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Preface

The Lie method (the terminology “the Lie symmetry analysis” and “the group
analysis” are also used) is based on finding Lie’s symmetries of a given dif-
ferential equation and using the symmetries obtained for the construction of
exact solutions. The method was created by the prominent Norwegian mathe-
matician Sophus Lie in the 1880s. It should be pointed out that Lie’s works on
application Lie groups for solving PDEs were almost forgotten during the first
half of the 20th century. In the end of the 1950s, L.V. Ovsiannikov, inspired
by Birkhoff’s works devoted to application of Lie groups in hydrodynamics,
rewrote Lie’s theory using modern mathematical language and published a
monograph in 1962, which was the first book (after Lie’s works) devoted fully
to this subject. The Lie method was essentially developed by L.V. Ovsian-
nikov, W.F. Ames, G. Bluman, W.I. Fushchych, N. Ibragimov, P. Olver, and
other researchers in the 1960s–1980s. Several excellent textbooks devoted to
the Lie method were published during the last 30 years; therefore one may
claim that it is the well-established theory at the present time. Notwithstand-
ing the method still attracts the attention of many researchers and new results
are published on a regular basis. In particular, solving the so-called problem
of group classification (Lie symmetry classification) still remains a highly non-
trivial task and such problems are not solved for several classes of PDEs arising
in real world applications.

Fractional calculus is an emerging field with ramifications and excellent
applications in several fields of science and engineering. During the first
attempt to think about what is derivative of order 1/2, stated by Leibniz
in 1695, it was considered as a paradox as mentioned by L’Hopital. Since then
the trajectory of the fractional calculus passed by several periods of intensive
development both in pure and applied sciences. During the last few decades
the fractional calculus has been associated with the power law effects and its
various applications. It is a natural question to ask if the fractional calculus,
as a non-local one, can produce new results within the well-established field
of Lie symmetries and their applications. In fact the fractional calculus was
associated with the dissipative phenomena; therefore it is a delicate question:
can we have conservation laws for fractional differential equations associated
to real world models?

In our book we try to answer to this vital question by analyzing, mainly,
some different aspects of fractional Lie symmetries and related conservation
laws. Also, finding the exact solutions of a given fractional partial differential

xi



xii Preface

equation is not an easy task but we present this issue in our book. The
book includes also a generalization of Lie symmetries for fractional integro-
differential equations. Nonclassical Lie symmetries are discussed for fractional
differential equations. Moreover, the invariant subspace method is considered
to find the exact solutions of some fractional differential equations. In the
present book, we assume the reader to be familiar with preliminaries of Lie
symmetries for integer order differential equations.

The structure of the book is as follows. The book consists of five chapters
as it is given below. In order to make the readers understand easily the topic
of Lie symmetries and their applications, in Chapter 1, we show briefly the
classical, nonclassical symmetries and the conservation laws of some specific
problems with integer order. Next, in Chapter 2, we discuss the Lie symmetries
of fractional differential equations and exact solutions with invariant subspace
methods. Chapter 3 focuses on Lie symmetries of fractional integro-differential
equations. The nonclassical Lie symmetry analysis of fractional differential
equations is described in Chapter 4. The self-adjointness and conservation
laws of fractional differential equations are considered in Chapter 5.

We believe that our book will be useful for PhD and postdoc graduates as
well as for all mathematicians and applied researchers who use the powerful
concept of Lie symmetries.



Authors

Mir Sajjad Hashemi is associate professor at the Univer-
sity of Bonab, Iran. His fields of interest include fractional
differential equations, Lie symmetry method, geometric
integration, approximate and analytical solutions of differ-
ential equations and soliton theory.

Dumitru Baleanu is professor at the Institute of Space
Sciences, Magurele-Bucharest, Romania and a visiting staff
member at the Department of Mathematics, Cankaya
University, Ankara, Turkey. His fields of interest include
fractional dynamics and its applications in science and
engineering, fractional differential equations, discrete math-
ematics, mathematical physics, soliton theory, Lie sym-

metry, dynamic systems on time scales and the wavelet method and its
applications.

xiii



http://taylorandfrancis.com


Chapter 1

Lie symmetry analysis of integer
order differential equations

This chapter deals with the classical and nonclassical Lie symmetry analysis
of some integer order differential equations. Finding the exact solutions of
differential equations is an interesting field of many researchers. The Lie sym-
metry method is one of the most powerful and popular ones which can analyze
different types of differential equations. In the last decade, various interesting
textbooks have discussed the Lie symmetry analysis of integer order differ-
ential and integro-differential equations, e.g., [59, 94, 131, 150, 29]. Various
classical concerns about Lie symmetries are discussed in these textbooks; so
we avoid the preliminaries of the Lie symmetries. This chapter discusses the
application of the Lie symmetry method and conservation laws for some inte-
ger order differential equations. However, some new and different approaches
such as the Nucci’s method [143, 89, 13, 129] are investigated. Among ana-
lytical methods for differential equations, the invariant subspace method is
a very close one to the invariance theory, which plays an important role in
the Lie symmetry analysis. We refer the interested readers to this topic in
[60, 166, 80, 40, 12, 65, 122].

1.1 Classical Lie symmetry analysis

Various types of Lie symmetry method have been introduced up to now,
e.g., classical [63, 120, 123, 42, 189, 153, 159, 158, 39, 91], nonclassical [32,
140, 139, 88] and approximate [58, 46, 93] Lie symmetries. Moreover, there
are some numerical methods which are based upon Lie groups [76, 168, 10, 9,
82, 73, 4, 2, 70, 78, 79, 86, 74]. Briefly, a symmetry of a differential equation
is a transformation which maps every solution of the differential equation to
another solution of the same equation.

Here, we present some preliminaries of Lie Groups and Transformation
Groups. The main ingredients for this section are the algebraic concept of a
group and the differential-geometric notion of a smooth manifold. The term
smooth constrains the overlap functions of any coordinate chart to be C∞

1



2 Lie Symmetry Analysis of Fractional Differential Equations

functions. The following definition is the foundation of Lie symmetry methods
for differential equations.

Definition 1 (Lie group) A set G is called a Lie Group if there is given a
structure on G satisfying the following three axioms.
i) G is a group.
ii) G is a smooth manifold.
iii) The group operations

G×G→ G
(g,h)→g.h

, G→ G
g→g−1

,

are smooth functions.

When the dimension of G is r, we call this group an r-parameter Lie group.

Definition 2 (Lie Transformation Groups) Let M be a n-dimensional
smooth manifold and G a Lie group. An action T of the group G on M
is a smooth mapping

T : G×M→M
T (g,x)≡gx→x̄

with the following properties:

T (e, x) = x, T (a, T (b, x)) = T (ab, x)

for any x ∈ M, g, a, b ∈ G, e ∈ G the unit element. Then G is called a Lie
transformation group of the manifold M.

It is well known that the applications of symmetry groups to differential
equations include:

• mapping solutions to other solutions

• integration of ordinary differential equations in formulas

• constructing invariant (similarity) solutions, that is, solutions which are
invariant under the action of a subgroup of the admitted group

• detection of linearizing transformations.

To carry out any of these, a true technique for finding symmetries of differential
equations is needed. As a general idea, one could insert an arbitrary change
of variables into the equation and then impose the new variables to satisfy
the same differential equation. This earns a number of differential equations
(determining equations) to be satisfied by the transformation. This direct
approach is too drastic to be of much use: determining equations may be
derived, but solving such a large system of nonlinear equations is usually out
of the question. The crucial understanding of Lie was that this problem could
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prevail by considering the ‘infinitesimal’ action of the group. In order to define
the infinitesimals, we defined a one-parameter Lie group of the form

x̄ = F (x; ε), (1.1)

where ε is the group parameter, which, without loss of generality, will be
assumed to be defined in such a way that the identity element ε0 = 0. Hence

x = F (x; ε)|ε=0. (1.2)

Definition 3 (Infinitesimal Transformation) Given a one parameter Lie
group of transformation (1.1), we expand x̄ = F (x; ε) into its Taylor series in
the parameter ε in a neighborhood of ε = 0. Then, making use of the fact (1.2),
we obtain what is called the infinitesimal transformations of the Lie group of
transformation (1.1):

x̄ = x+ εξ(x) +O(ε2), (1.3)

where

ξ(x) =
∂x̄

∂ε
|ε=0. (1.4)

The components of the vector ξ(x) = (ξ1(x), ξ2(x), . . . , ξn(x)) are called the
infinitesimals of (1.1).

Definition 4 (Infinitesimal generator) The operator

V =

n∑
i=1

ξi(x)
∂

∂xi
(1.5)

is called the infinitesimal generator (operator) of the one-parameter Lie group
of transformations (1.1), where x = (x1, x2, . . . , xn) ∈ Rn and ξ(x) =
(ξ1(x), ξ2(x), . . . , ξn(x)) are the infinitesimals of (1.1)

Besides, each constant in a one-parameter Lie group of transformations leads
to a symmetry generator (which is a linear operator). These symmetry gen-
erators belong to a one-dimensional linear vector space in which any linear
combination of generators is also a linear operator and the way of ordering
generators is not important, that is, the symmetry group of transformation
commutes, and this leads to the additional structure in the mentioned vector
space called the commutator.

Definition 5 Let G be the one-parameter Lie group of transformations (1.1)
with the symmetry generators Vi, i = 1, 2, . . . , r given by (1.5). The commu-
tator (Lie bracket) [., .] of two symmetry generators Vi, Vj is the first order
operator generated as follows

[Vi, Vj ] = ViVj − VjVi.
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Definition 6 (Lie algebra) A Lie algebra L is a vector space over a field F
with a given bilinear commutation law (the commutator) satisfying the prop-
erties

1. Closure:
For X,Y ∈ L it follows that [X,Y ] ∈ L.

2. Bilinearity:
[X,αY + βZ] = α[X,Y ] + β[X,Z], α, β ∈ F, X, Y, Z ∈ L.

3. Skew-symmetry:
[X,Y ] = −[Y,X].

4. Jacobi identity:
[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Now, after brief preliminaries of the Lie symmetry method, we illustrate this
technique by different integer order differential equations.

1.1.1 Lie symmetries of the Fornberg-Whitham equation

The Fornberg-Whitham equation (FWE)[53, 84],

ut − uxxt + ux + uux = 3uxuxx + uuxxx , (1.6)

has appeared in the study of qualitative behaviors of wave breaking, which is a
nonlinear dispersive wave equation. In 1978, Fornberg and Whitham obtained
a peaked solution of the form u(x, t) = A exp{−1

2 |x −
4
3 t|}, where A is an

arbitrary constant. Zhou et al. [190] have found the implicit form of a type of
traveling wave solution called kink-like wave solutions and antikink-like wave
solutions. After that, they found the explicit expressions for the exact traveling
wave solutions, peakons and periodic cusp wave solutions for the FWE [191].
Tian et al. [173], under the periodic boundary conditions, have studied the
global existence of solutions to the viscous FWE in L2. The limit behavior
of all periodic solutions as the parameters trend to some special values was
studied in [186]. F. Abidi et al. [5] have successfully applied the homotopy
analysis method to obtain the approximate solution of FWE and compared
those to the solutions given by Adomian decomposition method.
The symmetry groups of the FWE will be generated by the vector field of the
form

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ φ(t, x, u)

∂

∂u
. (1.7)

The result shows that the symmetry of Eq. (1.6) is expressed by a finite
three-dimensional point group containing translation in the independent vari-
ables and scaling transformations. The group parameters are denoted by ki for
i = 1, 2, 3 and characterize the symmetry of equation. Actually, we find that
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Eq. (1.6) admits a three-dimensional Lie algebra L3 of its classical infinitesimal
point symmetries generated by the following vector fields:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂x
+

∂

∂u
.

Obviously, the Lie algebra of (1.6) is solvable and from the adjoint represen-
tation of the symmetry Lie algebra the optimal system of one-dimensional
subalgebras corresponds to (1.6) which can be expressed by

X1, X2, αX1 +X3,

where α ∈ {−1, 0, 1}.

1.1.1.1 Similarity reductions and exact solutions

In order to reduce PDE (1.6) to a system of ODEs with one independent
variable, we construct similarity variables and similarity forms of field vari-
ables. Using a straightforward analysis, the characteristic equations used to
find similarity variables are:

dt

ξ1
=
dx

ξ2
=
du

φ
. (1.8)

Integration of first order differential equations corresponding to pairs of equa-
tions involving only independent variables of (1.8) leads to similarity variables.
We distinguish four cases:
Case 1: For the generator X1, we have:

u(t, x) = S(ζ), ζ = x,

where S(ζ) satisfies the following ODE:

S′ + SS′ − 3S′S′′ − SS(3) = 0, (1.9)

that admits the only Lie symmetry operator ∂
∂ζ . Instead of using the usual

method based on invariants we apply a more direct method, namely the reduc-
tion method [143, 142, 145, 146, 128, 89]. Obtaining the first integrals of ODEs
is often sophisticated work as shown in [137]. However, using the mentioned
reduction method, the first integrals of the reduced ODEs are easily obtained.
Equation (1.9) can be written as an autonomous system of three ODEs of first
order, i.e., 

w′1 = w2,
w′2 = w3,

w′3 =
w2 + w1w2 − 3w2w3

w1
,

(1.10)

using the obvious change of dependent variables

w1(ζ) = S(ζ), w2(ζ) = S′(ζ), w3(ζ) = S′′(ζ).
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Since this system is autonomous, we can choose w1 as a new independent
variable. Then system (1.10) becomes the following nonautonomous system of
two ODEs of first order: 

dw2

dw1
=
w3

w2
,

dw3

dw1
=

1 + w1 − 3w3

w1
.

(1.11)

We can integrate from the second equation:

w3 =
12a1 + 3w4

1 + 4w3
1

12w3
1

, (1.12)

with a1 an arbitrary constant. This solution obviously corresponds to the
following first integral of equation (1.9):

S(ζ)3

12

(
12S′′(ζ)− 3S(ζ)− 4

)
= a1.

Substituting (1.12) into (1.11) yields

dw2

dw1
=

12a1 + 3w4
1 + 4w3

1

12w3
1w2

;

that is a separable first order equation too. Therefore, the general solution is

w2 =

√
−12a1 + 12a2w2

1 + 3w4
1 + 8w3

1

18w2
1

, (1.13)

with a2 an arbitrary constant. Replacing a1 into this expression in terms of
the original variables S and ζ yields another first integral of equation (1.9):

2S(ζ)S′′(ζ) + 2 (S′(ζ))
2 − S2(ζ)− 2S(ζ)

2
= a2.

Finally, we replace (1.13) from (1.10) into the first equation of system (1.10)
that becomes the following separable first-order equation

r′1 = p

√
−2a1 + a2(p+ q − 2a1)r1 − (p+ q)r2

1

pr1
,

and its general solution is implicitly expressed by∫ √
18w2

1

−12a1 + 12a2w2
1 + 3w4

1 + 8w3
1

dw1 = ζ + a3,

and replacing w1 with S(ζ) yields the general solution of (1.9).
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An explicit subclass of solutions can be obtained if one assumes a1 = 0.
Thus

u(t, x) =
16− 36a2 + e±(x+a3) − 8e±( x+a32 )

6e±( x+a32 )
.

Case 2: The solution obtained from generator X2 is trivial. Thus, we find
the traveling wave solution which is achievable from generator X1 +X2. The
similarity variable related to X1 +X2 is

u(t, x) = S(ζ), ζ = x− t,

where S(ζ) satisfies the following equation:

(1− S)S′′′ + SS′ − 3S′S′′ = 0. (1.14)

Eq. (1.14) admits the only generator ∂
∂ζ . Therefore it is not possible to

solve it by current Lie symmetry methods and we apply the reduction method.
This equation transforms into the following autonomous system of first order
equations, i.e., 

w′1 = w2,
w′2 = w3,

w′3 =
(3w3 − w1)w2

1− w1
,

(1.15)

by the change of dependent variables

w1(ζ) = S(ζ), w2(ζ) = S′(ζ), w3(ζ) = S′′(ζ).

Similar to Case 1, let us choose w1 as the new independent variable. Then
(1.15) yields: 

dw2

dw1
=
w3

w2
,

dw3

dw1
=

(3w3 − w1)

1− w1
.

(1.16)

The second equation of (1.16) is linear and therefore we have

w3 =
12a1 + 3w4

1 − 8w8
1 + 6w2

1

12w3
1 − 36w2

1 + 36w1 − 12
, (1.17)

and substituting in the other equation of (1.16) yields:

dw2

dw1
=

12a1 + 3w4
1 − 8w3

1 + 6w2
1

12w2 (w3
1 − 3w2

1 + 3w1 − 1)
. (1.18)

Replacing a1 into this expression in terms of the original variables S and
ζ yields a first integral of equation (1.14) as:

S′′
(
12S3 − 36S2 + 36S − 12

)
− 3S4 + 8S3 − 6S2

12
= a1.
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Eq. (1.18) is separable and the solution is given by

w2 =

√
−12a1 + 12a2w2

1 − 24a2w1 + 12a2 + 3w4
1 − 4w3

1 − w2
1 + 2w1 − 1

12 (w1 − 1)
2 ,

(1.19)
where a2 is another first integral of equation (1.14) as following:

SS′′ − S′′ + (S′)2 +
1− 6S2

12
= a2.

An implicit solution of Eq. (1.14) can be obtained from substituting (1.19) into
the first equation of (1.15) and one time integration. However, in a special case,
taking a1 = 0 and a2 = 1

12 we have

S
[√

3(4− 3S) + 4
√
S(3S − 4) ln

(
6
√
S + 2

√
9S − 12

)]
√
S3(3S − 4)

= ζ + a3.

Back substitution of variables yields another solution of the Eq. (1.6).

Case 3: For the linear combination X = αX1 + X3, we are just able to
find the invariant solution with respect to α = 0. Similarity variables of X3

are:
u(t, x) =

x

t
+ S(ζ), ζ = t, (1.20)

where S(ζ) admits the following equation:

ζS′ + S + 1 = 0; (1.21)

therefore,

S(ζ) = −1 +
c

ζ
;

thus, we get

u(t, x) =
x− t+ c

t
. (1.22)

1.1.2 Lie symmetries of the modified generalized
Vakhnenko equation

Now, we apply the Lie group analysis to the so-called modified generalized
Vakhnenko equation (mGVE) [89]:

∂

∂x

(
D2u+

1

2
pu2 + βu

)
+ qDu = 0,

(
D :=

∂

∂t
+ u

∂

∂x

)
, (1.23)

where p, q and β are arbitrary nonzero constants. This equation was introduced
by Morrison and Parkes in 2003 [135]. There the N-soliton solution of the
mGVE1 was found if p = 2q.

1Actually Morrison and Parkes introduced equation (1.23) but they named it mGVE in
the case p = 2q only.


