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Foreword

Summability theory is more than a century old. It began with a paper in
1890 by E. Cesàro dealing with multiplication of series. The main aim of
summability in its early days was the development of summability methods
for divergent series and divergent integrals. The topic then developed its own
identity far beyond its beginnings. An important and central theme in summa-
bility was the introduction of matrix methods such as Cesàro, Abel, Hölder,
Riesz, Hausdorff, Nörlund and others. Summability theory relied initially on
classical analysis, and as such it was considered a branch of Classical Analysis.
The book by Hardy [97] marks the highlight of that era. The use of functional
analysis methods began with the seminal research by Karl Zeller and his col-
leagues (see [239]) and continued with the fundamental contributions of A.
Willansky and others (see [228]). It is gratifying to note that the topic has
found its way into introductory textbooks on functional analysis (see [147]
and [227]).

Over the past century there have been many landmarks in the theory and
applications of summability theory, both in the contexts of classical analysis
and functional analysis. For example, Tauberian theory, one of the classi-
cal topics in the theory, compares summability methods for series and inte-
grals with the aim of deciding which of these methods converge and providing
asymptotic estimates. There are profound and celebrated results in this area,
such as the Hardy-Littlewood theorems and Norbert Wiener’s breakthroughs
and his simple proof of one of those theorems based on Fourier analysis (see
the charming book by Korevaar [131], which traces a century of developments
on Tauberian theorems). There are also applications of various Tauberian
methods to prime number theory. Closer to the content of the present mono-
graph, there have been remarkable applications of functional analysis methods
in summability to iterative methods of linear and nonlinear operator equa-
tions in Hilbert and Banach spaces, in addition to the applications covered in
this monograph. Summability theory in return has led to introduction of new
classes of matrices and many interesting spaces of summable sequences and
double sequences.

Professors M. Mursaleen and F. Başar are two of the renowned researchers
in the field of summability in the last two decades. They have cultivated a re-
search school on summability in their respective countries, India and Turkey.
They have mentored two generations of students and researchers on various as-
pects of summability theory, sequence spaces, different notions of convergence

ix



x Foreword

and other topics. They have also collaborated on many joint research papers.
This monograph reflects their achievements in these endeavors. The book is
written for graduate students and researchers with an interest in sequence
spaces, matrix transformations in the context of summability, various spaces
of summable sequences and other topics mentioned in the preface. The book is
a welcome addition to the literature. I look forward to adding it to my book-
shelf as a companion to the other books [32, 52, 97, 131, 147, 168, 227, 228]
and [239].

M. Zuhair Nashed
University of Central Florida,

Orlando, Florida



Preface

This book is intended for graduate students and researchers with a (special)
interest in sequence spaces, matrix transformations and related topics. Besides
a preface and index, the book consists of six chapters with abstracts and is
organized as follows:

In Chapter 1; we present some basic definitions, notations and various ba-
sic ideas that will be required throughout the book. In this chapter, we state
and prove Hahn-Banach, Baire’s category, Banach-Steinhaus, bounded in-
verse, closed graph and open mapping theorems together with uniform bound-
edness principle, which are basic for functional analysis.

In Chapter 2, we investigate the geometric properties of normed Euler
sequence spaces and Cesàro sequence space ces(p), and some sequence spaces
involving lacunary sequence space equipped with the Luxemburg norm besides
topological, and some other usual properties.

Chapter 3 is devoted to some classes of matrix transformations with es-
tablishing the necessary and sufficient conditions on the elements of a matrix
to map a sequence space X into a sequence space Y . This is a natural gen-
eralization of the problem to characterize all summability methods given by
infinite matrices that preserve convergence.

In Chapter 4, we study the notion of almost convergence and the related
matrix transformations with their some applications.

In Chapter 5, after giving some elementary examples following
Yeşilkayagil and Başar [234], Dündar and Başar [75], Başar and Karaisa [38],
and Srivastava and Kumar [205], we determine the spectrum and the fine
spectrum of the lambda matrix Λ, the upper triangle double band matrix
∆+, the generalized difference operator defined by a double sequential band
matrix B(r̃, s̃) and the generalized difference operator ∆uv acting on the se-
quence spaces c0, c; `p and `1 with respect to Goldberg’s classification, where
1 < p <∞.

In Chapter 6, we summarize the literature on some sets of fuzzy valued
sequences and series. Talo and Başar [213] have extended the main results of
Başar and Altay [35] to fuzzy numbers and defined the α-, β- and γ-duals of a
set of fuzzy valued sequences, and gave the duals of the classical sets of fuzzy
valued sequences together with the characterization of the classes of infinite
matrices of fuzzy numbers transforming one of the classical sets into another
one. Also, Kadak and Başar [104, 105] have recently studied the power series
of fuzzy numbers and examined the alternating and binomial series of fuzzy

xi



xii Preface

numbers and some sets of fuzzy-valued functions with the level sets, and gave
some properties of the level sets together with some inclusion relations, in
[103, 108]. Finally, following Talo and Başar [215]; we introduce the classes
`∞(F ), c(F ), c0(F ) and `p(F ) consisting of all bounded, convergent, null and
absolutely p-summable fuzzy valued sequences with the level sets and the sets
`∞(F ; f), c(F ; f), c0(F ; f) and `(F ; f) of fuzzy valued sequences defined by a
modulus function.

Mohammad Mursaleen & Feyzi Başar
Aligarh & İstanbul

February 2019
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Turkey. He has published an e-book for graduate students and researchers
and more than 150 scientific papers in the field of summability theory, se-
quence spaces, FK-spaces, Schauder bases, dual spaces, matrix transforma-
tions, spectrums of certain linear operators represented by a triangle matrix
over some sequence space, the alpha-, beta- and gamma-duals and some topo-
logical properties of the domains of some double and four-dimensional trian-
gles in the certain spaces of single and double sequences, sets of the sequences
of fuzzy numbers, multiplicative calculus. He has guided 17 master’s and 10
Ph.D. students and served as a referee for 121 international scientific journals.
He is a member of an editorial board of 21 scientific journals. Feyzi Başar is
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(c : c) : class of conservative matrices
(c : c; p) : class of Teoplitz matrices
(c : c)reg : class of regular matrices
(cs : c; p) : class of series to sequence regular matrices
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(c : vσ) : class of sequence to sequence sigma-conservative matrices
(c : f) : class of almost conservative matrices
(c : f)reg : class of almost regular matrices
(f : c) : class of strongly conservative matrices
(f : c; p) : class of strongly regular matrices
(`∞ : c) : class of Schur (coercive) matrices
(`∞ : f) : class of sequence to sequence almost coercive matrices
(`∞ : fs) : class of sequence to series almost coercive matrices
(bs : f) : class of series to sequence almost coercive matrices
(bs : fs) : class of series to series almost coercive matrices
∅ : empty set
(AB)ij : ith row and jth column entry of the matrix product AB
I : unit matrix
G(A) : graph of a continuous operator A
D(T ) : domain of a linear operator T
R(T ) : range of a linear operator T
Ker(T ) : kernel or null space of a linear operator T
rσ(T ) : spectral radius of an operator T ∈ B(X)
T ∗ : adjoint of a bounded linear operator T
Tα : resolvent operator of T with each α ∈ C
B(x0; r) : open ball of radius r with center x0

S(x0; r) : sphere of radius r with center x0

S[θ, δ] : closed sphere of radius δ with center origin θ = (0, 0, 0, . . .)
SX : the unit sphere in X
L(X) : set of all linear and continuous operators on a space X

into itself
L(X : Y ) : set of all linear and continuous operators T : X → Y
B(X) : set of all bounded linear operators on a space X into itself
B(X : Y ) : set of all bounded linear operators T : X → Y
C(X : Y ) : set of all compact operators T : X → Y
F(X : Y ) : set of all finite rank operators T : X → Y
X ′ : set of bounded linear functionals on a space X
X∗ : continuous dual of a space X
σ(T,X) : spectrum of a linear operator T on a space X
ρ(T,X) : resolvent set of a linear operator T on a space X
σe(T,X) : eigenspace of a linear operator T corresponding to the

eigenvalue α
σa(T,X) : approximate spectrum of a linear operator T on a space X
σp(T,X) : point (discrete) spectrum of a linear operator T on a space X
σc(T,X) : continuous spectrum of a linear operator T on a space X
σr(T,X) : residual spectrum of a linear operator T on a space X
σap(T,X) : approximate point spectrum of a linear operator T on a space X
σδ(T,X) : defect spectrum of a linear operator T on a space X
σco(T,X) : compression spectrum of a linear operator T on a space X



Chapter 1

Basic Functional Analysis

Keywords. Metric sequence spaces, normed linear spaces, bounded linear op-
erators, Köthe-Toeplitz duals, Hahn-Banach theorem, Baire category theorem,
uniform boundedness principle, Banach-Steinhaus theorem, bounded inverse
theorem, closed graph theorem, open mapping theorem, compact operators,
Schauder basis, separability, reflexivity, weak convergence, Hilbert spaces, topo-
logical vector spaces, FK-spaces.

1.1 Metric Spaces

In R, the set of all real numbers or in C, the set of all complex numbers,
the concept of absolute value plays an important role in defining two basic
concepts, i.e., the concepts of convergence and continuity, on which the whole
theory of real (or complex) variables depends. Metric space is a generalization
of R (or C), insofar as it is a space with a metric or a distance function. In the
theory of metric spaces, the concept of distance is generalized by replacing R
(or C) with an arbitrary non-empty set X in such a way that one can have a
notion of convergence and continuity in a more general setting.

Definition 1.1.1. A metric space is a set X together with a function d, called
a metric or distance function, which assigns a real number d(x, y) to every pair
x, y belonging to X satisfying the following axioms:

(M1) (positive): d(x, y) ≥ 0 for all x, y in X.

(M2) (strictly positive): d(x, y) = 0 iff x = y for all x, y in X.

(M3) (symmetry): d(x, y) = d(y, x) for all x, y in X.

(M4) (triangle inequality): d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in X.

Definition 1.1.2. Let X be a non-empty set. Define d for x, y ∈ X by

d(x, y) =

{
0 , x = y,
1 , x 6= y.

(1.1.1)

1
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The metric d given by (1.1.1) is called the trivial metric or discrete metric
on X. The metric space (X, d) is called discrete metric space and is denoted
by Xd.

Examples 1.1.3. We have the following:

(a) The usual distance d(x, y) = |x− y| is a metric for the set R of all real
numbers.

(b) On the plane R2, the metric d1 is defined by d1[(x1, y1), (x2, y2)] = |x1−
x2|+|y1−y2|. Another metric d2 on R2 is the “usual distance” (measured
using Pythagoras’s theorem):

d2[(x1, y1), (x2, y2)] =
√

(x1 − x2)2 + (y1 − y2)2.

Note that a non-empty set X may have more than one metric.

(c) On the set C of all complex numbers, the metric d is defined by d(z, w) =
|z − w|, where | · | represents the modulus of the complex number rather
than the absolute value of a real number.

(d) On the plane R2, another metric d∞ is defined with the supremum or
maximum as

d∞[(x1, y1), (x2, y2)] = max{|x1 − x2|, |y1 − y2|}.

(e) Let C[0, 1] be the set of all continuous real-valued functions on the in-
terval [0, 1]. We define the metrics d1, d2 and d∞ on C[0, 1] by analogy
to the above examples:

d1(f, g) =
∫ 1

0
|f(x)− g(x)|dx.

d2(f, g) =
√∫ 1

0
[f(x)− g(x)]2dx.

d∞(f, g) = max
0≤x≤1

|f(x)− g(x)|.

Definition 1.1.4. A sequence (xn) in a metric space (X, d) is said to be
convergent to x in X if for every ε > 0 there is N > 0 such that d(x, xn) < ε
whenever n ≥ N ; it is said to be Cauchy if d(xm, xn) < ε whenever n,m ≥ N.
A metric space (X, d) is said to be complete if every Cauchy sequence in X is
convergent in X.

Now, we may give the definition of closure and the interior of a set.

Definition 1.1.5. Let (X, d) be a metric space and let S ⊂ X. A point
x0 ∈ X is a closure point of S if, for every ε > 0, there is a point x ∈ S with
d(x0, x) < ε. The closure S of S is the set of all closure points of S. We call
x0 an interior point of a set S ⊂ X if S is a neighborhood of x0. The interior
S◦ of S is the set of all interior points of S. S◦ is open and is the largest open
set in S.



Basic Functional Analysis 3

Definition 1.1.6. A subset S of a metric space (X, d) is said to be dense in
X iff S = X. S is said to be nowhere dense in X if (S)0 = ∅.

A metric space (X, d) is said to be separable if it contains a countable
dense subset.

Examples 1.1.7. We give the following examples for separable/non-separable
spaces:

(i) The set of rational numbers Q dense in R, hence R is separable.

(ii) The set of all rational polynomials P [0, 1] is dense in C[0, 1] with sup-
norm ‖ · ‖∞ as well with integral norm ‖ · ‖p, (1 ≤ p <∞), hence C[0, 1]
is separable.

(iii) φ is dense in the spaces c0 and `p with the norms ‖ · ‖∞ and ‖ · ‖p,
respectively, i.e., c0 and `p are separable, where 1 ≤ p < ∞ and φ
denotes the set of all finetely non-zero sequences.

(iv) Finite sets, N0 and Z are nowhere dense in R.

(v) `∞ is not separable.

Proof. We prove here only (v). It is easy to see that the set E := {x = (xj) ∈
`∞ : xj ∈ {0, 1}, j ∈ N0} ⊂ `∞ is uncountable, and for every distinct x, y ∈ E,
‖x− y‖∞ = 1. We have to show that E is not dense in `∞. Let if possible, E
be dense in `∞. Then, there exists z ∈ `∞ such that ‖x− z‖∞ < 1/4(= ε) for
x ∈ E. Now,

1 = ‖x− y‖∞ ≤ ‖x− z‖∞ + ‖z − y‖∞ <
1

4
+ ‖z − y‖∞

for all y ∈ E. This implies that ‖z − y‖∞ > 3/4, i.e., E is not dense in `∞.
Hence, `∞ cannot be separable.

Definition 1.1.8. Let M and S be two subsets of a metric space (X, d) and
ε > 0. Then, the set S is called ε-net of M if for any x ∈M there exists s ∈ S
such that d(x, s) < ε. If the set S is finite, then the ε-net S of M is called
finite ε-net.

Definition 1.1.9. The set M is said to be totally bounded if it has a finite
ε-net for every ε > 0.

Definition 1.1.10. A subset M of a metric space X is compact if every
sequence (xn) in M has a convergent subsequence, and in this case the limit
of that subsequence is in M .

Definition 1.1.11. The set M is said to be relatively compact if the closure
M of M is a compact set.
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If the set M is relatively compact, then M is totally bounded. If the
metric space (X, d) is complete, then the set M is relatively compact if and
only if it is totally bounded. It is easy to prove that a subset M of a metric
space X is relatively compact if and only if every sequence (xn) in M has a
convergent subsequence; in that case, the limit of that subsequence need not
be in M .

1.2 Metric Sequence Spaces

The space bv is the space of all sequences of bounded variation, that is,
consisting of all sequences (xk) such that (xk−xk+1) in `1, and bv0 = bv∩ c0.
Let e = (1, 1, . . .) and e(k) = (0, 0, . . . , 0, 1(kth place), 0, . . .).

Examples 1.2.1. We give the following examples for metric sequence spaces:

(i) The most popular metric dω which is known as the Frèchet metric on
the space ω of all real or complex valued sequences is defined by

dω(x, y) =
∑

k

|xk − yk|
2k(1 + |xk − yk|)

; x = (xk), y = (yk) ∈ ω.

For simplicity in notation, here and in what follows, the summation
without limits runs from 0 to ∞, and use the convention that any term
with negative subscript is equal to zero.

(ii) The space of bounded sequences is denoted by `∞, i.e.,

`∞ :=

{
x = (xk) ∈ ω : sup

k∈N0

|xk| <∞
}
.

The natural metric on the space `∞ known as the sup-metric is defined
by

d∞(x, y) = sup
k∈N0

|xk − yk|; x = (xk), y = (yk) ∈ `∞.

(iii) The spaces of convergent and null sequences are denoted by c and c0,
that is,

c :=

{
x = (xk) ∈ ω : ∃l ∈ C such that lim

k→∞
|xk − l| = 0

}
,

c0 :=

{
x = (xk) ∈ ω : lim

k→∞
xk = 0

}
.

The metric d∞ is also a metric for the spaces c and c0.
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(iv) The space of absolutely convergent series is denoted by `1, i.e.,

`1 :=

{
x = (xk) ∈ ω :

∑

k

|xk| <∞
}
.

The natural metric on the space `1 is defined by

d1(x, y) =
∑

k

|xk − yk|; x = (xk), y = (yk) ∈ `1.

(v) The space of absolutely p-summable sequences is denoted by `p, that is,

`p :=

{
x = (xk) ∈ ω :

∑

k

|xk|p <∞
}
, (0 < p <∞).

In the case 1 < p <∞, the metric dp on the space `p is given by

dp(x, y) =

(∑

k

|xk − yk|p
)1/p

; x = (xk), y = (yk) ∈ `p.

Also in the case 0 < p < 1, the metric d̃p on the space `p is given by

d̃p(x, y) =
∑

k

|xk − yk|p; x = (xk), y = (yk) ∈ `p.

(vi) The space of bounded series is denoted by bs, i.e.,

bs :=

{
x = (xk) ∈ ω : sup

n∈N0

∣∣∣∣∣
n∑

k=0

xk

∣∣∣∣∣ <∞
}
.

The natural metric on the space bs is defined by

d(x, y) = sup
n∈N0

∣∣∣∣∣
n∑

k=0

(xk − yk)

∣∣∣∣∣ ; x = (xk), y = (yk) ∈ bs. (1.2.1)

(vii) The space of convergent series and the space of the series converging to
zero are denoted by cs and cs0, respectively, that is,

cs :=

{
x = (xk) ∈ ω : ∃l ∈ C such that lim

n→∞

∣∣∣∣∣
n∑

k=0

xk − l
∣∣∣∣∣ = 0

}
,

cs0 :=

{
x = (xk) ∈ ω : lim

n→∞

∣∣∣∣∣
n∑

k=0

xk

∣∣∣∣∣ = 0

}
.

The relation d defined by (1.2.1) is the natural metric on the spaces cs
and cs0.
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(viii) The space of sequences of bounded variation is denoted by bv, i.e.,

bv :=

{
x = (xk) ∈ ω :

∑

k

|xk − xk+1| <∞
}
.

Define the forward difference sequence 4u = {(4u)k} by (4u)k = uk −
uk+1 for all k ∈ N0. The natural metric on the space bv is defined by

d(x, y) =
∑

k

∣∣(4(x− y)
)
k

∣∣ ; x = (xk), y = (yk) ∈ bv.

Let p = (pk)k∈N0 be a bounded sequence of positive real numbers with
supk∈N0

pk = H and M = max{1, H}. The following spaces were introduced
and studied by Lascarides and Maddox [137], and Simons [197]:

`∞(p) :=

{
x = (xk) ∈ ω : sup

k∈N0

|xk|pk <∞
}
,

c(p) :=

{
x = (xk) ∈ ω : ∃l ∈ C such that lim

k→∞
|xk − l|pk = 0

}
,

c0(p) :=

{
x = (xk) ∈ ω : lim

k→∞
|xk|pk = 0

}
,

`(p) :=

{
x = (xk) ∈ ω :

∑

k

|xk|pk <∞
}
.

If pk = p for all k ∈ N0 for some constant p > 0, then these sets are reduced
to `∞, c, c0 and `p, respectively. The metrics d∞ and dp on the spaces `∞(p),
c(p), c0(p) and `(p) are defined by

d∞(x, y) = sup
k∈N0

|xk − yk|pk ,

dp(x, y) =

(∑

k

|xk − yk|pk
)1/M

;

respectively, where 0 ≤ pk < supk∈N0
pk <∞.

1.3 Normed Linear Spaces

The Euclidean distance between two points x = (x1, x2) and y = (y1, y2)
belonging to two-dimensional Euclidean space R2 is given by

‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2.
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In this way, we can view ‖ · ‖ as a real valued-function defined on the real
Euclidean plane, we desire to extend this concept to a linear space, in general,
which leads us to seek a conception of “norm.”

Definition 1.3.1. Let X be a linear space over the field K of real or complex
numbers. A function ‖ · ‖ : X → R is said to be a norm on X if the following
axioms hold for arbitrary points x, y ∈ X and any scalar α:

(N1) (positive definiteness): ‖x‖ = 0, if and only if x = θ, where θ denotes
the zero vector.

(N2) (absolute homogeneity): ‖αx‖ = |α|‖x‖.

(N3) (triangle inequality): ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
A normed linear space is a pair (X, ‖ · ‖), where X is a linear space and ‖ · ‖
is a norm defined on X. When no confusion is likely we denote (X, ‖ · ‖) by
X.

Note that ‖ · ‖ is always non-negative: By (N2) and (N3), we have 0 =
‖θ‖ = ‖x− x‖ ≤ ‖x‖+ ‖ − x‖ = 2‖x‖, i.e., ‖x‖ ≥ 0.

We have the following important relation between a metric space and a
normed linear space:

Remark 1.3.2. Each norm ‖ · ‖ of X defines a metric d on X given by
d(x, y) = ‖x − y‖ for all x, y ∈ X and is called as induced metric. But it is
known that not every metric on a linear space can be obtained from a norm.

It is easy to check the first part. For the second part, let us consider
the linear space ω; the metric dω cannot be obtained from a norm. Indeed, if
dω(x, y) = ‖x− y‖ then we have

dω(αx, αy) = ‖αx− αy‖

=
∑

k

|α||xk − yk|
2k(1 + |α||xk − yk|)

6= |α|dω(x, y),

that is, ‖α(x− y)‖ 6= |α|‖x− y‖. This means that the space ω is not a normed
linear space.

Definition 1.3.3. A seminorm ν on a linear space X is a function ν : X → R
such that

(i) ν(αx) = |α|ν(x) for all α ∈ K (R or C) and all x ∈ X (absolute
homogeneity).

(ii) ν(x+ y) ≤ ν(x) + ν(y) for all x, y ∈ X (subadditivity).

Note that by (i), we have ν(0x) = 0 · ν(x) = 0.
Note that every norm is a seminorm but not conversely. For converse,

define ν(x) = | limn→∞ xn| on c. Take xn = 1/(n + 1) for all n ∈ N0. Then,
ν(x) = 0 while x 6= θ. Hence, ν is not a norm while it is a seminorm on c.
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Definition 1.3.4. A normed linear space X is complete if every Cauchy se-
quence in X converges in X, that is, if ‖xm − xn‖ → 0, as m,n→∞; where
xn ∈ X, then there exists x ∈ X such that ‖xn − x‖ → 0, as n → ∞. A
complete normed linear space is said to be a Banach space.

Definition 1.3.5. Let X be a normed linear space. We say that the series∑
k xk with xk ∈ X, converges to s ∈ X if and only if the sequence of partial

sums (sn) = (
∑n
k=0 xk)n∈N0

, converges to s, that is, ‖sn − s‖ → 0, as n →
∞, and we write

∑
k xk = s. A series

∑
k xk in X is said to be absolutely

convergent if
∑
k ‖xk‖ <∞.

Remark 1.3.6. In R or C, every absolutely convergent series is convergent.
This is a direct consequence of the completeness of R or C. But, in general, an
absolutely convergent series need not be convergent in a normed space. For ex-
ample, consider the space X = P [0, 1] with respect to ‖f‖∞ = supt∈[0,1] |f(t)|.
Then, the series

∑
n x

n/n! is not convergent in X, since

∑

n

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · = ex 6∈ P [0, 1].

On the other hand, it is absolutely convergent. Since

∑

n

∥∥∥∥
xn

n!

∥∥∥∥ =
∑

n

1

n!
for x = 1,

which is convergent by the ratio test and for x = 0,
∑
n ‖xn/n!‖ = 0 for

|x| < 1,
∑
n ‖xn‖ is convergent and (1/n!) is a positive monotone decreasing

sequence, then the series
∑
n ‖xn/n!‖ is also convergent by Abel’s test.

Theorem 1.3.7. If a Cauchy sequence has a convergent subsequence, then
the whole sequence is convergent.

Proof. Let (xn) be a Cauchy in a normed linear space X and (xnk) be a
subsequence of (xn) converging to x ∈ X, say. Then, (xnk) is also Cauchy.
Therefore, for every ε > 0 there exists a n0 ∈ N0 such that

‖xn − x‖ ≤ ‖xn − xnk‖+ ‖xnk − x‖ <
ε

2
+
ε

2
= ε

for all nk ≥ n0. Hence, (xn) converges to x.

Remark 1.3.8. If a subsequence of a sequence in a normed linear space X
is convergent then the sequence itself need not be convergent. For example,
consider the sequence (xn) = {(−1)n} in the usual normed linear space R. It
is trivial that (xn) is not convergent, but its subsequence (x2n) = (1, 1, 1, . . .)
converges to 1.

Theorem 1.3.9. A normed linear space X is complete if and only if every
absolutely convergent series is convergent.
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Proof. Let X be complete and
∑
n xn be an absolutely convergent series.

Then, since
∑
k ‖xk‖ <∞ it is immediate that

lim
m→∞

‖sn − sm‖ = lim
m→∞

∥∥∥∥∥
n∑

k=m+1

xk

∥∥∥∥∥ ≤ lim
m→∞

n∑

k=m+1

‖xk‖ = 0

for n > m. Hence, (sn) is a Cauchy sequence in X and is convergent since X
is complete, that is,

∑
n xn is convergent.

Conversely, let every absolutely convergent series be convergent and (xn)
be a Cauchy sequence in X. Then, we can find an increasing sequence (nk)k∈N0

of natural numbers such that

∥∥xnk+1
− xnk

∥∥ < 1

2k
for all k ∈ N0.

Therefore,
∑
k ‖xnk+1

−xnk‖ <∞. It follows that
∑
k(xnk+1

−xnk) converges.
Therefore, there is x ∈ X such that

∑m
k=0(xnk+1

− xnk)→ x, say, as m→∞,
that is, xnm+1 − xn1 → x implies xnm+1 → x + xn1 , as m → ∞. Hence,
(xnk) converges. That is, the Cauchy sequence (xn) has a convergent subse-
quence (xnk) and so, by Theorem 1.3.7, the whole sequence (xn) is convergent.
Therefore, X is complete.

Examples 1.3.10. We have the following examples:

(i) c0, c and `∞ are Banach spaces with the sup-norm ‖x‖∞ = supk∈N0
|xk|.

We consider only the space c. Let
{
x(m)

}
be a Cauchy sequence in c, we

have

lim
m,n→∞

∥∥∥x(n) − x(m)
∥∥∥
∞

= 0.

Now, for each ε > 0, there exists N such that ‖x(n) − x(m)‖∞ < ε for
all n,m ≥ N , i.e.,

sup
i∈N0

∣∣∣x(n)
i − x(m)

i

∣∣∣ < ε

3
; m,n ≥ N

and hence,
∣∣∣x(n)
i − x(m)

i

∣∣∣ < ε

3
for i ∈ N0 and for all n,m ≥ N. (1.3.1)

Hence, for each i the sequence of real numbers
{
x

(n)
i

}
=
{
x

(0)
i , x

(1)
i , . . .

}

is a Cauchy sequence in R and hence convergent, say, to xi, i.e.,∣∣∣x(m)
i − xi

∣∣∣→ 0, as m→∞, for each i ∈ N0.

Now, fix n ≥ N and letting m→∞ in (1.3.1), we get
∣∣∣x(n)
i − xi

∣∣∣ < ε

3
for each i ∈ N0. (1.3.2)



10 Sequence Spaces: Topics in Modern Summability Theory

So that

sup
i∈N0

∣∣∣x(n)
i − xi

∣∣∣ < ε

3
for all n ≥ N,

that is, ‖x(n) − x‖∞ → 0, as n→∞; where x = (xi). Hence, x(n) → x,
as n→∞, i.e., a Cauchy sequence

{
x(n)

}
converges to x. Now, we have

to show that x ∈ c.
Now, the sequence

{
x

(N)
i

}
∈ c and is a Cauchy sequence, hence

∣∣∣x(N)
i − x(N)

j

∣∣∣ < ε

3
for all i, j ≥M. (1.3.3)

Consequently by (1.3.2) and (1.3.3), we have

|xi − xj | =
∣∣∣xi − x(N)

i + x
(N)
i − x(N)

j + x
(N)
j − xj

∣∣∣

≤
∣∣∣xi − x(N)

i

∣∣∣+
∣∣∣x(N)
i − x(N)

j

∣∣∣+
∣∣∣x(N)
j − xj

∣∣∣

<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore, x = (xi) is a Cauchy sequence in R and hence convergent,
i.e., x ∈ c. That is, c is a Banach space.

(ii) Let 1 ≤ p <∞. Then, `p is complete with ‖x‖p = (
∑
k |xk|p)

1/p
.

Let
{
x

(m)
k

}
m∈N0

be a Cauchy sequence in `p. Then, there is N ∈ N0

such that for all r, s ≥ N , ‖x(r) − x(s)‖p < ε. Hence,

∑

k

∣∣∣x(r)
k − x

(s)
k

∣∣∣
p

< εp, (1.3.4)

which implies that

∣∣∣x(r)
k − x

(s)
k

∣∣∣ < ε for each k and for all r, s ≥ N.

Hence,
{
x

(m)
k

}
is a Cauchy sequence in R and so is convergent to xk in

R. Define x = (xk)k∈N0
. We show that x ∈ `p. From (1.3.4), we have

∑

k

∣∣∣x(r)
k − x

(s)
k

∣∣∣
p

< εp for all r, s ≥ N. (1.3.5)

Therefore, we get by letting s→∞ in (1.3.5) that

∑

k

∣∣∣x(r)
k − xk

∣∣∣
p

< εp for all r ≥ N. (1.3.6)
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This implies that the sequence
{
x

(r)
k − xk

}
k
∈ `p for each r. Also, x(r) ∈

`p by hypothesis. Hence, by Minkowski’s inequality

∑

k

|xk|p =
∑

k

∣∣∣x(r)
k − x

(r)
k + xk

∣∣∣
p

≤
∑

k

∣∣∣x(r)
k

∣∣∣
p

+
∑

k

∣∣∣x(r)
k − xk

∣∣∣
p

.

That is, x = (xk) ∈ `p. Finally, by (1.3.6), we have

∥∥∥x(m) − x
∥∥∥
p

=

[∑

k

∣∣∣x(m)
k − xk

∣∣∣
p
]1/p

< ε

for all m ≥ N , i.e., x(m) → x, as m→∞, in `p. Hence, `p is complete.

(iii) The space φ is a normed linear space but not a Banach space with respect
to any norm.

Examples 1.3.11. We have the following examples:

(i) The space C[a, b] of all continuous functions on [a, b] is complete normed
linear space with ‖f‖∞ = supt∈[a,b] |f(t)|.
Let (fn) be a Cauchy sequence in C[a, b] for each t ∈ [a, b]. Then, there
is N ∈ N0 such that

‖fn − fm‖ = max
t∈[a,b]

|fn(t)− fm(t)| < ε for all n,m ≥ N

⇒ |fn(t)− fm(t)| < ε for all n,m ≥ N.

Hence, for a fixed t0 ∈ [a, b], |fn(t0)− fm(t0)| < ε for all n,m ≥ N .

⇒: {fn(t0)} is a Cauchy sequence in R, hence convergent, say to f(t0),
i.e., fn(t0) → f(t0), as n → ∞, which is the pointwise convergent to
f . We have to show that it is uniformly convergent. For given ε > 0,
choose N such that |fn(t)− f(t)| for all n,m ≥ N . Then,

|fn(t)− f(t)| = |fn(t)− f(t) + fm(t)− fm(t)|
≤ |fn(t)− fm(t)|+ |fm(t)− f(t)|
≤ sup

t∈[a,b]

|fn(t)− fm(t)|+ |fm(t)− f(t)|

= ‖fn − fm‖+ |fm(t)− f(t)|.

By choosing m sufficiently large, we can make each term on the right-
hand side less than ε/2. Hence,

Mn = sup
t∈[a,b]

|fn(t)− f(t)| < ε for all n ≥ N,

i.e., Mn → 0, as n→∞. Therefore, fn(t)→ f(t), as n→∞, uniformly
on [a, b]. Since (fn) is a sequence of continuous functions which converge
to f uniformly on [a, b], we have that f ∈ C[a, b].


