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Preface

Dear friend, theory is all gray, 
and the golden tree of life is green.
Goethe, from “Faust”

The ability to simplify means to eliminate the unnecessary so that 
the necessary may speak.
Hans Hoffmann

Statistics is a subject of amazingly many uses and surprisingly 
few effective practitioners. The traditional road to statistical knowl­
edge is blocked, for most, by a formidable wall of mathematics. 
Our approach here avoids that wall. The bootstrap is a computer- 
based method of statistical inference that can answer many real 
statistical questions without formulas. Our goal in this book is to 
arm scientists and engineers, as well as statisticians, with compu­
tational techniques that they can use to analyze and understand 
complicated data sets.

The word “understand” is an important one in the previous sen­
tence. This is not a statistical cookbook. We aim to give the reader 
a good intuitive understanding of statistical inference.

One of the charms of the bootstrap is the direct appreciation it 
gives of variance, bias, coverage, and other probabilistic phenom­
ena. What does it mean that a confidence interval contains the 
true value with probability .90? The usual textbook answer ap­
pears formidably abstract to most beginning students. Bootstrap 
confidence intervals are directly constructed from real data sets, 
using a simple computer algorithm. This doesn’t necessarily make 
it easy to understand confidence intervals, but at least the diffi­
culties are the appropriate conceptual ones, and not mathematical 
muddles.
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Much of the exposition in our book is based on the analysis of 
real data sets. The mouse data, the stamp data, the tooth data, 
the hormone data, and other small but genuine examples, are an 
important part of the presentation. These are especially valuable if 
the reader can try his own computations on them. Personal com­
puters are sufficient to handle most bootstrap computations for 
these small data sets.

This book does not give a rigorous technical treatment of the 
bootstrap, and we concentrate on the ideas rather than their math­
ematical justification. Many of these ideas are quite sophisticated, 
however, and this book is not just for beginners. The presenta­
tion starts off slowly but builds in both its scope and depth. More 
mathematically advanced accounts of the bootstrap may be found 
in papers and books by many researchers that are listed in the 
Bibliographic notes at the end of the chapters.

We would like to thank Andreas Buja, Anthony Davison, Peter 
Hall, Trevor Hastie, John Rice, Bernard Silverman, James Stafford 
and Sami Tibshirani for making very helpful comments and sugges­
tions on the manuscript. We especially thank Timothy Hesterberg 
and Cliff Lunneborg for the great deal of time and effort that they 
spent on reading and preparing comments. Thanks to Maria-Luisa 
Gardner for providing expert advice on the “rules of punctuation.” 
We would also like to thank numerous students at both Stanford 
University and the University of Toronto for pointing out errors 
in earlier drafts, and colleagues and staff at our universities for 
their support. Thanks to Tom Glinos of the University of Toronto 
for maintaining a healthy computing environment. Karola DeCleve 
typed much of the first draft of this book, and maintained vigi­
lance against errors during its entire history. All of this was done 
cheerfully and in a most helpful manner, for which we are truly 
grateful. Trevor Hastie provided expert “S” and TgX advice, at 
crucial stages in the project.

We were lucky to have not one but two superb editors working 
on this project. Bea Schube got us going, before starting her re­
tirement; Bea has done a great deal for the statistics profession 
and we wish her all the best. John Kimmel carried the ball after 
Bea left, and did an excellent job. We thank our copy-editor Jim 
Gerónimo for his thorough correction of the manuscript, and take 
responsibility for any errors that remain.

The first author was supported by the National Institutes of 
Health and the National Science Foundation. Both groups have
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supported the development of statistical theory at Stanford, in­
cluding much of the theory behind this book. The second author 
would like to thank his wife Cheryl for her understanding and 
support during this entire project, and his parents for a lifetime 
of encouragement. He gratefully acknowledges the support of the 
Natural Sciences and Engineering Research Council of Canada.

Palo Alto and Toronto Bradley Efron
June 1993 Robert Tibshirani



C H A P T E R  1

Introduction

Statistics is the science of learning from experience, especially ex­
perience that arrives a little bit at a time. The earliest information 
science was statistics, originating in about 1650. This century has 
seen statistical techniques become the analytic methods of choice 
in biomedical science, psychology, education, economics, communi­
cations theory, sociology, genetic studies, epidemiology, and other 
areas. Recently, traditional sciences like geology, physics, and as­
tronomy have begun to make increasing use of statistical methods 
as they focus on areas that demand informational efficiency, such as 
the study of rare and exotic particles or extremely distant galaxies.

Most people are not natural-born statisticians. Left to our own 
devices we are not very good at picking out patterns from a sea 
of noisy data. To put it another way, we are all too good at pick­
ing out non-existent patterns that happen to suit our purposes. 
Statistical theory attacks the problem from both ends. It provides 
optimal methods for finding a real signal in a noisy background, 
and also provides strict checks against the overinterpretation of 
random patterns.

Statistical theory attempts to answer three basic questions:

(1) How should I collect my data?

(2) How should I analyze and summarize the data that I’ve col­
lected?

(3) How accurate are my data summaries?

Question 3 constitutes part of the process known as statistical in­
ference. The bootstrap is a recently developed technique for making 
certain kinds of statistical inferences. It is only recently developed 
because it requires modern computer power to simplify the often 
intricate calculations of traditional statistical theory.

The explanations that we will give for the bootstrap, and other
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computer-based methods, involve explanations of traditional ideas 
in statistical inference. The basic ideas of statistics haven’t changed, 
but their implementation has. The modern computer lets us ap­
ply these ideas flexibly, quickly, easily, and with a minimum of 
mathematical assumptions. Our primary purpose in the book is to 
explain when and why bootstrap methods work, and how they can 
be applied in a wide variety of real data-analytic situations.

All three basic statistical concepts, data collection, summary and 
inference, are illustrated in the New York Times excerpt of Figure 
1.1. A study was done to see if small aspirin doses would prevent 
heart attacks in healthy middle-aged men. The data for the as­
pirin study were collected in a particularly efficient way: by a con­
trolled, randomized, double-blind study. One half of the subjects 
received aspirin and the other half received a control substance, or 
placebo, with no active ingredients. The subjects were randomly 
assigned to the aspirin or placebo groups. Both the subjects and the 
supervising physicians were blinded to the assignments, with the 
statisticians keeping a secret code of who received which substance. 
Scientists, like everyone else, want the project they are working on 
to succeed. The elaborate precautions of a controlled, randomized, 
blinded experiment guard against seeing benefits that don’t exist, 
while maximizing the chance of detecting a genuine positive effect.

The summary statistics in the newspaper article are very simple:

heart attacks subjects
(fatal plus non-fatal)

aspirin group: 104 11037
placebo group: 189 11034

We will see examples of much more complicated summaries in later 
chapters. One advantage of using a good experimental design is a 
simplification of its results. What strikes the eye here is the lower 
rate of heart attacks in the aspirin group. The ratio of the two 
rates is

? =  104/11037
189/11034

(1.1)

If this study can be believed, and its solid design makes it very 
believable, the aspirin-takers only have 55% as many heart attacks 
as placebo-takers.

Of course we are not really interested in 0, the estimated ratio. 
What we would like to know is 0, the true ratio, that is the ratio
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HEART A H A C K  RISK 
FOUND TO BE CUT 
BY TAKING ASPIRIN

3

LIFESAVING EFFECTS SEEN

Study Finds Benefit of Tablet 
Every Other. Day Is Much 
Greater Than Expected

By HAROLD M. SCHMECK Jr.
A major nationwide study shows that 

a single aspirin tablet every other day 
can sharply reduce a man’s risk of 
heart attack and death from heart at­
tack.

The lifesaving effects were so dra­
matic that the study was halted in mid- 
December so that the results could be 
reported as soon as possible to the par­
ticipants and to the medical profession 
in general.

The magnitude of the beneficial ef­
fect was far greater than expected, Dr.
Charles H. Hennekens of Harvard, 
principal investigator in the research, 
said in a telephone interview. The risk 
of myocardial infarction, the technical 
name for heart attack, was cut almost 
in half.

* Extreme Beneficial Effect’
A special report said the results 

showed “a statistically extreme benefi­
cial effect" from the use of aspirin. The 
report is to be published Thursday in 
The New England Journal of Medicine.

In recent years smaller studies have 
demonstrated that a person who has 
had one heart attack can reduce the 
risk of a second by taking aspirin, but 
there had been no proof that the benefi­
cial effect would extend to the general 
male population.

Dr. Claude Lenfant, the director of 
the National Heart Lung and Blood In­
stitute, said the findings were "ex­
tremely important," but he said the 
general public should not take the re­
port as an indication that everyone 
should start taking aspirin.

Figure 1.1. Front-page news from the New York Times of January 27, 
1987. Reproduced by permission of the New York Times.
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them. The value 0 = .55 is only an estimate of 0. The sample seems 
large here, 22071 subjects in all, but the conclusion that aspirin 
works is really based on a smaller number, the 293 observed heart 
attacks. How do we know that 0 might not come out much less 
favorably if the experiment were run again?

This is where statistical inference comes in. Statistical theory 
allows us to make the following inference: the true value of 0 lies 
in the interval

.43 < 0 < .70 (1.2)
with 95% confidence. Statement (1.2) is a classical confidence in­
terval, of the type discussed in Chapters 12-14, and 22. It says that 
if we ran a much bigger experiment, with millions of subjects, the 
ratio of rates probably wouldn’t be too much different than (1.1). 
We almost certainly wouldn’t decide that 6 exceeded 1, that is that 
aspirin was actually harmful. It is really rather amazing that the 
same data that give us an estimated value, 0 = .55 in this case, 
also can give us a good idea of the estimate’s accuracy.

Statistical inference is serious business. A lot can ride on the 
decision of whether or not an observed effect is real. The aspirin 
study tracked strokes as well as heart attacks, with the following 
results:

strokes subjects 
aspirin group: 119 11037
placebo group: 98 11034

For strokes, the ratio of rates is

7j_ 119/11037 _
98/11034

(1.3)

(1.4)

It now looks like taking aspirin is actually harmful. However the 
interval for the true stroke ratio 0 turns out to be

.93 < 0 < 1.59 (1.5)

with 95% confidence. This includes the neutral value 0 = 1, at 
which aspirin would be no better or worse than placebo vis-a-vis 
strokes. In the language of statistical hypothesis testing, aspirin 
was found to be significantly beneficial for preventing heart attacks, 
but not significantly harmful for causing strokes. The opposite con­
clusion had been reached in an older, smaller study concerning men
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who had experienced previous heart attacks. The aspirin treatment 
remains mildly controversial for such patients.

The bootstrap is a data-based simulation method for statistical 
inference, which can be used to produce inferences like (1.2) and 
(1.5). The use of the term bootstrap derives from the phrase to 
pull oneself up by one’s bootstrap, widely thought to be based on 
one of the eighteenth century Adventures of Baron Munchausen, 
by Rudolph Erich Raspe. (The Baron had fallen to the bottom of 
a deep lake. Just when it looked like all was lost, he thought to 
pick himself up by his own bootstraps.) It is not the same as the 
term “bootstrap” used in computer science meaning to “boot” a 
computer from a set of core instructions, though the derivation is 
similar.

Here is how the bootstrap works in the stroke example. We cre­
ate two populations: the first consisting of 119 ones and 11037- 
119=10918 zeroes, and the second consisting of 98 ones and 11034- 
98=10936 zeroes. We draw with replacement a sample of 11037 
items from the first population, and a sample of 11034 items from 
the second population. Each of these is called a bootstrap sample. 
From these we derive the bootstrap replicate of 9:

^  Proportion of ones in bootstrap sample #1 
Proportion of ones in bootstrap sample #2

We repeat this process a large number of times, say 1000 times, 
and obtain 1000 bootstrap replicates 9*. This process is easy to im­
plement on a computer, as we will see later. These 1000 replicates 
contain information that can be used to make inferences from our 
data. For example, the standard deviation turned out to be 0.17 
in a batch of 1000 replicates that we generated. The value 0.17 
is an estimate of the standard error of the ratio of rates 0. This 
indicates that the observed ratio 0 = 1.21 is only a little more than 
one standard error larger than 1, and so the neutral value 0 = 1 
cannot be ruled out. A rough 95% confidence interval like (1.5) 
can be derived by taking the 25th and 975th largest of the 1000 
replicates, which in this case turned out to be (.93, 1.60).

In this simple example, the confidence interval derived from the 
bootstrap agrees very closely with the one derived from statistical 
theory. Bootstrap methods are intended to simplify the calculation 
of inferences like (1.2) and (1.5), producing them in an automatic 
way even in situations much more complicated than the aspirin 
study.
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The terminology of statistical summaries and inferences, like re­
gression, correlation, analysis of variance, discriminant analysis, 
standard error, significance level and confidence interval, has be­
come the lingua franca of all disciplines that deal with noisy data. 
We will be examining what this language means and how it works 
in practice. The particular goal of bootstrap theory is a computer- 
based implementation of basic statistical concepts. In some ways it 
is easier to understand these concepts in computer-based contexts 
than through traditional mathematical exposition.

1.1 An overview of this book

This book describes the bootstrap and other methods for assessing 
statistical accuracy. The bootstrap does not work in isolation but 
rather is applied to a wide variety of statistical procedures. Part 
of the objective of this book is expose the reader to many exciting 
and useful statistical techniques through real-data examples. Some 
of the techniques described include nonparametric regression, den­
sity estimation, classification trees, and least median of squares 
regression.

Here is a chapter-by-chapter synopsis of the book. Chapter 2 
introduces the bootstrap estimate of standard error for a simple 
mean. Chapters 3—5 contain some basic background material, 
and may be skimmed by readers eager to get to the details of 
the bootstrap in Chapter 6. Random samples, populations, and 
basic probability theory are reviewed in Chapter 3. Chapter 4 
defines the empirical distribution function estimate of the popula­
tion, which simply estimates the probability of each of n data items 
to be 1/n. Chapter 4 also shows that many familiar statistics can 
be viewed as “plug-in” estimates, that is, estimates obtained by 
plugging in the empirical distribution function for the unknown 
distribution of the population. Chapter 5 reviews standard error 
estimation for a mean, and shows how the usual textbook formula 
can be derived as a simple plug-in estimate.

The bootstrap is defined in Chapter 6, for estimating the stan­
dard error of a statistic from a single sample. The bootstrap stan­
dard error estimate is a plug-in estimate that rarely can be com­
puted exactly; instead a simulation (“resampling”) method is used 
for approximating it.

Chapter 7 describes the application of bootstrap standard er­
rors in two complicated examples: a principal components analysis
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and a curve fitting problem.
Up to this point, only one-sample data problems have been dis­

cussed. The application of the bootstrap to more complicated data 
structures is discussed in Chapter 8. A two-sample problem and 
a time-series analysis are described.

Regression analysis and the bootstrap are discussed and illus­
trated in Chapter 9. The bootstrap estimate of standard error is 
applied in a number of different ways and the results are discussed 
in two examples.

The use of the bootstrap for estimation of bias is the topic of 
Chapter 10, and the pros and cons of bias correction are dis­
cussed. Chapter 11 describes the jackknife method in some detail. 
We see that the jackknife is a simple closed-form approximation to 
the bootstrap, in the context of standard error and bias estimation.

The use of the bootstrap for construction of confidence intervals 
is described in Chapters 12, 13 and 14. There are a number of 
different approaches to this important topic and we devote quite 
a bit of space to them. In Chapter 12 we discuss the bootstrap-t 
approach, which generalizes the usual Student’s t method for con­
structing confidence intervals. The percentile method (Chapter 
13) uses instead the percentiles of the bootstrap distribution to 
define confidence limits. The BCa (bias-corrected accelerated in­
terval) makes important corrections to the percentile interval and 
is described in Chapter 14.

Chapter 15 covers permutation tests, a time-honored and use­
ful set of tools for hypothesis testing. Their close relationship with 
the bootstrap is discussed; Chapter 16 shows how the bootstrap 
can be used in more general hypothesis testing problems.

Prediction error estimation arises in regression and classification 
problems, and we describe some approaches for it in Chapter IT. 
Cross-validation and bootstrap methods are described and illus­
trated. Extending this idea, Chapter 18 shows how the boot­
strap and cross-validation can be used to adapt estimators to a set 
of data.

Like any statistic, bootstrap estimates are random variables and 
so have inherent error associated with them. When using the boot­
strap for making inferences, it is important to get an idea of the 
magnitude of this error. In Chapter 19 we discuss the jackknife- 
after-bootstrap method for estimating the standard error of a boot­
strap quantity.

Chapters 20—25 contain more advanced material on selected



8 INTRODUCTION

topics, and delve more deeply into some of the material introduced 
in the previous chapters, The relationship between the bootstrap 
and jackknife is studied via the “resampling picture” in Chapter 
20. Chapter 21 gives an overview of non-parametric and para­
metric inference, and relates the bootstrap to a number of other 
techniques for estimating standard errors. These include the delta 
method, Fisher information, infinitesimal jackknife, and the sand­
wich estimator.

Some advanced topics in bootstrap confidence intervals are dis­
cussed in Chapter 22, providing some of the underlying basis 
for the techniques introduced in Chapters 12-14. Chapter 23 de­
scribes methods for efficient computation of bootstrap estimates 
including control variates and importance sampling. In Chapter 
24 the construction of approximate likelihoods is discussed. The 
bootstrap and other related methods are used to construct a “non- 
parametric” likelihood in situations where a parametric model is 
not specified.

Chapter 25 describes in detail a bioequivalence study in which 
the bootstrap is used to estimate power and sample size. In Chap­
ter 26 we discuss some general issues concerning the bootstrap and 
its role in statistical inference.

Finally, the Appendix contains a description of a number of dif­
ferent computer programs for the methods discussed in this book.

1.2 Information for instructors

We envision that this book can provide the basis for (at least) 
two different one semester courses. An upper-year undergraduate 
or first-year graduate course could be taught from some or all of 
the first 19 chapters, possibly covering Chapter 25 as well (both 
authors have done this). In addition, a more advanced graduate 
course could be taught from a selection of Chapters 6-19, and a se­
lection of Chapters 20-26. For an advanced course, supplementary 
material might be used, such as Peter Hall’s book The Bootstrap 
and Edgeworth Expansion or journal papers on selected technical 
topics. The Bibliographic notes in the book contain many sugges­
tions for background reading.

We have provided numerous exercises at the end of each chap­
ter. Some of these involve computing, since it is important for the 
student to get hands-on experience for learning the material. The 
bootstrap is most effectively used in a high-level language for data
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analysis and graphics. Our language of choice (at present) is “S” 
(or “S-PLUS”), and a number of S programs appear in the Ap­
pendix. Most of these programs could be easily translated into 
other languages such as Gauss, Lisp-Stat, or Matlab. Details on 
the availability of S and S-PLUS are given in the Appendix.

1.3 Some of the notation used in the book

Lower case bold letters such as x refer to vectors, that is, x = 
(xi,X2 , .. .xn). Matrices are denoted by upper case bold letters 
such as X, while a plain uppercase letter like X  refers to a random 
variable. The transpose of a vector is written as xT. A superscript 

indicates a bootstrap random variable: for example, x* indi­
cates a bootstrap data set generated from a data set x. Parameters 
are denoted by Greek letters such as 9. A hat on a letter indicates 
an estimate, such as 6. The letters F  and G refer to populations. In 
Chapter 21 the same symbols are used for the cumulative distribu­
tion function of a population. Ic  is the indicator function equal to 
1 if condition C is true and 0 otherwise. For example, I{x<2} = 1 
if x < 2 and 0 otherwise. The notation tr(A) refers to the trace 
of the matrix A, that is, the sum of the diagonal elements. The 
derivatives of a function g(x) are denoted by gf(x),g (x) and so 
on.

The notation
F  -> (xi ,x2, . . . x n)

indicates an independent and identically distributed sample drawn
from F. Equivalently, we also write X i’l~ 'F  for i = 1,2,. . .  n.

Notation such as #{x¿ > 3} means the number of x*s greater 
than 3. logx refers to the natural logarithm of x.
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The accuracy of a sample mean

The bootstrap is a computer-based method for assigning measures 
of accuracy to statistical estimates. The basic idea behind the boot­
strap is very simple, and goes back at least two centuries. After 
reviewing some background material, this book describes the boot­
strap method, its implementation on the computer, and its applica­
tion to some real data analysis problems. First though, this chapter 
focuses on the one example of a statistical estimator where we re­
ally don’t need a computer to assess accuracy: the sample mean. 
In addition to previewing the bootstrap, this gives us a chance to 
review some fundamental ideas from elementary statistics. We be­
gin with a simple example concerning means and their estimated 
accuracies.

Table 2.1 shows the results of a small experiment, in which 7 out 
of 16 mice were randomly selected to receive a new medical treat­
ment, while the remaining 9 were assigned to the non-treatment 
(control) group. The treatment was intended to prolong survival 
after a test surgery. The table shows the survival time following 
surgery, in days, for all 16 mice.

Did the treatment prolong survival? A comparison of the means 
for the two groups offers preliminary grounds for optimism. Let 
#i j #2 »• • • ? # 7  indicate the lifetimes in the treatment group, so x\ = 
94, x2 = 197, • • •, xy = 23, and likewise let t/i, t/2 , • * *, 2/9 indicate 
the control group lifetimes. The group means are

7 9

x = 'Y ^xi/ 7 = 86.86 and y = ^  yi/9 = 56.22, (2.1)
i = 1  ¿ = 1

so the difference x — y equals 30.63, suggesting a considerable life­
prolonging effect for the treatment.

But how accurate are these estimates? After all, the means (2.1) 
are based on small samples, only 7 and 9 mice, respectively. In
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Table 2.1. The mouse data. Sixteen mice were randomly assigned to a 
treatment group or a control group. Shown are their survival times, in 
days, following a test surgery. Did the treatment prolong survival?

Group Data
(Sample

Size) Mean

Estimated
Standard

Error

Treatment: 94 197 16
38 99 141
23 (7) 86.86 25.24

Control: 52 104 146
10 51 30
40 27 46 (9) 56.22 14.14

Difference: 30.63 28.93

order to answer this question, we need an estimate of the accuracy 
of the sample means x and y. For sample means, and essentially 
only for sample means, an accuracy formula is easy to obtain.

The estimated standard error of a mean x based on n indepen­
dent data points £ i ,#2, * * * ? £  =  52r=ix*/n ’ given by the 
formula

(2 .2 )

where s2 = Yl7=i(x i ~ ^)2/(n ~ 1). (This formula, and standard 
errors in general, are discussed more carefully in Chapter 5.) The 
standard error of any estimator is defined to be the square root of 
its variance, that is, the estimator’s root mean square variability 
around its expectation. This is the most common measure of an 
estimator’s accuracy. Roughly speaking, an estimator will be less 
than one standard error away from its expectation about 68% of 
the time, and less than two standard errors away about 95% of the 
time.

If the estimated standard errors in the mouse experiment were 
very small, say less than 1, then we would know that x and y were 
close to their expected values, and that the observed difference of 
30.63 was probably a good estimate of the true survival-prolonging
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capability of the treatment. On the other hand, if formula (2.2) 
gave big estimated standard errors, say 50, then the difference es­
timate would be too inaccurate to depend on.

The actual situation is shown at the right of Table 2.1. The 
estimated standard errors, calculated from (2.2), are 25.24 for x 
and 14.14 for y. The standard error for the difference x — y equals 
28.93 = \/25.242 + 14.142 (since the variance of the difference of 
two independent quantities is the sum of their variances). We see 
that the observed difference 30.63 is only 30.63/28.93 = 1.05 es­
timated standard errors greater than zero. Readers familiar with 
hypothesis testing theory will recognize this as an insignificant re­
sult, one that could easily arise by chance even if the treatment 
really had no effect at all.

There are more precise ways to verify this disappointing result, 
(e.g. the permutation test of Chapter 15), but usually, as in this 
case, estimated standard errors are an excellent first step toward 
thinking critically about statistical estimates. Unfortunately stan­
dard errors have a major disadvantage: for most statistical estima­
tors other than the mean there is no formula like (2.2) to provide 
estimated standard errors. In other words, it is hard to assess the 
accuracy of an estimate other than the mean.

Suppose for example, we want to compare the two groups in Ta­
ble 2.1 by their medians rather than their means. The two medians 
are 94 for treatment and 46 for control, giving an estimated dif­
ference of 48, considerably more than the difference of the means. 
But how accurate are these medians? Answering such questions is 
where the bootstrap, and other computer-based techniques, come 
in. The remainder of this chapter gives a brief preview of the boot­
strap estimate of standard error, a method which will be fully 
discussed in succeeding chapters.

Suppose we observe independent data points xi,X2 , • • • ,xn, f°r 
convenience denoted by the vector x = (aq, X2 , • • •, xn), from which 
we compute a statistic of interest s(x). For example the data might 
be the n = 9 control group observations in Table 2.1, and s(x) 
might be the sample mean.

The bootstrap estimate of standard error, invented by Efron in 
1979, looks completely different than (2.2), but in fact it is closely 
related, as we shall see. A bootstrap sample x* = (x\ , x\, • • •, x*) is 
obtained by randomly sampling n times, with replacement, from 
the original data points xi, #2 , * * * > xn- For instance, with n — 7 we 
might obtain x* = (x5 ,X7 ,x5,X4 ,X7 ,X3 ,xi).
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Figure 2.1. Schematic of the bootstrap process for estimating the stan­
dard error of a statistic s(x). B bootstrap sample* are generated from 
the original data set. Each bootstrap sample has n elements, generated 
by sampling with replacement n times from the original data set. Boot­
strap replicates sfx*1), s(x*2) , ... s(x*B) are obtained by calculating the 
value of the statistic s(x) on each bootstrap sample. Finally, the stan­
dard deviation of the values s(x*1),s(x*2) , . . .  s(x*B) is our estimate of 
the standard error of s(x).

Figure 2.1 is a schematic of the bootstrap process. The boot­
strap algorithm begins by generating a large number of indepen­
dent bootstrap samples x*1^ * 2, • • • ,x*B, each of size n. Typical 
values for B , the number of bootstrap samples, range from 50 to 
200 for standard error estimation. Corresponding to each bootstrap 
sample is a bootstrap replication of s , namely s(x*6), the value of 
the statistic s evaluated for x*6. If s(x) is the sample median, for 
instance, then s(x*) is the median of the bootstrap sample. The 
bootstrap estimate of standard error is the standard deviation of 
the bootstrap replications,

B i

« b o o t  =  { £ M X *6 ) -  s (-)]2/ ( B  -  1 ) } 2 , ( 2 . 3 )

6=1

where s(-) = Ylb=i 5(x *6)/# - Suppose s(x) is the mean x. In this
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Table 2.2. Bootstrap estimates of standard error for the mean and me­
dian; treatment group, mouse data, Table 2.1. The median is less accu­
rate (has larger standard error) than the mean for this data set.

B: 50 100 250 500 1000 OO
mean:

median:
19.72
32.21

23.63
36.35

22.32
34.46

23.79
36.72

23.02
36.48

23.36
37.83

case, standard probability theory tells us (Problem 2.5) that as B  
gets very large, formula (2.3) approaches

{ ¿ > - x ) 2/n 2}*. (2.4)
i =  1

This is almost the same as formula (2.2). We could make it ex­
actly the same by multiplying definition (2.3) by the factor [n/(n — 
l)]a, but there is no real advantage in doing so.

Table 2.2 shows bootstrap estimated standard errors for the 
mean and the median, for the treatment group mouse data of Ta­
ble 2.1. The estimated standard errors settle down to limiting val­
ues as the number of bootstrap samples B increases. The limiting 
value 23.36 for the mean is obtained from (2.4). The formula for 
the limiting value 37.83 for the standard error of the median is 
quite complicated: see Problem 2.4 for a derivation.

We are now in a position to assess the precision of the differ­
ence in medians between the two groups. The bootstrap procedure 
described above was applied to the control group, producing a stan­
dard error estimate of 11.54 based on B = 100 replications (B = oo 
gave 9.73). Therefore, using B = 100, the observed difference of 48 
has an estimated standard error of \/36.352 -f 11.542 = 38.14, and 
hence is 48/38.14 = 1.26 standard errors greater than zero. This is 
larger than the observed difference in means, but is still insignifi­
cant.

For most statistics we don’t have a formula for the limiting value 
of the standard error, but in fact no formula is needed. Instead 
we use the numerical output of the bootstrap program, for some 
convenient value of B. We will see in Chapters 6 and 19, that B 
in the range 50 to 200 usually makes seboot a good standard error
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estimator, even for estimators like the median. It is easy to write 
a bootstrap program that works for any computable statistic s(x), 
as shown in Chapters 6 and the Appendix. With these programs 
in place, the data analyst is free to use any estimator, no matter 
how complicated, with the assurance that he or she will also have 
a reasonable idea of the estimator’s accuracy. The price, a factor 
of perhaps 100 in increased computation, has become affordable as 
computers have grown faster and cheaper.

Standard errors are the simplest measures of statistical accu­
racy. Later chapters show how bootstrap methods can assess more 
complicated accuracy measures, like biases, prediction errors, and 
confidence intervals. Bootstrap confidence intervals add another 
factor of 10 to the computational burden. The payoff for all this 
computation is an increase in the statistical problems that can be 
analyzed, a reduction in the assumptions of the analysis, and the 
elimination of the routine but tedious theoretical calculations usu­
ally associated with accuracy assessment.

2.1 Problems

2.1 * Suppose that the mouse survival times were expressed in
weeks instead of days, so that the entries in Table 2.1 were 
all divided by 7.

(a) What effect would this have on x and on its estimated 
standard error (2.2)? Why does this make sense?

(b) What effect would this have on the ratio of the differ­
ence x — y to its estimated standard error?

2.2 Imagine the treatment group in Table 2.1 consisted of R  rep­
etitions of the data actually shown, where R  is a positive inte­
ger. That is, the treatment data consisted of R  94’s, R  197’s, 
etc. What effect would this have on the estimated standard 
error (2.2)?

2.3 It is usually true that the error of a statistical estimator de­
creases at a rate of about 1 over the square root of the sample 
size. Does this agree with the result of Problem 2.2?

2.4 Let X(1) < ®(2) < x (3) < x(4) < x (5) < x (6) < X(7) ke an 
ordered sample of size n = 7. Let x* be a bootstrap sample, 
and s(x*) be the corresponding bootstrap replication of the 
median. Show that
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(a) s(x*) equals one of the original data values i = 
1,2,- .,7.

(b) t s(x*) equals #(*) with probability

3 * _  i

p(i) = ^ T ”) -  Bi0 ;« . £)}. (2.5)' n n
3 = 0

where Bi(j; n,p) is the binomial probability (”)/>*'(1— p)n~j . 
[The numerical values of p(i) are .0102, .0981, .2386, .3062, 
.2386, .0981, .0102. These values were used to compute 
seboot{ median} = 37.83, for B = oo, Table 2.2.]

2.5 Apply the weak law of large numbers to show that expression 
(2.3) approaches expression (2.4) as n goes to infinity.

f Indicates a difficult or more advanced problem.
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Random samples and 
probabilities

3.1 Introduction

Statistics is the theory of accumulating information, especially in­
formation that arrives a little bit at a time. A typical statistical 
situation was illustrated by the mouse data of Table 2.1. No one 
mouse provides much information, since the individual results are 
so variable, but seven, or nine mice considered together begin to 
be quite informative. Statistical theory concerns the best ways of 
extracting this information. Probability theory provides the math­
ematical framework for statistical inference. This chapter reviews 
the simplest probabilistic model used to model random data: the 
case where the observations are a random sample from a single 
unknown population, whose properties we are trying to learn from 
the observed data.

3.2 Random samples

It is easiest to visualize random samples in terms of a finite popu­
lation or “universe” U of individual units C/i, U2 , • • •, Un , any one 
of which is equally likely to be selected in a single random draw. 
The population of units might be all the registered voters in an 
area undergoing a political survey, all the men that might con­
ceivably be selected for a medical experiment, all the high schools 
in the United States, etc. The individual units have properties we 
would like to learn, like a political opinion, a medical survival time, 
or a graduation rate. It is too difficult and expensive to examine 
every unit in so we select for observation a random sample of 
manageable size.

A random sample of size n is defined to be a collection of n
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units * • •, un selected at random from U. In principle the
sampling process goes as follows: a random number device inde­
pendently selects integers j i ,  ■ * *, jn, each of which equals any 
value between 1 and N  with probability 1/N. These integers deter­
mine which members of U are selected to be in the random sample, 
m  = Uj1, u2 = Uj2, • • •, un = Ujn. In practice the selection process 
is seldom this neat, and the population U may be poorly defined, 
but the conceptual framework of random sampling is still useful for 
understanding statistical inference. (The methodology of good ex­
perimental design, for example the random assignment of selected 
units to Treatment or Control groups as was done in the mouse 
experiment, helps make random sampling theory more applicable 
to real situations like that of Table 2.1.)

Our definition of random sampling allows a single unit Í7* to ap­
pear more than once in the sample. We could avoid this by insisting 
that* the integers j \ , j 2 , • • * ,jn  be distinct, called “sampling with­
out replacement.” It is a little simpler to allow repetitions, that is 
to “sample with replacement”, as in the previous paragraph. If the 
size n of the random sample is much smaller than the population 
size N, as is usually the case, the probability of sample repetitions 
will be small anyway. See Problem 3.1. Random sampling always 
means sampling with replacement in what follows, unless otherwise 
stated.

Having selected a random sample ui, U2 , • • •, un, we obtain one 
or more measurements of interest for each unit. Let Xi indicate 
the measurements for unit u*. The observed data are the collec­
tion of measurements Xi,X2 , • • •, £n. Sometimes we will denote the 
observed data (#i, #2, ’ • *, £n) by the single symbol x.

We can imagine making the measurements of interest on ev­
ery member I7i, f/2 , • • •, Un of W, obtaining values X i, X 2 , • • •, X ^ .  
This would be called a census of U.

The symbol X  will denote the census of measurements 
(Xi, X 2 , • • •, X n ). We will also refer to X  as the population of mea­
surements, or simply the population, and call x a random sample of 
size n from X. In fact, we usually can’t afford to conduct a census, 
which is why we have taken a random sample. The goal of statisti­
cal inference is to say what we have learned about the population X  
from the observed data x. In particular, we will use the bootstrap 
to say how accurately a statistic calculated from £1 , ^2 ? • • •, xn (for 
instance the sample median) estimates the corresponding quantity 
for the whole population.
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Table 3.1. The law school data. A random sample of size n = 15 was 
taken from the collection of N  — 82 American law schools participating 
in a large study of admission practices. Two measurements were made 
on the entering classes of each school in 1973: LSAT, the average score 
for the class on a national law test, and GPA, the average undergraduate 
grade-point average for the class.

School LSAT GPA School LSAT GPA
1 576 3.39 9 651 3.36
2 635 3.30 10 605 3.13
3 558 2.81 11 653 3.12
4 578 3.03 12 575 2.74
5 666 3.44 13 545 2.76
6 580 3.07 14 572 2.88
7 555 3.00 15 594 2.96
8 661 3.43

Table 3.1 shows a random sample of size n = 15 drawn from 
a population of JV = 82 American law schools. What is actually 
shown are two measurements made on the entering classes of 1973 
for each school in the sample: LSAT, the average score of the class 
on a national law test, and GPA, the average undergraduate grade 
point average achieved by the members of the class. In this case 
the measurement X{ on the ith member of the sample, is the 
pair

Xi =  (LSAT;, GPA*) i =  1,2, • • •, 15.

The observed data X\,X2 is the collection of 15 pairs of 
numbers shown in Table 3.1.

This example is an artificial one because the census of data 
X \, X 2 , • • •, Xs2 was actually made. In other words, LSAT and 
GPA are available for the entire population of N  = 82 schools. 
Figure 3.1 shows the census data and the sample data. Table 3.2 
gives the entire population of N  measurements.

In a real statistical problem, like that of Table 3.1, we would see 
only the sample data, from which we would be trying to infer the 
properties of the population. For example, consider the 15 LSAT 
scores in the observed sample. These have mean 600.27 with esti­
mated standard error 10.79, based on the data in Table 3.1 and 
formula (2.2). There is about a 68% chance that the true LSAT
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Figure 3.1. The left panel is a scatterplot of the (LSAT, GPA) data 
for all N  = 82 law schools; circles indicate the n =  15 data points 
comprising the “observed sample” of Table 3.1. The right panel shows 
only the observed sample. In problems of statistical inference, we are 
trying to infer the situation on the left from the picture on the right.

mean, the mean for the entire population from which the observed 
data was sampled, lies in the interval 600.27 ± 10.79.

We can check this result, since we are dealing with an artifi­
cial example for which the complete population data are known. 
The mean of all 82 LSAT values is 597.55, lying nicely within the 
predicted interval 600.27 dh 10.79.

3.3 Probability  theory

Statistical inference concerns learning from experience: we observe 
a random sample x = (xi, X2 , • • •, xn) and wish to infer properties 
of the complete population X  — (X i,X 2 , • • • ,X n ) that yielded 
the sample. Probability theory goes in the opposite direction: from 
the composition of a population X  we deduce the properties of a 
random sample x, and of statistics calculated from x. Statistical 
inference as a mathematical science has been developed almost ex­
clusively in terms of probability theory. Here we will review briefly
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Table 3.2. The population of measurements (LSAT,GPA), for the uni­
verse of 82 law schools. The data in Table 3.1 was sampled from this 
population. The + ’s indicate the sampled schools.

school LSAT GPA school LSAT GPA school LSAT GPA

1 622 3.23 28 632 3.29 56 641 3.28
2 542 2.83 29 587 3.16 57 512 3.01
3 579 3.24 30 581 3.17 58 631 3.21
4+ 653 3.12 31+ 605 3.13 59 597 3.32
5 606 3.09 32 704 3.36 60 621 3.24
6+ 576 3.39 33 477 2.57 61 617 3.03
7 620 3.10 34 591 3.02 62 637 3.33
8 615 3.40 35+ 578 3.03 62 572 3.08
9 553 2.97 36+ 572 2.88 64 610 3.13
10 607 2.91 37 615 3.37 65 562 3.01
11 558 3.11 38 606 3.20 66 635 3.30
12 596 3.24 39 603 3.23 67 614 3.15
13+ 635 3.30 40 535 2.98 68 546 2.82
14 581 3.22 41 595 3.11 69 598 3.20
15+ 661 3.43 42 575 2.92 70+ 666 3.44
16 547 2.91 43 573 2.85 71 570 3.01
17 599 3.23 44 644 3.38 72 570 2.92
18 646 3.47 45+ 545 2.76 73 605 3.45
19 622 3.15 46 645 3.27 74 565 3.15
20 611 3.33 47+ 651 3.36 75 686 3.50
21 546 2.99 48 562 3.19 76 608 3.16
22 614 3.19 49 609 3.17 77 595 3.19
23 628 3.03 50+ 555 3.00 78 590 3.15
24 575 3.01 51 586 3.11 79+ 558 2.81
25 662 3.39 52+ 580 3.07 80 611 3.16
26 627 3.41 53+ 594 2.96 81 564 3.02
27 608 3.04 54 594 3.05 82+ 575 2.74

55 560 2.93

some fundamental concepts of probability, including probability 
distributions, expectations, and independence.

As a first example, let x represent the outcome of rolling a fair 
die so x is equally likely to be 1,2,3,4,5, or 6. We write this in 
probability notation as

Prob{x = k} = 1/6 for k = 1,2,3,4,5,6. (3.1)

A random quantity like x is often called a random variable.
Probabilities are idealized or theoretical proportions. We can 

imagine a universe U = {C/i, C/2 , • • •, Un } of possible rolls of the
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die, where Uj completely describes the physical act of the jth  roll, 
with corresponding results X  = (X i,X 2 , • • • ,-X/v). Here N  might 
be very large, or even infinite. The statement Prob{x = 5} = 1/6 
means that a randomly selected member of X  has a 1/6 chance of 
equaling 5, or more simply that 1/6 of the members of X  equal 5. 
Notice that probabilities, like proportions, can never be less than 
0 or greater than 1.

For convenient notation define the frequencies fk ,

fk = Prob{x = fe}, (3.2)

so the fair die has fk = 1/6 for k = 1,2, •••,6. The probability 
distribution of a random variable x , which we will denote by F, is 
any complete description of the probabilistic behavior of x. F  is 
also called the probability distribution of the population X . Here 
we can take F  to be the vector of frequencies

F  = (/i, / 2, • * •, fe) = (1/6,1/6, • • •, 1/6). (3.3)

An unfair die would be one for which F  did not equal 
(1 /6 ,1 /6 ,..., 1/6).

Note: In many books, the symbol F  is used for the cumulative 
probability distribution function F(x0) = Prob{:r < xo} for — oo < 
Xo < oo. This is an equally valid description of the probabilistic 
behavior of x, but it is only convenient for the case where a; is a real 
number. We will also be interested in cases where x is a vector, as 
in Table 3.1, or an even more general object. This is the reason for 
defining F  as any description of x's probabilities, rather than the 
specific description in terms of the cumulative probabilities. When 
no confusion can arise, in later chapters we use symbols like F  and 
G to represent cumulative distribution functions.

Some probability distributions arise so frequently that they have 
received special names. A random variable x is said to have the 
binomial distribution with size n and probability of success p, de­
noted

x ~  Bi(n,p), (3.4)

if its frequencies are

/fc = ( ^ ) p fc( ! - P ) n_fc for k = 0 ,1 ,2 ,•••,«. (3.5)

Here n is a positive integer, p is a number between 0 and 1, and 
(2) is the binomial coefficient n!/[fc!(n — &)!]. Figure 3.2 shows the
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distribution F = (/o, / i ,  * * *, fn) for x ~  Bi(n,p), with n = 25 
and p = .25, .50, and .90. We also write F  = Bi(n,p) to indicate 
situation (3.4).

Let A be a set of integers. Then the probability that x takes a 
value in A, or more simply the probability of A, is

Prob{x E A} = Prob{A} = ^  /*. (3.6)
keA

For example if A = {1,3,5, • • •, 25} and x ~  Bi(25,p), then ProbjA} 
is the probability that a binomial random variable of size 25 and 
probability of success p equals an odd integer. Notice that since f k 
is the theoretical proportion of times x equals fc, the sum 2̂ keAfk = 
ProbjA} is the theoretical proportion of times x takes its value in 
A.

The sample space of x, denoted Sx, is the collection of possible 
values x can have. For a fair die, Sx = (1, 2, • • • ,6}, while Sx = 
{0,1,2, • • • ,n} for a Bi(n,p) distribution. By definition, x occurs 
in Sx every time, that is, with theoretical proportion 1, so

Prob{Sx} = £  A = 1. (3.7)
kesx

For any probability distribution on the integers the frequencies f j  
are nonnegative numbers summing to 1.

In our examples so far, the sample space Sx has been a subset 
of the integers. One of the convenient things about probability 
distributions is that they can be defined on quite general spaces. 
Consider the law school data of Figure 3.1. We might take Sx to 
be the positive quadrant of the plane,

Sx = 1l2+ = { (y ,z ) ,y > 0 ,z > 0 } .  (3.8)

(This includes values like x =  (106,109), but it doesn’t hurt to let 
Sx be too big.) For a subset A of we would still write Prob{A} 
to indicate the probability that x occurs in A.

For example, we could take

A = {(y, z) : 0 < y < 600,0 < * < 3.0}. (3.9)

A law school x E A if its 1973 entering class had LSAT less than 
600 and GPA less than 3.0. In this case we happen to know the 
complete population X\ it is the 82 points indicated on the left 
panel of Figure 3.1 and in Table 3.2. Of these, 16 are in A, so

Prob{A} = 16/82 = .195. (3.10)
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Figure 3.2. The frequencies /o, /i , • • •, f n for the binomial distributions 
Bi(n,p), n = 25 and p = .25, .50, and .90. The points have been con­
nected by lines to enhance visibility.

Here the idealized proportion Prob{A} is an actual proportion. 
Only in cases where we have a complete census of the population 
is it possible to directly evaluate probabilities as proportions.

The probability distribution F  of x is still defined to be any 
complete description of x’s probabilities. In the law school example, 
F  can be described as follows: for any subset A of Sx = 72.2+,

Prob{x E A) = # {X j  E A}/82, (3.11)

where # {X j  E A} is the number of the 82 points in the left panel 
of Figure 3.1 that lie in A. Another way to say the same thing is 
that F  is a discrete distribution putting probability (or frequency) 
1/82 on each of the indicated 82 points.

Probabilities can be defined continuously, rather than discretely 
as in (3.6) or (3.11). The most famous example is the normal (or 
Gaussian, or bell-shaped) distribution. A real-valued random vari­
able x is defined to have the normal distribution with mean /i and
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variance cr2, written

x ~  iV(/x, a 2) or F = N(p, <r2), (3.12)

if

Prob{;r e A} = J  (3.13)

for any subset A of the real line 1Z1. The integral in (3.13) is over 
the values of x G A.

There are higher dimensional versions of the normal distribu­
tion, which involve taking integrals similar to (3.13) over multi­
dimensional sets A. We won’t need continuous distributions for 
development of the bootstrap (though they will appear later in 
some of the applications) and will avoid mathematical derivations 
based on calculus. As we shall see, one of the main incentives for the 
development of the bootstrap is the desire to substitute computer 
power for theoretical calculations involving special distributions.

The expectation of a real-valued random variable x, written E(x), 
is its average value, where the average is taken over the possible 
outcomes of x weighted according to its probability distribution F. 
Thus

E(x) = £ x ( ny (l — p)x for x ~  Bi(n,p), (3.14)

and
/ °° 1 _

x ....... :.e~2 ( v^^dx  for x ~  N(p, a2). (3.15)

-oo v27rcr2

It is not difficult to show that E(x) = np for x ~  Bi(n,p), and 
E(x) = /i for x ~  N (p ,a2). (See Problems 3.6 and 3.7.)

We sometimes write the expectation as E¿r(x), to indicate that 
the average is taken with respect to the distribution F.

Suppose r = g(x) is some function of the random variable x. 
Then E(r), the expectation of r, is the theoretical average of g(x) 
weighted according to the probability distribution of x. For exam­
ple if x ~  iV(¿¿, a2) and r = x3, then

/ OO i
x3 — ... . e~ 2 ( )2 dx. (3.16)

-oo v27r<72

Probabilities are a special case of expectations. Let A be a subset
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of Sx, and take r — I{X£A} where I{x^a } is the indicator function

l { x € A }
if x e A 
if x £ A '

Then E(r) equals Prob{x 6 A}, or equivalently 

E(J{xe.4}) = Prob{x € A}.

For example if x ~  N(/j,, a2), then

/
OO i

I {x€A }-j= = e~*(i^ i ? dx 
-OO v 2 'KGz

- L a/27TCT2
e ~ i ^ 2dx,

(3.17)

(3.18)

(3.19)

which is Prob{# 6 A} according to (3.13).
The notion of an expectation as a theoretical average is very 

general, and includes cases where the random variable x is not 
real-valued. In the law school situation, for instance, we might 
be interested in the expectation of the ratio of LSAT and GPA. 
Writing x = (y,z) as in (3.8), then r = y/z, and the expectation 
of r is

1
E(LSAT/GPA) = -  Y f r j l z j )  (3.20)

3 = 1

where Xj = (y j, Zj) is the j th point in Table 3.2. Numerical evalu­
ation of (3.20) gives E(LSAT/GPA) = 190.8.

Let fix — Eip(a;), for x a real-valued random variable with distri­
bution F. The variance of #, indicated by cr2 or just cr2, is defined 
to be the expected value of y = (x — p) 2 . In other words, a2 is the 
theoretical average squared distance of a random variable x from 
its expectation px,

4  = E f (x  -  Mx)2. (3.21)

The variance of x ~  N(fi,cr2) equals cr2; the variance of x ~  
Bi(n,p) equals np( 1 — p), see Problem 3.9. The standard devia­
tion of a random variable is defined to be the square root of its 
variance.

Two random variables y and z are said to be independent if

E \g{y)h{z)) = E[<7(2/)]E[Mz)] (3.22)
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for all functions g(y) and h(z). Independence is well named: (3.22) 
implies that the random outcome of y doesn’t affect the random 
outcome of 2 , and vice-versa.

To see this, let B and C be subsets of Sy and S z respectively, 
the sample spaces of y and z, and take g and h to be the indicator 
functions g(y) = I {yeB} and h(z) = I{zec}- Notice that

w „ £c > = { ;  2 e ^ “ d 2 e c  <3-23>

S° I{yeB}I{zec} is the indicator function of the intersection {y G 
B} fl {z G C}. Then by (3.18) and the independence definition 
(3.22),

Prob{(y, z) G B  n C} = E(I{yeByI{zeC}) = EU{2/€£})EC*{2ec}) 
= Prob{2/ G B}Prob{z G C}.

(3.24)

Looking at Figure 3.1, we can see that (3.24) does not hold for 
the law school example, see Problem 3.10, so LSAT and GPA are 
not independent.

Whether or not y and z are independent, expectations follow the 
simple addition rule

m y )  + h(z)} = E[g(y)} + E[h(z)}. (3.25)

In general,
n n

E [2 > (* i) ]  =  5>[ffi(* i)] (3.26)
1=1 ¿=1

for any functions gi of any n random variables #i, x2, • • •, xn.
Random sampling with replacement guarantees independence: if 

x = (xi,#2, * * * >#n) is a random sample of size n from a popula­
tion X, then all n observations are identically distributed and 
mutually independent of each other. In other words, all of the Xi 
have the same probability distribution F, and

~EF\gi{xi)g2{x2), ■ ■ ■ ,5n(z„)] =
Ef [9x(^i )]Ef [9 2 (^2 )] • "E flftiii» )] (3.27)

for any functions Q\ , g2, • • • ,gn- (This is almost a definition of what 
random sampling means.) We will write

F  -+ (x1 ,X2 ,---,X n) (3.28)
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to indicate that x = (#i, a?2 , • • •, xn) is a random sample of size n 
from a population with probability distribution F. This is some­
times written as

x j A~ 'F  i = 1,2, •••,«, (3.29)

where i.i.d. stands for independent and identically distributed.

3.4 Problems

3.1 A random sample of size n is taken with replacement from 
a population of size N. Show that the probability of having 
no repetitions in the sample is given by the product

n—1

n a - i r ) '
3=0

3.2 Why might you suspect that the sample of 15 law schools in 
Table (3.1) was obtained by sampling without replacement, 
rather than with replacement?

3.3 The mean GPA for all 82 law schools is 3.13. How does this 
compare with the mean GPA for the observed sample of 15 
law schools in Table 3.1? Is this difference compatible with 
the estimated standard error (2.2)?

3.4 Denote the mean and standard deviation of a set of numbers 
X i, X 2 , • • •, X n by A and 5 respectively, where

X  = j r X j / N  S =  { £ ( * ,  -  X f / N y / 2.
3 = 1  J =1

(a) A sample xi, x2, • • •, xn is selected from Ai, X2 , • • •, A ^ 
by random sampling with replacement. Denote the stan­
dard deviation of the sample average x = 
usually called the standard error of x, by se(x). Use a 
basic result of probability theory to show that

(b) t Suppose instead that #i, £2 , ‘ ‘ * > is selected by 
random sampling without replacement (so we must have
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n < N), show that

N - n
N -  1

1
2

(c) We see that sampling without replacement gives a 
smaller standard error for x. Proportionally how much 
smaller will it be in the case of the law school data?

3.5 Given a random sample X\,X2 , • • •, a:n, the empirical proba­
bility of a set A is defined to be the proportion of the sample 
in A y written

Prob{A} = #{x¿ € A}/n. (3.30)

(a) Find Prob{A} for the data in Table 3.1, with A as 
given in (3.9).

(b) The standard error of an empirical probability is 
[Prob{A} • (1 — Prob{A})//!]1/2. How many standard er­
rors is Prob{A} from Prob{A}, given in (3.10)?

3.6 A very simple probability distribution F  puts probability on 
only two outcomes, 0 or 1, with frequencies

fo = l - p ,  fi= P -  (3.31)

This is called the Bernoulli distribution. Here p is a number 
between 0 and 1. If #i, • • •, xn is a random sample from F, 
then elementary probability theory tells us that the sum

s = x i+  x2 -\------ Vxn (3.32)

has the binomial distribution (3.5),

s ~  Bi(n,p). (3.33)

(a) Show that the empirical probability (3.30) satisfies

n • Prob{A} ~  Bi(n, Prob{A}). (3.34)

Expression (3.34) can also be written as 
Prob{A} ~  Bi(n,Prob{A})/n.)

(b) Prove that if x ~  Bi(n,p), then E(x) = np.

3.7 Without using calculus, give a symmetry argument to show 
that E(x) = p for x N (p ,a2).


