act locally.
Never give up.

No pain, no gain.

Practice makes perfect.

If we hear, we forget

If we see, we remember

If we do, we understand.

Success is not an accident, excellence is not a coincidence.

Think out of the box.

xiii

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com/

Preface

Programmable Logic Controllers (PLC) have been extensively used in industry for
the past five decades. PLC manufacturers offer different PLCs in terms of func-
tions, program memories, and the number of inputs/outputs (I/O), ranging from
a few to thousands of I/Os. The design and implementation of PLCs have long
been a secret of the PLC manufacturers. A serious project was reported by the
author of this book in his previous book, entitled Building a Programmable Logic
Controller with a PICI6F648A Microcontroller, published by CRC Press in 2014,
to describe a microcontroller-based implementation of a PLC. The current proj-
ect, called PICI6F1847 Microcontroller-Based Programmable Logic Controller,
is based on the improved version of the project reported in the above-mentioned
book. The improvements include both hardware and software elements. The cur-
rent project is reported in three books and a downloadable document explaining
application examples:

1. PICI6F1847 Microcontroller-Based Programmable Logic Controller:
Hardware and Basic Concepts (this book)

2. PICI6F1847 Microcontroller-Based Programmable Logic Controller:
Intermediate Concepts

3. PICI6F1847 Microcontroller-Based Programmable Logic Controller:
Advanced Concepts

The current project is presented for students attending the related departments of
engineering or technology faculties, for practicing engineers, and for hobbyists
who want to learn how to design and use a microcontroller-based PLC. The book
assumes the reader has taken courses on digital logic design, microcontrollers,
and PLCs. In addition, the reader is expected to be familiar with the PIC16F
series of microcontrollers and to have been exposed to writing programs using
PIC assembly language within the MPLAB integrated development environment.

The contents of this book may be used to construct two different courses. The first
one may involve teaching the use of the PLC technology as described in this book.
This course may well fit in the related departments of both engineering and technol-
ogy faculties. The second one may involve teaching how to design the PLC technol-
ogy. This second course may be taught in electrical and electronics engineering and
computer engineering departments.

Source and example files defined for the basic concepts of the PIC16F1847-Based
PLC project are downloadable from this book’s webpage under the downloads section.

XV

Xvi Preface

In addition, PCB files of the CPU and I/O extension boards of the PIC16F1847-Based
PLC can also be downloaded from the same link.

Prof. Dr. Murat UZAM

Yozgat Bozok Universitesi
Miihendislik-Mimarlik Fakiiltesi
Elektrik-Elektronik Miihendisligi Boliimii
Yozgat

Turkey

About the Author

Murat Uzam was born in Soke, Turkey, in 1968. He
received his B.Sc. and M.Sc. degrees from the Electrical
Engineering Department, Yildiz Technical University,
Istanbul, Turkey, in 1989 and 1991, respectively, and his
Ph.D. degree from the University of Salford, Salford, U.K.,
in 1998. He was with Nigde University, Turkey, from 1993
to 2010 in the Department of Electrical and Electronics
Engineering as a Research Assistant, Assistant Professor,
Associate Professor, and Professor. He was a Professor in
the Department of Electrical and Electronics Engineering at
Meliksah University in Kayseri, Turkey, from 2011 to 2016. Since 15 April 2020,
he has been serving as a Professor in the Department of Electrical and Electronics
Engineering at Yozgat Bozok University in Yozgat, Turkey.

He was a Visiting Researcher with INRIA, University of Metz and University of
Rennes, France, in 1999, with the University of Toronto, Toronto, ON, Canada, in
2003, and with Xidian University, Xi’an, China, in 2013, 2015, and 2019.

He has published 47 conference papers and 106 journal and magazine papers, 70
of which are indexed by Science Citation Index Expanded (SCIE). He has published
two books in Turkish and five books in English by CRC Press (Taylor & Francis
Group). According to Publons, his H-Index is 16 and his papers have been cited more
than 1370 times by the papers indexed in the SCIE. Dr. Uzam has been serving as a
reviewer for prestigious journals and conferences. According to Publons, the number
of his verified reviews is 70. His current research interests include design and imple-
mentation of discrete event control systems modelled by Petri nets and, in particular,
deadlock prevention/liveness enforcing in flexible manufacturing systems, program-
mable logic controllers (PLCs), microcontrollers (especially PIC microcontrollers),
and the design of microcontroller-based PLCs. The details of his studies are acces-
sible from his web page: https:/pbs.bozok.edu.tr/goster.php?lookup=1074

XVii

https://pbs.bozok.edu.tr

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com/

Background and Use
of the Book

This project has been completed during the search for an answer to the following
question: “How could one design and implement a programmable logic control-
ler (PLC)?”. An answer to this question was provided by the author in his previ-
ous book entitled Building a Programmable Logic Controller with a PICI6F648A
Microcontroller, published by CRC Press in 2014. This project is based on the
improved version of the PLC project reported in the above-mentioned book. So many
new features have been included within the PIC16F1847-Based PLC project to make
it an almost perfect PLC. The reader should be aware of the fact that this project does
not include a graphical interface PC software as in commercial PLCs for developing
PLC programs. Rather, PLC programs are developed by using macros as done in the
Instruction List (IL) PLC programming language. An interested and skilled reader
could well (and is encouraged to) develop a graphical interface PC software for easy
use of the PIC16F1847-Based PLC.

The improvements of the PLC project reported in this book (Hardware and Basic
Concepts) compared with the previous version are summarized as follows.

1. The current version of the PLC explained in this book is based on the
PIC16F1847 microcontroller with: 8,192 words of flash program memory,
1,024 bytes of SRAM data memory, 256 bytes of EEPROM data memory,
the maximum operating speed of 32 MHz, a 16-level-deep hardware stack,
and an enhanced instruction set consisting of 49 single-word instructions,
while the previous one was based on the PIC16F648A microcontroller with:
4,096 words of flash program memory, 256 bytes of SRAM data memory,
256 bytes of EEPROM data memory, the maximum operating speed of 20
MHz, an 8-level-deep hardware stack, and an instruction set consisting of
35 single-word instructions.

2. The hardware explained in this book consists of 1 CPU board and 4 digital
I/0O extension boards, while the previous one consisted of 1 CPU board and
2 digital I/O extension boards.

3. The clock frequency is 32 MHz in the current version of PLC, while it was
20 MHz in the previous version.

4. The current version of the PLC supports up to 32 digital inputs and 32 digi-
tal outputs, while the previous one supported 16 digital inputs and 16 digital
outputs.

5. The current version of the PLC supports up to 4 analog inputs and 1 analog
output, while the previous one did not support analog inputs/outputs.

6. The current version of the PLC supports 1,024 internal relays (memory
bits), while the previous one supported only 32 internal relays.

Xix

XX Background and Use of the Book

7. The current version of the PLC provides 30 contact and relay-based instruc-
tions (macros), while the previous version provided 18 contact and relay-
based instructions.

8. The current version of the PLC provides 14 flip-flop instructions (macros),
while the previous version provided 8 flip-flop instructions.

9. The current version of the PLC provides 80 timers in total. These timers can be
chosen from on-delay timers (TON_8 or TON_16), retentive on-delay timers
(RTO_8 or RTO_16), off-delay timers (TOF_8 or TOF_16), pulse timers (TP_8
or TP_16), extended pulse timers (TEP_8 or TEP_16), and oscillator timers
(TOS_8 or TOS_16). The timers with the suffix “_8” have 8-bit resolution, i.e.,
they are based on 8-bit registers, while the timers with the suffix “_16" have
16-bit resolution, i.e., they are based on 16-bit registers. On the other hand, the
previous version of the PLC provided 8 on-delay timers (TON_8), 8 off-delay
timers (TOF_8), 8 pulse timers (TP_8), and 8 oscillator timers (TOS_8). All
these timers had 8-bit resolution, i.e., they were based on 8-bit registers.

10. The current version of the PLC provides 80 counters in total. These coun-
ters can be chosen from up counters (CTU_8 or CTU_16), down counters
(CTD_8 or CTD_16), up/down counters (CTUD_8 or CTUD_16), and gen-
eralized up/down counters (GCTUD_S8 or GCTUD_16). The counters with
the suffix “_8” have 8-bit resolution, i.e., they are based on 8-bit registers,
while the counters with the suffix “_16” have 16-bit resolution, i.e., they
are based on 16-bit registers. On the other hand, the previous version of the
PLC provided in total only 8 counters (CTU8 or CTD8 or CTUDS). They
had 8-bit resolution, i.e., they were based on 8-bit registers.

11. The current version of the PLC provides 30 comparison instructions (mac-
ros), while the previous version provided 12 comparison instructions.

12. Almost all macros are improved compared with the previous versions, in terms
of flexibility. For example, there is no restriction on the SRAM Banks, i.e.,
Boolean variables, 8-bit variables, and 16-bit variables used as a parameter in
an instruction can be in any Bank. This was not the case in the previous version.

13. Flowcharts are provided to help the understanding of macros (instructions).

In order to follow the topics explained in this book properly, it is expected that the
reader will construct his/her own PIC16F1847-Based PLC consisting of the CPU
board and 4 1/0O extension boards using the PCB files provided on the book’s web-
page under the downloads section. In addition, the reader should also download
and make use of the PLC project files from the book’s webpage. In this project, as
the PIC Assembly is used as the programming language within the MPLAB inte-
grated development environment (IDE), the reader is referred to the homepage of
Microchip (http://www.microchip.com/) to obtain the latest version of MPLAB IDE.
References [R1 and R2] may be useful to understand some aspects of the PIC16F1847
microcontroller and MPASM™ Assembler, respectively.
The contents of this book’s 7 chapters are explained briefly, as follows.

1. Hardware of the PIC16F1847-Based PLC: In this chapter, the hardware
structure of the PIC16F1847-Based PLC, consisting of 32 discrete inputs,

http://www.microchip.com

Background and Use of the Book xxi

32 discrete outputs, 4 analog inputs, 1 analog output, and 2 PWM outputs is
explained in detail.

2. Basic Software: This chapter explains the basic software structure of the
PIC16F1847-Based PLC. A PLC scan cycle includes the following: (1)
obtain the inputs, (2) run the user program, (3) update the outputs. In addi-
tion, it is also necessary to define and initialize all variables used within a
PLC. Necessary functions are all described as PIC Assembly macros to be
used in the PIC16F1847-Based PLC. The source files of the PIC16F1847-
Based PLC are as follows: “PICPLC_PIC16F1847_memory.inc” (the indi-
vidual bits of 8-bit SRAM registers MO, M1, ..., M127 are defined in this
file), “PICPLC_PIC16F1847_main.asm” (processor-specific variable defi-
nitions, PICPLC definitions, the user program, and subroutines are included
in the project by using this file), “PICPLC_PIC16F1847 user.inc” (this file
contains two macros, namely “user_program_1" and “user_program_2",
in order to accommodate user programs), “PICPLC_PIC16F1847_subr.inc”
(this file contains the “subroutines” macro and it is defined to obtain time
delays at the expense of CPU clocks; the “subroutines” macro contains
two time delay-related subroutines: “pause_lms” and “pause_10us”), and
“PICPLC_PIC16F1847_macros.inc”. The file “PICPLC_PIC16F1847_mac-
ros.inc” contains the following macros: “initialize” (for PLC initialization),
“ISR” (interrupt service routines), “get_inputs” (for handling the inputs),
“Ipf_progs” (low-pass digital filter macros for analog inputs), and “send_
outputs” (for sending the outputs).

3. Contact and Relay-Based Macros: The following contact and relay-based
macros are described in this chapter: “1d” (load), “Id_not” (load_not), “not”,
“or”, “or_not”, “nor”, “and”, “and_not”, “nand”, “xor”, “xor_not”, “xnor”,
“out”, “out_not”, “mid_out” (midline output), “mid_out_not” (inverted
midline output), “in_out”, “inv_out”, “_set”, “_reset”, “SR” (set-reset),
“RS” (reset—set), “r_edge” (rising edge detector), “f edge” (falling edge
detector), “r_toggle” (output toggle with rising edge detector), “f_toggle”
(output toggle with falling edge detector), “adrs_re” (Address rising edge
detector), “adrs_fe” (Address falling edge detector), “setBF” (set bit field),
and “resetBF” (reset bit field). These macros are defined to operate on 1-bit
(Boolean) variables.

4. Flip-Flop Macros: The following flip-flop macros are described in this
chapter: “latch1” (D latch with active high enable), “latch0” (D latch with
active low enable), “dff_r” (rising edge—triggered D flip-flop), “dff_r_SR”
(rising edge—triggered D flip-flop with active high preset [S] and clear [R]
inputs), “dff _f” (falling edge—triggered D flip-flop), “dff _f SR” (falling
edge—triggered D flip-flop with active high preset [S] and clear [R] inputs),
“tff_r” (rising edge—triggered T flip-flop), “tff r SR” (rising edge—trig-
gered T flip-flop with active high preset [S] and clear [R] inputs), “tff_f”
(falling edge—triggered T flip-flop), “tff f SR” (falling edge—triggered
T flip-flop with active high preset [S] and clear [R] inputs), “jkff_r” (ris-
ing edge—triggered JK flip-flop), “jkff_r SR” (rising edge—triggered JK
flip-flop with active high preset [S] and clear [R] inputs), “jkff_f” (falling

xxii Background and Use of the Book

edge—triggered JK flip-flop), and “jkff f SR” (falling edge—triggered JK
flip-flop with active high preset [S] and clear [R] inputs). Flip-flop mac-
ros are defined to operate on Boolean (1-bit) variables. 21 examples are
provided to show the applications of these flip-flop macros, including the
implementation of asynchronous and synchronous counters, and shift reg-
isters constructed by using the flip-flop macros.

5. Timer Macros: The following timer macros are described in this chap-
ter: “TON_8” (8-bit on-delay timer), “TON_16" (16-bit on-delay timer),
“RTO_8” (8-bit retentive on-delay timer), “RTO_16" (16-bit retentive on-
delay timer), “TOF_8” (8-bit off-delay timer), “TOF_16" (16-bit off-delay
timer), “TP_8” (8-bit pulse timer), “TP_16" (16-bit pulse timer), “TEP_8”
(8-bit extended pulse timer), “TEP_16" (16-bit extended pulse timer),
“TOS_8” (8-bit oscillator timer), and “TOS_16" (16-bit oscillator timer).

6. Counter Macros: The following counter macros are described in this chap-
ter: “CTU_8” (8-bit up counter), “CTU_16" (16-bit up counter), “CTD_8”
(8-bit down counter), “CTD_16" (16-bit down counter), “CTUD_8” (8-bit
up/down counter), “CTUD_16" (8-bit up/down counter), “GCTUD_8”
(8-bit generalized up/down counter), and “GCTUD_16" (16-bit generalized
up/down counter).

7. Comparison Macros: In this chapter, the majority of the comparison mac-
ros are described according to the following notation: GT (Greater Than—
“>”), GE (Greater than or Equal to—">"), EQ (EQual to—"“="), LT
(Less Than—“<”), LE (Less than or Equal to—“<”), or NE (Not Equal
to—“#"). The contents of two 8-bit registers (R1 and R2) are compared
with the following comparison macros: “R1_GT_R2” (Is R1 greater than
R27), “R1_GE_R2” (Is R1 greater than or equal to R2?), “RI1_EQ_R2” (Is
R1 equal to R2?), “R1_LT_R2” (Is R1 less than R2?), “R1_LE_R2” (Is
R1 less than or equal to R2?), and “R1_NE_R2” (Is R1 not equal to R27?).
Similar comparison macros are also described for comparing the contents
of an 8-bit register (R) with an 8-bit constant (K): “R_GT_K” (Is R greater
than K?), “R_GE_K” (Is R greater than or equal to K?), “R_EQ_K” (Is R
equal to K?), “R_LT_K” (Is R less than K?), “R_LE_K” (Is R less than or
equal to K?), and “R_NE_K” (Is R not equal to K?).

The contents of two 16-bit registers (R1 and R2) are compared with the
following comparison macros: “R1_GT_R2_16" (Is R1 greater than R2?),
“R1_GE_R2_16" (Is R1 greater than or equal to R2?), “RI_EQ_R2_16" (Is
R1equal toR2?), “R1_LT _R2_16” (Is R1 less than R2?), “R1_LE_R2 16" (Is
R1 less than or equal to R2?), and “R1_NE_R2_16" (Is R1 not equal to R2?).
Similar comparison macros are also described for comparing the contents of
a 16-bit register (R) with a 16-bit constant (K): “R_GT_K_16" (Is R greater
than K?), “R_GE_K_16" (Is R greater than or equal to K?), “R_EQ_K_16"
(Is R equal to K?), “R_LT _K_16" (Is R less than K?), “R_LE_K_16” (Is R
less than or equal to K?), and “R_NE_K_16” (Is R not equal to K?). In addi-
tion, the following comparison macros are also provided: “in_RANGE” (Is
the value within the given range?), “in_RANGE_16" (Is the value within
the given range?), “out_ RANGE” (Is the value out of the given range?),

Background and Use of the Book xxiii

TABLE 1
General Characteristics of the PIC16F1847-Based PLC

Bit addresses or function

Inputs/Outputs/Functions Byte addresses/Related bytes names/numbers
32 discrete inputs 10, 10.0, 10.1, ..., 10.7
(external inputs: 5 or 24V DC) 11, 11.0,11.1, ..., 11.7
12, 12.0,12.1, ..., 12.7
13 13.0,13.1, ..., I13.7
32 discrete outputs QO, Q0.0, QO0.1, ..., Q0.7
(relay-type outputs) Ql, Q1.0,Ql.1,...,Q1.7
Q2, Q2.0,Q2.1, ...,Q2.7
Q3 Q3.0,Q3.1,...,Q3.7
4 analog inputs AIOH:AIOL, AIOH,1, AIOH,0, ..., AIOL,0
AITH:AIIL, AIlH,1, AI1H,0, ..., AIIL,0
AI2H:AI2L, AI2H,1, AI2H,0, ..., AI2L,0
AI3H:AI3L AI3H,1, AI3H,0, ..., AI3L,0
1 analog output - RA2
1 high speed counter input - RB6
2 PWM outputs - RA4 & RA7
Drum sequencer instruction Details are available in Chapter 4 of Details are available in
with up to 16 steps and 16 Volume III - Advanced Concepts Chapter 4 of Volume IIT
outputs on each step - Advanced Concepts
1,024 internal relays Mo, MO0.0, MO.1, ..., M0.7
(memory bits) M1, M1.0, M1.1, ..., M1.7
M127 MI127.0,M127.1, ...,
MI127.7
80 8-bit on-delay timers TV_L, TV_L+1, ..., TV_L+79 TQO, TQIL, ..., TQ79
(TON_8) T_Q0,T_Ql,...,T_Q9
80 8-bit retentive on-delay TV_L, TV_L+1, ..., TV_L+79 TQO, TQI1, ..., TQ79
timers T_Q0,T_Ql,....,T_Q9
(RTO_8)
80 8-bit oft-delay timers TV_L, TV_L+1, ..., TV_L+79 TQO, TQI, ..., TQ79
(TOF_8) T_Q0,T_Ql,...,T_Q9
80 8-bit pulse timers TV_L, TV_L+1, ..., TV_L+79 TQO, TQIL, ..., TQ79
(TP_8) T_QO0, T_Ql, ..., T_Q9
80 8-bit extended pulse timers TV_L, TV_L+1, ..., TV_L+79 TQO, TQIL, ..., TQ79
(TEP_8) T_QO0,T_Ql, ..., T_Q9
80 8-bit oscillator timers TV_L, TV_L+1, ..., TV_L+79 TQO, TQIL, ..., TQ79
(TOS_8) T_Q0,T_Ql, ..., T_Q9
80 16-bit on-delay timers TV_L, TV_L+1, ..., TV_L+79 TQO, TQIL, ..., TQ79
(TON_16) TV_H, TV_H+1, ..., TV_H+79

T_QO0,T_QIl,...,T_Q9
(Continued)

XXiv Background and Use of the Book

TABLE 1 (CONTINUED)
General Characteristics of the PIC16F1847-Based PLC

Inputs/Outputs/Functions

80 16-bit retentive on-delay
timers (RTO_16)

80 16-bit off-delay timers
(TOF_16)

80 16-bit pulse timers
(TP_16)

80 16-bit extended pulse
timers

(TEP_16)

80 16-bit oscillator timers

(TOS_16)

80 8-bit up counters

(CTU_8)

80 8-bit down counters

(CTD_8)

80 8-bit up/down counters
(CTUD_8)

80 8-bit generalized up/down
counters (GCTUD_8)

80 16-bit up counters

(CTU_16)

80 16-bit down counters
(CTD_16)

80 16-bit up/down counters
(CTUD_16)

80 16-bit generalized up/down
counters (GCTUD_16)

Byte addresses/Related bytes

TV_L, TV_L+1, ..., TV_L+79
TV_H, TV_H+1, ..., TV_H+79
T_Q0,T_Ql, ..., T_Q9

TV_L, TV_L+1, ..., TV_L+79
TV_H, TV_H+1, ..., TV_H+79
T_Q0, T_Ql, ..., T_Q9

TV_L, TV_L+1, ..., TV_L+79
TV_H, TV_H+1, ..., TV_H+79
T_Q0, T_Ql, ..., T_Q9

TV_L, TV_L+1, ..., TV_L+79
TV_H, TV_H+1, ..., TV_H+79
T_Q0, T_Ql, ..., T_Q9

TV_L, TV_L+1, ..., TV_L+79
TV_H, TV_H+1, ..., TV_H+79
T_Q0,T_Ql, ..., T_Q9
CV_L,CV_L+1, ..., CV_L+79
C_Q0,C_Ql, ...,C_Q9
CV_L,CV_L+1, ..., CV_L+79
C_Q0,C_Ql,...,.C_Q9
CV_L,CV_L+1, ..., CV_L+79
C_Q0,C_Ql, ...,C_Q9
CV_L,CV_L+1, ..., CV_L+79
C_Q0,C_Ql, ...,C_Q9
CV_L,CV_L+1, ..., CV_L+79
CV_H, CV_H+1, ..., CV_H+79
C_Q0,C_Ql, ...,C_Q9
CV_L,CV_L+1, ..., CV_L+79
CV_H, CV_H+1, ..., CV_H+79
C_Q0,C_Ql,...,C_Q9
CV_L,CV_L+1, ..., CV_L+79
CV_H, CV_H+1, ...,CV_H+79
C_Q0,C_Ql, ...,C_Q9
CV_L,CV_L+1, ..., CV_L+79
CV_H, CV_H+1, ..., CV_H+79
C_Q0,C_Ql, ...,C_Q9

Bit addresses or function
names/numbers

TQO, TQL, ..., TQ79

TQO, TQL, ..., TQ79

TQO, TQL, ..., TQ79

TQO, TQL, ..., TQ79

TQO, TQL, ..., TQ79

€QO, CQL, ..., CQ79

CQo, CQ, ..., CQ79

CQo, CQl, ...,CQ79

CQo, CQl, ..., CQ79

CQo, CQl, ..., CQ79

CQo, CQl, ..., CQ79

CQo, CQl, ..., CQ79

CQo, CQl, ..., CQ79

“out_RANGE_16” (Is the value out of the given range?), “Hbit_CaC” (high
bit count and compare), and “Lbit_CaC” (low bit count and compare). Note
that this chapter is provided as downloadable ancillary material.

Application Examples: In total there are 20 application examples considered. For
some application examples, more than one solution is provided in order to point out

Background and Use of the Book XXV

how different methods can be used for controlling the same problem. When the three
books are purchased separately, application examples 1-9 (or 10-11 and 13-18; 7-12
and 20, respectively) are provided as downloadable ancillary material for the book
PICI6F1847 Microcontroller-Based Programmable Logic Controller: Hardware
and Basic Concepts (Intermediate Concepts; Advanced Concepts, respectively). On
the other hand, when the three books are purchased as a set, all application examples
are provided as a single ancillary material.

Appendix A: The list of components for all boards and modules developed in this
project as reported in this book, together with the photographs of all components,
are provided in Appendix A.

Table 1 shows the general characteristics of the PIC16F1847-Based PLC.

IMPORTANT NOTES

1. At any time, at most 80 different timers can be used. A unique timer number
from O to 79 can be assigned to only one of the macros “TP_8”, “TEP_8”,
“TOS_8”, “TON_167, “RTO_16", “TOF_16", “TP_16”, “TEP_16", and
“TOS_16".

2. At any time, at most 80 different counters can be used. A unique counter
number from 0 to 79 can be assigned to only one of the macros “CTU_8”,
“CTD_8”, “CTUD_8”, “GCTUD_8”, “CTU_16", “CTD_16", “CTUD_16",
and “GCTUD_16".

REFERENCES

R1. PIC16(L)F1847 Data Sheet, DS40001453F, 2011-2017, Microchip Technology Inc.
http://wwl.microchip.com/downloads/en/DeviceDoc/40001453F.pdf

R2. MPASM™ Assembler, MPLINK™ Object Linker, MPLIB™ Object Librarian User’s
Guide DS33014J, 2005, Microchip Technology Inc. http:/wwl.microchip.com/downl
oads/en/devicedoc/33014;j.pdf

http://ww1.microchip.com
http://ww1.microchip.com
http://ww1.microchip.com

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com/

’I Hardware of the
PIC16F1847-Based PLC

The hardware of the PIC16F1847-Based PLC consists of mainly two parts: the CPU
board and the 1/0 extension board. The schematic diagram and the photograph of
the PIC16F1847-Based PLC CPU board are shown in Figures 1.1 and 1.2, respec-
tively. The CPU board contains mainly three sections: power, programming, and
CPU (central processing unit).

The power section accepts 12V DC input used as the operating voltage of relays.
5V DC is also used for ICs, inputs, etc. An adjustable LM2596 step-down voltage
regulator module is used to obtain 5V DC voltage from the 12V DC input voltage.
It has the following specifications—conversion efficiency: up to 92%; switching fre-
quency: 150 KHz; rectifier: nonsynchronous rectification; module properties: non-
isolated step-down module (buck); operating temperature: industrial grade (—40 to
+85); load regulation: + 0.5%; voltage regulation: + 2.5%; dynamic response speed:
5% 200 ps; input voltage: 3—40V; output voltage: 1.5-35V (adjustable); output cur-
rent: maximum 3A; size: 43mm*21mm*14mm (length*width*height).

It is important to note that the output voltage (OUT+) of the adjustable LM2596
step-down voltage regulator module must be set to 5.00V by adjusting the potentiom-
eter on the module before inserting the CPU. 12V DC input voltage can be subjected
to electric surge or electrostatic discharge on the external terminal connections. The
TVS (transient voltage suppressor) 1.5KE13A shown in the circuit provides highly
effective protection against such discharges. It is also used to protect the circuit from
accidental reverse polarity of the DC input voltage. For a proper operation of the
PIC16F1847-Based PLC make sure that the DC input voltage < 13V DC.

The programming section deals with the programming of the PICI16F1847
microcontroller. For programming the PICI6F1847 in circuit, it is necessary to
use a PIC programmer hardware and a software with ICSP (in-circuit serial pro-
gramming) capability. In this project, Microchip’s PICkit 3 In-Circuit Debugger/
Programmer (www.microchip.com/PICkit3) is used as the PIC programmer hard-
ware. MPLAB X IDE software (www.microchip.com/mplab/mplab-x-ide), freely
available by Microchip (www.microchip.com), is used for the program development
and for programming the PIC16F1847 microcontroller. The ICSP connector takes
the lines VPP (MCLR), VDD, VSS (GND), DATA (RB7), and CLOCK (RB6) from
the PIC programmer hardware through a properly prepared cable and it connects
them to a 4PDT (four pole double throw) switch. There are two positions of the
4PDT switch. As seen from Figure 1.1, in the PROG position of the 4PDT switch,
PIC16F1847 is ready to be programmed and in the RUN position, the loaded pro-
gram is run. For programming the PIC16F1847 properly by means of a PIC program-
mer and the 4PDT switch, it is also a necessity to switch off the power switch. The
CPU section consists of the PIC16F1847 microcontroller. In the project reported in

1

www.microchip.com
www.microchip.com
www.microchip.com

Programmable Logic Controller

"preoq NdD D'Id Pased-Ly8TA9TDId oY} JO WeISeIp onewoyds 'L IYNDH
1no FEEER
o0 AS Q WNHO
= = RLEEEE 9ay gdl aan| wtow| HOLIAS
‘ Rigaaand Lady
N = PPIPE° NI \ I o0ud
© © e © © O] ® ©
gapﬂ YOLDANNOD
pieog NdD ‘ = dSDI
LY8TA9IDId (9RDOOD)
O'1d P3sed LySTA9IDId Y.L - AT D
— qan
(N#19010) vy = SV OW/ddA"
(@7 13ns)eay =
nmmmou (N"vLva) ey = ndo . U004 == mhm_mmw—
51+ j% S9LOHPL LX3N IHL == 7 T
WO¥4 NI V1va VIS = B it = 4uool
(LnO"HOLY) 08y vi[aan |_|
= 13539
= 9698901dL LXaNTHL | o %070) vau
VOLDANNQD ©L1n0vivalviyas (1no"viva) zay
NOISNALXA O/1 = =
T T
8107 B RI-Ino NI
1no = = wod‘jreur)o wiezn jeanua o Rl g NdD Y Sunuasut 310§q
2aAzL W.hlu_l‘_ It } -—@ } ._u ZEE s sinoio
- uez ein i 1awonualod oy Jsnipy
D) E EN—¢L JNPOJA 10)B[NSIY ITEI[OA
Az oanz £22 usoq d)s 96STNT
2Ze] +100 +NI[S]
22§ aan |oon
NS As Az

Hardware of the PIC16F1847-Based PLC 3

N
=
o
D -
(a8
(o]
(&)

=
(TR
S
v

72) murat_uzam

FIGURE 1.2 Photograph of the CPU board.

this book, the PLC is fixed to run at 32 MHz with an internal oscillator (oscillator
frequency = 8 MHz and PLL = 4). This frequency is fixed because time delays are
calculated based on this speed. RB1, RB3, and RB4 pins are all reserved to be used
for 8-bit parallel-to-serial converter registers 74HC/LS165. Through these three pins
and with added 74HC/LS165 registers we can describe as many inputs as neces-
sary. RB1, RB3, and RB4 are the “data in”, the “shift/load”, and the “clock in” pins,
respectively. Similarly, the RB2, RB4, and RBO pins are all reserved to be used for
8-bit serial-to-parallel converter register/drivers TPIC6B595. Through these three
pins and with added TPIC6BS595 registers we can describe as many outputs as nec-
essary. RB2, RB4, and RBO are the “data out”, the “clock out”, and the “latch out”
pins, respectively.

The RAO, RA1, RB5, and RB7 pins are described and used as analog inputs. They
are called AIO, AIl, AI2, and AI3, respectively. The RA2 pin is used as an analog
output and it is called DACOUT. The RA3 pin is used as VREF+ (ADC voltage ref-
erence input). The RB6 pin is used as the clock input of the high speed counter and it
is called HSCI. The RA4 and RA7 pins are used as PWM (pulse width modulation)
outputs. Therefore, they are called PWM_RA4 and PWM_RAT, respectively. The
RAG6 pin is not used. The PIC16F1847 provides the following—flash program mem-
ory (words): 8K; SRAM data memory (bytes): 1,024; and EEPROM data memory
(bytes): 256. The PIC16F1847-Based PLC macros make use of registers defined in
SRAM data memory.

Figures 1.3 and 1.4 show the schematic diagram and the photograph of the I/O
extension board, respectively. The I/O extension board contains mainly two sec-
tions: 8 digital inputs and 8 digital outputs. The I/O extension connector DBOM,
seen on the left, connects the I/O extension board to the CPU board or to a previous

4 Programmable Logic Controller

|[| The PIC16F1847 based PLC T_

15, -
7| 1/O EXTENSION BOARD 0 T e
TPIC6B595 .

_seenmAnon, T Y To the next l/0 Extension Board

:‘k 3 |_f rﬁn;;;ang&n#:g‘o“ E§ SERIAL DATA IN FROM THE NEXT 74HC165 WU E Jl

DBOM o (3 DBSF

From the d w 7 8 Copyright (2009) Murat Uzam

or el i bl .

From T murat_uzam@hotmail.com

a previous -

1/0 Extension Board

5V DC

our 10.0 10.1 102 103 10.4 10.5 10.6 107
FIGURE 1.3 Schematic diagram of the I/O extension board.

I/0 extension board. Similarly, the I/O extension connector DBIF, seen on the right,
connects the I/O extension board to a next I/O extension board. In this way we can
connect as many I/O extension boards as necessary. SV DC and 12V DC are taken
from the CPU board or from a previous I/O extension board and they are passed to
the next I/O extension boards. All I/O data are sent to and taken from all the con-
nected extension I/0O boards by means of I/O extension connectors DBOM and DBIF.

The inputs section of each I/O extension board introduces 8 digital inputs for the
PIC16F1847-Based PLC (called 10.0, 10.1, ..., 10.7 for the first I/O extension board,
called I1.0, I1.1, ..., I1.7 for the second I/O extension board, called 12.0, 12.1, ..., 12.7
for the third I/O extension board, and called 13.0, I3.1, ..., I3.7 for the fourth and last
I/0 extension board). 5V DC or 24V DC input signals can be accepted by each input.
These external input signals are isolated from the other parts of the hardware by
using NPN-type optocouplers (e.g., 4N25). For simulating input signals, one can use
on-board push buttons as temporary inputs and slide switches as permanent inputs.
In the beginning of each PLC scan cycle (get_inputs), the 74HC/LS165 of each 1/0O
extension board is loaded (RB3 [shift/load] = 0) with the level of 8 inputs, and then
these data are serially clocked in (when RB3 = 1, through the RBI1 “data in” and RB4

Hardware of the PIC16F1847-Based PLC 5

1@ .5 Q .6 G
e.edu. tr/muzam/|f

t_uzam@hotmail.com

‘J‘

FIGURE 1.4 Photograph of the I/O extension board.

“clock in” pins). If there is only one I/O extension board used, then 8 clock_in sig-
nals are enough to get the 8 input signals. For each additional I/O extension board, 8
more clock_in signals are necessary. The serial data coming from the I/O extension
board(s) are taken from the “SI” input of the 74HC/LS165.

The outputs section of each I/O extension board introduces 8 discrete relay
outputs for the PIC16F1847-Based PLC (called Q0.0, QO.1, ..., Q0.7 for the first
I/0 extension board, called Q1.0, Q1.1, ..., Q1.7 for the second I/O extension board,
called Q2.0, Q2.1, ..., Q0.7 for the third I/O extension board, and called Q3.0, Q3.1,
..., Q3.7 for the fourth and last I/O extension board). Each relay operates with 12V
DC and driven by an 8-bit serial-to-parallel converter register/driver TPIC6B595.
Relays have SPDT (single pole double throw) contacts with C (common), NC (nor-
mally closed), and NO (normally open) terminals. At the end of each PLC scan cycle
(send_outputs), the output data are serially clocked out (through the RB4 “clock
out” and RB2 “data out” pins) and finally latched within the TPIC6B595. If there is
only one I/O extension board used, then 8 clock_out signals are enough to send the
8 output signals. For each additional I/O extension board, 8§ more clock_out signals
are necessary. The serial data going to the I/O extension board(s) are sent out from
the “SER OUT” (pin 18) of the TPIC6B595.

6 Programmable Logic Controller

The PCB Gerber files of both the CPU board and the I/0 extension board are down-
loadable from this book’s webpage under the downloads section. Note that in the PCB
design of the CPU board and the I/O extension board, some lines of I/O extension
connectors DBOM and DBYF are different from the ones shown in Figures 1.1 and 1.3.

The project reported in this book makes use of a CPU board and four I/O exten-
sion boards. Thus, in total there are 32 digital inputs and 32 digital outputs. Figure 1.5
shows the PIC16F1847-Based PLC consisting of a CPU board, four I/O extension
boards, a 12V DC adapter, and a PICkit 3 PIC programmer.

In addition to the CPU board and I/O extension boards, in this section let us briefly
consider some additional input and output modules to be used with the PIC16F1847-
Based PLC, as shown in Figure 1.6. The following is the list of these additional input
and output modules:

1. Analog input modules

2. Analog output modules

3. RC low-pass filters module

4. 5.00V voltage reference module
5. Voltage regulator module

Analog input modules designed within this project are as follows:

1. OV to 5V Analog Input Module 1
2. 0V to 5V Analog Input Module 2

[0 #5550 CORMNSES SRSSNRERL v e (S T e o T N S

FIGURE 1.5 Photograph of the CPU board plus four I/O extension boards and a PICkit 3
PIC programmer.

Hardware of the PIC16F1847-Based PLC 7

FIGURE 1.6 Photograph of the CPU board together with 13 analog input modules and 7
analog output modules.

SO X 9NNk~ W

1

. OV to 5V Analog Input Module 3

. OV to 5V Analog Input Module 4

. OV to 5V Analog Input Module 5

. 0-10V to 0-5V Signal Converter—Analog Input Module 1

. 0—10V to 0-5V Signal Converter—Analog Input Module 2

. =5V — +5V to 0-5V Signal Converter—Analog Input Module 1

. =5V — +5V to 0-5V Signal Converter—Analog Input Module 2

. =10V = +10V to 0-5V Signal Converter—Analog Input Module 1
11.
12.
13.

—10V — +10V to 0-5V Signal Converter—Analog Input Module 2
0-5V or 4-20mA to 0-5V Signal Converter—Analog Input Module 1
0-5V or 4-20mA to 0-5V Signal Converter—Analog Input Module 2

Analog output modules designed within this project are as follows:

L.
2.
3.
4.

0V to 5V Analog Output Module

0-5V to 0-10V Signal Converter—Analog Output Module

0-5V to -5V — +5V Signal Converter—Analog Output Module 1
0-5V to -5V — +5V Signal Converter—Analog Output Module 2

8 Programmable Logic Controller

5. 0-5V to —10V — +10V Signal Converter—Analog Output Module 1
6. 0-5V to —10V — +10V Signal Converter—Analog Output Module 2
7. 0-5V to 4-20mA Signal Converter—Analog Output Module

These analog input and analog output modules are explained in detail in Chapter 6
of the Advanced Concepts book.

An RC low-pass filter is a filter circuit, composed of a resistor and a capacitor,
which passes low-frequency signals and blocks high-frequency signals. When a
resistor is placed in series with the power source and a capacitor is placed parallel to
that same power source, this type of circuit forms a low-pass filter. Figure 1.7 depicts
the schematic diagram of RC low-pass filters constructed for analog inputs AIO, All,
Al2, and AI3, with the cut-off frequency of 48Hz.

An external 5.00V voltage reference is necessary to be used with the analog-to-
digital converter (ADC) module and the digital-to-analog converter (DAC) module
of the PIC16F1847. To satisfy this requirement, a low-cost solution is obtained by
using the REF02 voltage reference from Analog Devices. Figure 1.8(a) shows the
schematic diagram of the 5.00V voltage reference REF02 with a trim adjustment
circuit consisting of R1, R2, and POT, while Figure 1.8(b) depicts the photograph of
the 5.00V voltage reference module.

In analog input modules and analog output modules (see Chapter 6 of the Advanced
Concepts book) +5.00V and +6.26V power supplies are necessary, and in the DC
motor control examples with an L298N dual full-bridge driver (see “Application
Examples”), a +6.00V power supply is necessary. As considered before, LM2596
step-down voltage regulators can be used to obtain these DC voltages from the 12V
DC input voltage. To address this need, a voltage regulator module is designed.
Figure 1.9(a) shows the schematic diagram of the voltage regulator module, consist-
ing of three LM2596 step-down voltage regulators, while Figure 1.9(b) depicts the
photograph of the voltage regulator module. By using this voltage regulator module,

Al [ty o
All [ok R2 . 2 v
AIZ P 3 R3 P 3 o
HSCI | o= 1o
GND 7—1 cucalesled f:

fci1=fco=fcs=fca=48 Hz

FIGURE 1.7 Schematic diagram of RC low-pass filters for analog inputs AIO, AIl, AI2,
and AI3.

Hardware of the PIC16F1847-Based PLC 9
REF02 o
VIN +
+E 2 VIN VOUT 6 * 4 W
7.00V — TEMP TRIM S = :g)k"i.) _%
to36V Ll 470kQ R2 S.00V
4 1kQ
Ne[]e — [ENC
Vin 2] [7]NC
TEMP REF02 5] Vour
() GND [2] TOPVIEW [5]TRIM

FIGURE 1.8 (a) Schematic diagram of the 5.00V voltage reference REF02 with a trim
adjustment circuit consisting of R1, R2, and POT; (b) Photograph of the 5.00V voltage refer-

ence module.

10

S1

—elIN— OUT—[o4—
I L

fol IN+ OUT+ [

Programmable Logic Controller

LM2596 Step Down
Voltage Regulator
Module 1

s o

RIINT OUTF o

S2
UIN

+

DC

1N5819
Bl

A D1

LM2596 Step Down
Voltage Regulator
Module 2

INPUT
32Vt 40V

ol IN— OUT- [o—4
L L

U3

S3

(a)

(b)

o] IN— OUT- [of
1 i

=
el
ffiiiiifiiiiiifDlll=l.ZSV1035V

i i i i i i i% U2=1.25V to 35V

U3=1.25V to 35V

folIN+ OUT+ [

LM2596 Step Down
Voltage Regulator
Module 3

FIGURE 1.9 (a) Schematic diagram of the voltage regulator module, consisting of three
LM2596 step-down voltage regulators; (b) Photograph of the voltage regulator module.

three independent voltage values can be adjusted and used. DI is used to make sure
that the polarity of the DC input voltage is correct. Switches S1, S2, and S3 (imple-
mented by using jumpers) are used to turn on or off the LM2596S voltage regulators
1, 2, and 3, respectively.

Hardware of the PIC16F1847-Based PLC 11

Female to Female Male to Female Male to Male

FIGURE 1.10 Three types of Dupont cables used in the project described in this book.

Last but not least, in order to connect the above-mentioned input and output mod-
ules with the PIC16F1847-Based PLC input/output terminals, it is necessary to use
some cables. For this purpose, three types of Dupont cables, shown in Figure 1.10,
are used.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com/

2 Basic Software

INTRODUCTION

In this chapter, the basic software of the PIC16F1847-Based PLC is explained. A
PLC scan cycle includes the following: obtain the inputs, run the user program, and
update the outputs. It is also necessary to define and initialize all variables used
within a PLC. Necessary functions are all described as PIC Assembly macros to be
used in the PIC16F1847-Based PLC. As can be seen from Figure 2.1, the source files
and their macros developed in the PICPLC_PIC16F1847 project file are as follows:

. PICPLC_PIC16F1847_memory.inc
. PICPLC_PIC16F1847_main.asm
. PICPLC_PIC16F1847_user_Bsc.inc
. PICPLC_PIC16F1847_subr.inc
. PICPLC_PIC16F1847_macros_Bsc.inc
5.1 initialize (for PLC initialization)
5.2 ISR (interrupt service routines)
5.3 get_inputs (for handling the inputs)
5.4 1Ipf_progs (low-pass digital filter macros for analog inputs)
5.5 send_outputs (for sending the outputs)

[I S S R S R

The basic software of the PIC16F1847-Based PLC makes use of general-purpose
8-bit registers (GPR) of SRAM data memory of the PIC16F1847 microcontroller.
1,024 SRAM bytes of PIC16F1847 are allocated in 13 banks, namely Bank0, Bankl1,
..., Bankl2. In this PLC project, 695 SRAM bytes are defined and reserved to be
used within the PLC functions. GPRs in banks Bank(, Bankl, Bank2, and Bank3
are intentionally left unused for general use. Thus there are 329 GPRs ready to be
used. The directory called “PICPLC_PIC16F1847_Bsc”, downloadable from this
book’s webpage under the downloads section, contains all project files, macros, defi-
nitions, and examples necessary for the PIC16F1847-Based PLC project explained in
this book (Hardware and Basic Concepts).

Note that files “PICPLC_PIC16F1847 _macros_Bsc.inc” and “PICPLC_
PIC16F1847_user_Bsc.inc” refer to the macros and user program files of the basic
concepts developed in the PIC16F1847-Based PLC project, respectively. They do
not contain files related to the intermediate and advanced concepts. These files are
intended for the readers who purchased this book as a standalone book. On the other
hand, when this book is purchased as a part of the set of three books, all project
files including basic, intermediate, and advanced concepts are put in the same direc-
tory and the reader is entitled to download and use the whole of the project files
in one directory, the name of which becomes “PICPLC_PIC16F1847” instead of
“PICPLC_PIC16F1847_Bsc”. Therefore, in the second case, the name of the file

13

14 Programmable Logic Controller

%3 MPLAB X IDE v5.25 - PICPLC_PIC16F1847 : default

Flle Edrt View Navngate Source Refactor Production Debug

#-[E0) Header Files
+ﬁ Important Files

+ (D) Linker Files

----- E] Source Files

S %] PICPLC_PIC16F1847_macros_Bsc.inc
-fg] PICPLC_PIC16F1847_main.asm
-] PICPLC_PIC16F1847_memory.inc
--fg] PICPLC_PIC16F1847_subr.inc
...i8] PICPLC_PIC16F1847_user_Bsc.inc

(&l Classes o] Services ﬁ]Files Q]

FIGURE 2.1 Screenshot of the “PICPLC_PIC16F1847” project, showing the five source
files developed and used in the project.

“PICPLC_PIC16F1847_macros_Bsc.inc” (and PICPLC_PIC16F1847_user_Bsc
.nc, respectively) becomes “PICPLC_PIC16F1847_macros.inc” (and PICPLC_
PIC16F1847_user.inc, respectively).

In this section the contents of the source files depicted in Figure 2.1 are explained.
In addition, the concept of a “‘contact bouncing” problem and how it is solved in the
PIC16F1847-Based PLC are explained in detail.

2.1 DEFINITION AND ALLOCATION OF VARIABLES

The definitions of all 8-bit variables to be used for the PIC16F1847-Based PLC proj-
ect and their allocation in SRAM data memory are shown in Figures 2.2 and 2.3,
respectively. These definitions are placed in the “PICPLC_PIC16F1847_macros
_Bsc.inc” file. Although detailed explanations for these variables are provided in the
related sections of this book, let us now briefly consider these 8-bit variables. In this
project, we define four 8-bit registers (10, I1, 12, and I3) to hold the debounced state
of physical digital input registers (74HC/LS165) and four 8-bit registers (Q0, Q1, Q2,
and Q3) to hold the state of physical digital output registers. Temp_1 and Temp_2 are
general temporary registers declared to be used in some macros. SMBI is declared to
be used for obtaining special memory bits. SMB2 is declared to be used for obtain-
ing reference timing signals.

It is well known that digital inputs taken from contacts always suffer from “con-
tact bouncing”. To circumvent this problem, we define a “debouncing” mechanism
for the digital inputs, and this will be explained later. In the “get_inputs” stage of the

Basic Software 15

: VARIABLE DEFINITIONS ;
;--------------------- beginning of BANKO ’
cblock 0x020 ; There are 80 8-bit GPRs available in BANKO.

endc ;
jm=mmmmmmmmmmememmm—-- €Nd of BANKO
jm=mmmmmmmmmmmmm--—--= beginning of common RAM memory ---------=-=mmnemmemunn
cblock 0x70
10, 11,12, 13, QO, Q1, Q2, Q3, Temp_1, Temp_2, SMB1, SMB2
endc
;========-==--—------- end of common RAM memory

;-----—--------—------ beginning of BANK1
cblock 0XxOAO ; There are 80 8-bit GPRs available in BANK1.

endc ;
j=====m==m=mm-=------- end of BANK1
jmmmmm e beginning of BANK2

cblock 0x120 ; There are 80 8-bit GPRs available in BANK2.

endc ;
jm=m=mm=mmmmmmmme—--- end of BANK2
j==m=mm=mmmmm-—--—--- beginning of BANK3

cblock 0x1A0 ;There are 80 8-bit GPRs available in BANK3.

endc ;
;-==m----------——--—-- end of BANK3
;-=m=mm-m------—--—--- beginning of BANK4

cblock 0x220 ; 80 8-bit-variables are defined to hold

TV_L ; low byte timing values
endc TV L, TV L+, .., TV_L+79
j=mmmmmmmmmmmemmem—-- eNd of BANK4
;==m=mm-m-mmm-——--—--- beginning of BANK5
cblock 0x2A0 ; 80 8-bit-variables are defined to hold
TV_H ; high byte timing values
endc ; TV_H, TV_H+1, ..., TV_H+79
jm====m=mm=mm-==--—--- end of BANK5
;-=--=---------—------ beginning of BANK6
cblock 0x320 ; 80 8-bit-variables are defined to hold
CV_L ; low byte count values
endc ;CV_L, CV_L+1, ..., CV_L+79
jm=m==m=mmmm-mm--—--- €nd of BANK6
j==m=mm=mmmmmm——--—--= beginning of BANK7
cblock 0x3A0 ; 80 8-bit-variables are defined to hold
CV_H ; high byte count values
endc ; CV_H, CV_H+1, ..., CV_H+79

R end of BANK7

FIGURE 2.2 (] of 5) Definition of 8-bit variables.

PLC scan cycle, digital input signals are serially taken from the related 74HC/LS165
registers and stored in the SRAM registers. As a result, bl0, bll, bl2, and b3 will
hold these bouncing digital input signals. After applying the debouncing mechanism
to the bouncing digital input signals bl0, bIl, bI2, and bI3, we obtain “debounced”
input signals and they are stored in SRAM registers 10, I1, 12, and I3 respectively.
In the “send_outputs” stage of the PLC scan cycle, the output information stored in

16 Programmable Logic Controller

;-----------------——-- beginning of BANK8
cblock 0x420 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
MO, M1, M2, M3 M4, M5, M6, M7
endc
cblock 0x428 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M8, M9, M10, M11 M12, M13, M14, M15
endc ;
cblock 0x430 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M16, M17, M18, M19, M20, M21, M22, M23
endc ;
cblock 0x438 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M24, M25, M26, M27, M28, M29, M30, M31
endc ;
cblock 0x440 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M32, M33, M34, M35, M36, M37, M38, M39
endc ;
cblock 0x448 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M40, M41, M42, M43, M44, M45, M46, M47
endc ;
cblock 0x450 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M48, M49, M50, M51, M52, M53, M54, M55
endc ;
cblock 0x458 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M56, M57, M58, M59, M60, M61, M62, M63
endc ;
cblock 0x460 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M64, M65, M66, M67, M68, M69, M70, M71
endc ;
cblock 0x468 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M72, M73, M74, M75, M76, M77, M78, M79
endc ; In BANK8 80 Memory bytes (640 Memory bits) are defined

jmmmmmmmmmemmmmme—-—- €Nd Of BANKS8

FIGURE 2.2 Continued

the 8-bit SRAM registers QO0, QI1, Q2, and Q3 is serially sent out to and stored in
the related TPIC6B595 registers. This means that the QO0, Q1, Q2, and Q3 registers
will hold output information and their contents will be copied into the TPIC6B595
registers at the end of each PLC scan cycle.
160 8-bit registers, namely TV_L, TV_L+I, ..., TV_L+79 and TV_H, TV_H+I,
., TV_H+79, are defined to be used in timer macros (see Chapter 5 of this book)
for holding current timing values of timers. Ten 8-bit registers, namely T_QO, T_QI,
., T_QO9 are defined to be used in timer macros for holding timer status bits (timer
outputs). 160 8-bit registers, namely CV_L, CV_L+I1, ..., CV_L+79 and CV_H,
CV_H+I, ..., CV_H+79, are defined to be used in counter macros (see Chapter 6 of
this book) for holding current count values of counters. 20 8-bit registers, namely
C_Q0,C_Ql,...,C_Q9 and C_QDO0, C_QDlI, ..., C_QD?Y, are defined to be used in
counter macros for holding counter status bits (counter outputs). 128 8-bit registers,
namely MO, M1, ..., M127, are defined for obtaining 1,024 memory bits (internal
relays, in PLC jargon). The following 43 8-bit registers are defined to be used in
drum sequencer instruction: drum_TVL, drum_TVL+, ..., drum_TVL+15, drum_
TVH, drum_TVH+I, ..., drum_TVH+15, drum_TQL, drum_TQH, drum_stepsL,
drum_stepsH, drum_eventsL, drum_eventsH, drum_QL, drum_QH, drum_tmp,
drum_tmpL, and drum_tmpH. The following 54 8-bit registers are defined to be

Basic Software 17

jmmmm e beginning of BANK9
cblock 0x4A0 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M80, M81, M82, M83, M84, M85, M86, M87

endc ;

cblock 0x4A8 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M88, M89, M90, M91, M92, M93, M94, M95

endc ;

cblock 0x4B0 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M96, M97, M98, M99, M100, M101, M102, M103

endc ;

cblock 0x4B8 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M104, M105, M106, M107, M108, M109, M110, M111

endc ;

cblock 0x4C0O ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M112, M113, M114, M115, M116, M117, M118, M119

endc ;

cblock 0x4C8 ; 8 Memory bytes, 8x8=64 Memory bits (Internal Relays)
M120, M121, M122, M123, M124, M125, M126, M127

endc ; In BANK9 48 Memory bytes (384 Memory bits) are defined.

; In BANK8 and BANK9, 128 Memory bytes (1024 Memory bits) are defined.
; MO, M1, ..., M127

cblock 0x4D0 ; Timer status registers

T_Q0, T_Q1,T_Q2, T_Q3, T_Q4,T_Q5 T_Q6, T_Q7, T_Q8, T_Q9

endc

cblock 0x4DA ; Counter status registers:
C_Q0,C_Q1,C_Q2,C_Q3,C_Q4,C_Q5,C_Q6,C_Q7,C_Q8,C_Q9

endc

cblock Ox4E4 ; Down Counter status registers:
C_QDo0,C_QD1,C_QD2,C_QD3,C_QD4,C_QD5,C_QD6,C_QD7,C_QD8,C_QD9

endc

cblock OX4EE ;

} e 2 RAM locations in BANK9: 4EEh & 4EFh are not used
endc ;

——T T YN

FIGURE 2.2 Continued

used in SFC (sequential function charts)-related macros (see Chapter 5 of Advanced
Concepts): step_1.TL, step_L.TL+1, ..., step_1. TL+24, step_1.TH, step_1. TH+I, ...,
step_1.TH+24, SFO, SF1, SF2, MBO, MBI, and MB2. 40 8-bit registers, namely LPF,
LPF+1, ..., LPF+39, are defined to be used in low-pass digital filter macros for hold-
ing current timing values of low-pass digital filters. The following eight 8-bit regis-
ters hold four 10-bit noisy digital values for 4 analog inputs: nAIOL, nAIOH, nATIlL,
nAllH, nAI2L, nAI2H, nAI3L, and nAI3H. The following eight 8-bit registers hold
four 10-bit filtered digital values for 4 analog inputs: AIOL, AIOH, AT1L, AIlH, AI2L,
AI2H, AI3L, and AI3H. Registers HSC_B2 and HSC_B3 are defined to be used in
the HSC_RB6 macro (see Chapter 2 of Advanced Concepts) to hold the most signifi-
cant two bytes of 32-bit count values. 32 8-bit registers, namely DBNCR, DBNCR+1,
..., DBNCR+31, are defined to be used in the debouncer macro “dbncrN” for holding
current timing values of debouncer macros. 8-bit registers CNT1, CNT2, and CNT3
are defined to be used in the “ISR” macro in order to obtain reference timing sig-
nals T_2ms, T_10ms, T_100ms, and T_1s. 8-bit registers TenK, Thou, Hund, Tens,
and Ones are defined to be used in the following macros: “Conv_UlInt_2_BCD_P”,

18 Programmable Logic Controller

j-=mmmmmmmemmmmm--—-=- beginning of BANK10

cblock 0x520 ; 16 8-bit-variables are defined for d_TON16
drum_TVL ; to hold low byte timing values

endc ; drum_TVL, drum_TVL +1, ..., drum_TVL +15

cblock 0x530 ; 16 8-bit-variables are defined for d_TON16

drum_TVH ; to hold high byte timing values

endc ; drum_TVH, drum_TVH +1, ..., drum_TVH +15

cblock 0x540 ;16 Status bits for 16 d_TON16

drum_TQL,drum_TQH

endc

cblock 0x542 ;16 Steps for Drum Sequencer Instruction
drum_stepsL,drum_stepsH

endc

cblock 0x544 ;16 drum events for Drum Sequencer Instruction
drum_eventsL,drum_eventsH

endc

cblock 0x546

drum_QL,drum_QH;16 final drum outputs

endc

cblock 0x548 ;These 3 registers are used in Drum Sequencer Instruction.
drum_tmp,drum_tmpL,drum_tmpH

endc

cblock 0x54B

SFO0,SF1,SF2 ;24 step flags defined for SFC

endc ;

cblock OX54E

MBO0,MB1,MB2 ;24 Memory bits defined for SFC

endc ;

cblock 0x551 ;24 Memory words defined for SFC to be used in elapsed times
step_1.TL,step_1.TH,step_2.TL,step_2.TH,step_3.TL,step_3.TH,step_4.TL,step_4.TH
endc ;

cblock 0x559 ;24 Memory words defined for SFC to be used in elapsed times
step_5.TL,step_5.TH,step_6.TL,step_6.TH,step_7.TL,step_7.TH,step_8.TL,step_8.TH
endc ;

cblock 0x561 ;24 Memory words defined for SFC to be used in elapsed times
step_9.TL,step_9.TH,step_10.TL,step_10.TH,step_11.TL,step_11.TH,step_12.TL,step_12.TH
endc ;

cblock 0x569 ;24 Memory words defined for SFC to be used in elapsed times
step_13.TL,step_13.TH,step_14.TL,step_14.TH,step_15.TL,step_15.TH,step_16.TL
endc ;

S — end of BANK10

FIGURE 2.2 Continued

“Conv_BCD_U_2 Uint”, “Conv_BCD_P 2 Uint”, “Conv_UsInt_2 BCD_U”, and
“Conv_UsInt_2_BCD_P”. The 8-bit register “STP_bits” is defined to be used in the
PWM macros and the HSC macro. 8-bit registers i, j, and k are defined to be used in
the selection macros (see Chapter 2 of Advanced Concepts).

The individual bits (1-bit variables) of 8-bit SRAM registers M0, M1, M2, ...,
M127 are all considered in the next section. The definitions of 1-bit (Boolean) vari-
ables are placed in the “PICPLC_PIC16F1847_macros_Bsc.inc” file. The definitions
of 32 bouncing digital input signals bI0.0, bl0.1, ..., bI3.7 by using all bits of 8-bit
SRAM registers bl0, bll, bI2, and bI3 are shown in Figure 2.4.

The allocation of individual bits (1-bit variables) of 8-bit SRAM registers bl0, bl1,
bI2, and bl3 is shown in Table 2.1.

Basic Software 19

jmmm e beginning of BANK11
R LPF Variables are in BANK11
cblock 0x5A0 ; 40 8-bit-variables are defined for low pass digital filters
LPF ; LPF, LPF+1, ..., LPF+39
endc ;
cblock 0x5C8 ; 4 noisy Digital Values for 4 Analog inputs
nAIOL, nAIOH, nAI1L, nAl1H, nAl2L, nAI2H, nAlI3L, nAI3H
endc ; are stored in these registers
cblock 0x5D0 ; Filtered Digital Values for 4 Analog inputs
AIOL, AIOH, AI1L, AlI1H, AI2L, AI2H, AI3L, AI3H
endc ; are stored in these registers
cblock 0x5D8
step_16.TH ;
endc ;
cblock 0x5D9 ;24 Memory words defined for SFC to be used in elapsed times
step_17.TL,step_17.TH,step_18.TL,step_18.TH,step_19.TL,step_19.TH,step_20.TL,step_20.TH
endc ;
cblock 0x5E1 ;24 Memory words defined for SFC to be used in elapsed times
step_21.TL,step_21.TH,step_22.TL,step_22.TH,step_23.TL,step_23.TH,step_24.TL,step_24.TH

endc ;
cblock OX5E9 ; HSC_B2 and HSC_B3 registers are used in the HSC_RB6 macro.
HSC_B2,HSC_B
endc ;
cblock Ox5EB
;5 Bytes are available.
endc ;
e end of BANK11
jmmmmmm e beginning of BANK12
jmmm e Debouncer Variables are in BANK12 ————-mmmmmmmmem e
cblock 0x620 ; 32 8-bit-variables are defined to hold timing values
DBNCR ; DBNCR, DBNCR+1, ..., DBNCR+31
endc ;
cblock 0x640 ; 32 bouncing digital inputs are stored in these four registers
blO, bl1, bl2, b3 ; bl0.0, bl0.1, ..., bI3.7
endc ;
cblock 0x644 ;
CNT1, CNT2,CNT3 ;These 3 registers are used in the ISR.
endc ;
cblock 0x647 ;These five temporary registers are defined for
TenK,Thou,Hund,Tens,Ones;"Conv_UInt_2_BCD_P", "Conv_BCD_U_2_UInt"
endc ;"Conv_BCD_P_2_Uint", "Conv_UsInt_2_BCD_U",
;and "Conv_UsInt_2_BCD_P" macros.
cblock 0x64C ;
STP_bits ;This setup register is used in
endc ;PWM macros and HSC_RB6 macro.
cblock 0x64D ;
ij,k ;These registers are used in the selection macros.
endc ;

e end of BANK12

FIGURE 2.2 Continued

The definitions of 32 debounced digital input signals 10.0, 10.1, ..., I3.7 by using
all bits of 8-bit SRAM registers 10, I1, 12, and I3 are shown in Figure 2.5.

The allocation of individual bits (1-bit variables) of 8-bit SRAM registers 10, 11,
12, and I3 is shown in Table 2.2.

The definitions of 32 digital output signals Q0.0, QO0.1, ..., Q3.7 by using all bits
of 8-bit SRAM registers QO0, Q1, Q2, and Q3 are shown in Figure 2.6.

20 Programmable Logic Controller

020h 050h 0AOh 0DOh
021h 051h 0A1h 0D1h
022h 052h 0A2h 0D2h
023h 053h 0A3h 0D3h
024h 054h 0A4h 0D4h
025h 055h 0A5h 0D5h
026h 056h 0A6h 0D6h
027h 057h 0A7h 0D7h
028h 058h 0A8h 0D8h
029h 059h 0A9h 0D%h
02Ah 05Ah 0AAh O0DAh
02Bh 05Bh 0ABh 0DBh
02Ch 05Ch 0ACh 0DCh
02Dh 05Dh 0ADh 0DDh
02Eh 05Eh 0AEh ODEh
02Fh 05Fh 0AFh ODFh
030h 060h 0BOh 0EOh
031h 061h 0B1h OE1h
032h 062h 0B2h 0E2h
033h 063h 0B3h 0E3h
034h 064h 0B4h 0E4h
035h 065h 0B5h OE5h
036h 066h 0B6h 0E6h
037h 067h 0B7h 0E7h
038h 068h 0B8h OE8h
039h 069h 0B9h 0ESh
03Ah 06Ah 0BAh OEAh
03Bh 06Bh 0BBh 0EBh
03Ch 06Ch 0BCh 0ECh
03Dh 06Dh 0BDh OEDh
03Eh 06Eh OBEh OEEh
03Fh 06Fh O0BFh OEFh
040h 070h 10 0COh O0FOh 10
041h 071h "1 0C1h OF1h 1
042h 072h 12 0C2h 0F2h 12
043h 073h 13 0C3h 0F3h 13
044h 074h Qo 0C4h 0F4h Qo
045h 075h Q1 0C5h O0F5h Q1
046h 076h Q2 0C6h 0F6h Q2
047h 077h Q3 0C7h OF7h Q3
048h 078h Temp_1 0C8h 0F8h Temp_1
049h 079h Temp_2 0C%h 0F9h Temp_2
04Ah 07Ah SMB1 0CAh OFAh SMB1
04Bh 07Bh SMB2 0CBh OFBh SMB2
04Ch 07Ch 0CCh OFCh
04Dh 07Dh 0CDh OFDh
04Eh 07Eh 0CEh OFEh
04Fh 07Fh OCFh OFFh
Bank 0 Bank 1

FIGURE 2.3 (I of 7) Allocation of 8-bit variables in SRAM data memory.

The allocation of individual bits (1-bit variables) of 8-bit SRAM registers QO0, QI,
Q2, and Q3 is shown in Table 2.3.

The definitions of special memory bits and for 74HC165 and TPIC6B595 ICs are
depicted in Figure 2.7(a) and (b), respectively. Tables 2.4 and 2.5 show the allocation
of individual bits of the SMBI register and SMB2 register, respectively.

Basic Software 21

120h 150h 1A0h 1D0Oh
121h 151h 1A1h 1D1h
122h 152h 1A2h 1D2h
123h 153h 1A3h 1D3h
124h 154h 1A4h 1D4h
125h 155h 1A5h 1D5h
126h 156h 1A6h 1D6h
127h 157h 1A7h 1D7h
128h 158h 1A8h 1D8h
129h 159h 1A9h 1D%h
12Ah 15Ah 1AAh 1DAh
12Bh 15Bh 1ABh 1DBh
12Ch 15Ch 1ACh 1DCh
12Dh 15Dh 1ADh 1DDh
12Eh 15Eh 1AEh 1DEh
12Fh 15Fh 1AFh 1DFh
130h 160h 1BOh 1EOh
131h 161h 1B1h 1E1h
132h 162h 1B2h 1E2h
133h 163h 1B3h 1E3h
134h 164h 1B4h 1E4h
135h 165h 1B5h 1E5h
136h 166h 1B6h 1E6h
137h 167h 1B7h 1E7h
138h 168h 1B8h 1E8h
139h 169h 1B9h 1ESh
13Ah 16Ah 1BAh 1EAh
13Bh 16Bh 1BBh 1EBh
13Ch 16Ch 1BCh 1ECh
13Dh 16Dh 1BDh 1EDh
13Eh 16Eh 1BEh 1EEh
13Fh 16Fh 1BFh 1EFh
140h 170h 10 1COh 1FOh 10
141h 171h 1 1C1h 1F1h 1
142h 172h 12 1C2h 1F2h 12
143h 173h 13 1C3h 1F3h 13
144h 174h Qo 1C4h 1F4h Qo
145h 175h Q1 1C5h 1F5h Q1
146h 176h Q2 1C6h 1F6h Q2
147h 177h Q3 1C7h 1F7h Q3
148h 178h Temp_1 1C8h 1F8h Temp_1
149h 179h Temp_2 1C%h 1F9h Temp_2
14Ah 17Ah SMB1 1CAh 1FAh SMB1
14Bh 17Bh SMB2 1CBh 1FBh SMB2
14Ch 17Ch 1CCh 1FCh
14Dh 17Dh 1CDh 1FDh
14Eh 17Eh 1CEh 1FEh
14Fh 17Fh 1CFh 1FFh
Bank 2 Bank 3

FIGURE 2.3 Continued

The variable “LOGICO” is defined to hold a logic “0” value throughout the PLC
operation. At the initialization stage it is deposited with this value. Similarly, the
variable “LOGICI1” is defined to hold a logic “1” value throughout the PLC opera-
tion. At the initialization stage it is deposited with this value. The special memory
bit “FRSTSCN” is arranged to hold the value of “1” at the first PLC scan cycle only.

22 Programmable Logic Controller

220h TV L 250h TV L+48 2A0h TV H 2D0h TV _H+48
221h TV L+1 251h TV _L+49 2A1h | TV _H+1 2D1h TV_H+49
222h TV L+2 252h TV_L+50 2A2h | TV_H+2 2D2h TV_H+50
223h TV L+3 253h TV L+51 2A3h | TV_H+3 2D3h TV _H+51
224h TV L+4 254h TV _L+52 2A4h | TV _H+4 2D4h TV_H+52
225h TV _L+5 255h TV _L+53 2A5h | TV_H+5 2D5h TV_H+53
226h TV L+6 256h TV L+54 2A6h | TV _H+6 2D6h TV H+54
227h TV L+7 257h TV L+55 2A7h | TV _H+7 2D7h TV H+55
228h TV L+8 258h TV _L+56 2A8h | TV _H+8 2D8h TV_H+56
229h TV _L+9 259h TV _L+57 2A% | TV_H+9 2D%h TV_H+57
22Ah | TV_L+10 25Ah TV _L+58 2AAh | TV_H+10 2DAh TV_H+58
22Bh | TV _L+11 25Bh TV L+59 2ABh | TV_H+11 2DBh TV H+59
22Ch | TV_L+12 25Ch TV _L+60 2ACh | TV_H+12 2DCh | TV_H+60
22Dh | TV_L+13 25Dh TV _L+61 2ADh | TV_H+13 2DDh | TV _H+61
22Eh | TV _L+14 25Eh TV _L+62 2AEh | TV_H+14 2DEh TV_H+62
22Fh | TV_L+15 25Fh TV L+63 2AFh | TV_H+15 2DFh TV H+63
230h | TV_L+16 260h TV L+64 2BOh | TV_H+16 2EOh TV H+64
231h | TV_L+17 261h TV _L+65 2B1h | TV_H+17 2E1h TV_H+65
232h | TV_L+18 262h TV_L+66 2B2h | TV_H+18 2E2h TV_H+66
233h | TV_L+19 263h TV _L+67 2B3h | TV_H+19 2E3h TV _H+67
234h | TV_L+20 264h TV _L+68 2B4h | TV_H+20 2E4h TV_H+68
235h | TV_L+21 265h TV _L+69 2B5h | TV_H+21 2E5h TV_H+69
236h | TV_L+22 266h TV _L+70 2B6h | TV_H+22 2E6h TV_H+70
237h | TV _L+23 267h TV L+71 2B7h | TV_H+23 2E7h TV H+71
238h | TV L+24 268h TV L+72 2B8h | TV _H+24 2E8h TV _H+72
23%h | TV_L+25 269h TV L+73 2B9h | TV_H+25 2E9h TV_H+73
23Ah | TV _L+26 26Ah TV L+74 2BAh | TV_H+26 2EAh TV _H+74
23Bh | TV _L+27 26Bh TV L+75 2BBh | TV_H+27 2EBh TV _H+75
23Ch | TV _L+28 26Ch TV_L+76 2BCh | TV_H+28 2ECh TV _H+76
23Dh | TV _L+29 26Dh TV L+77 2BDh | TV_H+29 2EDh TV _H+77
23Eh | TV_L+30 26Eh TV _L+78 2BEh | TV_H+30 2EEh TV_H+78
23Fh | TV L+31 26Fh TV L+79 2BFh | TV_H+31 2EFh TV H+79
240h | TV_L+32 270h 10 2C0h | TV_H+32 2FOh 10
241h | TV_L+33 271h 11 2C1h | TV_H+33 2F1h 1
242h | TV_L+34 272h 12 2C2h | TV _H+34 2F2h 12
243h | TV _L+35 273h 13 2C3h | TV_H+35 2F3h 13
244h | TV_L+36 274h Qo 2C4h | TV_H+36 2F4h Qo
245h | TV_L+37 275h Q1 2C5h | TV_H+37 2F5h Q1
246h | TV_L+38 276h Q2 2C6h | TV_H+38 2F6h Q2
247h | TV _L+39 277h Q3 2C7h | TV_H+39 2F7h Q3
248h | TV_L+40 278h Temp_1 2C8h | TV_H+40 2F8h Temp_1
249h | TV _L+41 279h Temp_2 2C% | TV_H+41 2F9h Temp_2
24Ah | TV _L+42 27Ah SMB1 2CAh | TV _H+42 2FAh SMB1
24Bh | TV _L+43 27Bh SMB2 2CBh | TV_H+43 2FBh SMB2
24Ch | TV L+44 27Ch 2CCh | TV_H+44 2FCh
24Dh | TV _L+45 27Dh 2CDh | TV_H+45 2FDh
24Eh | TV_L+46 27Eh 2CEh | TV_H+46 2FEh
24Fh | TV _L+47 27Fh 2CFh | TV_H+47 2FFh

Bank 4 Bank 5

FIGURE 2.3 Continued

In the other PLC scan cycles following the first one, it is reset. The special memory
bit “SCNOSC” is arranged to work as a “scan oscillator”. This means that in one
PLC scan cycle this special bit will hold the value of “0”, in the next one the value
of “1”, in the next one the value of “0”, and so on. This will keep on going for every
PLC scan cycle.

Basic Software 23

320h CV_L 350h CV_L+48 3A0h CV_H 3D0h CV_H+48
321h CV_L+1 351h CV L+49 3A1h | CV_H#1 3D1h CV H+49
322h CV_L+2 352h CV_L+50 3A2h | CV_H+2 3D2h CV_H+50
323h CV_L+3 353h CV_L+51 3A3h | CV_H+3 3D3h CV_H+51
324h CV_L+4 354h CV_L+52 3A4h | CV_H+4 3D4h CV_H+52
325h CV_L+5 355h CV_L+53 3A5h | CV_H+5 3D5h CV H+53
326h CV_L+6 356h CV_L+54 3A6h | CV_H+6 3D6h CV_H+54
327h CV _L+7 357h CV L+55 3A7h | CV_H+7 3D7h CV H+55
328h CV_L+8 358h CV_L+56 3A8h | CV_H+8 3D8h CV_H+56
329h CV_L+9 359h CV_L+57 3A%h | CV_H+9 3D%h CV H+57
32Ah | CV_L+10 35Ah CV_L+58 3AAh | CV_H+10 3DAh CV_H+58
32Bh | CV_L+11 35Bh CV L+59 3ABh | CV_H+11 3DBh CV H+59
32Ch | CV_L+12 35Ch CV_L+60 3ACh | CV_H+12 3DCh | CV_H+60
32Dh | CV_L+13 35Dh CV_L+61 3ADh | CV_H+13 3DDh | CV_H+61
32Eh | CV_L+14 35Eh CV_L+62 3AEh | CV_H+14 3DEh CV_H+62
32Fh | CV_L+15 35Fh CV L+63 3AFh | CV_H+15 3DFh CV H+63
330h | CV_L+16 360h CV_L+64 3BOh | CV_H+16 3EOh CV_H+64
331h | CV _L+17 361h CV_L+65 3B1h | CV_H+17 3E1h CV _H+65
332h | CV_L+18 362h CV_L+66 3B2h | CV_H+18 3E2h CV_H+66
333h | CV_L+19 363h CV L+67 3B3h | CV_H+19 3E3h CV_H+67
334h | CV_L+20 364h CV_L+68 3B4h | CV_H+20 3E4h CV_H+68
335h | CV_L+21 365h CV_L+69 3B5h | CV_H+21 3E5h CV_H+69
336h | CV _L+22 366h CV_L+70 3B6h | CV_H+22 3E6h CV_H+70
337h | CV_L+23 367h CV_L+71 3B7h | CV_H+23 3E7h CV _H+71
338h | CV _L+24 368h CV_L+72 3B8h | CV_H+24 3E8h CV_H+72
339h | CV_L+25 369h CV_L+73 3B9h | CV_H+25 3E9h CV_H+73
33Ah | CV_L+26 36Ah CV_L+74 3BAh | CV_H+26 3EAh CV_H+74
33Bh | CV_L+27 36Bh CV_L+75 3BBh | CV_H+27 3EBh CV_H+75
33Ch | CV_L+28 36Ch CV_L+76 3BCh | CV_H+28 3ECh CV_H+76
33Dh | CV_L+29 36Dh CV_L+77 3BDh | CV_H+29 3EDh CV_H+77
33Eh | CV_L+30 36Eh CV_L+78 3BEh | CV_H+30 3EEh CV_H+78
33Fh | CV_L+31 36Fh CV_L+79 3BFh | CV_H+31 3EFh CV_H+79
340h | CV _L+32 370h 10 3C0h | CV_H+32 3FOh 10
341h | CV_L+33 371h "1 3C1h | CV_H+33 3F1h 1
342h | CV _L+34 372h 12 3C2h | CV_H+34 3F2h 12
343h | CV_L+35 373h 13 3C3h | CV_H+35 3F3h 13
344h | CV_L+36 374h Qo 3C4h | CV_H+36 3F4h Qo
345h | CV_L+37 375h Q1 3C5h | CV_H+37 3F5h Q1
346h | CV_L+38 376h Q2 3C6h | CV_H+38 3F6h Q2
347h | CV_L+39 377h Q3 3C7h | CV_H+39 3F7h Q3
348h | CV_L+40 378h Temp_1 3C8h | CV_H+40 3F8h Temp_1
349h | CV_L+41 379h Temp_2 3C9% | CV_H+41 3F9h Temp_2
34Ah | CV_L+42 37Ah SMB1 3CAh | CV_H+42 3FAh SMB1
34Bh | CV_L+43 37Bh SMB2 3CBh | CV_H+43 3FBh SMB2
34Ch | CV_L+44 37Ch 3CCh | CV_H+44 3FCh
34Dh | CV_L+45 37Dh 3CDh | CV_H+45 3FDh
34Eh | CV_L+46 37Eh 3CEh | CV_H+46 3FEh
34Fh | CV_L+47 37Fh 3CFh | CV_H+47 3FFh

Bank 6 Bank 7

FIGURE 2.3 Continued

Let us now consider the four reference timing signals, namely T_2ms, T_10ms,
T_100ms, and T_1s. As will be explained later, timer TMR6 of PIC16F1847 is set
up to count % of the 32-MHz oscillator signal, i.e., 8 MHz with a prescaler arranged
to divide the signal to 64. Then the TMR®6 interrupt flag, i.e., TMR6IF, will be set
at every 1 ms. When TMROIF is set, Boolean variables T_2ms, T_10ms, T_100ms,
and T_1s will be processed within the “ISR” to obtain timing signals with periods

24 Programmable Logic Controller

420h MO 450h M48 4A0h M80 4DO0Oh T Q0
421h M1 451h M49 4A1h M81 4D1h T Q1
422h M2 452h M50 4A2h M82 4D2h T Q2
423h M3 453h M51 4A3h M83 4D3h T Q3
424h M4 454h M52 4A4h M84 4D4h T Q4
425h M5 455h M53 4A5h M85 4D5h T Q5
426h M6 456h M54 4A6h M86 4D6h T Q6
427h M7 457h M55 4A7h m87 4D7h T Q7
428h M8 458h M56 4A8h M88 4D8h T Q8
429h M9 459h M57 4A9h M89 4D%h T_Q9
42Ah M10 45Ah M58 4AAh M90 4DAh C_Qo0
42Bh M11 45Bh M59 4ABh M91 4DBh Cc_ Q1
42Ch M12 45Ch M60 4ACh M92 4DCh C_Q2
42Dh M13 45Dh M61 4ADh M93 4DDh C Q3
42Eh M14 45Eh M62 4AEh M94 4DEh C_Q4
42Fh M15 45Fh M63 4AFh M95 4DFh C Q5
430h M16 460h M64 4B0h M96 4EOh C_Q6
431h M17 461h M65 4B1h M97 4E1h c Q7
432h M18 462h M66 4B2h M98 4E2h C_Q8
433h M19 463h M67 4B3h M99 4E3h C_Q9
434h M20 464h M68 4B4h M100 4E4h C_QD0
435h M21 465h M69 4B5h M101 4E5h C_QD1
436h M22 466h M70 4B6h M102 4E6h C_QD2
437h M23 467h M71 4B7h M103 4E7h C_QD3
438h M24 468h M72 4B8h M104 4E8h C_QD4
439h M25 469h M73 4B9h M105 4E9h C_QDb5
43Ah M26 46Ah M74 4BAh M106 4EAh C_QD6
43Bh M27 46Bh M75 4BBh M107 4EBh C_QDb7
43Ch M28 46Ch M76 4BCh M108 4ECh C_QD8
43Dh M29 46Dh M77 4BDh M109 4EDh C_QD9
43Eh M30 46Eh M78 4BEh M110 4EEh
43Fh M31 46Fh M79 4BFh M111 4EFh
440h M32 470h 10 4COh M112 4FOh 10
441h M33 471h 1 4C1h M113 4F1h i
442h M34 472h 12 4C2h M114 4F2h 12
443h M35 473h 13 4C3h M115 4F3h 13
444h M36 474h Qo 4C4h M116 4F4h Qo
445h M37 475h Q1 4C5h M117 4F5h Q1
446h M38 476h Q2 4C6h M118 4F6h Q2
447h M39 477h Q3 4C7h M119 4F7h Q3
448h M40 478h Temp_1 4C8h M120 4F8h Temp_1
449h M41 479h Temp_2 4C9h M121 4F9h Temp_2
44Ah M42 47Ah SMB1 4CAh M122 4FAh SMB1
44Bh M43 47Bh SMB2 4CBh M123 4FBh SMB2
44Ch M44 47Ch 4CCh M124 4FCh
44Dh M45 47Dh 4CDh M125 4FDh
44Eh M46 47Eh 4CEh M126 4FEh
44Fh M47 47Fh 4CFh M127 4FFh

Bank 8 Bank 9

FIGURE 2.3 Continued

of 2 milliseconds, 10 milliseconds, 100 milliseconds, and 1 second, respectively.
Timing diagrams of the reference timing signals T_2ms, T_10ms, T_100ms, and
T_1s are depicted in Figure 2.8. Note that the evaluation of TMR®6 is independent
from PLC scan cycles. When the PLC is switched on, four reference timing signals
(clock pulses), namely T_2ms, T_10ms, T_100ms, and T_1s, will start their operation
automatically as shown in Figure 2.8.

Basic Software 25

520h drum_TVL 550h MB2 5A0h LPF 5D0h AlOL
521h | drum_TVL+1 551h | step_1.TL 5A1h | LPF+1 5D1h AIOH
522h | drum_TVL+2 552h | step_1.TH 5A2h | LPF+2 5D2h Al1L
523h | drum_TVL+3 553h | step 2.TL 5A3h | LPF+3 5D3h Al1H
524h | drum_TVL+4 554h | step 2.TH 5A4h | LPF+4 5D4h Al2L
525h | drum_TVL+5 555h | step_3.TL 5A5h | LPF+5 5D5h AI2H
526h | drum_TVL+6 556h | step_3.TH 5A6h | LPF+6 5D6h AlI3L
527h | drum_TVL+7 557h | step_4.TL 5A7h | LPF+7 5D7h AI3H
528h | drum_TVL+8 558h | step 4.TH 5A8h | LPF+8 5D8h | step_16.TH
529h | drum_TVL+9 559h | step _5.TL 5A%h | LPF+9 5D9h | step 17.TL
52Ah | drum_TVL+10 55Ah | step 5.TH 5AAh | LPF+10 5DAh | step _17.TH
52Bh | drum_TVL+11 55Bh | step_6.TL 5ABh | LPF+11 5DBh | step_18.TL
52Ch | drum_TVL+12 55Ch | step_6.TH 5ACh | LPF+12 5DCh | step_18.TH
52Dh | drum_TVL+13 55Dh | step 7.TL 5ADh | LPF+13 5DDh | step 19.TL
52Eh | drum_TVL+14 55Eh | step _7.TH 5AEh | LPF+14 5DEh | step_19.TH
52Fh | drum_TVL+15 55Fh | step 8.TL 5AFh | LPF+15 5DFh | step_20.TL
530h drum_TVH 560h | step_8.TH 5BOh | LPF+16 5EOh | step_20.TH
531h | drum_TVH+1 561h | step_9.TL 5B1h | LPF+17 5E1h | step 21.TL
532h | drum_TVH+2 562h | step 9.TH 5B2h | LPF+18 5E2h | step_21.TH
533h | drum_TVH+3 563h | step_10.TL 5B3h | LPF+19 5E3h | step 22.TL
534h | drum_TVH+4 564h | step_10.TH 5B4h | LPF+20 5E4h | step_22.TH
535h | drum_TVH+5 565h | step 11.TL 5B5h | LPF+21 5E5h | step 23.TL
536h | drum_TVH+6 566h | step_11.TH 5B6h | LPF+22 5E6h | step_23.TH
537h | drum_TVH+7 567h | step_12.TL 5B7h | LPF+23 5E7h | step_24.TL
538h | drum_TVH+8 568h | step_12.TH 5B8h | LPF+24 5E8h | step_24.TH
53%h | drum_TVH+9 569h | step 13.TL 5B9h | LPF+25 5E9h HSC_B2
53Ah | drum_TVH+10 56Ah | step_13.TH 5BAh | LPF+26 5EAh HSC_B3
53Bh | drum_TVH+11 56Bh | step_14.TL 5BBh | LPF+27 5EBh
53Ch | drum_TVH+12 56Ch | step_14.TH 5BCh | LPF+28 5ECh
53Dh | drum_TVH+13 56Dh | step_15.TL 5BDh | LPF+29 5EDh
53Eh | drum_TVH+14 56Eh | step_15.TH 5BEh | LPF+30 5EEh
53Fh | drum_TVH+15 56Fh | step_16.TL 5BFh | LPF+31 5EFh
540h drum_TQL 570h 10 5COh | LPF+32 5F0h 10
541h drum_TQH 571h "1 5C1h | LPF+33 5F1h 1
542h | drum_stepsL 572h 12 5C2h | LPF+34 5F2h 12
543h | drum_stepsH 573h 13 5C3h | LPF+35 5F3h 13
544h | drum_eventsL 574h Qo 5C4h | LPF+36 5F4h Qo
545h | drum_eventsH 575h Q1 5C5h | LPF+37 5F5h Q1
546h drum_QL 576h Q2 5C6h | LPF+38 5F6h Q2
547h drum_QH 577h Q3 5C7h | LPF+39 5F7h Q3
548h drum_tmp 578h Temp_1 5C8h nAlOL 5F8h Temp_1
549h drum_tmpL 579h Temp_2 5C9h | nAIOH 5F9h Temp_2
54Ah drum_tmpH 57Ah SMB1 5CAh | nAl1L 5FAh SMB1
54Bh SFO 57Bh SMB2 5CBh | nAl1H 5FBh SMB2
54Ch SF1 57Ch 5CCh | nAl2L 5FCh
54Dh SF2 57Dh 5CDh | nAI2H 5FDh
54Eh MBO 57Eh 5CEh | nAl3L 5FEh
54Fh MB1 57Fh 5CFh | nAI3H 5FFh

Bank 10 Bank 11

FIGURE 2.3 Continued

Time delays are obtained by using one of these four reference timing signals. For
example, if, say, we need 5 seconds’ time delay, we can obtain it by counting the
T_10ms signal 500 times (10 ms X 500 = 5,000 ms = 5 s) or by counting the T_100ms
signal 50 times (100 ms X 50 = 5000 ms = 5 s). The counting process is carried
out by using the rising edge signals instead of using the original reference timing
signals. The time interval from one rising edge of a reference timing signal to the

26 Programmable Logic Controller

620h DBNCR 650h
621h | DBNCR+1
622h | DBNCR+2
623h | DBNCR+3
624h | DBNCR+4
625h | DBNCR+5
626h | DBNCR+6
627h | DBNCR+7
628h | DBNCR+8
629h | DBNCR+9
62Ah | DBNCR+10
62Bh | DBNCR+11
62Ch | DBNCR+12
62Dh | DBNCR+13
62Eh | DBNCR+14
62Fh | DBNCR+15 Unimplemented
630h | DBNCR+16 Read as ‘0’
631h | DBNCR+17
632h | DBNCR+18
633h | DBNCR+19
634h | DBNCR+20
635h | DBNCR+21
636h | DBNCR+22
637h | DBNCR+23
638h | DBNCR+24
639h | DBNCR+25
63Ah | DBNCR+26
63Bh | DBNCR+27
63Ch | DBNCR+28
63Dh | DBNCR+29
63Eh | DBNCR+30
63Fh | DBNCR+31 66Fh

640h bl0 670h 10
641h bl1 671h "1
642h bl2 672h 12
643h bl3 673h 13
644h CNT1 674h Qo
645h CNT2 675h Q1
646h CNT3 676h Q2
647h TenK 677h Q3
648h Thou 678h Temp_1
649h Hund 679h Temp_2
64Ah Tens 67Ah SMB1
64Bh Ones 67Bh SMB2
64Ch | STP_bits 67Ch
64Dh i 67Dh
64Eh i 67Eh
64Fh k 67Fh

Bank 12

FIGURE 2.3 Continued

next one is equal to the period of that signal. As a result, in this project, rising edge
signals re_T2ms, re_T10ms, re_T100ms, and re_T_1s are obtained from reference
timing signals T_2ms, T_10ms, T_100ms, and T_1s, respectively, to be used in tim-
ing-related functions. Figure 2.9 shows timing diagrams of a reference timing signal
(RTS) (T[period] = 2 ms, 10 ms, 100 ms, 1 s) and the rising edge signal of the RTS.

