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Foreword

THE IMPORTANCE OF POSITION IN SPACE

Sandra L. Arlinghaus and John D. Nystuen

The rain is raining all around.
It rains on land and sea...

unknown children's song.

Most of us have watched the rain fill potholes in our streets or the
snow pile up in the bird baths in our yards as weather commentators 
report that these are Scattered showers” or ‘know flurries.” The reports 
do not tally with our own observations. The problem is that the official 
forecasts of widespread phenomena, such as rain or snow, are based on a
small set of observations at separated locations; the measurements 
derived from these locations are then attributed to an entire region. But 
precipitation is spatially and temporally heterogeneous, perhaps even
fractal in nature. Finer and finer meshes of observations yield higher
and higher variances, yet the pattern is not random in space or time.
Nearby locations experience similar intensities of precipitation as
rainfall sweeps over a region leaving moist rain tracks. After many 
repeated rain events, amounts of rain recorded at each location begin to
converge. This type of phenomenon calls for a measurement strategy
that focuses on the spatial character of widespread phenomena. 
[Nystuen, McGlothin, and Cook, 1993] Spatial statistics does just that.

On April 29, 1986, U. S. scientists detected the nuclear incident at
Chernobyl prior to official Soviet acknowledgment that any event of
note had occurred (see Sadowski and Covington, 1987 for a technical 
discussion). Unusually high energy emissions, well above normal 
reflected energy levels, were detected by multispectral scanners
operating with 30 to 80 meter resolutions from a commercial satellite 
orbiting the Earth. Immediate reference to data from another satellite 
with ten meter resolution confirmed that the hotspot was confined to a 
very small region implying an even higher, very localized, energy 
release. Calculations revealed that the temperature of the energy release 
was that of burning graphite. A meltdown was occurring. Spatial, 
spectral, and temporal precision made this detection possible. A
strategy to detect rare events in space and time was employed.
Positional accuracy in data recording is a prerequisite for most spatial 
statistics applications whether the phenomena are widespread or located 
at unique points.
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L DEPENDENCE OF OBSERVATION ON SPATIAL POSITION

As Griffith notes in the next chapter,

Spatial statistics differsfrom classical statistics in that
the observations analyzed are not independent...

In the case of the rainfall problem, the weather stations scattered across 
a region are generally viewed, for the purposes of forecasting, as 
independent. However, we all know that for the most part, they are not 
independent~the distance between them, and the distance between local
residents and rain gauges, matters. The fundamental assumption of
spatial statistics acknowledges this difficulty, involving dependence on 
spatial position, at the outset.

This handbook displays various techniques from spatial statistics
and illustrates them using real world data. It also illustrates how 
techniques for spatial statistics differ from, or are similar to,
corresponding techniques for classical statistics.

IL A CLASSICAL VIEWPOINT

The roots of useful ideas often have multiple branches that penetrate
different disciplinary horizons. The notion of distance decay is one that
can be traced to Isaac Newton; in geographical interpretations, it later
rested in the hands of Tobler [1961, 1992], Wamtz [1965], and others. 
Currently, note that Griffith’s discussion of spatial weights matrices, 
and Griffith’s and Can’s consideration of land use patterns around the
central city, refer to distance decay in their chapters in this handbook.

Another powerful notion that of a transformation has served as 
the backbone of twentieth century mathematics. It has altered
disciplinary focus from the study of individual mathematical systems to
the study of relations between mathematical systems. D’Arcy Thompson
explored this transformational approach to biology [1917]; Tobler has
employed transformations and some of Thompson’s work in various 
aspects of cartographic analysis [1961, 1992] as has Bookstein in the
measurement of biological shape [1978]. Clarke (1995) presents a 
transformational view of cartography in his text on analytical and
computer cartography. Thirty years ago Michael Dacey and others 
contributed to the development of spatial statistics in highly original 
ways. Dacey used the idea of a dimensional transformation to permit
evaluations of the spatial association of point and area phenomena. 
Indeed, one of the figures in Vasiliev’s chapter calls to mind some of
Dacey’s earlier efforts [1964]. Today, note that Wong employs the
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transformation of spatial aggregation to move across a hierarchy of scale
changes; Feng sees the fertility transition as one transformation in the 
broader transition theory framework (for a complementary current
perspective on transition theory see Drake in Ness, Drake, and Brechin, 
1993); Long uses the Jacobian as a normalizing factor to transform a
correlated mathematical space into an uncorrelated one; Brown 
considers the role of the transformation in a Geographic Information
Systems (GIS) context; and, Li adopts a transformational viewpoint in 
both content and written format in his essay on parallel processing. The 
concept of transformation is critical in these, and in other, chapters of
this handbook.

Ideas capable of widespread application have deep and far flung
roots. It is the aim of this handbook to show the clearly visible, tangible
branching structure of the spatial statistics ‘tree;” we hint here at its
roots in the hope that the diligent reader will be encouraged to dig into 
the rich and fertile minds from which this tree was raised.
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Preface

Anyone who already uses statistics and maps will benefit from using
spatial statistics.

This handbook is a reference work that illustrates the differences 
between classical statistics, and spatial statistics those techniques which 
account, in some manner, for geographical position. It does so at both
the abstract level and the real world level.

Useful features in this handbook include:
1. Comparisons of classical and spatial statistical techniques;
2. Rules-of-thumb capturing the essence of selected techniques;
3. Real-world data used to illustrate abstract concepts;
4. Real-world locales of timely current nature;
5. Cutting-edge topics in spatial statistics;
6. Spatial index that maps relative locations of terms by chapter;
7. Reference lists grouped by chapter and for the book as a whole.

Editors and authors alike have worked hard to create a useful and
uniform document; however, as is always the case, there is no perfect 
document. If you find something that you wish to share with us for the 
next edition new material, corrections, or whatever—please
communicate with:

William C. Arlinghaus 
ATTN: CRC Handbooks

Department of Mathematics and Computer Science
Lawrence Technological University 

21000 West Ten Mile Road
Southfield, MI 48075
arlinghaus@LTU.edu

Thank you in advance, we have tried to be careful and to contribute 
something that is useful and different; in the end, despite all the care of
the many who have generously offered time, effort, and advice, the 
blame for errors, omissions, or poor judgment must rest with the Editor
In-Chief, alone.

Sandra Lach Arlinghaus, Ann Arbor, MI June 7, 1995.
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Chapter 1

INTRODUCTION: THE NEED FOR SPATIAL STATISTICS

Daniel A. Griffith

Geographic information and analysis (GIA) is a critical, emerging
scientific discipline. [Cook et al.y 1994] The establishment in the late
1980s of the National Center for Geographic Information and Analysis 
(NCGIA), with firnds from the National Science Foundation, attests to
its importance. Data that are tied to position on the Earth's surface, that
are spatial or geo-referenced data, often serve as the empirical backbone 
of much of the research that is presently done in this general context. 
The statistical analysis of spatial data forms the subject matter of
“spatial statistics.” Indeed, in writing about his Cornell Theory Center 
supercomputer project, Durrett notes [1994, p. 4] that

[f]or a half century, the literature ... has been
dominated by models in which spatial location is
ignored and each individual [site] is assumed to
interact equally with all the others. Such models
provide an acceptable approximation in many
contexts, but there is a growing list o f examples o f
phenomena that must be treated by models that are
spatially explicit... .

Others echo this need for models that are spatially explicit: the Chorley
Report [1987] released in Great Britain; reports of the National 
Research Council in the United States entitled Spatial Data Needs and
Renewing U.S. Mathematics [1990a, b]; Wamecke's survey of state 
activities [1990, 1991]; and, International Business Machine's (IBM's) 
feature article in 1991.

I. COMPONENTS OF GEOGRAPHIC INFORMATION
AND ANALYSIS

The academic subject matter of Geographic Information and 
Analysis comprises three principal components: geographic information
systems (GISs), spatial statistics, and classical spatial analysis. From a
broad perspective, geographic information systems are a form of
applied computer science, spatial statistics is a form of specialized
applied multivariate statistics, and classical spatial analysis is a form of
quantitative geography.

GISs constitute a powerful new technology that can address many
information needs of decision makers working with geographically

0-8493-0132-7/95/$0.00+$.50
© 1996 by CRC Press, Inc. l



2 Chapter 1 Daniel A. Griffith

(geo-) referenced data data that are tagged, or identified, by locational
coordinates. Often this tagging is for coordinates on the Earth's surface; 
today many tags are created with the aid of the satellite based 
technology of the global positioning system (GPS). GISs are unique 
combinations of computer hardware and software including high-
resolution graphic displays, large-capacity electronic storage devices,
efficient strategies for data organization, high-volume communication
channels, specialized algorithms for data integration and reliability
analysis, and specialized query computer languages. These components, 
together with massive amounts of highly complex geo-referenced data, 
are organized efficiently (through a sequence of electronic interfaces) to
store, inventory, manage, search, manipulate, display (instantaneously), 
and analyze information contained in a geo-referenced database. The
goal is to combine tabular attribute data with computerized maps in an
enlightening way, achieving this goal by having a large storage 
capacity, a rapid response time, and a wide repertoire of analytical
functions. Together, these support a dramatic mode of scientific
visualization.

Generally speaking, spatial statistics is concerned with the 
statistical analysis of geo-referenced data. In 1991 a National Research
Council report characterized this subject area as (p. vii)

one o f the most rapidly growing areas o fstatistics, rife
withfascinating research opportunities.

Yet, despite these opportunities, many statisticians remain unaware of
them and most students in the United States are never exposed to course 
work in spatial statistics this handbook attempts to bridge that gap. 
Spatial statistics differsfrom classical statistics in that the observations
analyzed are not independent; this single assumption violation is the
crux o f the difference. Cressie [1991, p. 3] characterizes this problem
area as follows:

Independence is a very convenient assumption that
makes much o f mathematical-statistical theory
tractable. However, models that involve statistical
dependence are often more realistic.

Moreover, observations are correlated strictly due to their relative
locational positions (referred to as spatial autocorrelation), resulting in 
spill-over of information from one location to another (locational 
information). This spill-over causes redundant information to be 
present in data values. The redundancy increases as the degree of
locational dependence increases. This duplication of information 
produces complications in the statistical analysis of geo-referenced data
that remain dormant in the statistical analysis of traditional data
composed of independent observations. That is, invoking an
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Introduction: The Needfor Spatial Statistics 3

assumption of independent observations suppresses potential data
complexities. The net result is that classical statistics applied to geo­
referenced data fail to capture locational information, raising questions
of estimator sufficiency, bias, efficiency, and consistency. These four 
cardinal statistical properties might also be coupled with two others: 
robustness and minimum variance. Geo-referenced data are highly
complex, with spatial dependence introducing further complications. 
Examples of studies that demonstrate changes in statistical inferences
when a traditional ordinary least squares (OLS) regression model
estimation is replaced with a spatial statistical one include explaining 
the Huk rebellion [Cliff and Ord, 1981, p. 237], predicting county wage 
rates [Anselin, 1988, pp. 191, 193], and estimating mean density of
coffee production [Griffith, 1989].

Classical spatial analysis has been treated conceptually for about a
century, and algebraically for several decades. It has played a central
role in the quantitative scientific tradition in geography. Spatial 
analysis involves spatial operations research (such as minimum route 
selection), logical overlaying (identifying areal units possessing joint
categorical attributes), triangulated irregular networking (TIN; which in 
a sense forms the basis of spatial statistics), and buffering (distance 
bands around points or lines), among others. Most of these procedures
currently are available as functions in GIS tool kits; they automate what
once were tedious manual tasks.

II. BACKGROUND:
THE IMPORTANCE OF LOCATIONAL INFORMATION

Scholarly awareness of complications attributable to locational
information latent in spatial data, especially in terms of their impact on 
the validity of traditional statistical analyses, has emerged recently
among scientists, catapulting spatial statistics into the forefront of much
data analysis discussion. In fact, the analysis of spatial data has become 
a major preoccupation of numerous statisticians only rather recently. 
Accordingly, increasing attention has begun to focus on the general 
field of spatial and geo-statistics (and spatial econometrics). For 
instance, the announced goals in the solicitation of proposals for the
NCGIA [NSF, 1987] included the objective of promoting advances in
spatial statistics within the context of GISs. And, the Board of
Mathematical Sciences of the National Research Council [1990b] has 
targeted spatial statistics as one of twenty-seven topics of national 
concern in mathematics (its rank is 17). Similar evidence has been
made available by the British scientific community, particularly through
that country's Regional Research Laboratories initiative. (For example,



4 Chapter 1 Daniel A. Griffith

as a cooperative effort, the Department of Mathematics at Lancaster
University and the North West Regional Research Laboratory in Great 
Britain initiated a project to integrate statistical and GIS software, while
the U.K. Economic and Social Research Council (ESRC) funded an 
“experts” workshop, held at the University of Sheffield in March of
1991, on this same theme, [see Goodchild, Haining, and Wise, 1992]

In 1989 a symposium entitled “Spatial statistics: past, present, and
future” was hosted by the Department of Geography, Syracuse 
University. Reported findings of this symposium [Griffith, 1990]
include

(1) there is a need for a MINITAB or SAS for spatial statistics
[Ripley, p. 56; Haining, p. 101; Doreian, p. 105; Wartenberg, p.
153; Upton, p. 158];
(2) there is a need for many more additional relevant empirical
applications of spatial statistical techniques [Martin, p. 27; 
Richardson, p. 130; Upton, p. 354; Wartenberg, p. 393]; and,
(3) as the issue of computational intensity subsides, and GIS
software becomes increasingly user-friendly, more ubiquitously
available, and a source for implementing spatial statistical 
techniques, the danger of malpractice by the non specialist
practitioner grows [Anselin, p. 73; Martin, p. 124].

Similar sentiments are echoed in Cressie [1991; pp. 657, 699], while a
review of the literature demonstrates that little spatial statistics and 
spatial econometrics technology has been adopted in scientific research
[see Anselin and Griffith, 1987; Anselin and Hudak, 1992], highlighting
the existence of a dissemination problem. In response to this first point,
Griffith [1989, 1993c] has developed both MINITAB and SAS macros
for undertaking spatial statistical analyses, whereas Anselin [1992] has
developed SPACESTAT for executing spatial econometrics.

Therefore, although a scholarly awareness of spatial statistics 
currently exists in various fields (especially those in the geosciences),
important research needs have been defined by leading researchers in
the field, and although both curricular developments and dissemination 
endeavors are underway, insufficient synthesis and consulting materials
are available. The literature is piecemeal, specialized, and diverse. Its 
content consists of books that tend to be introductory [Goodchild, 1986;
Griffith, 1987; Odland, 1988] or advanced [Ripley, 1988]; little exists at
the intermediate level. One book covers pattern models [Ahuja and
Schachter, 1983], another surface partitionings [Okabe, Boots, and 
Sugihara, 1992]. Some books treat mostly point pattern analysis [Cliff
and Ord, 1981], others geo-statistics [Cressie, 1991], spatial
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Introduction: The Needfor Spatial Statistics 5

autoregressive models [Griffith, 1988], or spatial econometrics
[Paelinck and Klaasen, 1979; Anselin, 1988]. Some books are 
extremely theoretical [Bartlett, 1975; Matem, 1986], while others are 
very applications-oriented [Upton and Fingleton, 1985; Isaaks and 
Srivastave, 1989; Haining, 1990]. This handbook fills the gap 
identified here, and in so doing explicitly addresses the two points of
furnishing additional relevant empirical applications of spatial statistical 
techniques, and providing guidance to help non-specialist practitioners
avoid improper spatial statistical practice. The style, nature, and scope 
of this volume is designed to pique the curiosity of graduate students 
and spatial scientists alike.

III. BACKGROUND:
STATISTICAL ESTIMATOR PROPERTIES

Complications mentioned in the preceding discussion can be
referenced to the statistical properties of estimator sufficiency, 
unbiasedness, efficiency, and consistency. An estimator is sufficient if,
when reducing the sample data to its corresponding summary 
statistic(s), it does not foster a loss of information pertinent to the 
population to which an inference is to be drawn. Exactly all of the
information relevant to a population that is contained in a sample is
condensed into a sufficient statistic. This definition means that all the 
knowledge about a parameter than can be gleaned from both the
individual sample values and their ordering must be gained from the 
value of the estimator alone. Griffith [1988] uses Neyman’s
factorization theorem, and the theorem on completeness for the
exponential family [Lindgren, 1976] to show that in the presence of
locational information the mean and standard deviation are not 
sufficient statistics. Rather, a four-dimensional statistic is needed that 
incorporates both the geographic arrangement of observations and the 
nature and degree of their spatial dependence. These are the estimators
found in spatial statistics, the ones that should be employed in the
statistical analysis o fgeo-referenced data.

An estimator is unbiased if the mean of the sampling distribution 
generated by it equals the parameter that it is supposed to estimate. On
average, the estimator value is equivalent to its corresponding 
population parameter value. Many common statistics involving simple 
linear combinations of geo-referenced data, such as the arithmetic mean 
and regression coefficients, are unbiased. But ones involving more 
complicated arithmetic operations, such as the variance and correlation 
coefficients, tend not to be. For example, Cordy and Griffith [1993]
discuss how, in some cases, the OLS regression coefficient estimators
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provide a reasonable alternative to their spatial statistical counterparts,
while the usual variance estimators are severely biased when regression 
errors are spatially autocorrelated. The main problem with using OLS
in the presence of spatial autocorrelation is that the usual standard error
estimator tends to underestimate the true standard error. This result 
indicates that the geographic arrangement of observations and the 
nature and degree of prevailing spatial dependence affects levels of
statistical significance, and hence the precision of any single set of
sample estimates, as well as prediction error. This consequence raises
questions about OLS results reported in many existing studies involving 
the analysis of geo-referenced data.

One of two candidate estimators is relatively efficient if its 
sampling distribution has the smaller variance of the two, both of which
are unbiased, making it the more reliable measure. An unbiased
estimator that attains the lower bound established in the Cramer-Rao
inequality is an efficient estimator; efficiency, then, may be defined as 
the ratio of the Cramer-Rao lower bound to the actual variance of an
unbiased estimator (in general this lower bound is not attainable). This
statistical trait coupled with the Cramer-Rao inequality implies that the
more efficient an estimator is, the more information it provides about a
target population. In the limit, then, a population constant would have
zero variance, and its companion estimator would yield perfect
information about this parameter. Cordy and Griffith [1993] found that, 
in general, the need to take spatial autocorrelation into account in 
variance estimation for geo-referenced data tends to negate advantages
due to computational simplicity affiliated with the use of OLS
estimation. For the common case where the spatial autocorrelation
parameter needs to be estimated, some of the potential gains in 
efficiency by employing spatial statistical estimators are not realized.
Sometimes if either this spatial autocorrelation parameter is negligible
or the sample size is small, traditional statistical estimators can be more
efficient that their spatial statistical counterparts (likely due to edge 
effects). Frequently, however, the spatial autocorrelation parameter
value is positive, and moderate in magnitude (roughly indicating
juxtaposed correlations falling into the range of 0.3-0.5).

An estimator is consistent, which is a large sample or limiting
property, if for large n it takes on values that are very close to the value 
of its corresponding parameter. This will occur only if both the 
variance of and the bias of an estimator tend to zero as n tends to 
infinity. It suggests that when the sample size is sufficiently large, 
there is near certainty that the error made with a consistent estimator
will be less than any small preassigned positive constant. The larger the 
sample size the better the inference one could expect to make.
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Moreover, if an estimator is unbiased and its variance goes to zero as n
increases to infinity, then it is a consistent estimator of its respective
parameter. Consistency is a neglected topic with regard to spatial 
statistics. Ord [1975] broached the topic, noting that least squares and 
one popular spatial statistical estimator are inconsistent, and that at least
certain maximum likelihood estimators are consistent. Mardia and 
Marshall [1984] stress that when geo-referenced data involve a single 
map being observed, which often is the case, consistency of estimators 
is not obvious. They maintain that only weak consistency can be 
established in general. Traditional estimators tend to display statistical 
consistency when the size of a geographic region is increased without
limit, although their performance deteriorates as the degree of spatial 
dependence in, and areal unit articulation of, a geo-referenced data set 
increase. In contrast, when more and more geo-referenced samples are 
drawn on a continuous variable in a region of fixed size (i.e., the
sampling density increases), many of the commonly used estimators
tend to become inconsistent. This more realistic latter situation is
pertinent to investigations of almost any geo-referenced data set, as well 
as changing geographic scales (resolution) of analysis, where the nature 
of large samples causes the average distance between sampled points to 
decrease, and the degree of observed spatial dependence to increase. 
One complicating factor is that a lower limit exists for impacts of scale 
change due to the discreteness of punctiform geographic distributions, 
which probably prevents perfect positive spatial autocorrelation from
being attainable for many geographically distributed phenomenon.

IV. OVERVIEW OF THE TOPICS

The principal objective of this Handbook is to illustrate how to 
implement spatial statistical techniques, and to show clearly basic 
differences between spatial and conventional statistical analyses using
real-world data sets. Its contents are organized into ten chapters, 
outlined in the Table of Contents, illustrating the differences between
spatial and classical statistics. In the discussion that follows, a view of
the topics of the chapters is taken from a different vantage point to 
enhance overall perspective. (The reference database is STARS from
the World Bank; however, a variety of additional databases are 
employed, too.)

The critical research frontier issues in spatial statistics, particularly 
with regard to implementation of its techniques, are represented by the 
ten topics that compose these chapters. Moreover, interlaced with
methodological recommendations, cautions, and guidance, and coupled
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with exemplary illustrations, are treatments of pressing contemporary
spatial statistical issues.

A. DEFINING SPATIAL WEIGHTS MATRICES
Stetzer [1982] was one of the first researchers to systematically

address the issue of how a spatial weights matrix should be specified. 
Often a spatial scientist needs to know the answer to questions asking

(1) which spatial autoregressive model and accompanying spatial
weights matrix performs best, irrespective of sample size and mis
specification;
(2) about the consequences of over-specifying the weights matrix
(i.e., including false spatial dependence adjacencies); and,
(3) about the consequences of under-specifying the weights matrix
(i.e., omitting true spatial dependence adjacencies).

Griffith [1993b], and Griffith and Csillag [1993] indicate that a
comprehensive treatment of the spatial weights matrix specification is
warranted as part of any quantitative geographic research project. This
treatment should deal with edge effects, questions of internal
partitioning of a geographic landscape, regional shape, and the nature
and degree of the prevailing spatial dependence.

B. IMPLEMENTING SPATIAL STATISTICS WITH
SUPERCOMPUTERS

Massively large geo-referenced data sets are becoming the norm, 
rather than the exception, in today's world of high resolution imagery
and high performance computing. The volume of data in a standard
GIS database, accompanied by the numerically intensive requirements
of many spatial statistics calculations, suggests that an integration of
sophisticated spatial analysis and GIS requires the current capabilities
of supercomputers in order to circumvent computational bottlenecks.
Implementation of spatial statistical models in these situations
frequently requires that supercomputing play a central role. Li [1993] 
has found that two-dimensional geographic distributions map nicely
onto the connection machine, with its substantial number of CPUs. In 
addition, Griffith [1990], and Griffith and Sone [1992, 1993], have
found that spatial statistical procedures can be easily implemented with
vector supercomputers (the Cray 2 and IBM 3090). The sum total of
these outcomes is that numerically intensive spatial statistical 
calculations can be performed in a very reasonable time, with the time 
increase accompanying increasing sample size remaining quiet
manageable. This finding has particular relevance to the newest
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novelty to appear in the desktop computing environment, namely
workstations like the IBM RISC/System 6000 machine.

C. SPATIAL STATISTICS FOR REGULARLY SPACED DATA
Classical experimental design is based on the three concepts of

randomization, blocking, and replication. Randomization strives to 
neutralize the effects of spatial correlation and renders valid tests for the 
hypothesis of equal treatment effects. Grondona and Cressie [1991]
have shown that resorting to a spatial statistical model can yield more 
efficient estimators of the treatment contrasts than classical statistical 
approaches. In so doing, such a spatial statistical analysis gives a more 
complete understanding of the phenomena influencing crop yield. For 
example, by focusing on the influence of one variable (using partial 
derivatives) on the effects of spatial autocorrelation on variance
estimates, detection of treatment differences is enhanced.

Meanwhile, Griffith [1993c] has found that the special nature of the 
uniform structuring of a regular square tessellation surface partitioning
allows measures of spatial autocorrelation to be computed, and spatial 
statistical model parameters to be estimated, without having to
explicitly construct a geographic weights matrix. The regular two
dimensional arrangement of the geo-referenced data allows standard 
time series LAG functions to be used in order to identify pixels lying 
immediately to the east and south of a given areal unit. Invoking this 
function necessitates the addition of a missing values column to the 
map, since the extreme eastern pixels have no values immediately to 
their east. By including a sequential numbering scheme the data can 
then be reordered by sorting on this numbering variable. The 
consequence is that a LAG function can then be used to identify values 
within the boundary that are adjacent to each pixel. Regular square 
tessellation data require far simpler computer code for undertaking
spatial statistical analyses. This simplicity is less demanding of
computer memory, allowing substantially larger problems to be
analyzed.

D. AGGREGATION EFFECTS IN GEO-REFERENCED DATA
Geographic scale can vary between something that is quite coarse, 

a category heading that many surface partitions fall under, to something
that is quite fine (high resolution). Customarily (as in conventional 
univariate statistics), some aggregation of geo-referenced data is
necessary in order to unmask pattern from detail, although too much
aggregation also obscures pattern; aggregation into a single large areal 
unit blends regional distinctions, camouflaging them into oblivion. One 
theme in the quantitative geographic literature acknowledging

-
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complications attributable to changes in scale is known as the 
modifiable areal unit problem (MAUP; see Amrhein, 1994; and,
Chapter 5 in this book).

A spatial scientist needs to properly analyze the variablility of data
over space at an appropriate scale. Thus, knowing which linear
statistics are, and which are not, sensitive to variations in geographic
scale and zoning (surface partitioning) systems is exceedingly
important. [See, for example, Green, 1993] This variation arises from 
three major sources: natural variability (stochastic error), measurement
error, and sampling error. Each source of variability adds uncertainty to
analysis results and confounds understanding of the nature and degree 
of relationships among geographic distributions. This uncertainty can 
be complicated by geographic aggregation, which propagates and
convolutes these various sources of error. In the end, a spatial scientist 
routinely seeks methods to disentangle aggregation effects that
constrain the drawing of inferences based upon geo-referenced data
from one geographic scale to others.

E. SPATIAL SAMPLING
GISs have revolutionized geo-referenced data handling, in general, 

and the visualization of spatial data, in particular. But for this
technological advance to be informative, data entered into a GIS
database must be collected in a meaningful fashion. One way to ensure 
meaningfulness is to implement a proper sampling design for collecting 
the geo-referenced data. Another is to comply with a proper data
analysis. And a third is to extract appropriate interpretations from the
data analysis.

Published theoretical and applied works concerning spatial
sampling designs span more than fifty years and embrace many
disciplines. Initial applications of statistical sampling theory to
problems involving spatially autocorrelated variables appeared in the 
late 1930s. Meanwhile, discussions addressing the relative efficiency of
random sampling versus systematic sampling of data distributed in two
dimensions appeared nearly fifty years ago. The general conclusion
reached was that systematic sampling is superior to random sampling of
geo-referenced data, with the optimal sampling network design being a
superimposed equilateral triangular grid. To date, almost without
exception, research on sampling network design has focused on 
improved estimation of averages for predefined regions; the goal has 
been to obtain a minimum variance estimate of this mean from a fixed
number of sample points.

The problem of spatial sampling designs has been revisited by
Stehman and Overton (see, for example, 1989; and, Chapter 3 in this
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book). To begin, they emphasize that systematic sampling has many 
advantages over unrestricted random sampling. One practical 
advantage is ease of implementation. One theoretical advantage is
increased precision of estimators. One geo-referenced data context 
advantage is the ability to furnish information on spatial or temporal 
patterns in a target population. In fact, geo-referenced data properties
of estimators based upon a systematic sample are determined by the
natural geographic ordering of a response variable. But, although
systematic sampling is widely accepted as a practical sampling design, 
obtaining an unbiased estimation of variance with it has continued to be
problematic. In practice, though, a standard recommendation is to treat 
the systematic sample as an unrestricted random sample, assuming that 
the response variable occurs randomly along the underlying natural 
ordering. In this context the standard formula unfortunately
overestimates the true variance in most circumstances. Evaluation
results obtained by Overton and Stehman [1990], using the criteria of
precision and suitability of variance estimation, argues for use of the 
triangular network tessellation-stratified sampling design.

F. SPATIAL STATISTICS AND GIS
Presently there is both evidence and prevailing expert opinion 

indicating that spatial statistical techniques need to be converted into
GIS functions. [See, for example, Griffith, 1993a] Access to standard 
GIS functions for managing, transforming, and displaying spatial input 
data and visualizing model output and residuals enhances a spatial 
statistical analysis. Candidate techniques for inclusion in a GIS toolbox 
include indices of spatial autocorrelation and selected spatial 
autoregressive models, which, for instance, can be used to enhance
satellite digital data classification procedures. [Brown and Walsh, 1993]
These procedures should be augmented with an elementary multiple
linear regression function, a spatial weights generator, and a Moran 
Coefficient function to test for spatial autocorrelation in regression 
residuals, spatial correlogram and semivariogram functions. The 
descriptive functions can be used to examine data for spatial patterns, 
which may suggest causal processes or, in some cases, reveal systematic
errors in the data. [Brown and Bara, 1994] An extremely useful geo-
statistical function is the semivariogram, which can serve as a tool for
suggesting optimum cell sizes in process models linked with raster GIS
databases [Brown et al., 1993] and for the correction of systematic
errors in digital elevation models. [Brown and Bara, 1993] Moreover, 
spatial statistical procedures constitute an essential element of a
complete battery of functions that should be available to the 
quantitative spatial scientist. When they are not embedded in GIS
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software, the scientist may well have no other recourse than to export
geo-referenced data from the GIS package into a statistical or custom- 
designed software package.

G. VISUALIZATION OF SPATIAL DEPENDENCE
One of the hallmarks of GIS software is its ability to support and

foster scientific visualization and computer mapping (cartographic
representation, and display and analysis of geo-referenced data). 
Dealing with the relationship between spatial autocorrelation and
scientific visualization dates back, at least, to Olsen's [1975] seminal
piece. One important element in the overall look of a choropleth map, 
for instance, is the relationship between neighboring values as they
appear on the map. Hence maps and spatial statistics should go hand
in-hand to help a spatial scientist understand how much of an effect
neighboring attribute values have on each other. By so doing, the
scientist will begin to accumulate the knowledge necessary for 
eventually acquiring an intuitive understanding of the effects of
locational information simply from visual inspection.

H. EMPIRICAL APPLICATIONS
Applied work frequently is guided by example. The case dealing

with dependence in geo-referenced forestry data endeavors to provide
guidance for the use of spatial statistics in the analysis of forestry data, 
much of which is geo-referenced, and to demonstrate the value and
utility of spatial analysis for natural resources problems (Chapter 7).
Spatial scientists need to gain a better understanding of the geographic
and attribute complexities latent in forestry data.

The example dealing with spatial dependence in geo-referenced
urban data seeks to examine the geographic distribution of population in 
an urban area, which is arranged in such a way that it displays
conspicuous patterns of spatial autocorrelation (Chapter 9). Anselin and
Can [1986] already have investigated a number of different
specifications of the negative exponential component of population
density gradients, deciding upon the simultaneous autoregressive errors 
model to account for the presence of spatial autocorrelation.

Finally, spatial dependence in geo-referenced population data
ventures to explore reaction and interaction processes in demographic
fertility transition with spatial statistical procedures. Feng’s study in 
Chapter 8 deals with these concerns in the context of China’s current 
population policy.
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V. SUMMARY

In summary, geo-referenced data are highly complex with spatial 
dependence introducing further complications. These complications are
similar to those found in time series analysis. They are exacerbated by 
the multi directional, two-dimensional nature of spatial dependence 
(time series entails dependencies that are unidirectional along a single 
dimension), and the far more complex geometric infrastructure involved 
(classical time series entails a regular linear geometry). The cost of
such oversights can be considerable. Incorporation of such features can 
be achieved by following the guidance and prescriptions offered in this 
book.

REFERENCES

Ahuja, N., and Schachter, B. Pattern Models. Wiley, New York, 1983.
Amrhein, C. Searching for the elusive aggregation effect: evidence from statistical
simulations. Environment and Planning A, 26, 1994.
Anselin, L. Spatial Econometrics. Kluwer, Dordrecht, 1988.
Anselin, L. SPACESTAT TUTORIAL: A workbook for using SpaceStat in the analysis of
spatial data. Technical Software Series S 92-1, NCGIA, Santa Barbara CA, 1992.
Anselin, L., and Can, A. Model comparison and model validation issues in empirical work
on urban density functions. Geographical Analysis, 18, 179 197,1986.
Anselin, L., and Griffith, D. Do spatial effects really matter in regression analysis? Papers
of the Regional Science Association, 65, 11-34, 1987.
Anselin, L., and Hudak. Spatial econometrics in practice: a review of software options. 
Regional Science and Urban Economics, 22, 509 536, 1992.
Bartlett, M. Statistical Analysis o fSpatial Pattern. Chapman and Hall, London, 1975. 
Brown, D., Bian, L., and Walsh, S. Response of a distributed watershed erosion model to
variations in input data aggregation levels. Computers and Geosciences, 19(4), 499 509, 
1993.
Brown, D. and Walsh, S. Spatial autocorrelation in remotely sensed and GIS data. 
Proceedings of the ACSM/ASPRS Annual Convention, New Orleans, LA, Vol. 3, 13 39,
1993.
Brown, D. and Bara, T. Recognition and reduction of systematic error in elevation and
derivative surfaces from 7 1/2-minute DEMs. Photogrammetric Engineering and Remote
Sensing, 60, 189-194, 1994.
Chorley, R. [chairman]. Handling Geographic Information. Her Majesty's Stationary
Office, Report to the Select Committee on GIS, London, 1987.
Cliff, A., and O rd, K. Spatial Processes. Pion, London, 1981.
Cordy, C., and Griffith, D. Efficiency of least squares estimators in the presence of spatial 
autocorrelation. Communications in Statistics Simulation and Computation, 22, 1161-
1179, 1993.
Cressie, N. Statistics for Spatial Data. Wiley, New York, 1991.

-

-

-

-

-

-

-



14 Chapter 1 Daniel A . Griffith

Durrett, R. Stochastic spatial models, Forefronts (newsletter of the Cornell Theory Center),
9 (#4, Spring), 4-6, 1994.
Goodchild, M. Spatial Autocorrelation. CATMOG, Norwich, England, 1986.
Goodchild, M., Haining, R., and Wise, S. Integrating GIS and spatial data analysis: 
problems and possibilities. International Journal o f Geographical Information Systems, 6, 
407 423, 1992.
Green, M. Ecological fallacies and the modifiable areal unit problem. Research Report No.
27, North West Regional Research Laboratory, Lancaster University, UK, 1993.
Griffith, D. Spatial Autocorrelation. Association of American Geographers, Washington, D.
C., 1987.
Griffith, D. Advanced Spatial Statistics. Kluwer, Dordrecht, 1988.
Griffith, D. Spatial regression Analysis on the PC: spatial statistics using MINITAB. 
Discussion Paper #7, Institute of Mathematical Geography, Ann Arbor, MI, 1989.
Griffith, D. (ed.). Spatial Statistics: Past, Present, and Future. Institute of Mathematical 
Geography, Ann Arbor, MI, 1990.
Griffith, D. Which spatial statistics techniques should be converted to GIS functions? in 
Geographic Information Systems, Spatial Modelling and Policy Evaluation, edited by M. 
Fischer and P. Nijkamp. Springer-Verlag, 103-114, Berlin, 1993a.
Griffith, D. Advanced spatial statistics for analysing and visualizing geo-referenced data. 
International Journal o fGeographical Information Systems, 7, 107-123, 1993b.
Griffith, D. Spatial Regression Analysis on the PC: Spatial Statistics Using SAS.
Association of American Geographers, Washington, D.C., 1993c.
Griffith, D., and Csillag, F. Exploring relationships between semi-variogram and spatial 
autoregressive models. Papers in Regional Science, 72, 283 295, 1993.
Griffith, D., and Sone, A. Trade-offs associated with computational simplifications for 
estimating spatial statistical models. Working Paper, I'lnstitut de Mathematiques 
Economiques, Universite de Bourgogne, Dijon, France (with French Resume), 1992.
Griffith, D., and Sone, A. Some trade-offs associated with computational simplifications for
estimating spatial statistical/econometric models: preliminary results. Discussion Paper No. 
103, Department of Geography, Syracuse University, 1993.
Grondona, M., and Cressie, N. Using spatial considerations in the analysis of experiments.
Technometrics, 33,381 392, 1991.
Haining, R. Spatial Data Analysis in the Social and Environmental Sciences. Cambridge
University Press, Cambridge, England, 1990.
IBM Exploring new worlds with GIS. Directions, Summer/Fall, 12 19,1991.
Isaaks, E. and Srivastava, R. An Introduction to Applied Geostatistics. Oxford University
Press, Oxford, England, 1989.
Lindgren, B. Statistical Theory, 3rd ed. Macmillan, New York, 1976.
M ardia, K., and Marshall, R. Maximum likelihood estimation of models for residual
covariance in spatial regression. Biometrika, 71, 135-146, 1984.
M atem , B. Spatial Variation, 2nd ed. Springer-Verlag, Berlin, 1986.
National Research Council (Mapping Science Committee; Commission on Physical
Sciences, Mathematics, and Resources). Spatial Data Needs: The Future o f the
National Mapping Program, National Academy Press, Washington, D.C., 1990a.
National Research Council (Board on Mathematical Sciences). Renewing U.S.
Mathematics: A Plan for the 1990s. National Academy Press, Washington, D.C., 1990b.
National Research Council (Panel on Spatial Statistics and Image Processing). Spatial
Statistics and Digital Image Analysis. National Academy Press, Washington, D.C., 1991. 
National Science Foundation. Solicitation: National Centerfor Geographic Information
and Analysis. Biological, Behavioral, and Social Sciences Directorate, Washington, D.C., 
1987.

—


-

-

-

-



Introduction: The Needfor Spatial Statistics 15

Odland, J. Spatial Autocorrelation. Sage, Beverly Hills, CA, 1988.
Okabe, A., Boots, B., and Sugihara, K. Spatial Tessellations: Concepts and Applications
ofVoronoi Diagrams. Wiley, New York, 1992.
Olsen, J. Autocorrelation and visual map complexity. Annals, Association of American
Geographers, 65, 189-204, 1975.
O rd, K. Estimation methods for models of spatial interaction. Journal o f the American
Statistical Association, 70, 120-126, 1975.
Overton S., and Stehman, S. Statistical properties of designs for sampling continuous 
functions in two dimensions using a triangular grid. Technical Report No. 143, Department 
of Statistics, Oregon State University, 1990.
Paelinck, J. and Klaassen, L. Spatial Econometrics. Saxon House, Famborough, England, 
1979.
Ripley, B. Statistical Inference for Spatial Processes. Cambridge University Press, 
Cambridge, England, 1988.
Stehman, S., and Overton, W. Variance estimation for fixed-configuration, systematic 
sampling. Technical Report No. 134, Department of Statistics, Oregon State University,
1989.
Stetzer, F. Specifying weights in spatial forecasting models: the results of some experiments. 
Environment and Planning A, 14, 571 584, 1982.
Upton, G., and Fingleton, B. Spatial Data Analysis by Example, vol. 1. Wiley, New York,
1985.
Warnecke, L. GIS in the states: applications abound. GIS World, 3, (# 3), 54-58, 1990. 
Warnecke, L. State Geographic Information Activities Compendium. Council of State 
Governments, Lexington, KY, 1991.

 " 

-



http://taylorandfrancis.com

