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Preface

The purpose of this book is to provide in a single volume a comprehensive reference work covering the
broad spectrum of feedback amplifier design; analysis, synthesis, and design of nonlinear circuits; their
representation, approximation, identification, and simulation; cellular neural networks; multiconductor
transmission lines; and analysis and synthesis of distributed circuits. It also includes the design of
multiple-loop feedback amplifiers. This book is written and developed for the practicing electrical
engineers and computer scientists in industry, government, and academia. The goal is to provide the
most up-to-date information in the field.
Over the years, the fundamentals of the field have evolved to include a wide range of topics and a broad

range of practice. To encompass such a wide range of knowledge, this book focuses on the key concepts,
models, and equations that enable the design engineer to analyze, design, and predict the behavior of
feedback amplifiers, nonlinear and distributed systems. While design formulas and tables are listed,
emphasis is placed on the key concepts and theories underlying the processes.
This book stresses fundamental theories behind professional applications and uses several examples to

reinforce this point. Extensive development of theory and details of proofs have been omitted. The reader
is assumed to have a certain degree of sophistication and experience. However, brief reviews of theories,
principles, and mathematics of some subject areas are given. These reviews have been done concisely with
perception.
The compilation of this book would not have been possible without the dedication and efforts of

Professors Leon O. Chua and Thomas Koryu Ishii, and most of all the contributing authors. I wish to
thank them all.

Wai-Kai Chen
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1.1 Introduction

Feedback, whether intentional or parasitic, is pervasive of all electronic circuits and systems. In general,
feedback is comprised of a subcircuit that allows a fraction of the output signal of an overall network to
modify the effective input signal in such a way as to produce a circuit response that can differ sub-
stantially from the response produced in the absence of such feedback. If the magnitude and relative
phase angle of the fed back signal decreases the magnitude of the signal applied to the input port of an
amplifier, the feedback is said to be negative or degenerative. On the other hand, positive (or regenerative)
feedback, which gives rise to oscillatory circuit responses, is the upshot of a feedback signal that increases
the magnitude of the effective input signal. Because negative feedback produces stable circuit responses,
the majority of all intentional feedback architectures is degenerative [1,2]. However, parasitic feedback
incurred by the energy storage elements associated with circuit layout, circuit packaging, and second-
order high-frequency device phenomena often degrades an otherwise degenerative feedback circuit into
either a potentially regenerative or severely underdamped network.
Intentional degenerative feedback applied around an analog network produces four circuit perform-

ance benefits. First, negative feedback desensitizes the gain of an open-loop amplifier (an amplifier
implemented without feedback) with respect to variations in circuit element and active device model
parameters. This desensitization property is crucial in view of parametric uncertainties caused by aging
phenomena, temperature variations, biasing perturbations, and nonzero fabrication and manufacturing
tolerances. Second, and principally because of the foregoing desensitization property, degenerative
feedback reduces the dependence of circuit responses on the parameters of inherently nonlinear active
devices, thereby reducing the total harmonic distortion evidenced in open loops. Third, negative feedback
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broadbands the dominant pole of an open-loop amplifier, thereby affording at least the possibility of a
closed-loop network with improved high-frequency performance. Finally, by modifying the driving-point
input and output impedances of the open-loop circuit, negative feedback provides a convenient vehicle
for implementing voltage buffers, current buffers, and matched interstage impedances.
The disadvantages of negative feedback include gain attenuation, a closed-loop configuration that is

disposed to potential instability, and, in the absence of suitable frequency compensation, a reduction in
the open-loop gain-bandwidth product (GBP). In uncompensated feedback networks, open-loop amp-
lifier gains are reduced in almost direct proportion to the amount by which closed-loop amplifier gains
are desensitized with respect to open-loop gains. Although the 3 dB bandwidth of the open-loop circuit is
increased by a factor comparable to that by which the open-loop gain is decreased, the closed-loop GBP
resulting from uncompensated degenerative feedback is never greater than that of the open-loop
configuration [3]. Finally, if feedback is incorporated around an open-loop amplifier that does not
have a dominant pole [4], complex conjugate closed-loop poles yielding nonmonotonic frequency
responses are likely. Even positive feedback is possible if substantive negative feedback is applied around
an open-loop amplifier for which more than two poles significantly influence its frequency response.

Although the foregoing detail is common knowledge deriving from Bode’s pathfinding disclosures [5],
most circuit designers remain uncomfortable with analytical procedures for estimating the frequency
responses, I=O impedances, and other performance indices of practical feedback circuits. The purposes of
this section are to formulate systematic feedback circuit analysis procedures and ultimately, to demon-
strate their applicability to six specific types of commonly used feedback architectures. Four of these
feedback types, the series–shunt, shunt–series, shunt–shunt, and series–series configurations, are single-
loop architectures, while the remaining two types are the series–series=shunt–shunt and series–shunt=
shunt–series dual-loop configurations.

1.2 Methods of Analysis

Several standard techniques are used for analyzing linear feedback circuits [6]. The most straightforward
of these entails writing the Kirchhoff equilibrium equations for the small-signal model of the entire
feedback system. This analytical tack presumably leads to the idealized feedback circuit block diagram
abstracted in Figure 1.1. In this model, the circuit voltage or current response, XR, is related to the source
current or voltage excitation, XS, by

Gcl ¼D XR

XS
¼ Go

1þ fGo
� Go

1þ T
(1:1)

XS XR(Go)

( f )

Open-loop
amplifier

Feedback
factor

Feedback amplifier

+

–

FIGURE 1.1 Block diagram model of a feedback network.
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where
Gcl is the closed-loop gain of the feedback circuit
f, the feedback factor, is the proportion of circuit response fed back for antiphase superposition with
the source signal

Go represents the open-loop gain

The product fGo is termed the loop gain T.
Equation 1.1 demonstrates that, for loop gains with magnitudes that are much larger than one, the

closed-loop gain collapses to 1=f, which is independent of the open-loop gain. To the extent that the
open-loop amplifier, and not the feedback subcircuit, contains circuit elements and other parameters that
are susceptible to modeling uncertainties, variations in the fabrication of active and passive elements, and
nonzero manufacturing tolerances, large loop gain achieves a desirable parametric desensitization.
Unfortunately, the determination of Go and f directly from the Kirchhoff relationships is a nontrivial
task, especially because Go is rarely independent of f in practical electronics. Moreover, Equation 1.1 does
not illuminate the manner in which the loop gain modifies the driving-point input and output imped-
ances of the open-loop amplifier.
A second approach to feedback network analysis involves modeling the open loop, feedback, and

overall closed-loop networks by a homogeneous set of two-port parameters [7]. When the two-port
parameter model is selected judiciously, the two-port parameters for the closed-loop network derive from
a superposition of the respective two-port parameters of the open loop and feedback subcircuits. Given
the resultant parameters of the closed-loop circuit, standard formulas can then be exploited to evaluate
closed-loop values of the circuit gain and the driving-point input and output impedances.
Unfortunately, several limitations plague the utility of feedback network analysis predicated on two-

port parameters. First, the computation of closed-loop two-port parameters is tedious if the open-loop
configuration is a multistage amplifier, or if multiloop feedback is utilized. Second, the two-loop method
of feedback circuit analysis is straightforwardly applicable to only those circuits that implement global
feedback (feedback applied from output port to input port). Many single-ended feedback amplifiers
exploit only local feedback, wherein a fraction of the signal developed at the output port is fed back to
a terminal pair other than that associated with the input port. Finally, the appropriate two-port
parameters of the open-loop amplifier can be superimposed with the corresponding parameter set of
the feedback subcircuit if and only if the Brune condition is satisfied [8]. This requirement mandates
equality between the pre- and postconnection values of the two-port parameters of open loop and
feedback cells, respectively. The subject condition is often not satisfied when the open-loop amplifier is
not a simple three-terminal two-port configuration.
The third method of feedback circuit analysis exploits Mason’s signal flow theory [9–11]. The circuit

level application of this theory suffers few of the shortcomings indigenous to block diagram and two-port
methods of feedback circuit analysis [12]. Signal flow analyses applied to feedback networks efficiently
express I=O transfer functions, driving-point input impedances, and driving-point output impedances in
terms of an arbitrarily selected critical or reference circuit parameters, say P.

An implicit drawback of signal flowmethods is the fact that unless P is selected to be the feedback factor
f, which is not always transparent in feedback architectures, expressions for the loop gain and the open-
loop gain of feedback amplifiers are obscure. However, by applying signal flow theory to a feedback circuit
model engineered from insights that derive from the results of two-port network analyses, the feedback
factor can be isolated. The payoff of this hybrid analytical approach includes a conventional block diagram
model of the I=O transfer function, as well as convenient mathematical models for evaluating the closed-
loop driving-point input and output impedances. Yet, another attribute of hybrid methods of feedback
circuit analysis is its ability to delineate the cause, nature, and magnitude of the feedforward transmittance
produced by interconnecting a certain feedback subcircuit to a given open-loop amplifier. This information
is crucial in feedback network design because feedforward invariably decreases gain and often causes
undesirable phase shifts that can lead to significantly underdamped or unstable closed-loop responses.
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1.3 Signal Flow Analysis

Guidelines for feedback circuit analysis by hybrid signal flow methods can be established with the aid of
Figure 1.2 [13]. Figure 1.2a depicts a linear network whose output port is terminated in a resistance, RL.
The output signal variable is the voltage VO, which is generated in response to an input port signal whose
Thévenin voltage and resistance are respectively, VS and RS. Implicit to the linear network is a current-
controlled voltage source (CCVS) Pib, with a value that is directly proportional to the indicated network
branch current ib. The problem at hand is the deduction of the voltage gain Gv(RS, RL)¼VO=VS, the
driving-point input resistance (or impedance) Rin, and the driving-point output resistance (or impedance)
Rout, as explicit functions of the critical transimpedance parameter P. Although the following systematic
procedure is developed in conjunction with the diagram in Figure 1.2, with obvious changes in notation, it
is applicable to determine any type of transfer relationship for any linear network in terms of any type of
reference parameter [14].

1. Set P¼ 0, as depicted in Figure 1.2b, and compute the resultant voltage gain Gvo(RS, RL), where the
indicated notation suggests an anticipated dependence of gain on source and load resistances.
Also, compute the corresponding driving-point input and output resistances Rin, and Rout,
respectively. In this case, the ‘‘critical’’ parameter P is associated with a controlled voltage source.
Accordingly, P¼ 0 requires that the branch containing the controlled source be supplanted by a

Linear
network

Linear
network

Linear
network

Linear
network

+

+

+

+ +

+

+

+

+

+

+

+

– ––

–

–

–

– –

–

–

–

–

Rin RinoRout Routo

RS RS

VSVS

VO VORL RL

ib ib

Pib

RS

VS

RS
VO

RL

vx vx

RL

iy

P = 0

0
0

iy

= Gv (RS, RL)VO
VS(a) (b)

(c) (d)

= Gvo (RS, RL)VO
VS

= Qs (RS, RL)
iy
vx

= Qr (RS, RL)
iy
vx

FIGURE 1.2 (a) Linear network with an identified critical parameter P. (b) Model for calculating the P¼ 0 value
of voltage gain. (c) The return ratio with respect to P is PQs(RS, RL). (d) The null return ratio with respect to P is
PQr(RS, RL).
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short circuit. If, for example, P is associated with a controlled current source, P¼ 0 mandates the
replacement of the controlled source by an open circuit.

2. Set the Thévenin source voltage VS to zero, and replace the original controlled voltage source Pib by
an independent voltage source of symbolic value, vx. Then, calculate the ratio, iy=vx, where, as
illustrated in Figure 1.2c, iy flows in the branch that originally conducts the controlling current ib.
Note, however, that the reference polarity of iy is opposite to that of ib. The computed transfer
function iy=vx is denoted by Qs(RS, RL). This transfer relationship, which is a function of the source
and load resistances, is used to determine the return ratio Ts(P, RS, RL) with respect to parameter P
of the original network. In particular,

Ts(P, RS, RL) ¼ PQs(RS, RL) (1:2)

3. If P is associated with a controlled current source, the controlled generator Pib is replaced by a
current source of value ix. If the controlling variable is a voltage, instead of a current, the ratio vy=vx,
is computed, where vy is the voltage developed across the controlling branch and the polarity is
opposite to that of the original controlling voltage.

4. The preceding computational step is repeated, but instead of setting VS to zero, the output variable,
which is the voltage VO in the present case, is nulled, as indicated in Figure 1.2d. Let the computed
ratio iy=vx, be symbolized as Qr(RS, RL). In turn, the null return ratio Tr(P, RS, RL), with respect to
parameter P is

Tr(P, RS, RL) ¼ PQr(RS, RL) (1:3)

5. Desired voltage gain Gv(RS, RL), of the linear network undergoing study can be shown to be [5,12]

Gv(RS, RL) ¼ VO

VS
¼ Gvo(RS, RL)

1þ PQr(RS, RL)
1þ PQs(RS, RL)

� �
(1:4)

6. Given the function Qs(RS, RL), the driving-point input and output resistances follow straightfor-
wardly from [12]

Rin ¼ Rino
1þ PQs(0, RL)
1þ PQs(1, RL)

� �
(1:5)

Rout ¼ Routo
1þ PQs(RS, 0)
1þ PQs(RS, 1)

� �
(1:6)

An important special case entails a controlling electrical variable ib associated with the selected parameter
P that is coincidentally the voltage or current output of the circuit under investigation. In this situation, a
factor P of the circuit response is fed back to the port (not necessarily the input port) defined by the
terminal pair across which the controlled source is incident. When the controlling variable ib is the
output voltage or current of the subject circuit Qr(RS, RL), which is evaluated under the condition of a
nulled network response, is necessarily zero. With Qr(RS, RL)¼ 0, the algebraic form of Equation 1.4 is
identical to that of Equation 1.1, where the loop gain T is the return ratio with respect to parameter P;
that is,

PQs(RS, RL)jQr(RS, RL)¼ 0 ¼ T (1:7)
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Moreover, a comparison of Equation 1.4 to Equation 1.1 suggests that Gv(RS, RL) symbolizes the closed-
loop gain of the circuit, Gvo(RS,RL) represents the corresponding open-loop gain, and the circuit feedback
factor f is

f ¼ PQs(RS, RL)
Gvo(RS, RL)

(1:8)

1.4 Global Single-Loop Feedback

Consider the global feedback scenario illustrated in Figure 1.3a, in which a fraction P of the output voltage
VO is fed back to the voltage-driven input port. Figure 1.3b depicts the model used to calculate the return
ratio Qs(RS, RL), where, in terms of the branch variables in the schematic diagram, Qs(RS, RL)¼ vy=vx. An
inspection of this diagram confirms that the transfer function vy=vx, is identical to the P¼ 0 value of the
gainVO=VS, which derives from an analysis of the structure in Figure 1.3a. Thus, for global voltage feedback
in which a fraction of the output voltage is fed back to a voltage-driven input port, Qs(RS, RL) is the open-
loop voltage gain; that is,Qs(RS, RL)þGvo(RS, RL). It follows from Equation 1.8 that the feedback factor f is
identical to the selected critical parameter P. Similarly, for the global current feedback architecture of
Figure 1.4a, a fraction P of the output current, IO, is fed back to the current-driven input port f¼P.
As implied by the model of Figure 1.4b, Qs(RS, RL) � Gio(RS, RL), the open-loop current gain.

RL

RS

Rin Rout

RS

VS

VO

RoutRin

RL

PVO

vy

vx

+

+

+

+

+

+

–

–
–

–

–

–

(a) (b)

0

Linear
network

Linear
network

FIGURE 1.3 (a) Voltage-driven linear network with global voltage feedback. (b) Model for the calculation of
loop gain.

RL RLRS RS

Rin Rout

IO

PIOIS ix

iy

(a) (b)

0 Linear
network

Linear
network

FIGURE 1.4 (a) Current-driven linear network with global current feedback. (b) Model for the calculation
of loop gain.
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1.4.1 Driving-Point I=O Resistances

Each of the two foregoing circuit architectures has a closed-loop gain where the algebraic form mirrors
(Equation 1.1). It follows that for sufficiently large loop gain (equal to either PGvo(RS, RL) or PGio

(RS, RL)), the closed-loop gain approaches (1=P) and is therefore desensitized with respect to open-loop
gain parameters. However, such a desensitization with respect to the driving-point input and output
resistances (or impedances) cannot be achieved. For the voltage feedback circuit in Figure 1.3a,
Qs(1, RL), is the RS¼1 value, Gvo(RS, RL), of the open-loop voltage gain. This particular open-loop
gain is zero, because RS¼1 decouples the source voltage from the input port of the amplifier. On the
other hand, Qs(0, RL) is the RS¼ 0 value, Gvo(0, RL), of the open-loop voltage gain. This gain is at least as
large as Gvo(RS, RL), since a short-circuited Thévenin source resistance implies lossless coupling of the
Thévenin signal to the amplifier input port. Recalling Equation 1.5, the resultant driving-point input
resistance of the voltage feedback amplifier is

Rin ¼ Rino 1þ PGvo(0, RL)½ � � Rino 1þ PGvo(RS, RL)½ � (1:9)

which shows that the closed-loop driving-point input resistance is larger than its open-loop counterpart
and is dependent on open-loop voltage gain parameters.
Conversely, the corresponding driving-point output resistance in Figure 1.3a is smaller than the open-

loop output resistance and approximately inversely proportional to the open-loop voltage gain. These
assertions derive from the facts thatQs(RS, 0) is the RL¼ 0 value of the open-loop voltage gain Gvo(RS, RL).
Because RL¼ 0 corresponds to the short-circuited load resistance, Gvo(RS, 0)¼ 0. In contrast, Qs(RS, 1),
is the RL¼1 value, Gvo(RS, 1), of the open-loop gain, which is a least as large as Gvo(RS, RL). By
Equation 1.6,

Rout ¼ Routo

1þ PGvo(RS, 1)
� Routo

1þ PGvo(RS, RL)
(1:10)

Similarly, the driving-point input and output resistances of the global current feedback configuration of
Figure 1.4a are sensitive to open-loop gain parameters. In contrast to the voltage amplifier of Figure 1.3a,
the closed loop, driving-point input resistance of current amplifier is smaller than its open-loop value,
while the driving-point output resistance is larger than its open-loop counterpart. Noting that the open-
loop current gain Gio(RS, RL) is zero for both RS¼ 0 (which short circuits the input port), and RL¼1
(which open circuits the load port), Equations 1.5 and 1.6 give

Rin ¼ Rino

1þ PGio(1, RL)
(1:11)

Rout ¼ Routo 1þ PGio (RS, 0)½ � (1:12)

1.4.2 Diminished Closed-Loop Damping Factor

In addition to illuminating the driving-point and forward transfer characteristics of single-loop feed-
back architectures, the special case of global single-loop feedback illustrates the potential instability
problems pervasive of almost all feedback circuits. An examination of these problems begins by returning
to Equation 1.1 and letting the open-loop gain, Go, be replaced by the two-pole frequency-domain
function,
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Go(s) ¼ Go(0)

1þ s
p1

� �
1þ s

p2

� � (1:13)

where Go(0) symbolizes the zero-frequency open-loop gain. The pole frequencies p1 and p2 in Equation
1.13 are either real numbers or complex conjugate pairs. Alternatively, Equation 1.13 is expressible as

Gs(s) ¼ Go(0)

1þ 2zol
vnol

sþ s2
v2
nol

(1:14)

where

vnol ¼ ffiffiffiffiffiffiffiffiffi
p1p2

p
(1:15)

represents the undamped natural frequency of oscillation of the open-loop configuration, and

zol ¼
1
2

ffiffiffiffiffi
p2
p1

r
þ

ffiffiffiffiffi
p1
p2

r� �
(1:16)

is the damping factor of the open-loop circuit.
In Equation 1.1, let the feedback factor f be the single left-half-plane zero function,

f (s) ¼ fo 1þ s
z

� �
(1:17)

where
z is the frequency of the real zero introduced by feedback
fo is the zero-frequency value of the feedback factor

The resultant loop gain is

T(s) ¼ fo 1þ s
z

� �
Go(s) (1:18)

the zero-frequency value of the loop gain is

T(0) ¼ foGo(0) (1:19)

and the zero-frequency closed-loop gain Gcl(0), is

Gcl(0) ¼ Go(0)
1þ foGo(0)

¼ Go(0)
1þ T(0)

(1:20)

Upon inserting Equations 1.14 and 1.17 into Equation 1.1, the closed-loop transfer function is deter-
mined to be

Gcl(s) ¼ Gcl(0)

1þ 2zcl
vncl

sþ s2
v2
ncl

(1:21)

where the closed-loop undamped natural frequency of oscillation vncl relates to its open-loop counter-
part vnol, in accordance with

vncl ¼ vnol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T(0)

p
(1:22)
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Moreover, the closed-loop damping factor zcl is

zcl ¼
zolffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T(0)
p þ T(0)

1þ T(0)

� �
vncl

2z
¼ zolffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T(0)
p þ T(0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T(0)
p

� �
vnol

2z
(1:23)

A frequency invariant feedback factor f(s) applied to the open-loop configuration whose transfer function
is given by Equation 1.13 implies an infinitely large frequency, z, of the feedback zero. For this case,
Equation 1.23 confirms a closed-loop damping factor that is always less than the open-loop damping
factor. Indeed, for a smaller than unity open-loop damping factor (which corresponds to complex
conjugate open-loop poles) and reasonable values of the zero-frequency loop gain T(0), zcl� 1. Thus,
constant feedback applied around an underdamped two-pole open-loop amplifier yields a severely
underdamped closed-loop configuration. It follows that the closed-loop circuit has a transient step
response plagued by overshoot and a frequency response that displays response peaking within the
closed-loop passband. Observe that underdamping is likely to occur even in critically damped (identical
real open-loop poles) or overdamped (distinct real poles) open-loop amplifiers, which correspond to
zol¼ 1 and zol> 1, respectively, when a large zero-frequency loop gain is exploited.

Underdamped closed-loop amplifiers are not unstable systems, but they are nonetheless unacceptable.
From a practical design perspective, closed-loop underdamping predicted by relatively simple mathe-
matical models of the loop gain portend undesirable amplifier responses or even closed-loop instability.
The problem is that simple transfer function models invoked in a manual circuit analysis are oblivious to
presumably second-order parasitic circuit layout and device model energy storage elements with effects
that include a deterioration of phase and gain margins.

1.4.3 Frequency Invariant Feedback Factor

Let the open-loop amplifier be overdamped, such that its real satisfy the relationship

p2 ¼ k2p1 (1:24)

If the open-loop amplifier pole p1 is dominant, k2 is a real number that is greater than the magnitude,
jGo(0)j, of the open-loop zero-frequency gain, which is presumed to be much larger than one. As a result,
the open-loop damping factor in Equation 1.16 reduces to zo1�k=2. With k2> jGo(0)j� 1, which
formally reflects the dominant pole approximation, the 3 dB bandwidth Bol of the open-loop amplifier is
given approximately by [15]

Bol � vnol

2zol
¼ 1

1
p1
þ 1

p2

¼ k2

k2 þ 1

� �
p1 (1:25)

As expected, Equation 1.25 predicts an open-loop 3 dB bandwidth that is only slightly smaller than the
frequency of the open-loop dominant pole.
The frequency, z, in Equation 1.23 is infinitely large if frequency invariant degenerative feedback is

applied around an open-loop amplifier. For a critically damped or overdamped closed-loop amplifier,
zcl> 1. Assuming open-loop pole dominance, this constraint imposes the open-loop pole requirement,

p2
p1

� 4 1þ T(0)½ � (1:26)

Thus, for large zero-frequency loop gain, T(0), an underdamped closed-loop response is avoided if and
only if the frequency of the nondominant open-loop pole is substantially larger than that of the dominant
open-loop pole. Unless frequency compensation measures are exploited in the open loop, Equation 1.26

Feedback Amplifier Theory 1-9



is difficult to satisfy, especially if feedback is implemented expressly to realize a substantive desensitiza-
tion of response with respect to open-loop parameters. On the chance that Equation 1.26 can be satisfied,
and if the closed-loop amplifier emulates a dominant pole response, the closed-loop bandwidth is, using
Equations 1.22, 1.23, and 1.25,

Bcl � vncl

2zcl
� 1þ T(0)½ �Bol � 1þ T(0)½ �p1 (1:27)

Observe from Equations 1.26 and 1.27 that the maximum possible closed-loop 3 dB bandwidth is 2
octaves below the minimum acceptable frequency of the nondominant open-loop pole.
Although Equation 1.27 theoretically confirms the broadbanding property of negative feedback

amplifiers, the attainment of very large closed-loop 3 dB bandwidths is nevertheless a challenging
undertaking. The problem is that Equation 1.26 is rarely satisfied. As a result, the open-loop configur-
ation must be suitably compensated, usually by pole splitting methodology [16–18], to force the validity
of Equation 1.26. However, the open-loop poles are not mutually independent, so any compensation that
increases p2 is accompanied by decreases in p1. The pragmatic upshot of the matter is that the closed-loop
3 dB bandwidth is not directly proportional to the uncompensated value of p1 but instead, it is
proportional to the smaller, compensated value of p1.

1.4.4 Frequency Variant Feedback Factor (Compensation)

Consider now the case where the frequency, z, of the compensating feedback zero is finite and positive.
Equation 1.23 underscores the stabilizing property of a left-half-plane feedback zero in that a sufficiently
small positive z renders a closed-loop damping factor zcl that can be made acceptably large, regardless of
the value of the open-loop damping factor zol. To this end, zcl > 1=

ffiffiffi
2

p
is a desirable design objective in

that it ensures a monotonically decreasing closed-loop frequency response. If, as is usually a design goal,
the open-loop amplifier subscribes to pole dominance, Equation 1.23 translates the objective, zcl > 1=

ffiffiffi
2

p
,

into the design constraint

z �
T(0)

1þT(0)

h i
vnclffiffiffi

2
p 	 vncl

1þT(0)½ �Bol

(1:28)

where use is made of Equation 1.25 to cast z in terms of the open-loop bandwidth Bol. When the closed-
loop damping factor is precisely equal to 1=

ffiffiffi
2

p
a maximally flat magnitude closed-loop response results

for which the 3 dB bandwidth is vncl. Equation 1.28 can then be cast into the more useful form

zGcl(0) ¼ GBPolffiffiffi
2

p GBPol
GBPcl

� �
	 1

(1:29)

where Equation 1.20 is exploited, GBPol is the gain-bandwidth product of the open-loop circuit, and
GBPcl is the gain-bandwidth product of the resultant closed-loop network.

For a given open-loop gain-bandwidth product GBPol, a desired low-frequency closed-loop gain,
Gcl(0), and a desired closed-loop gain-bandwidth product, GBPcl, Equation 1.29 provides a first-order
estimate of the requisite feedback compensation zero. Additionally, note that Equation 1.29 imposes an
upper limit on the achievable high-frequency performance of the closed-loop configuration. In particular,
because z must be positive to ensure acceptable closed-loop damping, Equation 1.29 implies

GBPol >
GBPclffiffiffi

2
p (1:30)
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In effect, Equation 1.30 imposes a lower limit on the required open-loop GBP commensurate with
feedback compensation implemented to achieve a maximally flat, closed-loop frequency response.

1.5 Pole Splitting Open-Loop Compensation

Equation 1.26 underscores the desirability of achieving an open-loop dominant pole frequency response
in the design of a feedback network. In particular, Equation 1.26 shows that if the ultimate design goal is a
closed-loop dominant pole frequency response, the frequency, p2, of the nondominant open-loop
amplifier pole must be substantially larger than its dominant pole counterpart, p1. Even if closed-loop
pole dominance is sacrificed as a trade-off for other performance merits, open-loop pole dominance is
nonetheless a laudable design objective. This contention follows from Equations 1.16 and 1.23, which
combine to suggest that the larger p2 is in comparison to p1, the larger is the open-loop damping
factor. In turn, the unacceptably underdamped closed-loop responses that are indicative of small, closed-
loop damping factors are thereby eliminated. Moreover, Equation 1.23 indicates that larger, open-loop
damping factors impose progressively less demanding restrictions on the feedback compensation zero
that may be required to achieve acceptable closed-loop damping. This observation is important because
in an actual circuit design setting, small z in Equation 1.23 generally translates into a requirement of a
correspondingly large RC time constant, where implementation may prove difficult in monolithic circuit
applications.
Unfortunately, many amplifiers, and particularly broadbanded amplifiers, earmarked for use as open-

loop cells in degenerative feedback networks, are not characterized by dominant pole frequency
responses. The frequency response of these amplifiers is therefore optimized in accordance with a
standard design practice known as pole splitting compensation. Such compensation entails the connec-
tion of a small capacitor between two high impedance, phase-inverting nodes of the open-loop topology
[17,19–21]. Pole splitting techniques increase the frequency p2 of the uncompensated nondominant
open-loop pole to a compensated value, say p2c. The frequency, p1, of the uncompensated dominant open-
loop pole is simultaneously reduced to a smaller frequency, say plc. Although these pole frequency
translations complement the design requirement implicit to Equations 1.23 and 1.26, they do serve to
limit the resultant closed-loop bandwidth, as discussed earlier. As highlighted next, they also impose
other performance limitations on the open loop.

1.5.1 Open-Loop Amplifier

The engineering methods, associated mathematics, and engineering trade-offs underlying pole splitting
compensation are best revealed in terms of the generalized, phase-inverting linear network abstracted in
Figure 1.5. Although this amplifier may comprise the entire open-loop configuration, in the most general
case, it is an interstage of the open loop. Accordingly, Rst in this diagram is viewed as the Thévenin
equivalent resistance of either an input signal source or a preceding amplification stage. The response to
the Thévenin driver, Vst, is the indicated output voltage, Vl, which is developed across the Thévenin load
resistance, Rlt, seen by the stage under investigation. Note that the input current conducted by the
amplifier is Is, while the current flowing into the output port of the unit is denoted as Il. The dashed
branch containing the capacitor Cc, which is addressed later, is the pole splitting compensation element.

Because the amplifier under consideration is linear, any convenient set of two-port parameters can be
used to model its terminal volt–ampere characteristics. Assuming the existence of the short-circuit
admittance, or y parameters,

Is
Il

� �
¼ y11 y12

y21 y2

� �
Vi

Vl

� �
(1:31)
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Defining

yo ¼D y11 þ y12

yo ¼D y22 þ y12

yf ¼D y21 þ y12

yr ¼D 	y12

(1:32)

Equation 1.31 implies

Is ¼ yiVi þ yr(Vi 	 Vl) (1:33)

Il ¼ yfVi þ yoV1 þ yr(Vl 	 Vi) (1:34)

The last two expressions produce the y-parameter model depicted in Figure 1.6a, in which yi represents
an effective shunt input admittance, yo is a shunt output admittance, yf is a forward transadmittance, and
yr reflects voltage feedback intrinsic to the amplifier.

Amplifiers amenable to pole splitting compensation have capacitive input and output admittances;
that is, yi and yo are of the form

Rst
Rlt

Vst

Vi

Is Il

Vl

Cc

+

–

Phase-
inverting

linear
amplifier

FIGURE 1.5 Linear amplifier for which a pole splitting compensation capacitance Cc is incorporated.

(a)

Rlt

Rst

Vst

Ri

Vi Is Il VlCr

Ci GfVi Ro Co

(b)

+

–

Rlt

Rst

Vst

Vi Is Il Vl

yf Vi+

–

yr

yoyi

FIGURE 1.6 y-Parameter equivalent circuit of the phase-inverting linear amplifier in Figure 1.5. (b) Approximate
form of the model in (a).
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yi ¼ 1
Ri

þ sCi

yo ¼ 1
Ro

þ sCo

(1:35)

Similarly,

yf ¼ Gf 	 sCf

yr ¼ 1
Rr

þ sCr
(1:36)

In Equation 1.36, the conductance component Gf of the forward transadmittance yf positive in a phase-
inverting amplifier. Moreover, the reactive component –sCf of yf produces an excess phase angle, and
hence, a group delay, in the forward gain function. This component, which deteriorates phase margin,
can be ignored to first order if the signal frequencies of interest are not excessive in comparison to the
upper-frequency limit of performance of the amplifier. Finally, the feedback internal to many practical
amplifiers is predominantly capacitive so that the feedback resistance Rr can be ignored. These approxi-
mations allow the model in Figure 1.6a to be drawn in the form offered in Figure 1.6b.
It is worthwhile interjecting that the six parameters indigenous to the model in Figure 1.6b need not be

deduced analytically from the small-signal models of the active elements embedded in the subject
interstage. Instead, SPICE can be exploited to evaluate the y parameters in Equation 1.31 at the pertinent
biasing level. Because these y parameters display dependencies on signal frequency, care should be
exercised to evaluate their real and imaginary components in the neighborhood of the open loop, 3 dB
bandwidth to ensure acceptable computational accuracy at high frequencies. Once the y parameters in
Equation 1.31 are deduced by computer-aided analysis, the alternate admittance parameters in Equation
1.23, as well as numerical estimates for the parameters, Ri, Ci, Ro, Co, Cr, and Gf, in Equations 1.35 and
1.36 follow straightforwardly.

1.5.2 Pole Splitting Analysis

An analysis of the circuit in Figure 1.6b produces a voltage transfer function Av(s) of the form

Av(s) ¼ Vl(s)
Vst(s)

¼ Av(0)
1	 s

zr

1þ s
p1

� �
1þ s

p2

� �
2
4

3
5 (1:37)

Letting

Rll ¼ RltkRo (1:38)

an inspection of the circuit in Figure 1.6b confirms that

Av(0) ¼ 	GfRll
Ri

Ri þ Rst

� �
(1:39)

is the zero-frequency voltage gain. Moreover, the frequency, zr, of the right-half-plane zero is

zr ¼ Gf

Cr
(1:40)
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The lower pole frequency, p1, and the higher pole frequency, p2, derive implicitly from

1
p1

þ 1
p2

¼ Rll(Co þ Cr)þ Rss Ci þ (1þ GfRll)Cr½ � (1:41)

and

1
p1p2

¼ RssRllCo Ci þ Co þ Ci

Co

� �
Cr

� �
(1:42)

where

Rss ¼ Rst ¼D Ri (1:43)

Most practical amplifiers, and particularly amplifiers realized in bipolar junction transistor technology,
have very large forward transconductance, Gf, and small internal feedback capacitance, Cr. The combin-
ation of large Gf and small Cr renders the frequency in Equation 1.40 so large as to be inconsequential to
the passband of interest. When utilized in a high-gain application, such as the open-loop signal path of a
feedback amplifier, these amplifiers also operate with a large effective load resistance, Rll. Accordingly,
Equation 1.41 can be used to approximate the pole frequency p1 as

p1 � 1
Rss Ci þ (1þ GfRll)Cr½ � (1:44)

Substituting this result into Equation 1.42, the approximate frequency p2 of the high-frequency pole is

p2 � Ci þ (1þ GfRll)Cr

RllCo Ci þ CoþCi
Co

� �
Cr

h i (1:45)

Figure 1.7 illustrates asymptotic frequency responses corresponding to pole dominance and to a two-pole
response. Figure 1.7a depicts the frequency response of a dominant pole amplifier, which does not

ωu

|Av( jω)|

|Av(0)|

P1

P2

|Av( jω)|

|Av(0)|

P1 P2 ωu
1 ωω1

(a) (b)

Slope: –20 dB/dec

Slope: –20 dB/dec

–40 dB/dec

–40 dB/dec

FIGURE 1.7 (a) Asymptotic frequency response for a dominant pole amplifier. Such an amplifier does not require
pole splitting compensation because the two lowest frequency amplifier poles, p1 and p2, are already widely separated.
(b) Frequency response of an amplifier with high-frequency response that is strongly influenced by both of its lowest
frequency poles. The basic objective of pole splitting compensation is to transform the indicated frequency response
to a form that emulates that depicted in (a).
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require pole splitting compensation. Observe that its high-frequency response is determined by a single
pole (p1 in this case) through the signal frequency at which the gain ultimately degrades to unity. In this
interpretation of a dominant pole amplifier, p2 is not only much larger than p1, but is in fact larger than
the unity gain frequency, which is indicated as vu in the figure. This unity gain frequency, which can be
viewed as an upper limit to the useful passband of the amplifier, is approximately, jAv(0)jp1. To the extent
that p1 is essentially the 3 dB bandwidth when p2 � p1, the unity gain frequency is also the GBP of the
subject amplifier. In short, with jAv(jvu)j ¼D 1, p2 � p1 in Equation 1.37 implies

vu � jAv(0)jp1 � GBP (1:46)

The contrasting situation of a response indigenous to the presence of two significant open-loop poles is
illustrated in Figure 1.7b. In this case, the higher pole frequency p2 is smaller than vu and hence, the
amplifier does not emulate a single-pole response throughout its theoretically useful frequency range. The
two critical frequencies, p1 and p2, remain real numbers, and as long as p2 6¼ p1, the corresponding
damping factor, is greater than 1. However, the damping factor of the two-pole amplifier (its response is
plotted in Figure 1.7b) is nonetheless smaller than that of the dominant pole amplifier. It follows that, for
reasonable loop gains, unacceptable underdamping is more likely when feedback is invoked around the
two-pole amplifier, as opposed to the same amount of feedback applied around a dominant pole
amplifier. Pole splitting attempts to circumvent this problem by transforming the pole conglomeration
of the two-pole amplifier into one that emulates the dominant pole situation inferred by Figure 1.7a.
To the foregoing end, append the compensation capacitance Cc between the input and the output ports

of the phase-inverting linear amplifier, as suggested in Figure 1.5. With reference to the equivalent circuit
in Figure 1.6b, the electrical impact of this additional element is the effective replacement of the internal
feedback capacitance Cr by the capacitance sum (CrþCc). Letting

Cp ¼D Cr þ Cc (1:47)

it is apparent that Equations 1.40 through 1.42 remain applicable, provided that Cr in these relationships
is supplanted by Cp. Because Cp is conceivably significantly larger than Cc, however, the approximate
expressions for the resultant pole locations differ from those of Equations 1.44 and 1.45. In particular, a
reasonable approximation for the compensated value, say P1c, of the lower pole frequency is now

p1c � 1
Rll þ (1þ GfRll)Rss½ �Cp

(1:48)

while the higher pole frequency, p2c, becomes

p2c � 1

RsskRllk 1
Gf

� �
(Co þ Ci)

(1:49)

Clearly, p1c< p1 and p2c> p2. Moreover, for large Gf, p2c is potentially much larger than p1c. It should also
be noted that the compensated value, say, zrc, of the right-half-plane zero is smaller than its uncompen-
sated value, zr, because Equation 1.40 demonstrates that

zrc ¼ Gf

Cp
¼ zr

Cr

Cr þ Cc

� �
(1:50)

Although zrc can conceivably exert a significant influence on the high-frequency response of the
compensated amplifier, the following discussion presumes tacitly that zrc> p2c [2].

Feedback Amplifier Theory 1-15



Assuming a dominant pole frequency response, the compensated unity gain frequency, vuc, is, using
Equations 1.39, 1.46, and 1.48,

vuc � jAv(0)jp1c � 1
RstCp

� �
Gf RsskRllk 1

Gf

� �� �
(1:51)

It is interesting to note that

vuc <
1

RstCp

� �
(1:52)

that is, the unity gain frequency is limited by the inverse of the RC time constant formed by the Thévenin
source resistance Rst and the net capacitance Cp appearing between the input port and the phase inverted
output port. The subject inequality comprises a significant performance limitation, for if p2c is indeed
much larger than pic, vuc is approximately the GBP of the compensated cell. Accordingly, for a given
source resistance, a required open-loop gain, and a desired open-loop bandwidth, Equation 1.52 imposes
an upper limit on the compensation capacitance that can be exploited for pole splitting purposes.
In order for the compensated amplifier to behave as a dominant pole configuration, p2c must exceed

vuc, as defined by Equation 1.51. Recalling Equation 1.49, the requisite constraint is found to be

RstCp > Gf RsskRllk 1
Gf

� �2

(Co þ Ci) (1:53)

Assuming Gf (Rss=Rll) � 1, Equation 1.53 reduces to the useful simple form

CfRst >
Co þ Ci

Cp
(1:54)

which confirms the need for large forward transconductance Gf if pole splitting is to be an effective
compensation technique.

1.6 Summary

The use of negative feedback is fundamental to the design of reliable and reproducible analog electronic
networks. Accordingly, this chapter documents the salient features of the theory that underlies the
efficient analysis and design of commonly used feedback networks. Four especially significant points
are postulated in this section.

1. By judiciously exploiting signal flow theory, the classical expression, Equation 1.1, for the I=O
transfer relationship of a linear feedback system is rendered applicable to a broad range of
electronic feedback circuits. This expression is convenient for design-oriented analysis because it
clearly identifies the open-loop gain, Go, and the loop gain, T. The successful application of signal
flow theory is predicated on the requirement that the feedback factor, to which T is proportional
and that appears in the signal flow literature as a ‘‘critical’’ or ‘‘reference’’ parameter, can be
identified in a given feedback circuit.

2. Signal flow theory, as applied to electronic feedback architectures, proves to be an especially
expedient analytical tool because once the loop gain T is identified, the driving-point input and
output impedances follow with minimal additional calculations. Moreover, the functional depend-
ence of T on the Thévenin source and terminating load impedances unambiguously brackets the
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magnitudes of the driving point I=O impedances attainable in particular types of feedback arrange-
ments.

3. Damping factor concept is advanced herewith as a simple way of assessing the relative stability of
both the open and closed loops of a feedback circuit. The open-loop damping factor derives
directly from the critical frequencies of the open-loop gain, while these frequencies and any zeros
appearing in the loop gain unambiguously define the corresponding closed-loop damping factor.
Signal flow theory is once again used to confirm the propensity of closed loops toward instability
unless the open-loop subcircuit functions as a dominant pole network. Also confirmed is the
propriety of the common practice of implementing a feedback zero as a means of stabilizing an
otherwise potentially unstable closed loop.

4. Pole splitting as a means to achieve dominant pole open-loop responses is definitively discussed.
Generalized design criteria are formulated for this compensation scheme, and limits of perform-
ance are established. Of particular interest is the fact that pole splitting limits the GBP of the
compensated amplifier to a value that is determined by a source resistance–compensation capaci-
tance time constant.
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2.1 Introduction

Four basic types of single-loop feedback amplifiers are available: the series–shunt, shunt–series, shunt–
shunt, and series–series architectures [1]. Each of these cells is capable of a significant reduction of the
dependence of forward transfer characteristics on the ill-defined or ill-controlled parameters implicit to
the open-loop gain; but none of these architectures can simultaneously offer controlled driving-point
input and output impedances. Such additional control is afforded only by dual global loops comprised of
series and=or shunt feedback signal paths appended to an open-loop amplifier [2,3]. Only two types of
global dual-loop feedback architectures are used: the series–series=shunt–shunt feedback amplifier and
the series–shunt=shunt–series feedback amplifier.

Although only bipolar technology is exploited in the analysis of the aforementioned four single-loop
and two dual-loop feedback cells, all disclosures are generally applicable to metal-oxide-silicon (MOS),
heterostructure bipolar transistor (HBT), and III–V compound metal-semiconductor field-effect tran-
sistor (MESFET) technologies. All analytical results derive from an application of a hybrid, signal
flow=two-port parameter analytical tack. Because the thought processes underlying this technical
approach apply to all feedback circuits, the subject analytical procedure is developed in detail for only
the series–shunt feedback amplifier.
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2.2 Series–Shunt Feedback Amplifier

2.2.1 Circuit Modeling and Analysis

Figure 2.1a depicts the ac schematic diagram (a circuit diagram divorced of biasing details) of a series–
shunt feedback amplifier. In this circuit, the output voltage VO, which is established in response to a
single source represented by the Thévenin voltage VST, and the Thévenin resistance, RST, is sampled by
the feedback network composed of the resistances, REE and RF. The sampled voltage is fed back in such a
way that the closed-loop input voltage, VI, is the sum of the voltage, V1A, across the input port of the
amplifier and the voltage V1F, developed across REE in the feedback subcircuit. Because VI¼V1AþV1F,
the output port of the feedback configuration can be viewed as connected in series with the amplifier
input port. On the other hand, output voltage sampling constrains the net load current, IO, to be the
algebraic sum of the amplifier output port current, I2A, and the feedback network input current, I2F.
Accordingly, the output topology is indicative of a shunt connection between the feedback subcircuit and
the amplifier output port. The fact that voltage is fed back to a voltage-driven input port renders the
driving-point input resistance, Rin, of the closed-loop amplifier large, whereas the driving-point output
resistance, Rout, seen by the terminating load resistance, RLT, is small. The resultant closed-loop amplifier
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FIGURE 2.1 (a) AC schematic diagram of a bipolar series–shunt feedback amplifier. (b) Low-frequency small-
signal equivalent circuit of the feedback amplifier.
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is therefore best suited for voltage amplification, in the sense that the closed-loop voltage gain, VO=VST,
can be made approximately independent of source and load resistances. For large loop gain, this voltage
transfer function is also nominally independent of transistor parameters.
Assuming that transistors Q1 and Q2 are identical devices that are biased identically, Figure 2.1b is the

applicable low-frequency equivalent circuit. This equivalent circuit exploits the hybrid-p model [4] of a
bipolar junction transistor, subject to the proviso that the forward Early resistance [5] used to emulate
base conductivity modulation is sufficiently large to warrant its neglect. Because an infinitely large
forward Early resistance places the internal collector resistance (not shown in the figure) of a bipolar
junction transistor in series with the current-controlled current source, this collector resistance can be
ignored as well.
The equivalent circuit of Figure 2.1b can be reduced to a manageable topology by noting that the ratio

of the signal current, IV, flowing into the base of transistor Q2 to the signal current, I1A, flowing into the
base of transistor Q1 is

IV
I1A

¼D �Kb ¼ � bR
Rþ rb þ rp þ (bþ 1)re

¼ � aR
rib þ (1� a)R

(2:1)

where

a ¼ b

bþ 1
(2:2)

is the small-signal, short-circuit common base current gain, and

rib ¼ re þ rp þ rb
bþ 1

(2:3)

symbolizes the short-circuit input resistance of a common base amplifier. It follows that the current
source bIv in Figure 2.1b can be replaced by the equivalent current (�bKbI1A).
A second reduction of the equivalent circuit in Figure 2.1b results when the feedback subcircuit is

replaced by a model that reflects the h-parameter relationships

V1F

I2F

� �
¼ hif hrf

hff hof

� �
I1F
VO

� �
(2:4)

where
V1F(VO) represents the signal voltage developed across the output (input) port of the feedback
subcircuit

I1F(I2F) symbolizes the corresponding current flowing into the feedback output (input) port

Although any homogeneous set of two-port parameters can be used to model the feedback subcircuit,
h-parameters are the most convenient selection herewith. In particular, the feedback amplifier undergo-
ing study is a series–shunt configuration. The h-parameter equivalent circuit represents its input port as a
Thévenin circuit and its input port as a Norton configuration, therefore, the h-parameter equivalent
circuit is likewise a series–shunt structure.
For the feedback network at hand, which is redrawn for convenience in Figure 2.2a, the h-parameter

equivalent circuit is as depicted in Figure 2.2b. The latter diagram exploits the facts that the short-circuit
input resistance hif is a parallel combination of the resistance REE and RF, and the open-circuit output
conductance hof, is 1=(REEþRF). The open-circuit reverse voltage gain hrf is

hrf ¼ REE

REE þ RF
(2:5)
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while the short-circuit forward current gain hff is

hff ¼ REE

REE þ RF
¼ �hrf (2:6)

Figure 2.2c modifies the equivalent circuit in Figure 2.2b in accordance with the following two argu-
ments. First, hrf in Equation 2.5 is recognized as the fraction of the feedback subcircuit input signal that is
fed back as a component of the feedback subcircuit output voltage, V1F. But this subcircuit input voltage
is identical to the closed-loop amplifier output signal VO. Moreover, V1F superimposes with the Thévenin
input signal applied to the feedback amplifier to establish the amplifier input port voltage, V1A. It follows
that hrf is logically referenced as a feedback factor, say f, of the amplifier under consideration; that is,

hrf ¼ REE

REE þ RF
¼D f (2:7)

and by Equation 2.6,

hff ¼ � REE

REE þ RF
¼ �f (2:8)

Second, the feedback subcircuit output current, I1F, is, as indicated in Figure 2.1b, the signal current,
(bþ 1)I1A. Thus, in the model of Figure 2.2b,

hff I1F ¼ �f (bþ 1)I1A (2:9)
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+
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FIGURE 2.2 (a) Feedback subcircuit in the series–shunt feedback amplifier of Figure 2.1a. (b) h-Parameter
equivalent circuit of the feedback subcircuit. (c) Alternative form of the h-parameter equivalent circuit.
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If the model in Figure 2.2c is used to replace the feedback network in Figure 2.1b the equivalent circuit
of the series–shunt feedback amplifier becomes the alternative structure offered in Figure 2.3. In arriving
at this model, care has been exercised to ensure that the current flowing through the emitter of transistor
Q1 is (bþ 1)I1A. It is important to note that the modified equivalent circuit delivers transfer and driving-
point impedance characteristics that are identical to those implicit to the equivalent circuit of Figure 2.1b.
In particular, the traditional analytical approach to analyzing a series–shunt feedback amplifier tacitly
presumes the satisfaction of the Brune condition [6] to formulate a composite structure where the
h-parameter matrix is the sum of the respective h-parameter matrices for the open loop and feedback
circuits. In contrast, the model of Figure 2.3 derives from Figure 2.1b without invoking the Brune
requirement, which is often not satisfied. It merely exploits the substitution theorem; that is, the feedback
network in Figure 2.1b is substituted by its h-parameter representation.

In addition to modeling accuracy, the equivalent circuit in Figure 2.3 boasts at least three other
advantages. The first is an illumination of the vehicle by which feedback is implemented in the series–
shunt configuration. This vehicle is the voltage-controlled voltage source, fVO, which feeds back a
fraction of the output signal to produce a branch voltage that algebraically superimposes with, and
thus modifies, the applied source voltage effectively seen by the input port of the open-loop amplifier.
Thus, with f¼ 0, no feedback is evidenced, and the model at hand emulates an open-loop configuration.
But even with f¼ 0, the transfer and driving-point impedance characteristics of the resultant open-loop
circuit are functionally dependent on the feedback elements, REE and RF, because appending the feedback
network to the open-loop amplifier incurs additional impedance loads at both the input and the output
ports of the amplifier.
The second advantage of the subject model is its revelation of the magnitude and nature of feed-

forward through the closed loop. In particular, note that the signal current, IN, driven into the effective
load resistance comprised of the parallel combination of (REEþRF) and RLT, is the sum of two current
components. One of these currents, bKbI1A, materializes from the transfer properties of the two
transistors utilized in the amplifier. The other current, f(bþ 1)I1A, is the feed-forward current resulting
from the bilateral nature of the passive feedback network. In general, negligible feed-forward through the
feedback subcircuit is advantageous, particularly in high-frequency signal-processing applications. To
this end, the model in Figure 2.3 suggests the design requirement,

f � aKb (2:10)

f (β + 1)I1A Kβ β I1A 
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FIGURE 2.3 Modified small-signal model of the series–shunt feedback amplifier.
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When the resistance, R, in Figure 2.1a is the resistance associated with the output port of a PNP current
source used to supply biasing current to the collector of transistor Q1 and the base of transistor Q2, Kb

approaches b, and Equation 2.10 is easily satisfied; however, PNP current sources are undesirable in
broadband low-noise amplifiers. In these applications, the requisite biasing current must be supplied by a
passive resistance, R, connected between the positive supply voltage and the junction of theQ1 collector and
theQ2 base. Unfortunately, the corresponding value ofKb can be considerably smaller than b, with the result
that Equation 2.10 may be difficult to satisfy. Circumvention schemes for this situation are addressed later.
A third attribute of the model in Figure 2.3 is its disposition to an application of signal flow theory. For

example, with the feedback factor f selected as the reference parameter for signal flow analysis, the open-
loop voltage gain Gvo(RST, RLT), of the series–shunt feedback amplifier is computed by setting f to zero.
Assuming that Equation 2.10 is satisfied, circuit analysis reveals this gain as

Gvo(RST, RLT) ¼ aKb
(REE þ RF)kRLT

rib þ (1� a)RST þ (REEkRF)

� �
(2:11)

The corresponding input and output driving-point resistances, Rino and Routo, respectively, are

Rino ¼ rB þ rp þ (bþ 1)(rE þ REEkRF) (2:12)

and

Routo ¼ REE þ RF (2:13)

It follows that the closed-loop gain Gv(RST, RLT) of the series–shunt feedback amplifier is

Gv(RST, RLT) ¼ Gvo(RST, RLT)
1þ T

(2:14)

where the loop gain T is

T ¼ fGvo(RST, RLT) ¼ REE

REE þ RF

� �
Gvo(RST, RLT)

¼ aKb
REE

REE þ RF þ RLT

� �
RLT

rib þ (1� a)RST þ (REEkRF)

� �
(2:15)

For T � 1, which mandates a sufficiently large Kb in Equation 2.11, the closed-loop gain collapses to

Gv(RST, RLT) � 1
f
¼ 1þ RF

REE
(2:16)

which is independent of active element parameters. Moreover, to the extent that T � 1 the series–shunt
feedback amplifier behaves as an ideal voltage-controlled voltage source in the sense that its closed-loop
voltage gain is independent of source and load terminations. The fact that the series–shunt feedback
network behaves approximately as an ideal voltage amplifier implies that its closed-loop driving-point
input resistance is very large and its closed-loop driving-point output resistance is very small. These facts
are confirmed analytically by noting that

Rin ¼ Rino 1þ fGvo(0, RL)½ � � fRinoGvo(0, RL)

¼ bKb
REE

REE þ RF þ RLT

� �
RLT (2:17)
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and

Rout ¼ Routo

1þ fGvo(RS, 1)
� Routo

fGvo(RS, 1)

¼ 1þ RF

REE

� �
rib þ (1� a)RST þ REEkRF

aKb

� �
(2:18)

To the extent that the interstage biasing resistance, R, is sufficiently large to allow Kb to approach b,
observe that Rin in Equation 2.17 is nominally proportional to b2, while Rout in Equation 2.18 is inversely
proportional to b.

2.2.2 Feed-Forward Compensation

When practical design restrictions render the satisfaction of Equation 2.10 difficult, feed-forward problems
can be circumvented by inserting an emitter follower between the output port of transistor Q2 in the circuit
diagram of Figure 2.1a and the node to which the load termination and the input terminal of the feedback
subcircuit are incident [2]. The resultant circuit diagram, inclusive nowof simple biasing subcircuits, is shown
in Figure 2.4. The buffer transistor Q3 increases the original short-circuit forward current gain, Kbb, of the
open-loop amplifier by a factor approaching (bþ 1), while not altering the feed-forward factor implied by the
feedback network in Figure 2.1a. In effect, Kb is increased by a factor of almost (bþ 1), thereby making
Equation 2.10 easy to satisfy. Because of the inherently low output resistance of an emitter follower, the buffer
also reduces the driving-point output resistance achievable by the original configuration.
The foregoing contentions can be confirmed through an analysis of the small-signal model for the

modified amplifier in Figure 2.4. Such an analysis is expedited by noting that the circuit to the left of the
current-controlled current source, KbbI1A, in Figure 2.3 remains applicable. For zero feedback, it follows
that the small-signal current I1A flowing into the base of transistor Q1 derives from

I1A
VST

����
f¼0

¼ 1� a

rib þ (1� a)RST þ (REEkRF)
(2:19)

The pertinent small-signal model for the buffered series–shunt feedback amplifier is resultantly the
configuration offered in Figure 2.5.
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FIGURE 2.4 Series–shunt feedback amplifier that incorporates an emitter follower output stage to reduce the
effects of feed-forward through the feedback network.

Feedback Amplifier Configurations 2-7



Letting

R0 ¼ R2k(REE þ RF)kRLT (2:20)

an analysis of the structure in Figure 2.5 reveals

VO

I1A
¼ (bþ 1)

R0

R0 þ rib þ (1� a)R1

� �
aKbR1 þ f rib þ (1� a)R1½ �� �

(2:21)

which suggests negligible feed-forward for

f � aKbR1

rib þ (1� a)R1
(2:22)

Note that for large R1, Equation 2.22 implies the requirement f � bKb, which is easier to satisfy than is
Equation 2.10. Assuming the validity of Equations 2.19, 2.21, and 2.22 deliver an open-loop voltage gain,
Gvo(RST, RLT), of

Gvo(RST, RLT) ¼ aKb
R0

rib þ (1� a)RST þ REEkRF

� �
R1

R0 þ rib þ (1� a)R1

� �
(2:23)

f (β + 1)I1A 

Kβ β I1A 

REE+RF RLT 

Rout

VO 

R1 

I 

R2

re

rb

rπ βI

rπ

VST

RST

Rin

VI rb

(β + 1)I1A 
βI1A REE//RF

I1A

f VO

re

–

–

+

+

FIGURE 2.5 Small-signal model of the buffered series–shunt feedback amplifier.
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Recalling Equation 2.1, which demonstrates that Kb approaches b for large R, Equation 2.23 suggests an
open-loop gain that is nominally proportional to b2 if R1 is also large.
Using the concepts evoked by Equations 2.17 and 2.18, the driving-point input and output impedances

can now be determined. In a typical realization of the buffered series–shunt feedback amplifier, the
resistance, R2, in Figure 2.4 is very large because it is manifested as the output resistance of a common
base current sink that is employed to stabilize the operating point of transistor Q3. For this situation, and
assuming the resistance R1 is large, the resultant driving-point input resistance is larger than its
predecessor input resistance by a factor of approximately (bþ 1). Similarly, it is easy to show that for
large R1 and large R2, the driving-point output resistance is smaller than that predicted by Equation 2.18
by a factor approaching (bþ 1).
Although the emitter follower output stage in Figure 2.4 all but eliminates feed-forward signal

transmission through the feedback network and increases both the driving-point input resistance and
output conductance, a potential bandwidth penalty is paid by its incorporation into the basic series–
shunt feedback cell. The fundamental problem is that if R1 is too large, potentially significant Miller
multiplication of the base–collector transition capacitance of transistor Q2 materializes. The resultant
capacitive loading at the collector of transistor Q1 is exacerbated by large R, which may produce a
dominant pole at a frequency that is too low to satisfy closed-loop bandwidth requirements. The
bandwidth problem may be mitigated by coupling resistance R1 to the collector of Q2 through a common
base cascode. This stage appears as transistor Q4 in Figure 2.6.
Unfortunately, the use of the common base cascode indicated in Figure 2.6 may produce an open-loop

amplifier with transfer characteristics that do not emulate a dominant pole response. In other words, the
frequency of the compensated pole established by capacitive loading at the collector of transistor Q1 may
be comparable to the frequencies of poles established elsewhere in the circuit, and particularly at the base
node of transistor Q1. In this event, frequency compensation aimed toward achieving acceptable closed-
loop damping can be implemented by replacing the feedback resistor RF with the parallel combination of
RF and a feedback capacitance, say CF, as indicated by the dashed branch in Figure 2.6. The resultant
frequency-domain feedback factor f(s) is

Rout

Rin
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VST

REE
RLTRF

Vbias

R2

R1

R

VO
CF

–VEE

+VOC

+

–

Q2

Q3

Q4

Q1

FIGURE 2.6 Buffered series–shunt feedback amplifier with common base cascode compensation of the common
emitter amplifier formed by transistor Q2. A feedback zero is introduced by the capacitance CF to achieve acceptable
closed-loop damping.
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f (s) ¼ f
1þ s

z

1þ fs
z

" #
(2:24)

where
f is the feedback factor given by Equation 2.7
z is the frequency of the introduced compensating zero

z ¼ 1
RFCF

(2:25)

The pole in Equation 2.24 is inconsequential if the closed-loop amplifier bandwidth Bcl satisfies the
restriction, f BclRFCF¼Bcl(REEjjRF)CF � 1.

2.3 Shunt–Series Feedback Amplifier

Although the series–shunt circuit functions as a voltage amplifier, the shunt–series configuration (see the
ac schematic diagram depicted in Figure 2.7a) is best suited as a current amplifier. In the subject circuit,
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FIGURE 2.7 (a) AC schematic diagram of a bipolar shunt–series feedback amplifier. (b) Low-frequency small-
signal equivalent circuit of the feedback amplifier.
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the Q2 emitter current, which is a factor of (1=a) of the output signal current, IO, is sampled by the
feedback network formed of the resistances, REE and RF. The sampled current is fed back as a current in
shunt with the amplifier input port. Because output current is fed back as a current to a current-driven
input port, the resultant driving-point output resistance is large, and the driving-point input resistance is
small. These characteristics allow for a closed-loop current gain, G1(RST, RLT)¼ IO=IST, that is relatively
independent of source and load resistances and insensitive to transistor parameters.
In the series–shunt amplifier, h-parameters were selected to model the feedback network because the

topology of an h-parameter equivalent circuit is, similar to the amplifier in which the feedback network is
embedded, a series shunt, or Thévenin–Norton, topology. In analogous train of thought compels the use
of g-parameters to represent the feedback network in Figure 2.7a. With reference to the branch variables
defined in the schematic diagram,

I1F

V2F

" #
¼

1
REEþRF

� REE
REEþRF

REE
REEþRF

REFkRF

" #
V1F

I2F

" #
(2:26)

Noting that the feedback network current, I2F, relates to the amplifier output current, IO, in accordance
with

I2F ¼ � IO
a

(2:27)

and letting the feedback factor, f, be

f ¼ 1
a

REE

REE þ RF

� �
(2:28)

the small-signal equivalent circuit of shunt–series feedback amplifier becomes the network diagrammed
in Figure 2.7b. Note that the voltage-controlled voltage source, afV1F, models the feed-forward transfer
mechanism of the feedback network, where the controlling voltage, V1F, is

V1F ¼ rb þ rp þ (bþ 1)rc½ �IV ¼ (bþ 1)ribIV (2:29)

An analysis of the model in Figure 2.7b confirms that the second-stage, signal-base current IW relates
to the first-stage, signal-base current Iv as

IW
IV

¼ � a(Rþ frib)
rib þ REEkRF þ (1� a)R

(2:30)

For

f � R
rib

(2:31)

which offsets feed-forward effects,

IW
IV

� � aR
rib þ REEkRF þ (1� a)R

¼D �Kr (2:32)

Observe that the constant Kr tends toward b for large R, as can be verified by an inspection of Figure 2.7b.
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Using Equation 2.32, the open-loop current gain, found by setting f to zero, is

GIO(RST, RLT) ¼ IO
IST

				
f¼0

¼ aKr
RSTk(REE þ RF)

rib þ (1� a) RSTk(REE þ RF)½ �

 �

(2:33)

and recalling Equation 2.28, the loop gain T is

T ¼ fGIO(RST, RLT) ¼ 1
a

REE

REE þ RF

� �
GIO(RST, RLT)

¼ Kr
REE

REE þ RF þ RST

� �
RST

rib þ (1� a) RSTk(REE þ RF)½ �

 � (2:34)

By inspection of the model in Figure 2.7b, the open-loop input resistance, Rino, is

Rino ¼ (REE þ RF)k (bþ 1)rib½ � (2:35)

and, within the context of an infinitely large Early resistance, the open-loop output resistance, Routo, is
infinitely large.

The closed-loop current gain of the shunt–series feedback amplifier is now found to be

G1(RST, RLT) ¼ GIO(RST, RLT)
1þ T

� a 1þ RF

REE

� �
(2:36)

where the indicated approximation exploits the presumption that the loop gain T is much larger than
one. As a result of the large loop-gain assumption, note that the closed-loop gain is independent of the
source and load resistances and is invulnerable to uncertainties and perturbations in transistor param-
eters. The closed-loop output resistance, which exceeds its open-loop counterpart, remains infinitely
large. Finally, the closed-loop driving-point input resistance of the shunt–series amplifier is

Rin ¼ Rino

1þ fGIO(1, RLT)
� 1þ RF

REE

� �
rib
Kr

(2:37)

2.4 Shunt–Shunt Feedback Amplifier

2.4.1 Circuit Modeling and Analysis

The ac schematic diagram of the third type of single-loop feedback amplifier, the shunt–shunt triple, is
drawn in Figure 2.8a. A cascade interconnection of three transistors Q1, Q2, and Q3, forms the open
loop, while the feedback subcircuit is the single resistance, RF. This resistance samples the output voltage,
VO, as a current fed back to the input port. Output voltage is fed back as a current to a current-driven
input port, so both the driving-point input and output resistances are very small. Accordingly, the circuit
operates best as a transresistance amplifier in that its closed-loop transresistance, RM(RST, RLT)¼VO=IST,
is nominally invariant with source resistance, load resistance, and transistor parameters.
The shunt–shunt nature of the subject amplifier suggests the propriety of y-parameter modeling of the

feedback network. For the electrical variables indicated in Figure 2.8a,

I1F
I2F

� �
¼

1
RF

� 1
RF

� 1
RF

1
RF

" #
V1F

VO

� �
(2:38)
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which implies that a resistance, RF, loads both the input and the output ports of the open-loop three-stage
cascade. The short-circuit admittance relationship in Equation 2.38 also suggests a feedback factor,
f, given by

f ¼ 1
RF

(2:39)

The foregoing observations and the small-signal modeling experience gained with the preceding two
feedback amplifiers lead to the equivalent circuit submitted in Figure 2.8b. For analytical simplicity, the
model reflects the assumption that all three transistors in the open loop have identical small-signal
parameters. Moreover, the constant, Ke, which symbolizes the ratio of the signal-base current flowing
into transistor Q3 to the signal-base current conducted by transistor Q1, is given by

Ke ¼ aR1

rib þ (1� a)R1

� �
aR2

rib þ (1� a)R2

� �
(2:40)

Finally, the voltage-controlled current source, fV1F, accounts for feed-forward signal transmission
through the feedback network. If such feed-forward is to be negligible, the magnitude of this controlled
current must be significantly smaller than KebIv, a current that emulates feed-forward through the open-
loop amplifier. Noting that the input port voltage, V1F, in the present case remains the same as that
specified by Equation 2.29, negligible feed-forward through the feedback network mandates

RF � rib
aKe

(2:41)

RLTRST

Rin

RF
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Rin

RST

VO

I2FI1F

V1F

R2R1

Q1 Q2 Q3

IST

V1F

IST

I1F IV

Rout

VO

I2F

RLTRFRFf VO f V1F

KεβIV

(β + 1)rib

(b)

(a)

Feedback
network

FIGURE 2.8 (a) AC schematic diagram of a bipolar shunt–shunt feedback amplifier. (b) Low-frequency small-
signal equivalent circuit of the feedback amplifier.
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Because the constant Ke in Equation 2.40 tends toward b2 if R1 and R2 are large resistances, Equation 2.41
is relatively easy to satisfy.
With feed-forward through the feedback network ignored, an analysis of the model in Figure 2.8b

provides an open-loop transresistance, RMO(RST, RLT), of

RMO(RST, RLT) ¼ �aKe
RFkRST

rib(1� a)(RFkRST)

� �
(RFkRLT) (2:42)

while the loop gain is

T ¼ fRMO(RST, RLT) ¼ �RMO(RST, RLT)
RF

¼ aKe
RST

RST þ RF

� �
RFkRST

rib(1� a)(RFkRST)

� �
(2:43)

For T � 1, the corresponding closed-loop transresistance RM(RST, RLT) is

RM(RST, RLT) ¼ RMO(RST, RLT)
1þ T

� �RF (2:44)

Finally, the approximate driving-point input and output resistances are, respectively,

Rin � rib
aKe

� �
1þ RF

RLT

� �
(2:45)

Rout � rib þ (1� a)(RFkRST)
aKe

� �
1þ RF

RST

� �
(2:46)

2.4.2 Design Considerations

Because the shunt–shunt triple uses three gain stages in the open-loop amplifier, its loop gain is
significantly larger than the loop gains provided by either of the previously considered feedback cells.
Accordingly, the feedback triple affords superior desensitization of the closed-loop gain with respect to
transistor parameters and source and load resistances; but the presence of a cascade of three common
emitter gain stages in the open loop of the amplifier complicates frequency compensation and limits
the 3 dB bandwidth. The problem is that, although each common emitter stage approximates a dominant
pole amplifier, none of the critical frequencies in the cluster of poles established by the cascade inter-
connection of these units is likely to be dominant. The uncompensated closed loop is therefore predisposed
to unacceptable underdamping, thereby making compensation via an introduced feedback zero difficult.

At least three compensation techniques can be exploited to optimize the performance of the shunt–
shunt feedback amplifier [3,7–9]. The first of these techniques entail pole splitting of the open-loop
interstage through the introduction of a capacitance, Cc, between the base and the collector terminals of
transistor Q2, as depicted in the ac schematic diagram of Figure 2.9. In principle, pole splitting can be
invoked on any one of the three stages of the open loop; but pole splitting of the interstage is most
desirable because such compensation of the first stage proves effective only for large source resistance.
Moreover, the resultant dominant pole becomes dependent on the source termination. On the other
hand, pole splitting of the third stage produces a dominant pole that is sensitive to load termination.
In conjunction with pole splitting, a feedback zero can be introduced, if necessary, to increase closed-loop
damping by replacing the feedback resistance, RF, by the parallel combination of RF and a feedback
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capacitance, CF, as illustrated in Figure 2.9. This compensation produces left-half-plane zero in the
feedback factor at s¼�(1=RF).
A second compensation method broadbands the interstage of the open-loop amplifier through local

current feedback introduced by the resistance, RX, in Figure 2.10. Simultaneously, the third stage is
broadbanded by way of a common base cascode transistor Q4. Because emitter degeneration of the
interstage reduces the open-loop gain, an emitter follower (transistor Q5) is embedded between the
feedback network and the output port of the open-loop third stage. As in the case of the series–shunt
feedback amplifier, the first-order effect of this emitter follower is to increase feed-forward signal
transmission through the open-loop amplifier by a factor that approaches (bþ 1).

IST RST RLT

Rout

Rin

RF

CF

CC

R1 R2

VO

Q1 Q2 Q3

FIGURE 2.9 AC schematic diagram of a frequency-compensated shunt–shunt triple. The capacitance, Cc, achieves
open-loop pole splitting, while the capacitance, CF, implements a compensating feedback network zero.

Rout

Rin

RSTIST

RF

CF

RLT

VO

RX R2R1

Q1 Q2 Q3

Q4

Q5

FIGURE 2.10 AC schematic diagram of an alternative compensation scheme for the shunt–shunt triple. Transistor
Q2 is broadbanded by the emitter degeneration resistance RX and transistor Q3 is broadbanded by the common base
cascode transistor Q4. The emitter follower transistor, Q5, minimizes feed-forward signal transmission through the
feedback network.
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A final compensation method is available if shunt–shunt feedback is implemented as the balanced
differential architecture (see the ac schematic diagram offered in Figure 2.11). By exploiting the antiphase
nature of opposite collectors in a balanced common emitter topology, a shunt–shunt feedback amplifier
can be realized with only two gain stages in the open loop. The resultant closed-loop 3 dB bandwidth is
invariably larger than that of its three-stage single-ended counterpart, because the open loop is now
characterized by only two, as opposed to three, fundamental critical frequencies. Because the forward
gain implicit to two amplifier stages is smaller than the gain afforded by three stages of amplification, a
balanced emitter follower (transistors Q3A and Q3B) is incorporated to circumvent the deleterious
relative effects of feed-forward signal transmission through the feedback network.

2.5 Series–Series Feedback Amplifier

Figure 2.12a is the ac schematic diagram of the series–series feedback amplifier. Three transistors, Q1, Q2,
and Q3, are embedded in the open-loop amplifier, while the feedback subcircuit is the wye configuration
formed of the resistances RX, RY, and RZ. Although it is possible to realize series–series feedback via
emitter degeneration of a single-stage amplifier, the series–series triple offers substantially more loop gain
and thus better desensitization of the forward gain with respect to both transistor parameters and source
and load terminations.
In Figure 2.12a, the feedback wye senses the Q3 emitter current, which is a factor of (1=a) of the output

signal current IO. This sampled current is fed back as a voltage in series with the emitter of Q1. Because
output current is fed back as a voltage to a voltage-driven input port, both the driving-point input and

Q2A

Q3A

Q1A

Q1B

Q2B

Q3B

R1

R2

R1

R2

IST RST RLT

Rout

Rin

RF

CF

VO

CF

RF

–

+

FIGURE 2.11 AC schematic diagram of a differential realization of the compensated shunt–shunt feedback
amplifier. The balanced stage boasts improved bandwidth over its single-ended counterpart because of its use of
only two high-gain stages in the open loop. The emitter follower pair Q3A and Q3B diminishes feed-forward
transmission through the feedback network composed of the shunt interconnection of resistor RF with capacitor CF.
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output resistances are large. The circuit is therefore best suited as a transconductance amplifier in the
sense that for large loop gain, its closed-loop transconductance, GM(RST, RLT)¼ IO=VST, is almost
independent of the source and load resistances.
The series–series topology of the subject amplifier conduces z-parameter modeling of the feedback

network. Noting the electrical variables delineated in the diagram of Figure 2.12a,

V1F

V2F

� �
¼ RX þ RZ RZ

RZ RY þ RZ

� �
I1F
I2F

� �
(2:47)

Equation 2.47 suggests that the open-circuit feedback network resistances loading the emitters of
transistors Q1 and Q3 are (RXþRZ) and (RYþRZ), respectively, and the voltage fed back to the emitter
of transistor Q1 is RZI2F. Because the indicated feedback network current I2F is (�IO=a), this fed back
voltage is equivalent to (�RZIO=a), which suggests a feedback factor, f, of

f ¼ RZ

a
(2:48)

Finally, the feed-forward through the feedback network if RZI1F. Because I1F relates to the signal-base
current IV flowing into transistor Q1 by I1F¼ (bþ 1)IV, this feed-forward voltage is also expressible

–
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FIGURE 2.12 (a) AC schematic diagram of a bipolar series–series feedback amplifier. (b) Low-frequency, small-
signal equivalent circuit of the feedback amplifier.
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as (�fbIV). The foregoing observations and the hybrid-p method of a bipolar junction transistor
produce the small-signal model depicted in Figure 2.12b. In this model, all transistors are presumed to
have identical corresponding small-signal parameters, and the constant, K1, is

K1 ¼ aR1

rib þ (1� a)R1
(2:49)

An analysis of the model of Figure 2.12b confirms that the ratio of the signal current, IW, flowing into the
base of transistor Q3 to the signal-base current, IV, of transistor Q1 is

IW
IV

¼
aK1R2 1þ f

K1R2

� 

rib þ RY þ RZ þ (1� a)R2

(2:50)

This result suggests that feed-forward effects through the feedback network are negligible if jfj � K1R2,
which requires

RZ � aK1R2 (2:51)

In view of the fact that the constant, K1, approaches b for large values of the resistance, R1, Equation 2.51
is not a troublesome inequality. Introducing a second constant, K2, such that

K2 ¼D aR2

rib þ RY þ RZ þ (1� a)R2
(2:52)

the ratio IW=IV in Equation 2.50 becomes

IW
IV

� K1K2 (2:53)

assuming Equation 2.51 is satisfied.
Given the propriety of Equation 2.50 and using Equation 2.53 the open-loop transconductance,

GMO(RST, RLT) is found to be

GMO(RST, RLT) ¼ � aK1K2

rib þ RX þ RZ þ (1� a)RST


 �
(2:54)

and recalling Equation 2.48, the loop gain T is

T ¼ � RZ

a

� �
GMO(RST, RLT) ¼ K1K2RZ

rib þ RX þ RZ þ (1� a)RST
(2:55)

It follows that for T � 1, the closed-loop transconductance is

GM(RST, RLT) ¼ GMO(RST, RLT)
1þ T

� � a

RZ
(2:56)

The Early resistance is large enough to justify its neglect, so the open loop, and thus the closed-loop,
driving-point output resistances are infinitely large. On the other hand, the closed-loop driving-point
input resistance Rin can be shown to be

Rin ¼ Rino 1þ fGMO(0, RLT)½ � � (bþ 1)K1K2RZ (2:57)
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Similar to its shunt–shunt counterpart, the series–series feedback amplifier uses three open-loop gain
stages to produce large loop gain. However, also similar to the shunt–shunt triple, frequency compen-
sation via an introduced feedback zero is difficult unless design care is exercised to realize a dominant
pole open-loop response. To this end, the most commonly used compensation is pole splitting in the
open loop, combined, if required, with the introduction of a zero in the feedback factor. The relevant ac
schematic diagram appears in Figure 2.13 where the indicated capacitance, Cc, inserted across the base–
collector terminals of transistor Q3 achieves the aforementioned pole splitting compensation. The
capacitance, CF, in Figure 2.13 delivers a frequency-dependent feedback factor, f(s) of

f (s) ¼ f
1þ s

z

1þ s
z

RZ
RZþRXkRY

� 

2
4

3
5 (2:58)

where the frequency z of the introduced zero derives from

1
z
¼ (RX þ RY) 1þ RXkRY

RZ

� �
CF (2:59)

The corresponding pole in Equation 2.58 is insignificant if the closed-loop amplifier is designed for a
bandwidth, Bcl that satisfies the inequality, Bc1(RXþRY)CF � 1.

As is the case with shunt–shunt feedback, an alternative frequency compensation scheme is available if
series–series feedback is implemented as a balanced differential architecture. The pertinent ac schematic
diagram, inclusive of feedback compensation, appears in Figure 2.14. This diagram exploits the fact that
the feedback wye consisting of the resistances, RX, RY, and RZ as utilized in the single-ended configur-
ations of Figures 2.12a and 2.13 can be transformed into the feedback delta of Figure 2.15. The terminal
volt–ampere characteristics of the two networks in Figure 2.15 are identical, provided that the delta
subcircuit elements, RF, RU, and RV, are chosen in accordance with

RX RY

RZ

CF

RLTRST

VST

Rin

Rout

IO

Cc

R1 R2

Q1 Q2 Q3

+

–

FIGURE 2.13 AC schematic diagram of a frequency-compensated series–series feedback triple. The capacitance,
Cc, achieves pole splitting in the open-loop configuration, while the capacitance, CF, introduces a zero in the feedback
factor of the closed-loop amplifier.
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RF ¼ (RX þ RY) 1þ RXkRY

RZ

� �
(2:60)

RU

RF
¼ RZ

RY
(2:61)

RV

RF
¼ RZ

RX
(2:62)

2.6 Dual-Loop Feedback

As mentioned previously, a simultaneous control of the driving-point I=O resistances, as well as the
closed-loop gain, mandates the use of dual global loops comprised of series and shunt feedback signal
paths. The two global dual-loop feedback architectures are the series–series=shunt–shunt feedback
amplifier and the series–shunt=shunt–series feedback amplifier. In Sections 2.6.1 and 2.6.2, both of
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FIGURE 2.14 AC schematic diagram of a balanced differential version of the series–series feedback amplifier.
The circuit utilizes only two, as opposed to three, gain stages in the open loop.
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FIGURE 2.15 Transformation of the wye feedback subcircuit used in the amplifier of Figure 2.13 to the delta
subcircuit exploited in Figure 2.14. The resistance transformation equations are given by Equations 2.60 through 2.62.
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these units are studied by judiciously applying the relevant analytical results established earlier for
pertinent single-loop feedback architectures. The ac schematic diagrams of these respective circuit
realizations are provided, and engineering design considerations are offered.

2.6.1 Series–Series=Shunt–Shunt Feedback Amplifier

Figure 2.16 is a behavioral abstraction of the series–series=shunt–shunt feedback amplifier. Two port
z parameters are used to model the series–series feedback subcircuit, for which feed-forward is tacitly
ignored and the feedback factor associated with its current-controlled voltage source is fss. On the other
hand, y parameters model the shunt–shunt feedback network, where the feedback factor relative to its
voltage-controlled current source is fpp. As in the series–series network, feed-forward in the shunt–shunt
subcircuit is presumed negligible. The four-terminal amplifier around which the two feedback units are
connected has an open loop (meaning fss¼ 0 and fpp¼ 0, but with the loading effects of both feedback
circuits considered) transconductance of GMO(RST, RLT).
With fpp set to zero to deactivate shunt–shunt feedback, the resultant series–series feedback network is

a transconductance amplifier with a closed-loop transconductance, GMS(RST, RLT), is

GMS(RST, RLT) ¼ IO
VST

¼ GMO(RST, RLT)
1þ fssGMO(RST, RLT)

� 1
fss

(2:63)

where the loop gain, fssGMO(RST, RLT), is presumed much larger than one, and the loading effects of both
the series–series feedback subcircuit and the deactivated shunt–shunt feedback network are incorporated
into GMO(RST, RLT). The transresistance, RMS(RST, RLT), implied by Equation 2.63, which expedites the
study of the shunt–shunt component of the feedback configuration, is

RMS(RST, RLT) ¼ VO

IST
¼ RSTRLT

IO
VST

� RSTRLT

fss
(2:64)
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+
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–

fss IO

Amplifier

Shunt–shunt feedback

Series–series feedback

FIGURE 2.16 System-level diagram of a series–series=shunt–shunt dual-loop feedback amplifier. Note that
feed-forward signal transmission through either feedback network is ignored.
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The series–series feedback input and output resistances Rins and Routs, respectively, are large and given by

Rins ¼ Rino 1þ fssGMO(0, RLT)½ � (2:65)

and

Routs ¼ Routo 1þ fssGMO(RST, 0)½ � (2:66)

where the zero feedback ( fss¼ 0 and fpp¼ 0) values, Rino and Routo, of these driving-point quantities are
computed with due consideration given to the loading effects imposed on the amplifier by both feedback
subcircuits.
When shunt–shunt feedback is applied around the series–series feedback cell, the configuration

becomes a transresistance amplifier. The effective open-loop transresistance is RMS(RST, RLT), as defined
by Equation 2.64. Noting a feedback of fpp, the corresponding closed-loop transresistance is

RM(RST, RLT) �
RSTRLT

fss

1þ fpp
RSTRLT

fss

� 
 (2:67)

which is independent of amplifier model parameters, despite the unlikely condition of an effective loop
gain fppRSTRLT=fss that is much larger than 1. It should be interjected, however, that Equation 2.67
presumes negligible feed-forward through the shunt–shunt feedback network. This presumption may be
inappropriate owing to the relatively low closed-loop gain afforded by the series–series feedback
subcircuit. Ignoring this potential problem temporarily, Equation 2.67 suggests a closed-loop voltage
gain AV(RST, RLT) of

AV(RST, RLT) ¼ VO

VS
¼ RM(RST, RLT)

RST
� RLT

fss þ fppRSTRLT
(2:68)

The closed-loop, driving-point output resistance Rout, can be straightforwardly calculated by noting
that the open circuit (RLT ! 1) voltage gain, AVO, predicted by Equation 2.68 is AVO¼ 1=fpp RST.
Accordingly, Equation 2.68 is alternatively expressible as

AV(RST, RLT) � AVO
RLT

RLT þ fss
fppRST

0
@

1
A (2:69)

Because Equation 2.69 is a voltage divider relationship stemming from a Thévenin model of the output
port of the dual-loop feedback amplifier, as delineated in Figure 2.17, it follows that the driving-point
output resistance is

Rout � fss
fppRST

(2:70)

Observe that, similar to the forward gain characteristics, the driving-point output resistance is nominally
insensitive to changes and other uncertainties in open-loop amplifier parameters. Moreover, this output
resistance is directly proportional to the ratio fss=fpp of feedback factors. As illustrated in preceding
sections, the individual feedback factors, and thus the ratio of feedback factors, is likely to be proportional
to a ratio of resistances. In view of the fact that resistance ratios can be tightly controlled in a monolithic
fabrication process, Rout in Equation 2.70 is accurately prescribed for a given source termination.
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The driving-point input resistance Rin can be determined from a consideration of the input port
component of the system-level equivalent circuit depicted in Figure 2.17. This resistance is the ratio of
VST to I, under the condition of RS¼ 0. With RS¼ 0, Equation 2.68 yields VO¼RLTVST=fss and thus,
Kirchhoff’s voltage law (KVL) applied around the input port of the model at hand yields

Rin ¼ Rins

1þ fppRLTRins

fss

� fss
fppRLT

(2:71)

where the ‘‘open-loop’’ input resistance Rins, defined by Equation 2.65, is presumed large. Similar to the
driving-point output resistance of the series–series=shunt–shunt feedback amplifier, the driving-point
input resistance is nominally independent of open-loop amplifier parameters.
It is interesting to observe that the input resistance in Equation 2.71 is inversely proportional to the

load resistance by the same factor ( fss=fpp) that the driving-point output resistance in Equation 2.70 is
inversely proportional to the source resistance. As a result,

fss
fpp

� RinRLT � RoutRST (2:72)

Thus, in addition to being stable performance indices for well-defined source and load terminations,
the driving-point input and output resistances track one another, despite manufacturing uncertainties
and changes in operating temperature that might perturb the individual values of the two feedback
factors fss and fpp.
The circuit property stipulated by Equation 2.72 has immediate utility in the design of wideband

communication transceivers and other high-speed signal-processing systems [10–14]. In these and
related applications, a cascade of several stages is generally required to satisfy frequency response,
distortion, and noise specifications. A convenient way of implementing a cascade interconnection
is to force each member of the cascade to operate under the match terminated case of
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FIGURE 2.17 Norton equivalent input and Thévenin equivalent output circuits for the series–series=shunt–shunt
dual-loop feedback amplifier.
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RST ¼ Rin ¼ RLT ¼ Rout ¼D R. From Equation 2.72 match terminated operation demands feedback
factors selected so that

R ¼
ffiffiffiffiffiffi
fss
fpp

s
(2:73)

which forces a match terminated closed-loop voltage gain A�
V of

A�
V � 1

2fppR
¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
fppfss

p (2:74)

The ac schematic diagram of a practical, single-ended series–series=shunt–shunt amplifier is submitted in
Figure 2.18. An inspection of this diagram reveals a topology that coalesces the series–series and shunt–
shunt triples studied earlier. In particular, the wye network formed of the three resistances, RXx, RY, and
RZ, comprises the series–series component of the dual-loop feedback amplifier. The capacitor, Cc,
narrowbands the open-loop amplifier to facilitate frequency compensation of the series–series loop
through the capacitance, CF1. Compensated shunt feedback of the network is achieved by the parallel
combination of the resistance, RF and the capacitance, CF2. If CF1 and Cc combine to deliver a dominant
pole series–series feedback amplifier, CF2 is not necessary. Conversely, CF1 is superfluous if CF2 and Cc

interact to provide a dominant pole shunt–shunt feedback amplifier. As in the single-ended series–series
configuration, transistor Q3 can be broadbanded via a common base cascode. Moreover, if feedback
through the feedback networks poses a problem, an emitter follower can be inserted at the port to which
the shunt feedback path and the load termination are incident.
A low-frequency analysis of the circuit in Figure 2.18 is expedited by assuming high-b transistors

having identical corresponding small-signal model parameters. This analysis, which in contrast to the
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FIGURE 2.18 AC schematic diagram of a frequency-compensated, series–series=shunt–shunt, dual-loop feedback
amplifier. The compensation is affected by the capacitances CF1 and CF2, while Cc achieves pole splitting in the open-
loop amplifier.
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simplified behavioral analysis, does not ignore the electrical effects of the aforementioned feed-forward
through the shunt–shunt feedback network, yields a voltage gain AV(RST, RLT), of

AV(RST, RLT) � � Rin

Rin þ RST

� �
RLT

RLT þ RF

� �
aRF

RZ
� 1

� �
(2:75)

where the driving-point input resistance of the amplifier Rin is

Rin � RF þ RLT

1þ aRLT
RZ

(2:76)

The driving-point output resistance Rout is

Rout � RF þ RST

1þ aRST
Rz

(2:77)

As predicted by the behavioral analysis Rin, Rout, and AV(RST, RLT), are nominally independent of
transistor parameters. Observe that the functional dependence of Rin on the load resistance, RLT, is
identical to the manner in which Rout is related to the source resistance RST. In particular, Rin � Rout if
RST � RLT. For the match terminated case in which RST ¼ Rin ¼ RLT ¼ Rout ¼D R,

R �
ffiffiffiffiffiffiffiffiffiffi
RFRZ

a

r
(2:78)

The corresponding match terminated voltage gain in Equation 2.75 collapses to

A�
V � � RF � R

2R

� �
(2:79)

Similar to the series–series and shunt–shunt triples, many of the frequency compensation problems
implicit to the presence of three open-loop stages can be circumvented by realizing the series–series=
shunt–shunt amplifier as a two-stage differential configuration. Figure 2.19 is the ac schematic diagram of
a compensated differential series–series=shunt–shunt feedback dual.

2.6.2 Series–Shunt=Shunt–Series Feedback Amplifier

The only other type of global dual-loop architecture is the series–shunt=shunt–series feedback amplifier;
the behavioral diagram appears in Figure 2.20. The series–shunt component of this system, which is
modeled by h-parameters, has a negligibly small feed-forward factor and a feedback factor of fsp. Hybrid
g-parameters model the shunt–series feedback structure, which has a feedback factor of fps and a
presumably negligible feed-forward factor. The four-terminal amplifier around which the two feedback
units are connected has an open loop (meaning fsp¼ 0 and fps¼ 0, but with the loading effects of both
feedback circuits considered) voltage gain of AVO(RST, RLT).

For fps¼ 0, the series–shunt feedback circuit voltage gain AVS(RST, RLT), is

AVS(RST, RLT) ¼ VO

VST
¼ AVO(RST, RLT)

1þ fspAVO(RST, RLT)
� 1

fsp
(2:80)
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FIGURE 2.19 AC schematic diagram of the differential realization of a compensated series–series=shunt–shunt
feedback amplifier.
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FIGURE 2.20 System-level diagram of a series–shunt=shunt–series, dual-loop feedback amplifier. Note that feed-
forward signal transmission through either feedback network is ignored.
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where the approximation reflects an assumption of a large loop gain. When the shunt–series component
of the feedback amplifier is activated, the dual-loop configuration functions as a current amplifier. Its
effective open-loop transfer function is the current gain, AIS(RST, RLT), established by the series–shunt
amplifier; namely,

AIS(RST, RLT) ¼ IO
IST

¼ RST

RLT

� �
VO

VST
� RST

fspRLT
(2:81)

It follows that the current gain, AI(RST, RLT), of the closed loop is

AI(RST, RLT) �
RST

fspRLT

1þ fps
RST

fspRLT

� 
 ¼ RST

fspRLT þ fpsRST
(2:82)

while the corresponding voltage gain, AV(RST, RLT), assuming negligible feed-forward through the shunt–
series feedback network, is

AV(RST, RLT) ¼ RLT

RST
AI(RST, RLT) � RLT

fspRLT þ fpsRST
(2:83)

Repeating the analytical strategy employed to determine the input and output resistances of the series–
series=shunt–shunt configuration, Equation 2.83 delivers a driving-point input resistance of

Rin � fspRLT

fps
(2:84)

and a driving-point output resistance of

Rout � fpsRST

fsp
(2:85)

Similar to the forward voltage gain, the driving-point input and output resistances of the series–
shunt=shunt–series feedback amplifier are nominally independent of active element parameters. Note,
however, that the input resistance is directly proportional to the load resistance by a factor ( fsp=fps),
which is the inverse of the proportionality constant that links the output resistance to the source
resistance. Specifically,

fsp
fps

¼ Rin

RLT
¼ RST

Rout
(2:86)

Thus, although Rin and Rout are reliably determined for well-defined load and source terminations, they
do not track one another as well as they do in the series–series=shunt–shunt amplifier. Using Equation
2.86, the voltage gain in Equation 2.83 is expressible as

AV(RST, RLT) � 1

fsp 1þ
ffiffiffiffiffiffiffiffiffiffiffi
RoutRST
RinRLT

q� 
 (2:87)

The simplified ac schematic diagram of a practical series–shunt=shunt–series feedback amplifier appears
in Figure 2.21. In this circuit, series–shunt feedback derives from the resistances, REE1 and RF1, and
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shunt–series feedback is determined by the resistances, REE2 and RF2. Because this circuit topology
merges the series–shunt and shunt–series pairs, requisite frequency compensation, which is not shown
in the subject figure, mirrors the relevant compensation schemes studied earlier. Note, however, that a
cascade of only two open-loop gain stages renders compensation easier to implement and larger 3 dB
bandwidths easier to achieve in the series–series=shunt–shunt circuit, which requires three open-loop
gain stages for a single-ended application.
For high-b transistors having identical corresponding small-signal model parameters, a low-frequency

analysis of the circuit in Figure 2.21 gives a voltage gain of

AV(RST, RLT) � aRin

Rin þ aRS

� �
1þ RF1

REE1

� �
(2:88)

where the driving-point input resistance, Rin, of the subject amplifier is

Rin � aRLT

1þ RF2
REE2

1þ RF1
REE1

þ RLT
REE1kREE2

 !
(2:89)

The driving-point output resistance, Rout, is

Rout � RST

1þ RF1
REE1

1þ RF2
REE2

þ RST
REE1kREE2

 !
(2:90)

2.7 Summary

This section documents small-signal performance equations, general operating characteristics, and
engineering design guidelines for the six most commonly used global feedback circuits. These observa-
tions derive from analyses based on the judicious application of signal flow theory to the small-signal
model that results when the subject feedback network is supplanted by an appropriate two-port
parameter equivalent circuit.

–

+

Rin

RST

VST

RLT

Rout

VO

R

RF2

RF1

REE1 REE2

Q1

Q2

FIGURE 2.21 AC schematic diagram of a series–shunt=shunt–series, dual-loop feedback amplifier.
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Four of the six fundamental feedback circuits are single-loop architectures.

1. Series–shunt feedback amplifier functions best as a voltage amplifier in that its input resistance is
large, and its output resistance is small. Because only two gain stages are required in the open loop,
the amplifier is relatively easy to compensate for acceptable closed-loop damping and features
potentially large 3 dB bandwidth. A computationally efficient analysis aimed toward determining
loop gain, closed-loop gain, I=O resistances, and the condition that renders feed-forward through
the feedback network inconsequential is predicated on replacing the feedback subcircuit with its h-
parameter model.

2. Shunt–series feedback amplifier is a current amplifier in that its input resistance is small, and its
output resistance is large. Similar to its series–shunt dual, only two gain stages are required in the
open loop. Computationally efficient analyses are conducted by replacing the feedback subcircuit
with its g-parameter model.

3. Shunt–shunt feedback amplifier is a transresistance signal processor in that both its input and output
resistances are small. Although this amplifier can be realized theoretically with only a single open-loop
stage, a sufficiently large loop gain generally requires a cascade of three open-loop stages. As a result,
pole splitting is invariably required to ensure an open-loop dominant pole response, thereby limiting
the achievable closed-loop bandwidth. In addition compensation of the feedback loopmay be required
for acceptable closed-loop damping. The bandwidth and stability problems implicit to the use of three
open-loop gain stages can be circumvented by a balanced differential realization, which requires a
cascade of only two open-loop gain stages. Computationally efficient analyses are conducted by
replacing the feedback subcircuit with its y-parameter model.

4. Series–series feedback amplifier is a transconductance signal processor in that both its input and
output resistances are large. Similar to its shunt–shunt counterpart, its implementation generally
requires a cascade of three open-loop gain stages. Computationally efficient analyses are conducted
by replacing the feedback subcircuit with its z-parameter model.

The two remaining feedback circuits are dual-loop topologies that can stabilize the driving-point input
and output resistances, as well as the forward gain characteristics, with respect to shifts in active element
parameters. One of these latter architectures, the series–series=shunt–shunt feedback amplifier, is par-
ticularly well suited to electronic applications that require a multistage cascade.

1. Series–series=shunt–shunt feedback amplifier coalesces the series–series architecture with its
shunt–shunt dual. It is particularly well suited to applications, such as wideband communication
networks, which require match terminated source and load resistances. Requisite frequency
compensation and broadbanding criteria mirror those incorporated in the series–series and
shunt–shunt single-loop feedback topologies.

2. Series–shunt=shunt–series feedback amplifier coalesces the series–shunt architecture with its
shunt–series dual. Although its input resistance can be designed to match the source resistance
seen by the input port of the amplifier, and its output resistance can be matched to the load
resistance driven by the amplifier, match terminated operating (Rin¼RST¼RLT¼Rout) is not
feasible. Requisite frequency compensation and broadbanding criteria mirror those incorporated
in the series–shunt and shunt–series single-loop feedback topologies.
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3.1 Introduction

In Section 1.2, we used the ideal feedback model to study the properties of feedback amplifiers. The model is
useful only if we can separate a feedback amplifier into the basic amplifierm(s) and the feedback networkb(s).
The procedure is difficult and sometimes virtually impossible, because the forward path may not be strictly
unilateral, the feedback path is usually bilateral, and the input and output coupling networks are often
complicated. Thus, the ideal feedbackmodel is not an adequate representation of a practical amplifier. In the
remainder of this section, we shall develop Bode’s feedback theory, which is applicable to the general network
configuration and avoids the necessity of identifying the transfer functions m(s) and b(s).

Bode’s feedback theory [1] is based on the concept of return difference, which is defined in terms of
network determinants. We show that the return difference is a generalization of the concept of the
feedback factor of the ideal feedback model, and can be measured physically from the amplifier itself. We
then introduce the notion of null return difference and discuss its physical significance. Because the
feedback theory will be formulated in terms of the first- and second-order cofactors of the elements of
the indefinite-admittance matrix of a feedback circuit, we first review briefly the formulation of the
indefinite-admittance matrix.

3.2 Indefinite-Admittance Matrix

Figure 3.1 is an n-terminal network N composed of an arbitrary number of active and passive network
elements connected in any way whatsoever. Let V1,V2, . . . ,Vn be the Laplace-transformed potentials
measured between terminals 1, 2, . . . ,n and some arbitrary but unspecified reference point, and let
I1, I2, . . . , In be the Laplace-transformed currents entering the terminals 1, 2, . . . ,n from outside the network.
The networkN together with its load is linear, so the terminal current and voltages are related by the equation

I1
I2
..
.

In

2
6664

3
7775 ¼

y11 y12 � � � y1n
y21 y22 � � � y2n
..
. ..

. ..
. ..

.

yn1 yn2 � � � ynn

2
6664

3
7775

V1

V2

..

.

Vn

2
6664

3
7775þ

J1
J2
..
.

Jn

2
6664

3
7775 (3:1)
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or more succinctly as

I(s) ¼ Y(s)V(s)þ J(s) (3:2)

where Jk (k¼ 1, 2, . . . , n) denotes the current flowing into the kth terminal when all terminals of N are
grounded to the reference point. The coefficient matrix Y(s) is called the indefinite-admittance matrix
because the reference point for the potentials is some arbitrary but unspecified point outside the network.
Notice that the symbol Y(s) is used to denote either the admittance matrix or the indefinite-admittance
matrix. This should not create any confusion because the context will tell. In the remainder of this
section, we shall deal exclusively with the indefinite-admittance matrix.

We remark that the short-circuit currents Jk result from the independent sources and=or initial
conditions in the interior of N. For our purposes, we shall consider all independent sources outside the
network and set all initial conditions to zero. Hence, J(s) is considered to be zero, and Equation 3.2
becomes

I(s) ¼ Y(s)V(s) (3:3)

where the elements yij of Y(s) can be obtained as

yij ¼ Ii
Vj

����
vx¼0, x 6¼j

(3:4)

As an illustration, consider a small-signal equivalent model of a transistor in Figure 3.2. Its indefinite-
admittance matrix is found to be

V1

V2
I2

I1

Vn
In

n

1

2

+

+

+

–––
Reference-potential point

n-Terminal
network N

FIGURE 3.1 General symbolic representation of an n-terminal network.

C1
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g2g1 V gmV

1 2

3 3

+

–

FIGURE 3.2 Small-signal equivalent network of a transistor.
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Y(s) ¼
g1 þ sC1 þ sC2 �sC2 �g1 � sC1

gm � sC2 g2 þ sC2 �g2 � gm
�g1 � sC1 � gm �g2 g1 þ g2 þ gm þ sC1

2
4

3
5 (3:5)

Observe that the sum of elements of each row or column is equal to zero. The fact that these properties
are valid in general for the indefinite-admittance matrix will now be demonstrated.
To see that the sum of the elements in each column of Y(s) equals zero, we add all n equations of

Equation 3.1 to yield

Xn
i¼1

Xn
j¼1

yjiVi ¼
Xn
m¼1

Im �
Xn
m¼1

Jm ¼ 0 (3:6)

The last equation is obtained by appealing to Kirchhoff’s current law for the node corresponding to the
reference point. Setting all the terminal voltages to zero except the kth one, which is nonzero, gives

Vk

Xn
j¼1

yjk ¼ 0 (3:7)

Because Vk 6¼ 0, it follows that the sum of the elements of each column of Y(s) equals zero. Thus, the
indefinite-admittance matrix is always singular.
To demonstrate that each row sum of Y(s) is also zero, we recognize that because the point of zero

potential may be chosen arbitrarily, the currents Jk and Ik remain invariant when all the terminal voltages
Vk are changed by the same but arbitrary constant amount. Thus, if V0 is an n-vector, each element of
which is v0 6¼ 0, then

I(s)� J(s) ¼ Y(s) V(s)þ V0½ � ¼ Y(s)V(s)þ Y(s)V0 (3:8)

which after invoking Equation 3.2 yields that

Y(s)V0 ¼ 0 (3:9)

or

Xn
j¼1

yij ¼ 0, i ¼ 1, 2, . . . , n (3:10)

showing that each row sum of Y(s) equals zero.
Thus, if Yuv denotes the submatrix obtained from an indefinite-admittance matrix Y(s) by deleting the

uth row and vth column, then the (first order) cofactor, denoted by the symbol Yuv, of the element yuv of
Y(s), is defined by

Yuv ¼ (� 1)uþvdetYuv (3:11)

As a consequence of the zero-row-sum and zero-column-sum properties, all the cofactors of the elements
of the indefinite-admittance matrix are equal. Such a matrix is also referred to as the equicofactor matrix.
If Yuv and Yij are any two cofactors of the elements of Y(s), then

Yuv ¼ Yij (3:12)
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for all u, v, i, and j. For the indefinite-admittance matrix Y(s) of Equation 3.5 it is straightforward to
verify that all of its nine cofactors are equal to

Yuv ¼ s2C1C2 þ s C1g2 þ C2g1 þ C2g2 þ gmC2ð Þ þ g1g2 (3:13)

for u, v¼ 1, 2, 3.
Denote by Yrp,sq the submatrix obtained from Y(s) by striking out rows r and s and columns p and q.

Then the second-order cofactor, denoted by the symbol Yrp,sq of the elements yrp, and ysq of Y(s) is a
scalar quantity defined by the relation

Yrp,sq ¼ sgn(r � s)sgn(p� q)(�1)rþpþsþq detYrp,sq (3:14)

where r 6¼ s and p 6¼ q, and

sgn u ¼ þ1 if u > 0 (3:15a)

sgn u ¼ �1 if u < 0 (3:15b)

The symbols Yuv and Yuv or Yrp,sq and Yrp,sq should not create any confusion because one is in boldface
whereas the other is italic. Also, for our purposes, it is convenient to define

Yrp,sq ¼ 0, r ¼ s or p ¼ q (3:16a)

or

sgn 0 ¼ 0 (3:16b)

This convention will be followed throughout the remainder of this section.
As an example, consider the hybrid-pi equivalent network of a transistor in Figure 3.3. Assume that

each node is an accessible terminal of a four-terminal network. Its indefinite-admittance matrix is

Y(s) ¼
0:02 0 �0:02 0
0 5� 10�12s 0:2� 5� 10�12s �0:2

�0:02 �5� 10�12s 0:024þ 105� 10�12s �0:004� 10�10s
0 0 �0:204� 10�10s 0:204þ 10�10s

2
664

3
775 (3:17)

The second-order cofactor Y31,42 and Y11,34 of the elements of Y(s) of Equation 3.17 are computed
as follows:

100 pF

5 pF

0.2 VV

50 Ω

250 Ω

3

+

–

1 2

4 4

FIGURE 3.3 Hybrid-pi equivalent network of a transistor.
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Y31,42 ¼ sgn(3� 4)sgn(1� 2)(�1)3þ1þ4þ2 det
�0:02 0

0:2� 5� 10�12s �0:2

� �

¼ 0:004 (3:18a)

Y11,34 ¼ sgn(1� 3)sgn(1� 4)(�1)1þ1þ3þ4 det
5� 10�12s 0:2� 5� 10�12s

0 �0:204� 10�10s

� �

¼ 5� 10�12s 0:204þ 10�10s
� �

(3:18b)

The usefulness of the indefinite-admittance matrix lies in the fact that it facilitates the computation of the
driving-point or transfer functions between any pair of nodes or from any pair of nodes to any other pair.
In the following, we present elegant, compact, and explicit formulas that express the network functions in
terms of the ratios of the first- and=or second-order cofactors of the elements of the indefinite-admittance
matrix.
Assume that a current source is connected between any two nodes r and s so that a current Isr is

injected into the rth node and at the same time is extracted from the sth node. Suppose that an ideal
voltmeter is connected from node p to node q so that it indicates the potential rise from q to p, as depicted
symbolically in Figure 3.4. Then the transfer impedance, denoted by the symbol zrp,sq, between the node
pairs rs and pq of the network of Figure 3.4 is defined by the relation

zrp,sq ¼ Vpq

Isr
(3:19)

with all initial conditions and independent sources inside N set to zero. The representation is, of course,
quite general. When r¼ p and s¼ q, the transfer impedance zrp,sq, becomes the driving-point impedance
zrr,ss between the terminal pair rs.

In Figure 3.4, set all initial conditions and independent sources in N to zero and choose terminal q to
be the reference-potential point for all other terminals. In terms of Equation 3.1, these operations are
equivalent to setting J¼ 0, Vq¼ 0, Ix¼ 0 for x 6¼ r, s and Ir¼�Is¼ Isr. Because Y(s) is an equicofactor
matrix, the equations of Equation 3.1 are not linearly independent and one of them is superfluous. Let us
suppress the sth equation from Equation 3.1, which then reduces to

I�s ¼ YsqV�q (3:20)

where I�s and V�q denote the subvectors obtained from I and V of Equation 3.3 by deleting the sth row
and qth row, respectively. Applying Cramer’s rule to solve for Vp yields

Vp ¼ det~Ysq

detYsq
(3:21)
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FIGURE 3.4 Symbolic representation for the measurement of the transfer impedance.
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where ~Ysq is the matrix derived from Ysq by replacing the column corresponding to Vp by I�s. We
recognize that I�s is in the pth column if p< q but in the (p� 1)th column if p> q. Furthermore, the row
in which Isr appears is the rth row if r< s, but is the (r – 1)th row if r> s. Thus, we obtain

(�1)sþq det~Ysq ¼ IsrYrp,sq (3:22)

In addition, we have

detYsq ¼ (�1)sþqYsq (3:23)

Substituting these in Equation 3.21 in conjunction with Equation 3.19, we obtain

zrp,sq ¼
Yrp,sq

Yuv
(3:24)

zrr,ss ¼ Yrr,ss

Yuv
(3:25)

in which we have invoked the fact that Ysq¼Yuv.
The voltage gain, denoted by grp,sq, between the node pairs rs and pq of the network of Figure 3.4 is

defined by

grp,sq ¼ Vpq

Vrs
(3:26)

again with all initial conditions and independent sources in N being set to zero. Thus, from Equations
3.24 and 3.25 we obtain

grp,sq ¼ zrp,sq
zrr,ss

¼ Yrp,sq

Yrr,ss
(3:27)

The symbols have been chosen to help us remember. In the numerators of Equations 3.24, 3.25, and 3.27,
the order of the subscripts is as follows: r, the current injecting node; p, the voltage measurement node;
s, the current extracting node; and q, the voltage reference node. Nodes r and p designate the input and
output transfer measurement, and nodes s and q form a sort of double datum.

As an illustration, we consider the hybrid-pi transistor equivalent network of Figure 3.3. For this
transistor, suppose that we connect a 100 V load resistor between nodes 2 and 4, and excite the resulting
circuit by a voltage source V14, as depicted in Figure 3.5. To simplify our notation, let p¼ 10�9s. The
indefinite-admittance matrix of the amplifier is

V240.2 V

5 pF

100 pF 100 Ω250 Ω

50 ΩI41

V14

I 24
3

44

1 2
+

–

V

+

–
–

+

FIGURE 3.5 Transistor amplifier used to illustrate the computation of grp,sq.
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Y(s) ¼
0:02 0 �0:02 0
0 0:01þ 0:005p 0:2� 0:005p �0:21

�0:02 �0:005p 0:024þ 0:105p �0:004� 0:1p
0 �0:01 �0:204� 0:1p 0:214þ 0:1p

2
664

3
775 (3:28)

To compute the voltage gain g12,44, we appeal to Equation 3.27 and obtain

g12,44 ¼ V24

V14
¼ Y12,44

Y11,44
¼ p� 40

5p2 þ 21:7pþ 2:4
(3:29)

The input impedance facing the voltage source V14 is determined by

z11,44 ¼ V14

I41
¼ Y11,44

Yuv
¼ Y11,44

Y44
¼ 50p2 þ 217pþ 24

p2 þ 4:14pþ 0:08
(3:30)

To compute the current gain defined as the ratio of the current I24 in the 100 V resistor to the input
current I41, we apply Equation 3.24 and obtain

I24
I41

¼ 0:01
V24

I41
¼ 0:01z12,44 ¼ 0:01

Y12,44

Y44
¼ 0:1p� 4

p2 þ 4:14pþ 0:08
(3:31)

Finally, to compute the transfer admittance defined as the ratio of the load current I24 to the input voltage
V14, we appeal to Equation 3.27 and obtain

I24
V14

¼ 0:01
V24

V14
¼ 0:01g12,44 ¼ 0:01

Y12,44

Y11,44
¼ p� 40

500p2 þ 2170pþ 240
(3:32)

3.3 Return Difference

In the study of feedback amplifier response, we are usually interested in how a particular element of the
amplifier affects that response. This element is either crucial in terms of its effect on the entire system or
of primary concern to the designer. It may be the transfer function of an active device, the gain of an
amplifier, or the immittance of a one-port network. For our purposes, we assume that this element x is
the controlling parameter of a voltage-controlled current source defined by the equation

I ¼ xV (3:33)

To focus our attention on the element x, Figure 3.6 is the general configuration of a feedback amplifier in
which the controlled source is brought out as a two-port network connected to a general four-port
network, along with the input source combination of Is and admittance Y1 and the load admittance Y2.
We remark that the two-port representation of a controlled source Equation 3.33 is quite general. It

includes the special situation where a one-port element is characterized by its immittance. In this case,
the controlling voltage V is the terminal voltage of the controlled current source I, and x become the one-
port admittance.
The return difference F(x) of a feedback amplifier with respect to an element x is defined as the ratio of

the two functional values assumed by the first-order cofactor of an element of its indefinite-admittance
matrix under the condition that the element x assumes its nominal value and the condition that the
element x assumes the value zero. To emphasize the importance of the feedback element x, we express the

General Feedback Theory 3-7



indefinite-admittance matrix Y of the amplifier as a function of x, even though it is also a function of the
complex-frequency variable s, and write Y¼Y(x). Then, we have [2]

F(x) � Yuv(x)
Yuv(0)

(3:34)

where

Yuv(0) ¼ Yuv(x)jx¼0 (3:35)

The physical significance of the return difference will now be considered. In the network of Figure 3.6, the
input, the output, the controlling branch, and the controlled source are labeled as indicated. Then, the
element x enters the indefinite-admittance matrix Y(x) in a rectangular pattern as shown next:

a b c d

Y(x) ¼

a

b

c

d

x �x

�x x

2
6664

3
7775

(3:36)

If in Figure 3.6 we replace the controlled current source xV by an independent current source of xA and
set the excitation current source Is to zero, the indefinite-admittance matrix of the resulting network is
simply Y(0). By appealing to Equation 3.24, the new voltage V 0

ab appearing at terminals a and b of the
controlling branch is

V 0
ab ¼ x

Yda,cb(0)
Yuv(0)

¼ �x
Yca,db(0)
Yuv(0)

(3:37)

Notice that the current injecting point is terminal d, not c.
The preceding operation of replacing the controlled current source by an independent current source

and setting the excitation Is to zero can be represented symbolically as in Figure 3.7. Observe that the
controlling branch is broken off as marked and a 1 V voltage source is applied to the right of the breaking
mark. This 1 V sinusoidal voltage of a fixed angular frequency produces a current of x A at the controlled

+

+

+

+

––

–

–

r a b d c p

qs

Vrs

Vab

Vpq

Ipq

Y1 Y2

V xV

Is

FIGURE 3.6 General configuration of a feedback amplifier.
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current source. The voltage appearing at the left of the breaking mark caused by this 1 V excitation is
then V 0

ab as indicated. This returned voltage V 0
ab has the same physical significance as the loop

transmission mb defined for the ideal feedback model in Chapter 1. To see this, we set the input
excitation to the ideal feedback model to zero, break the forward path, and apply a unit input to the
right of the break, as depicted in Figure 3.8. The signal appearing at the left of the break is precisely the
loop transmission.
For this reason, we introduce the concept of return ratio T, which is defined as the negative of the

voltage appearing at the controlling branch when the controlled current source is replaced by an
independent current source of x A and the input excitation is set to zero. Thus, the return ratio T is
simply the negative of the returned voltage V 0

ab, or T ¼ �V 0
ab. With this in mind, we next compute the

difference between the 1 V excitation and the returned voltage V 0
ab obtaining

1� V 0
ab ¼ 1þ x

Yca,db

Yuv(0)
¼ Yuv(0)þ xYca,db

Yuv(0)
¼ Ydb(0)þ xYca,db

Ydb(0)

¼ Ydb(x)
Ydb(0)

¼ Yuv(x)
Yuv(0)

¼ F(x) (3:38)

in which we have invoked the identities Yuv¼Yij and

Ydb(x) ¼ Ydb(0)þ xYca,db (3:39)

V 'ab

Y1 Y2

r a b d c p

qs

V

T

xV

F(x)

1 V

––
–

–

+
+++

+

–

FIGURE 3.7 Physical interpretation of the return difference with respect to the controlling parameter of a voltage-
controlled current source.

+

+

μβ

β(s)

μ(s)0 ∑ 1

FIGURE 3.8 Physical interpretation of the loop transmission.
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We remark that we write Yca,db(x) as Yca,db because it is independent of x. In other words, the return
difference F(x) is simply the difference of the 1 V excitation and the returned voltage V 0

ab as illustrated in
Figure 3.7, and hence its name. Because

F(x) ¼ 1þ T ¼ 1� mb (3:40)

we conclude that the return difference has the same physical significance as the feedback factor of the
ideal feedback model. The significance of the previous physical interpretations is that it permits us to
determine the return ratio T or �mb by measurement. Once the return ratio is measured, the other
quantities such as return difference and loop transmission are known.
To illustrate, consider the voltage-series or the series-parallel feedback amplifier of Figure 3.9. Assume

that the two transistors are identical with the following hybrid parameters:

hie ¼ 1:1 kV, hfe ¼ 50, hre ¼ hoe ¼ 0 (3:41)

After the biasing and coupling circuitry have been removed, the equivalent network is presented in Figure
3.10. The effective load of the first transistor is composed of the parallel combination of the 10, 33, 47,
and 1.1 kV resistors. The effect of the 150 and 47 kV resistors can be ignored; they are included in the
equivalent network to show their insignificance in the computation.
To simplify our notation, let

~ak ¼ ak � 10�4 ¼ hfe
hie

¼ 455� 10�4, k ¼ 1, 2 (3:42)

150 kΩ 10 kΩ 47 kΩ 4.7 kΩ

47 kΩ

4.7 kΩ

33 kΩ

5 μF
5 μF

5 μF

10 μF

V2

+ 25 V

+

–
+

–

Vs

100 Ω

50
 μ

F

4.7
 kΩ

50
 μ

F

4.7
 kΩ

FIGURE 3.9 Voltage-series feedback amplifier together with its biasing and coupling circuitry.
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The subscript k is used to distinguish the transconductances of the first and the second transistors.
The indefinite-admittance matrix of the feedback amplifier of Figure 3.9 is

Y ¼ 10�4

9:37 0 �9:09 0 �0:28
0 4:256 �2:128 a2 �2:128� a2

�9:09� a1 �2:128 111:218þ a1 0 �100
a1 0 �a1 10:61 �10:61

�0:28 �2:128 �100 �10:61� a1 113:018þ a1

2
66664

3
77775 (3:43)

By applying Equation 3.27, the amplifier voltage gain is computed as

g12,25 ¼ V25

Vs
¼ V12,25

V11,25
¼ 211:54� 10�7

4:66� 10�7
¼ 45:39 (3:44)

To calculate the return differences with respect to the transconductances ~ak of the transistors, we short
circuit the voltage sourceVs. The resulting indefinite-admittance matrix is obtained from Equation 3.43 by
adding the first row to the fifth row and the first column to the fifth column and then deleting the first row
and column. Its first-order cofactor is simply Y11,55. Thus, the return differences with respect to ~ak are

F ~a1ð Þ ¼ Y11,55 ~a1ð Þ
Y11,55(0)

¼ 466:1� 10�9

4:97� 10�9
¼ 93:70 (3:45a)

F ~a2ð Þ ¼ Y11,55 ~a2ð Þ
Y11,55(0)

¼ 466:1� 10�9

25:52� 10�9
¼ 18:26 (3:45b)

3.4 Null Return Difference

In this section, we introduce the notion of null return difference, which is found to be very useful in
measurement situations and in the computation of the sensitivity for the feedback amplifiers.
The null return difference F̂(x) of a feedback amplifier with respect to an element x is defined to be the

ratio of the two functional values assumed by the second-order cofactor Yrp,sq of the elements of its

212.8 μmho

909 μmho

V13

V45 V25

I25

α~2V45

α~1V13

Vs

+

+
+

+

–

–

–

–1

5

3 4 2

10
61

 μ
m

ho

0.0
1 m

ho

28
 μ

m
ho

21
2.8

 μ
m

ho

FIGURE 3.10 Equivalent network of the feedback amplifier of Figure 3.9.
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indefinite-admittance matrix Y under the condition that the element x assumes its nominal value and the
condition that the element x assumes the value zero where r and s are input terminals, and p and q are the
output terminals of the amplifier, or

F̂(x) ¼ Yrp,sq(x)

Yrp,sq(0)
(3:46)

Likewise, the null return ratio T̂ , with respect to a voltage-controlled current source I¼ xV, is the
negative of the voltage appearing at the controlling branch when the controlled current source is replaced
by an independent current source of xA and when the input excitation is adjusted so that the output of
the amplifier is identically zero.

Now, we demonstrate that the null return difference is simply the return difference in the network
under the situation that the input excitation Is has been adjusted so that the output is identically zero. In
the network of Figure 3.6, suppose that we replace the controlled current source by an independent
current source of xA. Then by applying Equation 3.24 and the superposition principle, the output current
Ipq at the load is

Ipq ¼ Y2 Is
Yrp,sq(0)

Yuv(0)
þ x

Ydp,cq(0)

Yuv(0)

� �
(3:47)

Setting Ipq¼ 0 or Vpq¼ 0 yields

Is � I0 ¼ �x
Ydp,cq(0)

Yrp,sq(0)

� �
(3:48)

in which Ydp,cq is independent of x. This adjustment is possible only if a direct transmission occurs from
the input to the output when x is set to zero. Thus, in the network of Figure 3.7, if we connect an
independent current source of strength I0 at its input port, the voltage V 0

ab is the negative of the null
return ratio T̂ . Using Equation 3.24, we obtain [3]

T̂ ¼ �V 0
ab ¼ �x

Yda,cb(0)
Yuv(0)

� I0
Yra,sb(0)
Yuv(0)

¼ � x Yda,cb(0)Yrp,sq(0)� Yra,sb(0)Ydp,cq(0)
� �

Yuv(0)Yrp,sq(0)

¼ x _Yrp,sq

Yrp,sq(0)
¼ Yrp,sq(x)

Yrp,sq(0)
� 1 (3:49)

where

_Yrp,sq � dYrp,sq(x)

dx
(3:50)

This leads to

F̂(x) ¼ 1þ T̂ ¼ 1� V 0
ab (3:51)

which demonstrates that the null return difference F̂(x) is simply the difference of the 1 V excitation
applied to the right of the breaking mark of the broken controlling branch of the controlled source and
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the returned voltage V 0
ab appearing at the left of the breaking mark under the situation that the input

signal Is is adjusted so that the output is identically zero.
As an illustration, consider the voltage-series feedback amplifier of Figure 3.9, an equivalent network of

which is presented in Figure 3.10. Using the indefinite-admittance matrix of Equation 3.43 in conjunc-
tion with Equation 3.42, the null return differences with respect to ~ak are

F̂ ~a1ð Þ ¼ Y12,55 ~a1ð Þ
Y12,55(0)

¼ 211:54� 10�7

205:24� 10�12
¼ 103:07� 103 (3:52a)

F̂ ~a2ð Þ ¼ Y12,55 ~a2ð Þ
Y12,55(0)

¼ 211:54� 10�7

104:79� 10�10
¼ 2018:70 (3:52b)

Alternatively, F̂ ~a1ð Þ can be computed by using its physical interpretation as follows. Replace the
controlled source ~a1V13 in Figure 3.10 by an independent current source of ~a1 A. We then adjust the
voltage source Vs so that the output current I25 is identically zero. Let I0 be the input current resulting
from this source. The corresponding network is presented in Figure 3.11. From this network, we obtain

F̂ ~a1ð Þ ¼ 1þ T̂ ¼ 1� V 0
13 ¼ 1� 100V 0

35 þ a2V 0
45 � a1

9:09
¼ 103:07� 103 (3:53)

Likewise, we can use the same procedure to compute the return difference F̂ ~a2ð Þ.
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We now study the effects of feedback on amplifier impedance and gain and obtain some useful relations
among the return difference, the null return difference, and impedance functions in general.
Refer to the general feedback configuration of Figure 3.6. Let w be a transfer function. As before, to

emphasize the importance of the feedback element x, we write w¼w(x). To be definite, let w(x) for the
time being be the current gain between the output and input ports. Then, from Equation 3.24 we obtain

w(x) ¼ Ipq
Is

¼ Y2Vpq

Is
¼ Yrp,sq(x)

Yuv(x)
Y2 (4:1)

yielding

w(x)
w(0)

¼ Yrp,sq(x)

Yuv(x)
Yuv(0)
Yrp,sq(0)

¼ F̂(x)
F(x)

(4:2)

provided that w(0) 6¼ 0. This gives a very useful formula for computing the current gain:

w(x) ¼ w(0)
F̂(x)
F(x)

(4:3)

Equation 4.3 remains valid if w(x) represents the transfer impedance zrp,sq¼Vpq=Is instead of the
current gain.

4.1 Blackman’s Formula

In particular, when r¼ p and s¼ q, w(x) represents the driving-point impedance zrr,ss(x) looking into the
terminals r and s, and we have a somewhat different interpretation. In this case, F(x) is the return
difference with respect to the element x under the condition Is¼ 0. Thus, F(x) is the return difference for
the situation when the port where the input impedance is defined is left open without a source and we
write F(x)¼ F(input open circuited). Likewise, from Figure 3.6, F̂(x) is the return difference with respect
to x for the input excitation Is and output response Vrs under the condition Is is adjusted so that Vrs is
identically zero. Thus, F̂(x) is the return difference for the situation when the port where the input

4-1



impedance is defined is short circuited, and we write F̂(x)¼ F (input short circuited). Consequently, the
input impedance Z(x) looking into a terminal pair can be conveniently expressed as

Z(x) ¼ Z(0)
F(input short circuited)
F(input open circuited)

(4:4)

This is the well-known Blackman’s formula for computing an active impedance. The formula is
extremely useful because the right-hand side can usually be determined rather easily. If x represents
the controlling parameter of a controlled source in a single-loop feedback amplifier, then setting x¼ 0
opens the feedback loop and Z(0) is simply a passive impedance. The return difference for x when the
input port is short circuited or open circuited is relatively simple to compute because shorting out or
opening a terminal pair frequently breaks the feedback loop. In addition, Blackman’s formula can be used
to determine the return difference by measurements. Because it involves two return differences, only one
of them can be identified and the other must be known in advance. In the case of a single-loop feedback
amplifier, it is usually possible to choose a terminal pair so that either the numerator or the denominator
on the right-hand side of Equation 4.4 is unity. If F(input short circuited)¼ 1, F(input open circuited)
becomes the return difference under normal operating condition and we have

F(x) ¼ Z(0)
Z(x)

(4:5)

On the other hand, if F(input open circuited)¼ 1, F(input short circuited) becomes the return difference
under normal operating condition and we obtain

F(x) ¼ Z(x)
Z(0)

(4:6)

Example 4.1

The network of Figure 4.1 is a general active RC one-port realization of a rational impedance. We use
Blackman’s formula to verify that its input admittance is given by

Y ¼ 1þ Z3 � Z4
Z1 � Z2

(4:7)

1 Ω

1 Ω

Z2

Z3Z1

Z4

2V3
Z3

V3

I

IY

–

+

FIGURE 4.1 General active RC one-port realization of a rational function.
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Appealing to Equation 4.4, the input admittance written as Y¼ Y(x) can be written as

Y(x) ¼ Y(0)
F(input open circuited)
F(input short circuited)

(4:8)

where x¼ 2=Z3. By setting x to zero, the network used to compute Y(0) is shown in Figure 4.2. Its input
admittance is

Y(0) ¼ Z1 þ Z2 þ Z3 þ Z4 þ 2
Z1 þ Z2

(4:9)

When the input port is open circuited, the network of Figure 4.1 degenerates to that depicted in
Figure 4.3. The return difference with respect to x is

F(input open circuited) ¼ 1� V 0
3 ¼

Z1 þ Z3 � Z2 � Z4
2þ Z1 þ Z2 þ Z3 þ Z4

(4:10)

where the returned voltage V 0
3 at the controlling branch is given by

V 0
3 ¼

2(1þ Z2 þ Z4)
2þ Z1 þ Z2 þ Z3 þ Z4

(4:11)

Y(0)

I

I

1 Ω

Z1 + Z2 1+Z3 + Z4

FIGURE 4.2 Network used to compute Y(0).

1 Ω

Z2

Z4

Z1 Z3

1 Ω +

–

V ́3

2
Z3

FIGURE 4.3 Network used to compute F(input open circuited).
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To compute the return difference when the input port is short circuited, we use the network of
Figure 4.4 and obtain

F(input short circuited) ¼ 1� V 00
3 ¼ Z1 � Z2

Z1 þ Z2
(4:12)

where the return voltage V 00
3 at the controlling branch is found to be

V 00
3 ¼ 2Z2

Z1 þ Z2
(4:13)

Substituting Equations 4.9, 4.10, and 4.12 in Equation 4.8 yields the desired result.

Y ¼ 1þ Z3 � Z4
Z1 � Z2

(4:14)

To determine the effect of feedback on the input and output impedances, we choose the series-parallel
feedback configuration of Figure 4.5. By shorting the terminals of Y2, we interrupt the feedback loop,

1 Ω

1 Ω

Z2

Z1 Z3

Z4

V 3̋

2/Z3

I

I

+

–

FIGURE 4.4 Network used to compute F(input short circuited).

Z1

Vs

Y2

Na

Nf

FIGURE 4.5 Series-parallel feedback configuration.
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therefore, formula (Equation 4.5) applies and the output impedance across the load admittance
Y2 becomes

Zout(x) ¼ Zout(0)
F(x)

(4:15)

demonstrating that the impedance measured across the path of the feedback is reduced by the factor that
is the normal value of the return difference with respect to the element x, where x is an arbitrary element
of interest. For the input impedance of the amplifier looking into the voltage source Vs of Figure 4.5, by
open circuiting or removing the voltage source Vs, we break the feedback loop. Thus, formula (Equation
4.6) applies and the input impedance becomes

Zin(x) ¼ F(x)Zin(0) (4:16)

meaning that the impedance measured in series lines is increased by the same factor F(x). Similar
conclusions can be reached for other types of configurations discussed in Chapter 2 by applying Black-
man’s formula.

Again, refer to the general feedback configuration of Figure 3.6. If w(x) represents the voltage gain
Vpq=Vrs or the transfer admittance Ipq=Vrs. Then, from Equation 4.27 we can write

w(x)
w(0)

¼ Yrp,sq(x)

Yrp,sq(0)
Yrr,ss(0)
Yrr,ss(x)

(4:17)

The first term in the product on the right-hand side is the null return difference F̂(x) with respect to x for
the input terminals r and s and output terminals p and q. The second term is the reciprocal of the null
return difference with respect to x for the same input and output port at terminals r and s. This reciprocal
can then be interpreted as the return difference with respect to x when the input port of the amplifier is
short circuited. Thus, the voltage gain or the transfer admittance can be expressed as

w(x) ¼ w(0)
F̂(x)

F(input short circuited)
(4:18)

Finally, if w(x) denotes the short circuit current gain Ipq=Is as Y2 approaches infinity, we obtain

w(x)
w(0)

¼ Yrp,sq(x)

Yrp,sq(0)

Ypp,qq(0)

Ypp,qq(x)
(4:19)

The second term in the product on the right-hand side is the reciprocal of the return difference with
respect to x when the output port of the amplifier is short circuited, giving a formula for the short circuit
current gain as

w(x) ¼ w(0)
F̂(x)

F(output short circuited)
(4:20)

Again, consider the voltage-series or series-parallel feedback amplifier of Figure 3.9 an equivalent network
of which is given in Figure 3.10. The return differences F(~ak), the null return differences F̂(~ak) and the
voltage gain w were computed earlier in Equations 3.45, 3.52, and 3.44, and are repeated next:

F(~a1) ¼ 93:70, F(~a2) ¼ 18:26 (4:21a)

F̂(~a1) ¼ 103:07� 103, F̂(~a2) ¼ 2018:70 (4:21b)

w ¼ V25

Vs
¼ w(~a1) ¼ w(~a2) ¼ 45:39 (4:21c)
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We apply Equation 4.18 to calculate the voltage gain w, as follows:

w(~a1) ¼ w(0)
F̂(~a1)

F(input short circuited)
¼ 0:04126

103:07� 103

93:699
¼ 45:39 (4:22)

where

w(0) ¼ Y12,55(~a1)
Y11,55(~a1)

����
~a1¼0

¼ 205:24� 10�12

497:41� 10�11
¼ 0:04126 (4:23a)

F(input short circuited) ¼ Y11,55(~a1)
Y11,55(0)

¼ 466:07� 10�9

4:9741� 10�9
¼ 93:699 (4:23b)

and

w(~a2) ¼ w(0)
F̂(~a2)

F(input short circuited)
¼ 0:41058

2018:70
18:26

¼ 45:39 (4:24)

where

w(0) ¼ Y12,55(~a2)
Y11,55(~a2)

j~a2¼0 ¼
104:79� 10�10

255:22� 10�10
¼ 0:41058 (4:25a)

F(input short circuited) ¼ Y11,55(~a2)
Y11,55(0)

¼ 466:07� 10�9

25:52� 10�9
¼ 18:26 (4:25b)

4.2 Sensitivity Function

One of the most important effects of negative feedback is its ability to make an amplifier less sensitive to
the variations of its parameters because of aging, temperature variations, or other environment changes.
A useful quantitative measure for the degree of dependence of an amplifier on a particular parameter is
known as the sensitivity. The sensitivity function, written as 6(x), for a given transfer function with
respect to an element x is defined as the ratio of the fractional change in a transfer function to the
fractional change in x for the situation when all changes concerned are differentially small. Thus, if w(x)
is the transfer function, the sensitivity function can be written as

6(x) ¼ lim
Dx!0

Dw=w
Dx=x

¼ x
w

@w
@x

¼ x
@ lnw
@x

(4:26)

Refer to the general feedback configuration of Figure 3.6, and let w(x) represent either the current gain
Ipq=Is or the transfer impedance Vpq=Is for the time being. Then, we obtain from Equation 3.24

w(x) ¼ Y2
Yrp,sq(x)

Yuv(x)
or

Yrp,sq(x)

Yuv(x)
(4:27)

As before, we write

_Yuv(x) ¼ @Yuv(x)
@x

(4:28a)
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_Yrp,sq(x) ¼ @Yrp,sq(x)

@x
(4:28b)

obtaining

Yuv(x) ¼ Yuv(0)þ x _Yuv(x) (4:29a)

Yrp,sq(x) ¼ Yrp,sq(0)þ x _Yrp,sq(x) (4:29b)

Substituting Equation 4.27 in Equation 4.26, in conjunction with Equation 4.29, yields

6(x) ¼ x
_Yrp,sq(x)

Yrp,sq(x)
� x

_Yuv(x)
Yuv(x)

¼ Yrp,sq(x)� Yrp,sq(0)

Yrp,sq(x)
� Yuv(x)� Yuv(0)

Yuv(x)

¼ Yuv(0)
Yuv(x)

� Yrp,sq(0)

Yrp,sq(x)
¼ 1

F(x)
� 1

F̂(x)
(4:30)

Combining this with Equation 4.3, we obtain

6(x) ¼ 1
F(x)

1� w(0)
w(x)

� �
(4:31)

Observe that if w(0)¼ 0, Equation 4.31 becomes

6(x) ¼ 1
F(x)

(4:32)

meaning that sensitivity is equal to the reciprocal of the return difference. For the ideal feedback model,
the feedback path is unilateral. Hence, w(0)¼ 0 and

6 ¼ 1
F
¼ 1

1þ T
¼ 1

1� mb
(4:33)

For a practical amplifier, w(0) is usually very much smaller than w(x) in the passband, and F� 1=6 may
be used as a good estimate of the reciprocal of the sensitivity in the same frequency band. A single-loop
feedback amplifier composed of a cascade of common-emitter stages with a passive network providing
the desired feedback fulfills this requirements. If in such a structure any one of the transistors fails, the
forward transmission is nearly zero and w(0) is practically zero. Our conclusion is that if the failure of
any element will interrupt the transmission through the amplifier as a whole to nearly zero, the sensitivity
is approximately equal to the reciprocal of the return difference with respect to that element. In the case
of driving-point impedance, w(0) is not usually smaller than w(x), and the reciprocity relation is not
generally valid.
Now assume that w(x) represents the voltage gain. Substituting Equation 4.27 in Equation 4.26

results in

6(x) ¼ x
_Yrp,sq(x)

Yrp,sq(x)
� x

_Yrr,ss(x)
Yrr,ss(x)

¼ Yrp,sq(x)� Yrp,sq(0)

Yrp,sq(x)
� Yrr,ss(x)� Yrr,ss(0)

Yrr,ss(x)

¼ Yrr,ss(0)
Yrr,ss(x)

� Yrp,sq(0)

Yrp,sq(x)
¼ 1

F(input short circuited)
� 1

F̂(x)
(4:34)
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Combining this with Equation 4.18 gives

6(x) ¼ 1
F(input short circuited)

1� w(0)
w(x)

� �
(4:35)

Finally, if w(x) denotes the short circuit current gain Ipq=Is as Y2 approaches infinity, the sensitivity
function can be written as

6(x) ¼ Ypp,qq(0)

Ypp,qq(x)
� Yrp,sq(0)

Yrp,sq(x)
¼ 1

F(output short circuited)
� 1

F̂(x)
(4:36)

which when combined with Equation 4.20 yields

6(x) ¼ 1
F(output short circuited)

1� w(0)
w(x)

� �
(4:37)

We remark that Equations 4.31, 4.35, and 4.39 are quite similar. If the return difference F(x) is
interpreted properly, they can all be represented by the single relation Equation 4.31. As before, if
w(0)¼ 0, the sensitivity for the voltage gain function is equal to the reciprocal of the return difference
under the situation that the input port of the amplifier is short circuited, whereas the sensitivity for the
short circuit current gain is the reciprocal of the return difference when the output port is short circuited.

Example 4.2

The network of Figure 4.6 is a common-emitter transistor amplifier. After removing the biasing circuit
and using the common-emitter hybrid model for the transistor at low frequencies, an equivalent
network of the amplifier is presented in Figure 4.7 with

I0s ¼
Vs

R1 þ rx
(4:38a)

G0
1 ¼

1
R01

¼ 1
R1 þ rx

þ 1
rp

(4:38b)

G0
2 ¼

1
R02

¼ 1
R2

þ 1
Rc

(4:38c)

RB1

RB2
R2

R1

C2C1

VCC

Rc

RE CEVs

+

–

FIGURE 4.6 Common-emitter transistor feedback amplifier.
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The indefinite admittance matrix of the amplifier is

Y ¼
G0
1 þ sCp þ sCm �sCm �G0

1 � sCp
gm � sCm G0

2 þ sCm �G0
2 � gm

�G0
1 � sCp � gm �G0

2 G0
1 þ G0

2 þ sCp þ gm

2
4

3
5 (4:39)

Assume that the controlling parameter gm is the element of interest. The return difference and the null
return difference with respect to gm in Figure 4.7 with I0s as the input port and R02, as the output port, are

F(gm) ¼ Y33(gm)
Y33(0)

¼ G0
1 þ sCp

� �
G0
2 þ sCm

� �þ sCm G0
2 þ gm

� �
G0
1 þ sCpð Þ G0

2 þ sCm
� �þ sCmG0

2

(4:40)

F̂(gm) ¼ Y12,33(gm)
Y12,33(0)

¼ sCm � gm
sCm

¼ 1� gm
sCm

(4:41)

The current gain I23=I0s as defined in Figure 4.7, is computed as

w(gm) ¼ Y12,33(gm)
R02Y33(gm)

¼ sCm � gm
R02 G0

1 þ sCpð Þ G0
2 þ sCm

� �þ sCm G0
2 þ gmð Þ� � (4:42)

Substituting these in Equations 4.30 or 4.31 gives

6(gm) ¼ � gm G0
1 þ sCp þ sCm

� �
G0
2 þ sCm

� �
sCm � gm
� �

G0
1 þ sCpð Þ G0

2 þ sCm
� �þ sCm G0

2 þ gmð Þ� � (4:43)

Finally, we compute the sensitivity for the driving-point impedance facing the current source I0s. From
Equation 4.31, we obtain

6(gm) ¼ 1
F(gm)

1� Z(0)
Z(gm)

� �
¼ � sCmgm

G0
1 þ sCpð Þ G0

2 þ sCm
� �þ sCm G0

2 þ gmð Þ (4:44)

where

Z(gm) ¼ Y11,33(gm)
Y33(gm)

¼ G0
2 þ sCm

G0
1 þ sCpð Þ G0

2 þ sCm
� �þ sCm G0

2 þ gmð Þ (4:45)

++

– –

1 2

3

V23V gmVCπ

Cμ

I ś

R 2́
 =

 R
2 |

| R
c

R 1́
 =

 (R
1 +

 r x
)||

r π

I23

FIGURE 4.7 Equivalent network of the feedback amplifier of Figure 4.6.
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The zeros of the network determinant are called the natural frequencies. Their locations in the complex-
frequency plane are extremely important in that they determine the stability of the network. A network is
said to be stable if all of its natural frequencies are restricted to the open left-half side of the complex-
frequency plane. If a network determinant is known, its roots can readily be computed explicitly with the
aid of a computer if necessary, and the stability problem can then be settled directly. However, for a
physical network there remains the difficulty of getting an accurate formulation of the network deter-
minant itself, because every equivalent network is, to a greater or lesser extent, an idealization of the
physical reality. As frequency is increased, parasitic effects of the physical elements must be taken into
account. What is really needed is some kind of experimental verification that the network is stable and
will remain so under certain prescribed conditions. The measurement of the return difference provides
an elegant solution to this problem.
The return difference with respect to an element x in a feedback amplifier is defined by

F(x) ¼ Yuv(x)
Yuv(0)

(5:1)

Because Yuv(x) denotes the nodal determinant, the zeros of the return difference are exactly the same as
the zeros of the nodal determinant provided that there is no cancellation of common factors between
Yuv(x) and Yuv(0). Therefore, if Yuv(0) is known to have no zeros in the closed right-half side of the
complex-frequency plane, which is usually the case in a single-loop feedback amplifier when x is set to
zero, F(x) gives precisely the same information about the stability of a feedback amplifier as does the
nodal determinant itself. The difficulty inherent in the measurement of the return difference with respect
to the controlling parameter of a controlled source is that, in a physical system, the controlling branch
and the controlled source both form part of a single device such as a transistor, and cannot be physically
separated. In the following, we present a scheme that does not require the physical decomposition of a
device.
Let a device of interest be brought out as a two-port network connected to a general four-port network

as shown in Figure 5.1. For our purposes, assume that this device is characterized by its y parameters, and
represented by its y-parameter equivalent two-port network as indicated in Figure 5.2, in which the
parameter y21 controls signal transmission in the forward direction through the device, whereas y12 gives
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the reverse transmission, accounting for the internal feedback within the device. Our objective is to
measure the return difference with respect to the forward short circuit transfer admittance y21.

5.1 Blecher’s Procedure [1]

Let the two-port device be a transistor operated in the common-emitter configuration with terminals a,
b¼ d, and c representing, respectively, the base, emitter, and collector terminals. To simplify our
notation, let a¼ 1, b¼ d¼ 3, and c¼ 2, as exhibited explicitly in Figure 5.3.
To measure F(y21), we break the base terminal of the transistor and apply a 1 V excitation at its input

as exhibited in Figure 5.3. To ensure that the controlled current source y21V13 drives a replica of what it
sees during normal operation, we connect an active one-port network composed of a parallel combin-
ation of the admittance y11 and a controlled current source y12V23 at terminals 1 and 3. The returned
voltage V13 is precisely the negative of the return ratio with respect to the element y21. If, in the frequency
band of interest, the externally applied feedback is large compared with the internal feedback of the
transistor, the controlled source y12V23 can be ignored. If, however, we find that this internal feedback
cannot be ignored, we can simulate it by using an additional transistor, connected as shown in Figure 5.4.
This additional transistor must be matched as closely as possible to the one in question. The one-port

Y1 Y2Is

r
a b d c p

qs

Four-port network

Two-port network

FIGURE 5.1 The general configuration of a feedback amplifier with a two-port device.

y11 y22
y12V2 y21V1

V2V1

V 'ab
Vcd

Is Y1 Y2

s q

r
a b d c p

+ +

+

+ –
–

––

Four-port network

FIGURE 5.2 The representation of a two-port device in Figure 5.1 by its y parameters.
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admittance yo denotes the admittance presented to the output port of the transistor under consideration
as indicated in Figures 5.3 and 5.4. For a common-emitter state, it is perfectly reasonable to assume that
jy0j � jy12j and jy11j � jy12j. Under these assumptions, it is straightforward to show that the Norton
equivalent network looking into the two-port network at terminals 1 and 3 of Figure 5.4 can be
approximated by the parallel combination of y11 and y12V23, as indicated in Figure 5.3. In Figure 5.4, if
the voltage sources have very low internal impedances, we can join together the two base terminals of the
transistors and feed them both from a single voltage source of very low internal impedance. In this way,
we avoid the need of using two separate sources. For the procedure to be feasible, we must demonstrate
the admittances y11 and �y12 can be realized as the input admittances of one-port RC networks.

Consider the hybrid-pi equivalent network of a common-emitter transistor of Figure 5.5, the short
circuit admittance matrix of which is found to be

Ysc ¼ 1
gx þ gp þ sCp þ sCm

gx(gp þ sCp þ sCm) �gxsCm

gx(gm � sCm) sCm(gx þ gp þ sCp þ gm)

� �
(5:2)

y12V23
y11

V13

V23

Y1

y0

+
+

+ –
1 V

1 2
3r

s

Y2

q

p

–
–

Four-port network

FIGURE 5.3 A physical interpretation of the return difference F(y21) for a transistor operated in the common-
emitter configuration and represented by its y parameters yij.

y11 V23

Y1 Y2

–y12

yo

yo

1 V

r

s

p

q

1 2
3

++

–
–

–
+

Four-port network

FIGURE 5.4 The measurement of return difference F(y21) for a transistor operated in the common-emitter
configuration and represented by its y parameters yij.
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It is easy to confirm that the admittance y11 and �y12 can be realized by the one-port networks of
Figure 5.6.

5.2 Impedance Measurements

In this section, we show that the return difference can be evaluated by measuring two driving-point
impedances at a convenient port in the feedback amplifier [2].
Refer again to the general feedback configuration of Figure 5.2. Suppose that we wish to evaluate the

return difference with respect to the forward short circuit transfer admittance y21. The controlling
parameters y12 and y21 enter the indefinite-admittance matrix Y in the rectangular patterns as
shown next:

a b c d

Y(x) ¼

a

b

c

d

y12 �y12
�y12 y12

y21 �y21
�y21 y21

2
6664

3
7775

(5:3)

To emphasize the importance of y12 and y21, we again write Yuv(x) as Yuv(y12, y21) and zaa,bb(x) as
zaa,bb(y12, y21). By appealing to Equation 3.25, the impedance looking into terminals a and b of
Figure 5.2 is

rx = 1/gx

rπ = 1/gπ Cπ

CμB'

gmVV

E E

CB 1

3

24

+

–

FIGURE 5.5 The hybrid-pi equivalent network of a common-emitter transistor.

rx (1 + Cπ/Cμ)

rπ

rx

–y12y11

(a) (b)

r π
C μ

/(r
x+

r π
)

C π
 +

 C
μ

FIGURE 5.6 (a) The realization of y11 and (b) the realization of �y12.
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zaa,bb(y12, y21) ¼ Yaa,bb(y12, y21)
Ydd(y12, y21)

(5:4)

The return difference with respect to y21 is given by

F(y21) ¼ Ydd(y12, y21)
Ydd(y12, 0)

(5:5)

Combining these yields

F(y21)zaa,bb(y12, y21) ¼ Yaa,bb(y12, y21)
Ydd(y12, 0)

¼ Yaa,bb(0, 0)
Ydd(y12, 0)

¼ Yaa,bb(0, 0)
Ydd(0, 0)

Ydd(0, 0)
Ydd(y12, 0)

¼ zaa,bb(0, 0)
F(y12)jy21¼0

(5:6)

obtaining a relation

F(y12)jy21¼0F(y21) ¼
zaa,bb(0, 0)

zaa,bb(y12, y21)
(5:7)

among the return differences and the driving-point impedances. F(y12)jy21¼ 0 is the return difference
with respect to y12 when y21 is set to zero. This quantity can be measured by the arrangement of
Figure 5.7. zaa,bb(y12, y21) is the driving-point impedance looking into terminals a and b of the network
of Figure 5.2. Finally, zaa,bb(0, 0) is the impedance to which zaa,bb(y12, y21) reduces when the controlling
parameters y12 and y21 are both set to zero. This impedance can be measured by the arrangement of
Figure 5.8. Note that, in all three measurements, the independent current source Is is removed.

Suppose that we wish to measure the return difference F(y21) with respect to the forward transfer
admittance y21 of a common-emitter transistor shown in Figure 5.2. Then, the return difference F(y12)
when y21 is set to zero, for all practical purposes, is indistinguishable from unity. Therefore, Equation 5.7
reduces to the following simpler form:

F(y21) � z11, 33(0, 0)
z11, 33(y12, y21)

(5:8)

y22

Y2Y1

F (y12)

1 V

r a b d c p

qs

+
+

–

–

Four-port network

Two-port device

FIGURE 5.7 The measurement of the return difference F(y12) with y21 set to zero.
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showing that the return difference F(y21) effectively equals the ratio of two functional values assumed by
the driving-point impedance looking into terminals 1 and 3 of Figure 5.2 under the condition that the
controlling parameters y12 and y21 are both set to zero and the condition that they assume their nominal
values. These two impedances can be measured by the network arrangements of Figures 5.9 and 5.10.

r a b d c p

qs

y11

Y1 Y2

zaa,bb(0,0)

Four-port network

Two-port device

FIGURE 5.8 The measurement of the driving-point impedance zaa,bb(0, 0).

z11,33 (y12, y21)

Y1 Y2

r p

qs

1 3 2

Four-port network

FIGURE 5.9 The measurement of the driving-point impedance z11,33(y12, y21).

z11,33 (0,0)

Y1 Y2

r p

q

1 3 2

s

y11

Four-port network

FIGURE 5.10 The measurement of the driving-point impedance z11,33(0, 0).
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So far, we have studied the single-loop feedback amplifiers. The concept of feedback was introduced in
terms of return difference. We found that return difference is the difference between the unit applied
signal and the returned signal. The returned signal has the same physical meaning as the loop trans-
mission in the ideal feedback mode. It plays an important role in the study of amplifier stability, its
sensitivity to the variations of the parameters, and the determination of its transfer and driving point
impedances. The fact that return difference can be measured experimentally for many practical amplifiers
indicates that we can include all the parasitic effects in the stability study, and that stability problem can
be reduced to a Nyquist plot.
In this section, we study amplifiers that contain a multiplicity of inputs, outputs, and feedback loops.

They are referred to as the multiple-loop feedback amplifiers. As might be expected, the notion of return
difference with respect to an element is no longer applicable, because we are dealing with a group of
elements. For this, we generalize the concept of return difference for a controlled source to the notion of
return difference matrix for a multiplicity of controlled sources. For measurement situations, we
introduce the null return difference matrix and discuss its physical significance. We demonstrate that
the determinant of the overall transfer function matrix can be expressed explicitly in terms of the
determinants of the return difference and the null return difference matrices, thereby allowing us to
generalize Blackman’s formula for the input impedance.

6.1 Multiple-Loop Feedback Amplifier Theory

The general configuration of a multiple-input, multiple-output, and multiple-loop feedback amplifier is
presented in Figure 6.1, in which the input, output, and feedback variables may be either currents or
voltages. For the specific arrangement of Figure 6.1, the input and output variables are represented by an
n-dimensional vector u and an m-dimensional vector y as
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u(s) ¼

u1
u2
..
.

uk
ukþ1

ukþ2

..

.

un

2
6666666666664

3
7777777777775

¼

Is1
Is2
..
.

Isk
Vs1

Vs2

..

.

Vs(n�k)

2
6666666666664

3
7777777777775

, y(s) ¼

y1
y2
..
.

yr
yrþ1

yrþ2

..

.

ym

2
6666666666664

3
7777777777775

¼

I1
I2
..
.

Ir
Vrþ1

Vrþ2

..

.

Vm

2
6666666666664

3
7777777777775

(6:1)

respectively. The elements of interest can be represented by a rectangular matrix X of order q3 p relating
the controlled and controlling variables by the matrix equation

Q ¼
u1
u2
..
.

uq

2
6664

3
7775 ¼

x11 x12 � � � x1p
x21 x22 � � � x2p
..
. ..

. ..
. ..

.

xq1 xq2 � � � xqp

2
6664

3
7775

f1
f2

..

.

fp

2
6664

3
7775 ¼ XF (6:2)

where the p-dimensional vector F is called the controlling vector, and the q-dimensional vector Q is the
controlled vector. The controlled variables uk and the controlling variables Fk can either be currents or
voltages. The matrix X can represent either a transfer-function matrix or a driving-point function matrix.
If X represents a driving-point function matrix, the vectors Q and F are of the same dimension (q¼ p)
and their components are the currents and voltages of a p-port network.

The general configuration of Figure 6.1 can be represented equivalently by the block diagram of
Figure 6.2 in which N is a (pþ qþmþ n)-port network and the elements of interest are exhibited

φ1 θ1φp θq

Is1

Isk

Vs1

Zl1

Zlr

Zl(r +1)Vr +1

I1

Ir

k +1

k

n

1

Vs(n–k) Vm Zlm

X

+

+

+ ++ –+ –– –

–

––

+

–

+

N

FIGURE 6.1 The general configuration of a multiple-input, multiple-output, and multiple-loop feedback amplifier.
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explicitly by the block X. For the
(pþ qþmþ n)-port network
N, the vectors u and are Q are
its inputs, and the vectorsF and
y its outputs. Since N is linear,
the input and output vectors are
related by the matrix equations

F ¼ AQþ Bu (6:3a)

y ¼ CQþDu (6:3b)

whereA,B,C, andD are transfer-
function matrices of orders p3 q, p3 n, m3 q, and m3 n, respectively. The vectors Q and F are
not independent and are related by

Q ¼ XF (6:3c)

The relationships among the above three linear matrix equations can also be represented by a matrix
signal-flow graph as shown in Figure 6.3 known as the fundamental matrix feedback-flow graph. The
overall closed-loop transfer-function matrix of the multiple-loop feedback amplifier is defined by
the equation

y ¼ W(X)u (6:4)

where W(X) is of order m3 n. As before, to emphasize the importance of X, the matrix W is written as
W(X) for the present discussion, even though it is also a function of the complex-frequency variable s.
Combining the previous matrix equations, the transfer-function matrix is

W(X) ¼ Dþ CX(1p � AX)�1B (6:5a)

or

W(X) ¼ Dþ C(1q � XA)�1XB (6:5b)

where 1p denotes the identity matrix of order p. Clearly, we have

W(0) ¼ D (6:6)

In particular, when X is square and nonsingular, Equation
6.5 can be written as

W(X) ¼ Dþ C(X�1 � A)�1B (6:7)

Example 6.1

Consider the voltage-series feedback amplifier of
Figure 3.9. An equivalent network is shown in Figure
6.4 in which we have assumed that the two transistors

u y

Φ ΘX

N

FIGURE 6.2 The block diagram of the general feedback configuration of
Figure 6.1.

Φ Θ

A

B C

D

X

u y

FIGURE 6.3 The fundamental matrix feed-
back-flow graph.
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are identical with hie¼ 1.1 kV, hfe¼ 50, hre¼ hoe¼ 0. Let the controlling parameters of the two
controlled sources be the elements of interest. Then we have

Q ¼ Ia
Ib

� �
¼ 10�4 455 0

0 455

� �
V13
V45

� �
¼ XF (6:8)

Assume that the output voltage V25 and input current I51 are the output variables. Then the seven-port
network N defined by the variables V13, V45, V25, I51, Ia, Ib, and Vs can be characterized by the matrix
equations

F ¼ V13
V45

� �
¼ �90:782 45:391

�942:507 0

� �
Ia
Ib

� �
þ 0:91748

0

� �
[Vs]

¼ AQþ Bu (6:9a)

y ¼ V25
I51

� �
¼ 45:391 �2372:32

�0:08252 0:04126

� �
Ia
Ib

� �
þ 0:041260

0:000862

� �
[Vs]

¼ CQþ Du (6:9b)

According to Equation 6.4, the transfer-function matrix of the amplifier is defined by the matrix
equation

y ¼ V25
I51

� �
¼ w11

w21

� �
[Vs] ¼ W(X)u (6:10)

Because X is square and nonsingular, we can use Equation 6.7 to calculate W(X):

W(X) ¼ Dþ C(X�1 � A)�1 B ¼ 45:387
0:369� 10�4

� �
¼ w11

w21

� �
(6:11)

where

(X�1 � A)�1 ¼ 10�4 4:856 10:029
�208:245 24:914

� �
(6:12)

I51
I25

V13

V25V45Vs
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+
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FIGURE 6.4 An equivalent network of the voltage-series feedback amplifier of Figure 3.9.
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obtaining the closed-loop voltage gain w11

and input impedance Zin facing the voltage
source Vs as

w11 ¼ V25
Vs

¼ 45:387, Zin ¼ Vs
I51

¼ 1
w21

¼ 27:1 kV (6:13)

6.2 Return Different Matrix

In this section, we extend the concept of return
difference with respect to an element to the
notion of return difference matrix with respect to a group of elements.
In the fundamental matrix feedback-flow graph of Figure 6.3, suppose that we break the input of

the branch with transmittance X, set the input excitation vector u to zero, and apply a signal p-vector g
to the right of the breaking mark, as depicted in Figure 6.5. Then the returned signal p-vector h to the
left of the breaking mark is found to be

h ¼ AXg (6:14)

The square matrix AX is called the loop-transmission matrix and its negative is referred to as the return
ratio matrix denoted by

T(X) ¼ �AX (6:15)

The difference between the applied signal vector g and the returned signal vector h is given by

g� h ¼ (1p � AX)g (6:16)

The square matrix 1p�AX relating the applied signal vector g to the difference of the applied signal
vector g and the returned signal vector h is called the return difference matrix with respect to X and is
denoted by

F(X) ¼ 1p � AX (6:17)

Combining this with Equation 6.15 gives

F(X) ¼ 1p þ T(X) (6:18)

For the voltage-series feedback amplifier of Figure 6.4, let the controlling parameters of the two
controlled current sources be the elements of interest. Then the return ratio matrix is found from
Equations 6.8 and 6.9a

T(X) ¼ �AX ¼ � �90:782 45:391

�942:507 0

� �
455� 10�4 0

0 455� 10�4

� �

¼ 4:131 �2:065

42:884 0

� �
(6:19)

Φ Θ

A

B C

D
yu = 0

1p h g X

FIGURE 6.5 The physical interpretation of the loop-
transmission matrix.
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obtaining the return difference matrix as

F(X) ¼ 12 þ T(X) ¼ 5:131 �2:065
42:884 1

� �
(6:20)

6.3 Null Return Difference Matrix

A direct extension of the null return difference for the single-loop feedback amplifier is the null return
difference matrix for the multiple-loop feedback networks.
Refer again to the fundamental matrix feedback-flow graph of Figure 6.3. As before, we break the

branch with transmittance X and apply a signal p-vector g to the right of the breaking mark, as illustrated
in Figure 6.6. We then adjust the input excitation n-vector u so that the total output m-vector y resulting
from the inputs g and u is zero. From Figure 6.6, the desired input excitation u is found:

Duþ CXg ¼ 0 (6:21)

or

u ¼ �D�1CXg (6:22)

provided that the matrix D is square and nonsingular. This requires that the output y be of the same
dimension as the input u or m¼ n. Physically, this requirement is reasonable because the effects at the
output caused by g can be neutralized by a unique input excitation u only when u and y are of the same
dimension. With these inputs u and g, the returned signal h to the left of the breaking mark in Figure 6.6
is computed as

h ¼ Buþ AXg ¼ (�BD�1CX þ AX)g (6:23)

obtaining

g� h ¼ (1p � AX þ BD�1CX)g (6:24)

The square matrix

F̂(X) ¼ 1p þ T̂(X)

¼ 1p � AX þ BD�1CX ¼ 1p �ÂX (6:25)

relating the input signal vector g to the difference
of the input signal vector g, and the returned
signal vector h is called the null return difference
matrix with respect to X, where

T̂(X) ¼ �AX þ BD�1CX ¼ �̂AX (6:26a)

Â ¼ A� BD�1C (6:26b)

The square matrix T̂(X) is known as the null
return ratio matrix.

Φ Θ

A

B

1p h g

C

D
y = 0

X

u

FIGURE 6.6 The physical interpretation of the null
return difference matrix.
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Example 6.2

Consider again the voltage-series feedback amplifier of Figure 3.9, an equivalent network of which is
illustrated in Figure 6.4. Assume that the voltage V25 is the output variable. Then from Equation 6.9

F ¼ V13
V45

� �
¼ �90:782 45:391

�942:507 0

� �
Ia
Ib

� �
þ 0:91748

0

� �
[Vs]

¼ AQþ Bu (6:27a)

y ¼ [V25] ¼ [45:391 � 2372:32]
Ia
Ib

� �
þ [0:04126] [Vs]

¼ CQþ Du (6:27b)

Substituting the coefficient matrices in Equation 6.26b, we obtain

Â ¼ A� BD�1C ¼ �1, 100:12 52, 797:6
�942:507 0

� �
(6:28)

giving the null return difference matrix with respect to X as

F̂(X) ¼ 12 � ÂX ¼ 51:055 �2402:29
42:884 1

� �
(6:29)

Suppose that the input current I51 is chosen as the output variable. Then, from Equation 6.9b we have

y ¼ [I51] ¼ [�0:08252 0:04126]
Ia
Ib

� �
þ [0:000862] [Vs] ¼ CQþ Du (6:30)

The corresponding null return difference matrix becomes

F̂(X) ¼ 12 � ÂX ¼ 1:13426 �0:06713
42:8841 1

� �
(6:31)

where

Â ¼ �2:95085 1:47543
�942:507 0

� �
(6:32)

6.4 Transfer-Function Matrix and Feedback

In this section, we show the effect of feedback on the transfer-function matrix W(X). Specifically, we
express det W(X) in terms of the det X(0) and the determinants of the return difference and null return
difference matrices, thereby generalizing Blackman’s impedance formula for a single input to a multi-
plicity of inputs.
Before we proceed to develop the desired relation, we state the following determinant identity for two

arbitrary matrices M and N of order m3 n and n3m:

det(1m þMN) ¼ det(1n þ NM) (6:33)
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a proof of which may be found in [1,2]. Using this, we next establish the following generalization of
Blackman’s formula for input impedance.

THEOREM 6.1

In a multiple-loop feedback amplifier, if W(0)¼D is nonsingular, then the determinant of the transfer-
function matrix W(X) is related to the determinants of the return difference matrix F(X) and the null
return difference matrix F̂(X) by

det W(X) ¼ det W(0)
det F̂(X)
det F(X)

(6:34)

PROOF: From Equation 6.5a, we obtain

W(X) ¼ D 1n þD�1CX(1p � AX)�1B
� �

(6:35)

yielding

det W(X) ¼ detW(0)½ �det 1n þD�1CX(1p � AX)�1B
� �

¼ detW(0)½ �det 1p þ BD�1CX(1p � AX)�1� �
¼ detW(0)½ �det 1p � AX þ BD�1CX

� �
(1p � AX)�1

¼ detW(0)det F̂(X)
det F(X)

(6:36)

The second line follows directly from Equation 6.33. This completes the proof of the theorem.
As indicated in Equation 4.4, the input impedance Z(x) looking into a terminal pair can be conveni-

ently expressed as

Z(x) ¼ Z(0)
F(input short ciruited)
F(input open circuited)

(6:37)

A similar expression can be derived from Equation 6.34 if W(X) denotes the impedance matrix of an
n-port network of Figure 6.1. In this case, F(X) is the return difference matrix with respect to X for the
situation when the n ports where the impedance matrix are defined are left open without any sources, and
we write F(X)¼F(input open-circuited). Likewise, F̂(X) is the return difference matrix with respect to X
for the input port-current vector Is and the output port-voltage vector V under the condition that Is is
adjusted so that the port-voltage vector V is identically zero. In other words, F̂(X) is the return difference
matrix for the situation when the n ports, where the impedance matrix is defined, are short-circuited, and
we write F̂(X)¼F (input short-circuited). Consequently, the determinant of the impedance matrix Z(X)
of an n-port network can be expressed from Equation 6.34 as

detZ(X) ¼ detZ(0)
det F (input short circuited)
det F (input open circuited)

(6:38) &
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Example 6.3

Refer again to the voltage-series feedback amplifier of Figure 3.9, an equivalent network of which is
illustrated in Figure 6.4. As computed in Equation 6.20, the return difference matrix with respect to the
two controlling parameters is given by

F(X) ¼ 12 þ T(X) ¼ 5:131 �2:065
42:884 1

� �
(6:39)

the determinant of which is

det F(X) ¼ 93:68646 (6:40)

If V25 of Figure 6.4 is chosen as the output and Vs as the input, the null return difference matrix is, from
Equation 6.29,

F̂(X) ¼ 12 � ÂX ¼ 51:055 �2402:29
42:884 1

� �
(6:41)

the determinant of which is

det F̂(X) ¼ 103, 071 (6:42)

By appealing to Equation 6.34, the feedback amplifier voltage gain V25=Vs can be written as

w(X) ¼ V25
Vs

¼ w(0)
det F̂(X)
det F(X)

¼ 0:04126
103, 071
93:68646

¼ 45:39 (6:43)

confirming Equation 3.44, where w(0)¼ 0.04126, as given in Equation 6.27b.
Suppose, instead, that the input current I51 is chosen as the output and Vs as the input. Then, from

Equation 6.31, the null return difference matrix becomes

F̂(X) ¼ 12 �Â(X) ¼ 1:13426 �0:06713
42:8841 1

� �
(6:44)

the determinant of which is

det F̂(X) ¼ 4:01307 (6:45)

By applying Equation 6.34, the amplifier input admittance is obtained as

w(X) ¼ I51
Vs

¼ w(0)
det F̂(X)
det F(X)

¼ 8:62� 10�4 4:01307
93:68646

¼ 36:92 mmho (6:46)

or 27.1 kV, confirming Equation 6.13, where w(0)¼ 862 mmho is found from Equation 6.30.

Another useful application of the generalized Blackman’s formula (Equation 6.38) is that it provides
the basis of a procedure for the indirect measurement of return difference. Refer to the general feedback
network of Figure 6.2. Suppose that we wish to measure the return difference F(y21) with respect to the
forward short circuit transfer admittance y21 of a two-port device characterized by its y parameters yij.
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Choose the two controlling parameters y21 and y12 to be the elements of interest. Then, from Figure 5.2
we obtain

Q ¼ Ia
Ib

� �
¼ y21 0

0 y12

� �
V1

V2

� �
¼ XF (6:47)

where Ia and Ib are the currents of the voltage-controlled current sources. By appealing to Equation 6.38,
the impedance looking into terminals a and b of Figure 5.2 can be written as

zaa,bb(y12, y21) ¼ zaa,bb(0, 0)
det F (input short circuited)
det F (input open circuited)

(6:48)

When the input terminals a and b are open-circuited, the resulting return difference matrix is exactly the
same as that found under normal operating conditions, and we have

F (input open circuited) ¼ F(X) ¼ F11 F12
F21 F22

� �
(6:49)

Because

F(X) ¼ 12 � AX (6:50)

the elements F11 and F21 are calculated with y12¼ 0, whereas F12 and F22 are evaluated with y21¼ 0.
When the input terminals a and b are short circuited, the feedback loop is interrupted and only the
second row and first column element of the matrix A is nonzero, and we obtain

det F (input short circuited) ¼ 1 (6:51)

Because X is diagonal, the return difference function F(y21) can be expressed in terms of det F(X) and the
cofactor of the first row and first column element of F(X):

F(y21) ¼ det F(X)
F22

(6:52)

Substituting these in Equation 6.48 yields

F(y12)jy21¼0 F(y21) ¼ zaa,bb(0, 0)
zaa,bb(y12, y21)

(6:53)

where

F22 ¼ 1� a22y12jy21¼0 ¼ F(y12)jy21¼0 (6:54)

and a22 is the second row and second column element of A. Formula (Equation 6.53) was derived earlier
in Equation 5.7 using the network arrangements of Figures 5.7 and 5.8 to measure the elements
F(y12)jy21¼ 0 and zaa,bb(0,0), respectively.

6.5 Sensitivity Matrix

We have studied the sensitivity of a transfer function with respect to the change of a particular element in
the network. In a multiple-loop feedback network, we are usually interested in the sensitivity of a transfer
function with respect to the variation of a set of elements in the network. This set may include either
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elements that are inherently sensitive to variation or elements where the effect on the overall amplifier
performance is of paramount importance to the designers. For this, we introduce a sensitivity matrix and
develop formulas for computing multiparameter sensitivity function for a multiple-loop feedback
amplifier [3].
Figure 6.7 is the block diagram of a multivariable open-loop control system with n inputs and

m outputs, whereas Figure 6.8 is the general feedback structure. If all feedback signals are obtainable
from the output and if the controllers are linear, no loss of generality occurs by assuming the controller to
be of the form given in Figure 6.9.
Denote the set of Laplace-transformed input signals by the n-vector u, the set of inputs to the

network X in the open-loop configuration of Figure 6.7 by the p-vector Fo, and the set of outputs of
the network X of Figure 6.7 by the m-vector yo. Let the corresponding signals for the closed-loop
configuration of Figure 6.9 be denoted by the n-vector u, the p-vector Fc, and the m-vector yc,
respectively. Then, from Figures 6.7 and 6.9, we obtain the following relations:

yo ¼ XFo (6:55a)

Fo ¼ H1u (6:55b)

yc ¼ XFc (6:55c)

Fc ¼ H2(uþH3yc) (6:55d)

Φo you H1 X

FIGURE 6.7 The block diagram of a multivariable open-loop control system.

Φc yc

u

X

H

FIGURE 6.8 The general feedback structure.

Φc

H

∑ yc
+

+u H2

H3

X

FIGURE 6.9 The general feedback configuration.
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where the transfer-function matrices X, H1, H2, and H3 are of order m3 p, p3 n, p3 n, and n3m,
respectively. Combining Equation 6.55c and d yields

(1m � XH2H3)yc ¼ XH2u (6:56)

or

yc ¼ (1m � XH2H3)
�1XH2u (6:57)

The closed-loop transfer function matrix W(X) that relates the input vector u to the output vector yc is
defined by the equation

yc ¼ W(X)u (6:58)

identifying from Equation 6.57 the m3 n matrix

W(X) ¼ (1m � XH2H3)
�1XH2 (6:59)

Now, suppose that X is perturbed from X to XþdX. The outputs of the open-loop and closed-loop
systems of Figures 6.7 and 6.9 will no longer be the same as before. Distinguishing the new from the old
variables by the superscript þ, we have

yþo ¼ XþFo (6:60a)

yþc ¼ XþFþ
c (6:60b)

Fþ
c ¼ H2 uþH3y

þ
c

� �
(6:60c)

where Fo remains the same.
We next proceed to compare the relative effects of the variations of X on the performance of the open-

loop and the closed-loop systems. For a meaningful comparison, we assume that H1, H2, and H3 are such
that when there is no variation of X, yo¼ yc. Define the error vectors resulting from perturbation of X as

Eo ¼ yo � yþo (6:61a)

Ec ¼ yc � yþc (6:61b)

A square matrix relating Eo to Ec is called the sensitivity matrix 6(X) for the transfer function matrix
W(X) with respect to the variations of X:

Ec ¼ 6(X)Eo (6:62)

In the following, we express the sensitivity matrix 6(X) in terms of the system matrices X, H2, and H3.
The input and output relation similar to that given in Equation 6.57 for the perturbed system can be

written as

yþc ¼ (1m � XþH2H3)
�1XþH2u (6:63)
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Substituting Equations 6.57 and 6.63 in Equation 6.61b gives

Ec ¼ yc � yþc ¼ (1m � XH2H3)
�1XH2 � (1m � XþH2H3)

�1XþH2
� �

u

¼ (1m � XþH2H3)
�1 1m � (X þ dX)H2H3½ �(1m � XH2H3)

�1XH2 � (X þ dX)H2
� 	

u

¼ (1m � XþH2H3)
�1 XH2 � dXH2H3(1m � XH2H3)

�1XH2 � XH2 � dXH2
� �

u

¼ �(1m � XþH2H3)
�1dXH2 1n þH3W(X)½ �u (6:64)

From Equations 6.55d and 6.58, we obtain

Fc ¼ H2 1n þH3W(X)½ �u (6:65)

Because by assuming that yo¼ yc, we have

Fo ¼ Fc ¼ H2 1n þH3W(X)½ �u (6:66)

yielding

Eo ¼ yo � yþo ¼ (X � Xþ)Fo ¼ �dXH2 1n þH3W(X)½ �u (6:67)

Combining Equations 6.64 and 6.67 yields an expression relating the error vectors Ec and Eo of the
closed-loop and open-loop systems by

Ec ¼ (1m � XþH2H3)
�1Eo (6:68)

obtaining the sensitivity matrix as

6(X) ¼ (1m � XþH2H3)
�1 (6:69)

For small variations of X, Xþ is approximately equal to X. Thus, in Figure 6.9, if the matrix triple product
XH2H3 is regarded as the loop-transmission matrix and �XH2H3 as the return ratio matrix, then the
difference between the unit matrix and the loop-transmission matrix,

1m � XH2H3 (6:70)

can be defined as the return difference matrix. Therefore, Equation 6.69 is a direct extension of the
sensitivity function defined for a single-input, single-output system and for a single parameter. Recall
that in Equation 4.33 we demonstrated that, using the ideal feedback model, the sensitivity function of
the closed-loop transfer function with respect to the forward amplifier gain is equal to the reciprocal of its
return difference with respect to the same parameter.
In particular, when W(X), dX, and X are square and nonsingular, from Equations 6.55a, 6.55b, and

6.58, 6.61 can be rewritten as

Ec ¼ yc � yþc ¼ W(X)�Wþ(X)½ �u ¼ �dW(X)u (6:71a)

Eo ¼ yo � yþo ¼ XH1 � XþH1½ �u ¼ �dXH1u (6:71b)

Multiple-Loop Feedback Amplifiers 6-13



If H1 is nonsingular, u in Equation 6.71b can be solved for and substituted in Equation 6.71a to give

Ec ¼ dW(X)H�1
1 (dX)�1Eo (6:72)

As before, for meaningful comparison, we require that yo¼ yc or

XH1 ¼ W(X) (6:73)

From Equation 6.72, we obtain

Ec ¼ dW(X)W�1(X)X(dX)�1Eo (6:74)

identifying that

6(X) ¼ dW(X)W�1(X)X(dX)�1 (6:75)

This result is to be compared with the scalar sensitivity function defined in Equation 4.26, which can be
put in the form

6(x) ¼ (dw)w�1x(dx)�1 (6:76)

6.6 Multiparameter Sensitivity

In this section, we derive formulas for the effect of change of X on a scalar transfer function w(X).
Let xk, k¼ 1, 2, . . . , pq, be the elements of X. The multivariable Taylor series expansion of w(X) with

respect to xk is given by

dw ¼
Xpq
k¼1

@w
@xk

dxk þ
Xpq
j¼1

Xpq
k¼1

@2w
@xj@xk

dxjdxk
2!

þ � � � (6:77)

The first-order perturbation can then be written as

dw �
Xpq
k¼1

@w
@xk

dxk (6:78)

Using Equation 4.26, we obtain

dw
w

�
Xpq
k¼1

6(xk)
dxk
xk

(6:79)

This expression gives the fractional change of the transfer function w in terms of the scalar sensitivity
functions 6(xk).
Refer to the fundamental matrix feedback-flow graph of Figure 6.3. If the amplifier has a single input

and a single output from Equation 6.35, the overall transfer function w(X) of the multiple-loop feedback
amplifier becomes
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w(X) ¼ Dþ CX(1p � AX)�1B (6:80)

When X is perturbed to Xþ¼XþdX, the corresponding expression of Equation 6.80 is given by

w(X)þ dw(X) ¼ Dþ C(X þ dX)(1p � AX � AdX)�1B (6:81)

or

dw(X) ¼ C (X þ dX)(1p � AX � AdX)�1 � X(1p � AX)�1� �
B (6:82)

As dX approaches zero, we obtain

dw(X) ¼ C (X þ dX)� X(1p � AX)�1(1p � AX � AdX)
� �

(1p � AX � AdX)�1B

¼ C dX þ X(1p � AX)�1AdX
� �

(1p � AX � AdX)�1B

¼ C(1q � XA)�1(dX)(1p � AX � AdX)�1B

� C(1q � XA)�1(dX)(1p � AX)�1B (6:83)

where C is a row q vector and B is a column p vector. Write

C ¼ [c1 c2 � � � cq] (6:84a)

B0 ¼ [b1 b2 � � � bp] (6:84b)

~W ¼ X(1p � AX)�1 ¼ (1q � XA)�1X ¼ [~wij] (6:84c)

The increment dw(X) can be expressed in terms of the elements of Equation 6.84 and those of X. In the
case where X is diagonal with

X ¼ diag[x1 x2 � � � xp] (6:85)

where p¼ q, the expression for dw(X) can be succinctly written as

dw(X) ¼
Xp
i¼1

Xp
k¼1

Xp
j¼1

ci
~wik

xk


 �
(dxk)

~wkj

xk


 �
bj

¼
Xp
i¼1

Xp
k¼1

Xp
j¼1

ci~wik~wkjbj
xk

dxk
xk

(6:86)

Comparing this with Equation 6.79, we obtain an explicit form for the single-parameter sensitivity
function as

6(xk) ¼
Xp
i¼1

Xp
j¼1

ci~wik~wkjbj
xkw(X)

(6:87)

Thus, knowing Equations 6.84 and 6.85, we can calculate the multiparameter sensitivity function for the
scalar transfer function w(X) immediately.
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Example 6.4

Consider again the voltage-series feedback amplifier of Figure 3.9, an equivalent network of which is
shown in Figure 6.4. Assume that Vs is the input and V25 the output. The transfer function of interest is
the amplifier voltage gain V25=Vs. The elements of main concern are the two controlling parameters of
the controlled sources. Thus, we let

X ¼ ~a1 0
0 ~a2

� �
¼ 0:0455 0

0 0:0455

� �
(6:88)

From Equation 6.27 we have

A ¼ �90:782 45:391
�942:507 0

� �
(6:89a)

B0 ¼ [0:91748 0] (6:89b)

C ¼ [45:391 � 2372:32] (6:89c)

yielding

~W ¼ X(12 � AX)�1 ¼ 10�4 4:85600 10:02904
�208:245 24:91407

� �
(6:90)

Also, from Equation 6.13 we have

w(X) ¼ V25
Vs

¼ 45:387 (6:91)

To compute the sensitivity functions with respect to ~a1 and ~a2, we apply Equation 6.87 and obtain

6(~a1) ¼
X2
i¼1

X2
j¼1

ci ~wi1 ~w1jbj
~a1w(X)

¼ c1 ~w11 ~w11b1 þ c1 ~w11 ~w12b2 þ c2 ~w21 ~w11b1 þ c2 ~w21 ~w12b2
~a1w

¼ 0:01066 (6:92a)

6(~a2) ¼ c1 ~w12 ~w21b1 þ c1 ~w12 ~w22b2 þ c2 ~w22 ~w21b1 þ c2 ~w22 ~w22b2
~a2w

¼ 0:05426 (6:92b)

As a check, we use Equation 4.30 to compute these sensitivities. From Equations 3.45 and 3.52, we have

F(~a1) ¼ 93:70 (6:93a)

F(~a2) ¼ 18:26 (6:93b)

F
_

(~a1) ¼ 103:07� 103 (6:93c)

F
_

(~a2) ¼ 2018:70 (6:93d)

Substituting these in Equation 4.30 the sensitivity functions are

6(~a1) ¼ 1
F(~a1)

� 1

F̂(~a1)
¼ 0:01066 (6:94a)
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6(~a2) ¼ 1
F(~a2)

� 1

F̂(~a2)
¼ 0:05427 (6:94b)

confirming Equation 6.92.
Suppose that ~a1 is changed by 4% and ~a2 by 6%. The fractional change of the voltage gain w(X) is

found from Equation 6.79 as

dw
w

� 6(~a1)
d~a1

~a1
þ 6(~a2)

d~a2

~a2
¼ 0:003683 (6:95)

or 0.37%.
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7.1 Introduction

Themain goal of circuit analysis is to determine the solution of the circuit, i.e., the voltages and the currents
in the circuit, usually as functions of time. The advent of powerful computers and circuit analysis software
has greatly simplified this task. Basically, the circuit to be analyzed is fed to the computer through
some circuit description language, or it is analyzed graphically, and the software will produce the desired
voltage or current waveforms. Progress has rendered the traditional paper-and-pencil methods obsolete, in
which the engineer’s skill and intuition led the way through series of clever approximations, until the
circuits equations can be solved analytically.
A closer comparison of the numerical and the approximate analytical solution reveals, however, that

the two are not quite equivalent. Although the former is precise, it only provides the solution of the
circuit with given parameters, whereas the latter is an approximation, but the approximate solutions most
often is given explicitly as a function of some circuit parameters. Therefore, it allows us to assess the
influence of these parameters on the solution.
If we rely entirely on the numerical solution of a circuit, we never get a global picture of its behavior,

unless we carry out a huge number of analyses. Thus, the numerical analysis should be complemented by
a qualitative analysis, one that concentrates on general properties of the circuit, properties that do not
depend on the particular set of circuit parameters.

7.2 Resistive Circuits

The term ‘‘resistive circuits’’ is not used, as one would imagine, for circuits that are composed solely of
resistors. It admits all circuit elements that are not dynamic, i.e., whose constitutive relations do not involve
time derivatives, integrals over time, or time delays, etc. Expressed positively, resistive circuit elements are
described by constitutive relations that involve only currents and voltages at the same time instants.
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Physical circuits can never be modeled in a
satisfactory way by resistive circuits, but
resistive circuits appear in many contexts as
auxiliary constructs. The most important
problem that leads to a resistive circuit is
the determination of the equilibrium points,
or, as is current use in electronics, the DC-operating points, of a dynamic circuit. The DC-operating
points of a circuit correspond in a one-to-one fashion to the solutions of the resistive circuit obtained by
removing the capacitors and by short circuiting the inductors. The resistive circuit associated with the
state equations of a dynamic circuit in discussed in Ref. [1].
Among the resistive circuit elements we find, of course, the resistors. For the purposes of this

introduction, we distinguish between, linear resistors, V-resistors, and I-resistors. V-resistors are voltage
controlled, i.e., defined by constitutive relations of the form

i ¼ g(v) (7:1)

In addition, we require that g is a continuous, increasing function of v, defined for all real v. Dually,
an I-resistor is current controlled, i.e., defined by a constitutive relation of the form

v ¼ h(i) (7:2)

In addition, we require that h is a continuous, increasing function of i, defined for all real i. We use the
symbols of Figure 7.1 for V- and I-resistor. Linear resistors are examples of both I- and V-resistors. An
example of a V-resistor that is not an I-resistor is the junction diode, modeled by its usual exponential
constitutive relation

i ¼ Is(e
v=nVT � 1) (7:3)

Although Equation 7.3 could be solved for v and thus the constitutive relation could be written in the
form of Equation 7.2, the resulting function h would be defined only for currents between �Is and þ1,
which is not enough to qualify for an I-resistor. For the same reason, the static model for a Zener diode
would be an I-resistor, but not a V-resistor. Indeed, the very nature of the Zener diode limits its voltages
on the negative side.
A somewhat strange by-product of our definition of V- and I-resistors is that independent voltage

sources are I-resistors and independent current sources are V-resistors. Indeed, a voltage source of value
E has the constitutive relation

v ¼ E (7:4)

which clearly is of the form (Equation 7.2), with a constant function h, and a current source of value I has
the form

i ¼ I (7:5)

which is of the form (Equation 7.1) with a constant function g. Despite this, we shall treat the
independent sources as a different type of element.
Another class of resistive elements is the controlled sources. We consider them to be two-ports, e.g., a

voltage-controlled voltage source (VCVS). A VCVS is the two-port of Figure 7.2, where the constitutive
relations are

v1 ¼ av2 (7:6)

i1 ¼ 0 (7:7)

IV

FIGURE 7.1 Symbols of the V- and the I-resistor.
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The other controlled sources have similar forms.
Another useful resistive circuit element is the ideal
operational amplifier. It is a two-port defined by the
two constitutive relations

v1 ¼ 0 (7:8)

i1 ¼ 0 (7:9)

This two-port can be decomposed into the juxtaposition
of two singular one-ports, the nullator and the norator, as shown in Figure 7.3. The nullator has two
constitutive relations:

v ¼ 0, i ¼ 0 (7:10)

whereas the norator has no constitutive relation.
For all practical purposes, the resistive circuit elements mentioned thus far are sufficient. By this we

mean that all nonlinear resistive circuits encountered in practice possess an equivalent circuit composed of
nonlinear resistors, independent and controlled sources, and nullator–norator pairs. Figure 7.4 illustrates
this fact. Here, the equivalent circuit of the bipolar transistor is modeled by the Ebers–Moll equations:

i1
i2

� �
¼ 1þ 1

bF
�1

�1 1þ 1
bR

 !
g(v1)
g(v2)

� �
(7:11)

The function g is given by the right-hand side of Equation 7.3.
Actually, the list of basic resistive circuit elements given so far is redundant, and the nullator–norator

pairs render the controlled sources superfluous. An example of a substitution of controlled sources by
nullator–norator pairs is given in Figure 7.4. Equivalent circuits exist for all four types of controlled
sources with nullator–norator pairs. Figure 7.5 gives an equivalent circuit for a voltage-controlled current
source (VCCS), where the input port is floating with respect to the output port.

V1 V2

i1 i2
+ +

– –

+

–

FIGURE 7.2 VCVS as a two-port.

i1 i2

V1 V2

V2

i1
i2

V1 +

+
+ +

–––––

+

∞

FIGURE 7.3 Operational amplifier as a juxtaposition of a nullator and a norator.

i

βRi΄

βFi
i΄

FIGURE 7.4 Equivalent circuit of a bipolar npn transistor.
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The system of equations that describes a resistive circuit is the collection of Kirchhoff equations and
the constitutive relations of the circuit elements. It has the following form (if we limit ourselves to
resistors, independent sources, nullators, and norators):

Ai ¼ 0 (Kirchhoff ’s voltage law) (7:12)

Bv ¼ 0 (Kirchhoff ’s voltage law) (7:13)

ik ¼ g(vk) (V-resistor) (7:14)

vk ¼ h(ik) (I-resistor) (7:15)

vk ¼ Ek (independent voltage source) (7:16)

ik ¼ Ik (independent current source) (7:17)

vk ¼ 0
ik ¼ 0

(nullators) (7:18)

In this system of equations, the unknowns are the branch voltages and the branch currents

v ¼
v1
v2
..
.

vb

0
BBB@

1
CCCA, i ¼

i1
i2
..
.

ib

0
BBB@

1
CCCA (7:19)

where the b is the number of branches. Because we have b linearly independent Kirchhoff equations [2],
the system contains 2b equations and 2b unknowns. A solution j ¼

� v
i

�
of the system is called a

solution of the circuit. It is a collection of branch voltages and currents that satisfy Equations 7.12
through 7.19.

7.2.1 Number of Solutions of a Resistive Circuit

As we found earlier, the number of equations of a resistive circuit equals the number of unknowns. One
may therefore expect a unique solution. This may be the norm, but it is far from being generally true. It is
not even true for linear resistive circuits. In fact, the equations for a linear resistive circuit are of the form

Hj ¼ e (7:20)

where the 2b3 2b matrix H contains the resistances and elements of value 0, �1, whereas the vector e
contains the source values and zeroes. The solution of Equation 7.20 is unique if the determinant of H
differs from zero. If it is zero, then the circuit has either infinitely many solutions or no solution at all.
Is such a case realistic? The answer is yes and no. Consider two voltages sources connected as shown
in Figure 7.6.

V1

V1/R

R

+

–

FIGURE 7.5 Equivalent circuit for a floating VCCS.
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If E1 6¼ E2, the constitutive relations of the sources are in
contradiction with Kirchhoff’s voltage law (KVL), and thus the
circuit has no solution, whereas when E1¼ E2, the current i in
Figure 7.6 is not determined by the circuit equations, and thus
the circuit has infinitely many solutions. One may object that the
problem is purely academic, because in practice wires as connec-
tions have a small, but positive, resistance, and therefore one
should instead consider the circuit of Figure 7.7, which has
exactly one solution.
Examples of singular linear resistive circuits exist that are much

more complicated. However, the introduction of parasitic elem-
ents always permits us to obtain a circuit with a single solution,
and thus the special case in which the matrix H in Equation 7.9 is
singular can be disregarded. Within the framework of linear
circuits, this attitude is perfectly justified. When a nonlinear
circuit model is chosen, however, the situation changes. An
example clarifies this point.
Consider the linear circuit of Figure 7.8. It is not difficult to see

that it has exactly one solution, except when

R1R3 ¼ R2R4 (7:21)

In this case, the matrix H in Equation 7.29 is singular and the
circuit of Figure 7.8 has zero or infinitely many solutions, depend-
ing on whether E differs from zero. From the point of view of linear
circuits, we can disregard this singular case because it arises only
when Equation 7.21 is exactly satisfied with infinite precision.
Now, replace resistor R4 by a nonlinear resistor, where the

characteristic is represented by the bold line in Figure 7.9. The
resulting circuit is equivalent to the connection of a voltage source, a linear resistor, and the nonlinear
resistor, as shown in Figure 7.10. Its solutions correspond to the intersections of the nonlinear resistor
characteristic and the load line (Figure 7.9). Depending on the value of E, either one, two, or three
solutions are available. Although we still need infinite precision to obtain two solutions, this is not the
case for one or three solutions. Thus, more than one DC-operating point may be observed in electronic
circuits. Indeed, for static memories, and multivibrators in general, multiple DC-operating points are an
essential feature.

E1 E2

i

–

+

–

+

FIGURE 7.6 Circuit with zero or
infinite solutions.

E1 E2

i

–

+

–

+

FIGURE 7.7 Circuit with exactly one
solution.

E

R1

R2 R3

R4

+–

–
+

FIGURE 7.8 Circuit with one, zero, or infinite solutions.
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The example of Figure 7.10 shows an important aspect of the problem. The number of solutions
depends on the parameter values of the circuit. In the example the value of E determines whether one,
two, or three solutions are available. This is not always the case. An important class of nonlinear resistive
circuits always has exactly one solutions, irrespective of circuit parameters. In fact, for many applications,
e.g., amplification, signal shaping, logic operations, etc., it is necessary that a circuit has exactly one
DC-operating point. Circuits that are designed for these functionalities should thus have a unique DC-
operating point for any choice of element values.
If a resistive circuit contains only two-terminal resistors with increasing characteristics and sources,

but no nonreciprocal element such as controlled sources, operational amplifiers, or transistors, the
solution is usually unique. The following theorem gives a precise statement.

THEOREM 7.1

A circuit composed of independent voltage and current sources and strictly increasing resistors without loop
of voltage sources and without cutset of current sources has at most one solution.

The interconnection condition concerning the sources is necessary. The circuit of Figure 7.6 is an
illustration of this statement. Its solution is not unique because of the loop of voltage sources. The loop is

i

E
v

Load line

Nonlinear
resistor characteristic

FIGURE 7.9 Characteristic of the nonlinear resistor and solutions of the circuit of Figure 7.10.

R1

R2 R3

E

E v

i

+
+–

–
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R2

–

–
+

–
+

FIGURE 7.10 Circuit with one, two, or three solutions.
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no longer present in the circuit of Figure 7.7, which satisfies the conditions of Theorem 7.1, and which
indeed has a unique solution.
If the resistor characteristics are not strictly increasing but only increasing (i.e., if the v–i curves have

horizontal or vertical portions), the theorem still holds, if we exclude loops of voltage sources and
I-resistors, and cutsets of current sources and V-resistors.
Theorem 7.1 guarantees the uniqueness of the solution, but it cannot assure its existence. On the other

hand, we do not need increasing resistor characteristics for the existence.

THEOREM 7.2

Let a circuit be composed of independent voltage and current sources and resistors whose characteristics are
continuous and satisfy the following passivity condition at infinity:

v ! þ1 , i ! þ1 and v ! �1 , i ! �1 (7:22)

If no loop of voltage sources and no cutset of current sources exist, then we have at least one solution of the
circuit.

For refinements of this theorem, refer to Refs. [1,3].
If we admit nonreciprocal elements, neither Theorem 7.1 nor Theorem 7.2 remain valid. Indeed, the

solution of the circuit of Figure 7.10 may be nonunique, even though the nonlinear resistor has a strictly
increasing characteristic. In order to ensure the existence and uniqueness of a nonreciprocal nonlinear
resistive circuit, nontrivial constraints on the interconnection of the elements must be observed. The
theorems below give different, but basically equivalent, ways to formulate these constraints.
The first result is the culminating point of a series of papers by Sandberg and Wilson [3]. It is based on

the following notion.

Definition 7.1:

. The connection of the two bipolar transistors shown in Figure 7.11 is called a feedback structure. The
type of the transistors and the location of the collectors and emitters are arbitrary.

. A circuit composed of bipolar transistors, resistors, and independent sources contains a feedback
structure, if it can be reduced to the circuit of Figure 7.11 by replacing each voltage source by a
short circuit, each current source by an open circuit, each resistor and diode by an open or a short
circuit, and each transistor by one of the five short–open circuit combinations represented in
Figure 7.12.

FIGURE 7.11 Feedback structure.
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THEOREM 7.3

Let a circuit be composed of bipolar transistors, described by the Ebers–Moll model, positive linear resistors,
and independent sources. Suppose we have no loop of voltage sources and no cutset of current sources. If the
circuit contains no feedback structure, it has exactly one solution.

This theorem [4] is extended in Ref. [5] to MOS transistors.
The second approach was developed by Nishi and Chua [6]. Instead of transistors, it admits controlled

sources. In order to formulate the theorem, two notions must be introduced.

Definition 7.2: A circuit composed of controlled sources, resistors, and independent sources satisfies
the interconnection condition, if the following conditions are satisfied:

. No loop is composed of voltage sources, output ports of (voltage or current) controlled voltage
sources, and input ports of current-controlled (voltage or current) sources.

. No cutset is composed of current sources, outputs ports of (voltage or current) controlled current
sources, and input ports of voltage-controlled (voltage or current) sources.

Definition 7.3: A circuit composed exclusively of controlled sources has a complementary tree
structure if both the input and output ports each form a tree. The fundamental loop matrix of the input
port tree has the form

B ¼ [BTj1] (7:23)

The circuit is said to have a positive (negative) complementary tree structure, if the determinant of BT is
positive (negative).

THEOREM 7.4

Suppose a circuit composed of controlled sources, strictly increasing resistors satisfying (Equation 7.22), and
independent sources satisfies the interconnection condition. If, by replacing each resistor either by a short
circuit or an open circuit, all independent and some dependent voltage sources by short circuits, and all
independent and some dependent current sources by open circuits, one never obtains a negative comple-
mentary tree structure, the circuit has exactly one solution [6].

FIGURE 7.12 Short-open-circuit combinations for replacing the transistors.
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A similar theorem for circuits with operational amplifiers instead of controlled sources is proved
in Ref. [7].
The third approach is that of Hasler [1,8]. The nonreciprocal elements here are nullator–norator pairs.

Instead of reducing the circuit by some operations in order to obtain a certain structure, we must orient
the resistors in certain way. Again, we must first introduce a new concept.

Definition 7.4: Let a circuit be composed of nullator–norator pairs, resistors, and independent
voltage and current sources. A partial orientation of the resistors is uniform, if the following two
conditions are satisfied:

. Every oriented resistor is part of an evenly directed loop composed only of oriented resistors and
voltages sources.

. Every oriented resistor is part of an evenly directed cutset composed only of norators, oriented
resistors, and voltage sources.

THEOREM 7.5

Let a circuit be composed of nullator–norator pairs, V- and I-resistors, and independent voltage and
current sources. If the following conditions are satisfied, the circuit has exactly one solutions:

. Norators, I-resistors, and voltage sources together form a tree.

. Nullators, I-resistors, and voltage sources together form a tree.

. Resistors have no uniform partial orientation, except for the trivial case, in which no resistor is
oriented.

We illustrate the conditions of this theorem with the example of Figure 7.10. In Figure 7.13 the resistors
are specified as V- and I-resistors and a uniform orientation of the resistors is indicated. Note that the
nonlinear resistor is a V-resistor, but not an I-resistor, because its current saturates. The linear resistors,
however, are both V- and I-resistors. The choice in Figure 7.13 is made in order to satisfy the first two
conditions of Theorem 7.5. Correspondingly, in Figures 7.14 and 7.15 the norator–I-resistor–voltage
source tree and the nullator–I-resistor–voltage source tree are represented. Because the third condition is
not satisfied, Theorem 7.5 cannot guarantee a unique solution. Indeed, as explained earlier, this circuit
may have three solutions.
Theorem 7.5 has been generalized to controlled sources, to resistors that are increasing but neither voltage

nor current controlled (e.g., the ideal diode), and to resistors that are decreasing instead of increasing [9].

V

V

I

I

FIGURE 7.13 Circuit of Figure 7.10 with nullator and norator.
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Theorems 7.3, 7.4, and 7.5 have common features.
Their conditions concern the circuit structure—the
circuit graph that expresses the interconnection of
the elements and the type of elements that occupy
the branches of the graph, but not the element
values. Therefore, the theorems guarantee the exist-
ence and uniqueness of the solution for whole
classes of circuits, in which the individual circuits
differ by their element values and parameters. In
this sense the conditions are not only sufficient, but
also necessary. This means, for example, in the case
of Theorem 7.5 if all circuits with the same struc-
ture have exactly one solution, then the three con-
ditions must be satisfied. However, by logical

contraposition, if one of the three conditions is not satisfied for a given circuit structure, a circuit with
this structure exists which has either no solution or more than one solutions.
On the other hand, if we consider a specific circuit, the conditions are only sufficient. They permit us to

prove that the solution exists and is unique, but some circuits do not satisfy the conditions and still have
exactly one solution. However, if the parameters of such a circuit are varied, one eventually falls onto a
circuit with no solution or more than one solution.
The main conditions of Theorems 7.3 and 7.4 have an evident intuitive meaning. The orientations to

look for in Theorem 7.5 are linked to the sign of the currents and the voltages of the difference of two
solutions. Because the resistors are increasing, these signs are the same for the voltage and current
differences. If we extend the analysis of the signs of solutions or solution differences to other elements, we
must differentiate between voltages and currents. This approach, in which two orientations for all
branches are considered, one corresponding to the currents and one corresponding to the voltages, is
pursued in Ref. [10].
The conditions of Theorems 7.3 through 7.5 can be verified by inspection for small circuits. For larger

circuits, one must resort to combinatorial algorithms. Such algorithms are proposed in Refs. [11,12]. As
can be expected from the nature of conditions, the algorithms grow exponentially with the number of
resistors. It is not known whether algorithms of polynomial complexity exist.
Some circuits always have either no solution or an infinite number of solutions, irrespective of the

element and parameter values. Figure 7.6 gives the simplest example. Such circuits clearly are not very
useful in practice. The remaining circuits are those that may have a finite number n> 1 of solutions if the
circuit parameters are chosen suitably. These are the circuits that are useful for static memories and for
multivibrators in general. This class is characterized by the following theorem.

I

I

+
–

FIGURE 7.14 Norator–I-resistor–voltage source tree.

I

I

+
–

FIGURE 7.15 Nullator–I-resistor–voltage source tree.
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THEOREM 7.6

Let circuit be composed of nullator–norator pairs, V- and I-resistors, and independent voltage and current
sources. If the following three conditions are satisfied, the circuit has more than one, but a finite number of
solutions for a suitable choice of circuit parameters:

. Norators, I-resistors, and voltage sources together form a tree.

. Nullators, I-resistors, and voltage sources together form a tree.

. A nontrivial, uniform partial orientation of the resistors occurs.

Can we be more precise and formulate conditions on the circuit structure that guarantee four solutions,
for example? This is not possible because changing the parameters of the circuit will lead to another
number of solutions. Particularly with a circuit structure that satisfies the conditions of Theorem 7.6,
there is a linear circuit that always has an infinite number of solutions. If we are more restrictive on the
resistor characteristics, e.g., imposing convex or concave characteristics for certain resistors, it is possible to
determine the maximum number of solutions. A method to determine an upper bound is given in Ref. [14],
whereas the results of Ref. [15] allow us to determine the actual maximum number under certain
conditions. Despite these results, however, the maximum number of solutions is still an open problem.

7.2.2 Bounds on Voltages and Currents

It is common sense for electrical engineers that in an electronic circuit all node voltages lie between zero
and the power supply voltage, or between the positive and the negative power supply voltages, if both are
present. Actually, this is only true for the DC-operating point, but can we prove it in this case? The
following theorems give the answer. They are based on the notion of passivity.

Definition 7.5: A resistor is passive if it can only absorb, but never produce power. This means that
for any point (v, i) on its characteristic we have

v � i � 0 (7:24)

A resistor is strictly passive, if in addition to Equation 7.24 it satisfies the condition

v � i ¼ 0 ! v ¼ i ¼ 0 (7:25)

THEOREM 7.7

Let a circuit be composed of strictly passive resistors and independent voltage and current sources. Then, for
every branch k of the circuit the following bounds can be given:

jvkj �
X

source branches j

jvjj (7:26)

jikj �
X

source branches j

jijj (7:27)

If, in addition, the circuit is connected and all sources have a common node, the ground node, then the
maximum and the minimum node voltage are at a source terminal.
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The theorem implies in particular that in a
circuit with a single voltage source, all branch
voltages are bounded by the source voltage in
magnitude, and all node voltages lie between
zero and the source voltage. Similarly, if a circuit
has a single current source, all branch currents are
bounded by the source current in magnitude.
Finally, if several voltage sources are present that
are all connected to ground and have positive
value, then the node voltages lie between zero
and the maximum source voltage. If some sources
have positive values and others have negative
values, then all node voltages lie between the maximum and the minimum source values.
This theorem and various generalizations can be found in Ref. [1]. The main drawback is that it does

not admit nonreciprocal elements. A simple counterexample is the voltage amplifier of Figure 7.16. The
voltage of the output node of the operational amplifier is

v ¼ R1 þ R2

R1
E (7:28)

Thus, the output node voltage is higher than the source voltage. Of course, the reason is that the
operational amplifier is an active element. It is realized by transistors and needs a positive and a negative
voltage source as the power supply. The output voltage of the operational amplifier cannot exceed these
supply voltages. This fact is not contained in the model of the ideal operational amplifier, but follows
from the extension of Theorem 7.7 to bipolar transistors [1,16].

THEOREM 7.8

Let a circuit be composed of bipolar transistors modeled by the Ebers–Moll equations, of strictly passive
resistors, and of independent voltage and current sources. Then, the conclusion of Theorem 7.7 hold.

At first glance, Theorem 7.8 appears to imply that it is impossible to build an amplifier with bipolar
transistors. Indeed, it is impossible to build such an amplifier with a single source, the input signal. We
need at least one power supply source that sets the limits of dynamic range of the voltages according to
Theorem 7.8. The signal source necessarily has a smaller amplitude and the signal can be amplified
roughly up to the limit set by the power supply source.
Theorem 7.8 can be extended to MOS transistors. The difficulty is that the nonlinear characteristics of

the simplest model is not strictly increasing, and therefore some interconnection condition must be
added to avoid parts with undetermined node voltages.

7.2.3 Monotonic Dependence

Instead of looking at single solutions of resistive circuits, as done earlier in the chapter, we consider here a
solution as a function of a parameter. The simplest and at the same time the most important case is the
dependence of a solution on the value of a voltage or current source. To have a well-defined situation, we
suppose that the circuit satisfies the hypotheses of Theorem 7.5. In this case [1,8], the solution is a
continuous function of the source values.
As an example, let us consider the circuit of Figure 7.17. We are interested in the dependence of the

various currents on the source voltage E. Because the circuit contains only strictly increasing resistors, we

E

R1
R2 v

+

+
+

–

–

–

FIGURE 7.16 Voltage amplifier.
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expect all currents to be strictly monotonic functions of E. This is not true. In Figure 7.18, the current i5(E)
is represented for R1¼R2¼ R3¼ 2R4¼R5¼ 1 V and for standard diode model parameters. Clearly, it is
nonmonotonic.

7.3 Autonomous Dynamic Circuits

7.3.1 Introduction

This section adds to the resistive elements of Section 7.2—the capacitors and the inductors. A nonlinear
capacitor is defined by the constitutive relation

v ¼ h(q) (7:29)

where the auxiliary variable q is the charge of the capacitor, which is linked to the current by

i ¼ dq
dt

(7:30)

The dual element, the nonlinear inductor, is defined by

i ¼ g(w) (7:31)

where the auxiliary variable w, the flux, is linked to the voltage by

v ¼ dw
dt

(7:32)

The symbols of these two elements are represented in Figure 7.19.
The system of equations that describes an autonomous dynamic circuit is composed of Equations 7.12

through 7.17, completed with Equations 7.29 and 7.30 for capacitor branches and Equations 7.31 and 7.32
for inductor branches. Hence, it becomes a mixed differential–nondifferential system of equations. Its
solutions are the voltages, currents, charges, and fluxes as functions of time. Because it contains differential
equations, we have infinitely many solutions, each one determined by some set of initial conditions.

R1

R2

R3

R4

R5 i5

i1

E

FIGURE 7.17 Circuit example for source dependence.

E

i5
[A]

[V]100–10

1

FIGURE 7.18 Nonmonotonic dependence.

FIGURE 7.19 Symbols of the nonlinear capacitor and the nonlinear inductor.
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If all variables except the charges and fluxes are eliminated from the system of equations, one obtains a
reduced, purely differential system of equations

dq
dt

¼ f(q,w) (7:33)

dw
dt

¼ g(q,w) (7:34)

where q and w are the vectors composed of, respectively, the capacitor charges and the inductor fluxes.
These are the state equations of the circuit. Under mild assumptions on the characteristics of the
nonlinear elements (local Lipschitz continuity and eventual passivity), it can be shown that the solutions
are uniquely determined by the initial values of the charges and fluxes at some time t0, q(t0), and w(t0),
and that they exist for all times t0 � t<1 [1,17].
It cannot be taken for granted, however, that the circuit equations actually can be reduced to that state

Equations 7.33 and 7.34. On the one hand, the charges and fluxes may be dependent and thus their initial
values cannot be chosen freely. However, the state equations may still exist, in terms of a subset of charges
and fluxes. This means that only these charges and fluxes can be chosen independently as initial
conditions. On the other hand, the reduction, even to some alternative set of state variables, may be
simply impossible. This situation is likely to lead to impasse points, i.e., nonexistence of the solution at a
finite time. We refer the reader to the discussion in Ref. [1]. In the sequel we suppose that the solutions
exist from the initial time t0 to þ1 and that they are determined by the charges and fluxes at t0.
We are interested in the asymptotic behavior, i.e., the behavior of the solutions when the time t goes to

infinity. If the dynamic circuit is linear and strictly stable, i.e., if all its natural frequencies are in the open
left half of the complex plane, then all solutions converge to one and the same DC-operating (equili-
brium) point. This property still holds for many nonlinear circuits, but not for all by far. In particular, the
solutions may converge to different DC-operating points, depending on the initial conditions (static
memories), they may converge to periodic solutions (free-running oscillators), or they may even show
chaotic behavior (e.g., Chua’s circuit). Here, we give conditions that guarantee the solutions converge to a
unique solution or one among several DC-operating points.

7.3.2 Convergence to DC-Operating Points

The methods to prove convergence to one or more DC-operating points is based on Lyapunov functions.
A Lyapunov function is a continuously differentiable function W(j), where j is the vector composed of
the circuit variables (the voltages, currents, charges, and fluxes). In the case of autonomous circuits, a
Lyapunov function must have the following properties:

1. W is bounded below, i.e., there exists a constant W0 such that

W(j) � W0 for all j (7:35)

2. The set of voltages, currents, charges, and fluxes of the circuit such that W(j) � E is bounded for
any real E.

3. For any solution j(t) of the circuit

d
dt

W(j(t)) � 0 (7:36)

4. If

d
dt

W(j(t)) ¼ 0 (7:37)

then j(t) is a DC-operating point.
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If an autonomous circuit has a Lyapunov function and if it has at least one, but a finite number of
DC-operating points, then every solution converges to a DC-operating point. The reason is that the
Lyapunov function must decrease along each solution, and thus must result in a local minimum, a stable
DC-operating point. If more than one DC-operating point exists, it may, as a mathematical exception
that cannot occur in practice, end up in a saddle point, i.e., an unstable DC-operating point.
The problem with the Lyapunov function method is that it gives no indication as to how to find such a

function. Basically, three methods are available to deal with this problem:

1. Some standard candidates for Lyapunov functions, e.g., the stored energy.
2. Use a certain kind of function and adjust the parameters in order to satisfy points 2 and 3 in the

previous list. Often, quadratic functions are used.
3. Use an algorithm to generate Lyapunov functions [18–20].

The following theorems were obtained via approach 1, and we indicate which Lyapunov function was
used to prove them. At first glance, this may seem irrelevant from an engineering point of view. However,
if we are interested in designing circuits to solve optimization problems, we are likely to be interested in
Lyapunov functions. Indeed, as mentioned previously, along any solution of the circuit, the Lyapunov
function decreases and approaches a minimum of the function. Thus, the dynamics of the circuit solve a
minimization problem. In this case, we look for a circuit with a given Lyapunov function, however,
usually we look for a Lyapunov function for a given circuit.

THEOREM 7.9

Let a circuit be composed of capacitors and inductors with a strictly increasing characteristic, resistors with
a strictly increasing characteristic, and independent voltage and current sources. Suppose the circuit has a
DC-operating point �j. By Theorem 7.1, this DC-operating point is unique. Finally, suppose the circuit has
no loop composed of capacitors, inductors, and voltage sources and no cutset composed of capacitors,
inductors, and current sources. Then, all solutions of the circuit converge to �j.

The Lyapunov function of this circuit is given by a variant of the stored energy in the capacitors and
the resistors, the stored energy with respect to �j [1,17]. If the constitutive relations of the capacitors
and the inductors are given by vk¼ hk(qk) and ik¼ gk(vk), respectively, then this Lyapunov function
becomes

W(j) ¼
X
capacitor
branches k

ðqk

�qk

(hk(q)� hk(�qk))dqþ
X
inductor
branches k

ðwk

�wk

(gk(w)� gk(�wk))dw (7:38)

The main condition (Equation 7.36) for a Lyapunov function follows from the fact that the derivative of
the stored energy is the absorbed power, here in incremental form:

d
dt

W(j) ¼
X
capacitor

and inductor
branches k

DvkDik ¼ �
X
resistor

branches k

DvkDik � 0 (7:39)

Various generalizations of Theorem 7.9 have been given. The condition ‘‘strictly increasing resistor
characteristic’’ has been relaxed to a condition that depends on �j in Refs. [1,17] and mutual inductances
and capacitances have been admitted in Ref. [17].
Theorem 7.10 admits resistors with nonmonotonic characteristics. However, it does not allow for both

inductors and capacitors.
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THEOREM 7.10

Let a circuit be composed of capacitors with a strictly increasing characteristic, voltage-controlled resistors
such that

v ! þ1 ) i > Iþ > 0 and v ! �1 ) i < I� < 0 (7:40)

and independent voltage sources. Furthermore, suppose that the circuit has a finite number of
DC-operating points. Then every solution of the circuit converges toward a DC-operating point.

This theorem is based on the then following Lyapunov function, called cocontent:

W(j(t)) ¼
X
resistor

branches k

ðvk
o

gk(v)dv (7:41)

where ik¼ gk(vk) is the constitutive relation of the resistor on branch k. The function W is decreasing
along a solution of the circuit because

d
dt

W(j(t)) ¼
X
resistor

branches k

dvk
dt

ik ¼ �
X
capacitor
branches k

dvk
dt

ik

¼�
X
capacitor
branches k

dhk
dq

i2k � 0 (7:42)

where hk(qk) is the constitutive relation of the capacitor on branch k.
Theorem 7.10 has a dual version. It admits inductors instead of capacitors, current-controlled resistors,

and current sources. The corresponding Lyapunov function is the content:

W(j) ¼
X
resistor

branches k

ðik
o

hk(i)di (7:43)

where vk¼ hk(ik) is the constitutive relation of the resistor on branch k.
The main drawback of the two preceding theorems is that they do not admit nonreciprocal elements

such as controlled sources, operational amplifiers, etc. In other words, no statement about the analog
neural network of Figure 7.20 can be made. In this network the nonreciprocal element is the VCVS with
the nonlinear characteristics v2¼s(v1). However, Theorem 7.10 can be generalized to a reciprocal
voltage-controlled N-port resistor closed on capacitors and voltage sources. Such an N-port (Figure
7.21) is described by a constitutive relation of the form

ik ¼ gk(v1, . . . , vN ) (7:44)

and it is reciprocal, if for all v, and all k, j we have

@gk
@vj

(v) ¼ @gj
@vk

(v) (7:45)
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THEOREM 7.11

Let a circuit be composed of charge-controlled capacitors with a strictly increasing characteristic and
independent voltage sources that terminate a reciprocal voltage-controlled N-port with constitutive relation
(Equation 7.42) so that we find constants V and P> 0 such that

kvk�V ) g � v ¼
XN
k¼1

gk(v)vk � P (7:46)

If the number of DC-operating points is finite, then all solutions converge toward a DC-operating point.

The proof of this theorem is based on the Lyapunov function W(v) that satisfies

@W
@vk

(v) ¼ gk(v) (7:47)
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Thanks to Equation 7.45, function W exists. The first two conditions for a Lyapunov function are a
consequence of Equation 7.46. Finally

d
dt

W(j(t)) ¼
X
resistor

branchesk

gk(v)
dvk
dt

¼
X
resistor

branches k

ik
dvk
dt

¼�
X
capacitor
branches k

dhk
dq

i2k � 0 (7:48)

where hk(qk) is the constitutive relation of the capacitor on branch k.
To illustrate how Theorem 7.11 can be applied when Theorem 7.10 fails, consider the analog neural

network of Figure 7.20. If the capacitor voltages are denoted by ui and the voltages at the output of the
voltage sources by vi, the state equations for the network of Figure 7.1 become

�Ci
dui
dt

¼ ui
Ri

þ
XN
j¼1

ui � vj
Rij

þ Ii (7:49)

Suppose that the nonlinear characteristic s(u) is invertible. The state equations can be written in terms of
the voltages vi:

�C
ds�1

dv
(vi)

dvi
dt

¼ Gis
�1(vi)�

XN
j¼1

vj
Rij

þ Ii (7:50)

where

Gi ¼ 1
Ri

þ
XN
j¼1

1
Rij

(7:51)

Equations 7.40 can be reinterpreted as the equations of a resistive N-port with the constitutive relations

gi(v) ¼ Gis
�1(vi)�

XN
j¼1

vj
Rij

þ Ii (7:52)

closed on nonlinear capacitors with the constitutive relation

v ¼ s
q
C

� �
(7:53)

If s is a sigmoidal function, as is most often supposed in this context (i.e., a strictly increasing function
with s(u)!�1 for u!�1), then the capacitors have a strictly increasing characteristic, as required by
Theorem 7.11. Furthermore, the resistive N-port is reciprocal if for i 6¼ j

@gi
@vj

¼ � 1
Rij

¼ @gj
@vi

¼ � 1
Rji

(7:54)

In other words, if for all i, j

Rij ¼ Rji (7:55)
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On the other hand, inequality Equation 7.46 must be modified because the sigmoids have values only
in the interval [�1, þ1] and thus Equation 7.50 are defined only on the invariant bounded set
S¼ {vj �1< vi<þ1}. Therefore, inequality Equation 7.50 must be satisfied for vectors v sufficiently
close to the boundary of S. This is indeed the case, because s�1(v) ! �1 as v ! �1, whereas the
other terms of the right-hand side of Equation 7.52 remain bounded.
It follows that all solutions of the analog neural network of Figure 7.20 converge to a DC-operating

point as t ! 1, provided s is a sigmoid function and the connection matrix Rij (synaptic matrix) is
symmetrical. The Lyapunov function can be given explicitly:

W(v) ¼
XN
i¼1

Gi

ðvi
0

s�1(v)dv � 1
2

XN
i,j¼1

vivj
Rij

þ
XN
i¼1

viIi (7:56)

7.4 Nonautonomous Dynamic Circuits

7.4.1 Introduction

This section is a consideration of circuits that contain elements where constitutive relations depend
explicitly on time. However, we limit time dependence to the independent sources. For most practical
purposes, this is sufficient. A time-dependent voltage source has a constitutive relation

v ¼ e(t) (7:57)

and a time-dependent current source

i ¼ e(t) (7:58)

where e(t) is a given function of time which we suppose here to be continuous. In information processing
circuits, e(t) represents a signal that is injected into the circuit, whereas in energy transmission circuits
e(t) usually is a sinusoidal or nearly sinusoidal function related to a generator.

The time-dependent sources may drive the voltages and the currents to infinity, even if they only inject
bounded signals into the circuit. Therefore, the discussion begins with the conditions that guarantee the
boundedness of the solutions.

7.4.2 Boundedness of the Solutions

In electronic circuits, even active elements become passive when the voltages and currents grow large.
This is the reason that solutions remain bounded.

Definition 7.6: A resistor is eventually passive if, for sufficiently large voltages and=or currents, it
can only absorb power. More precisely, eventual passivity means that constants V and I exist such that,
for all points (v, i) on the resistor characteristic with jvj>V or jij> I, we have

v � i � 0 (7:59)

Note that sources are not eventually passive, but as soon as an internal resistance of a source is taken into
account, the source becomes eventually passive. The notion of eventual passivity can be extended to time-
varying resistors.
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Definition 7.7: A time-varying resistor is eventually passive if constants V and I are independent of
time and are such that all points (v, i), with jvj>V or jij> I that at some time lie on the characteristic of
the resistor, satisfy the passivity condition (Equation 7.59). According to this definition, time-dependent
sources with internal resistance are eventually passive if the source signal remains bounded.
Eventual passivity allows us to deduce bounds for the solutions. These bounds are uniform in the sense

that they do not depend on the particular solution. To be precise, this is true only asymptotically, as t!1.

Definition 7.8: The solutions of a circuit are eventually uniformly bounded if there exist constants
V, I, Q, and F such that, for any solution there exists a time T such that for any t>T, the voltages vk(t)
are bounded by V, the currents ik(t) are bounded by I, the charges qk(t) are bounded by Q, and the fluxes
wk(t) are bounded by F.
Another manner of expressing the same property is to say that an attracting domain exists in state

space [1].

THEOREM 7.12

A circuit composed of eventually passive resistors with v � i!þ1 as jvj !1 or jij !1, capacitors with
v!�1 as q!6¼1, and inductors with i!�1 as w!1 has eventually uniformly bounded solutions
if no loop or cutset exists without a resistor [1,17].

Again, this theorem is proved by using a Lyapunov function, namely the stored energy

W(j) ¼
X
capacitor
branches k

ðqk
0

hk(q)dqþ
X
capacitor

branches k

ðwk

0

gk(w)dw (7:60)

Inequality Equation 7.36 holds only outside of a bounded domain.

7.4.3 Unique Asymptotic Behavior

In the presence of signals with complicated waveforms that are injected into a circuit, we cannot expect
simple waveforms for the voltages and the currents, not even asymptotically, as t!1. However, we can
hope that two solutions, starting from different initial conditions, but subject to the same source, have the
same steady-state behavior. The latter term needs a more formal definition.

Definition 7.9: A circuit has unique asymptotic behavior if the following two conditions are
satisfied:

1. All solutions are bounded.
2. For any two solutions j1(t) and j2(t)

kj1(t)� j2(t)k !t!1 0 (7:61)

In order to prove unique asymptotic behavior, it is necessary to extend the notion of the Lyapunov
function [1]. This does not lead very far, but at least it permits us to prove the following theorem.
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THEOREM 7.13

Suppose a circuit is composed of resistors with a strictly increasing characteristic such that v � i ! 1 as
jvj ! 1 or jij ! 1, positive linear capacitors, positive linear inductors, time-depending voltage (current)
sources with bounded voltage (current) and a positive resistor in series (parallel). If no loop or cutset is
composed exclusively of capacitors and inductors, the circuit has unique asymptotic behavior [1,17].

This theorem is unsatisfactory because linear reactances are required and real devices are never exactly
linear. It has been shown that slight nonlinearities can be tolerated without losing the unique asymptotic
behavior [21]. On the other hand, we cannot expect to get much stronger general results because
nonautonomous nonlinear circuits may easily have multiple steady-state regimes and even more com-
plicated dynamics, such as chaos, even if the characteristics of the nonlinear elements are all strictly
increasing.
Another variant of Theorem 7.13 considers linear resistors and nonlinear reactances [17].
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8.1 Introduction

Nonlinear synthesis and design can be informally defined as a constructive procedure to interconnect
components from a catalog of available primitives, and to assign values to their constitutive parameters to
meet a specific nonlinear relationship among electrical variables. This relationship is represented as an
implicit integrodifferential operator, although we primarily focus on the synthesis of explicit algebraic
functions,

y ¼ f (x) (8:1)
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where
y is voltage or current
f (�) is a nonlinear real-valued function
x is a vector with components that include voltages and currents

This synthesis problem is found in two different circuit-related areas: device modeling [8,76] and analog
computation [26]. The former uses ideal circuit elements as primitives to build computer models of real
circuits and devices (see Chapter 7). The latter uses real circuit components, available either off the shelf
or integrable in a given fabrication technology, to realize hardware for nonlinear signal processing tasks.
We focus on this second area, and intend to outline systematic approaches to devise electronic function
generators. Synthesis relies upon hierarchical decomposition, conceptually shown in Figure 8.1, which
encompasses several subproblems listed from top to bottom:

. Realization of nonlinear operators (multiplication, division, squaring, square rooting, logarithms,
exponentials, sign, absolute value, etc.) through the interconnection of primitive components
(transistors, diodes, operational amplifiers, etc.)

. Realization of elementary functions (polynomials, truncated polynomials, Gaussian functions, etc.)
as the interconnection of the circuit blocks devised to build nonlinear operators

. Approximation of the target as a combination of elementary functions and its realization as the
interconnection of the circuit blocks associated with these functions

Figure 8.1 illustrates this hierarchical decomposition of the synthesis problem through an example in
which the function is approximated as a linear combination of truncated polynomials [30], where
realization involves analog multipliers, built by exploiting the nonlinearities of bipolar junction transistors
(BJTs) [63]. Also note that the subproblems cited above are closely interrelated and, depending on the
availability of primitives and the nature of the nonlinear function, some of these phases can be bypassed.
For instance, a logarithmic function can be realized exactly using BJTs [63], but requires approximation
if our catalog includes only field-effect transistors whose nonlinearities are polynomic [44].

Primitives
for synthesis

vbc

vbe

ic
ic = Is (e

vbe / vt – evbe / vt
 )

Nonlinear
circuit

Nonlinear
task

Φ(x) = (x–E )r sgn(x–E )

f (x) ≈ g(x) =
j = 1

Q

ΣWj Φj (x)

Interconnection
law

Approximation
procedureElementary

functions

Nonlinear operators

FIGURE 8.1 Hierarchical decomposition of the synthesis problem.
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The technical literature contains excellent contributions to the solution of all these problems. These
contributions can hardly be summarized or even quoted in just one section. Many authors follow a block-
based approach which relies on the pervasive voltage operational amplifier (or op-amp), the rectification
properties of junction diodes, and the availability of voltage multipliers, in the tradition of classical analog
computation (e.g., Refs. [7,59,80]). Remarkable contributions have been made which focus on qualitative
features such as negative resistance or hysteresis, rather than the realization of well-defined approximat-
ing functions [9,20,67]. Other contributions focus on the realization of nonlinear operators in the form of
IC units. Translinear circuits, BJTs [23,62], and MOSFETs [79] are particularly well suited to realize
algebraic functions in IC form. This IC orientation is shared by recent developments in analog VLSI
computational and signal processing systems for neural networks [75], fuzzy logic [81], and other
nonlinear signal processing paradigms [56,57,71].
This chapter is organized to fit the hierarchical approach in Figure 8.1. We review a wide range of

approximation techniques and circuit design styles, for both discrete and monolithic circuits. It is based
on the catalog of primitives shown in Appendix A. In addition to the classical op-amp-based continuous-
time circuits, we include current-mode circuitry because nonlinear operators are realized simply and
accurately by circuits that operate in current domain [23,57,62,79]. We also cover discrete-time circuits
realized using analog dynamic techniques based on charge transfer, which is very significant for mixed-
signal processing and computational microelectronic systems [27,72]. Section 8.2 is devoted to approxi-
mation issues and outlines different techniques for uni- and multidimensional functions, emphasizing
hardware-oriented approaches. These techniques involve several nonlinear operators and the linear
operations of scaling and aggregation (covered in Section 8.3, which also presents circuits to perform
transformations among different kinds of characteristics). Sections 8.4 and 8.5 present circuits for piece-
wise-linear (PWL) and piecewise-polynomial (PWP) functions, Section 8.6 covers neural and fuzzy
approximation techniques, and Section 8.7 outlines an extension to dynamic circuits.

8.2 Approximation Issues

8.2.1 Unidimensional Functions

Consider a target function, f(x), given analytically or as a collection of measured data at discrete values
of the independent variable. The approximation problem consists of finding a multiparameter function,
g(x, w), which yields proper fitting to the target, and implies solving two different subproblems: (1) which
approximating functions to use, and (2) how to adjust the parameter vector, w, to render optimum
fitting. We only outline some issues related to this first point. Detailed coverage of both problems can be
found in mathematics and optimization textbooks [73,78]. Other interesting views are found in circuit-
related works [6,11,30], and the literature on neural and fuzzy networks [12,21,33,43,51].
An extended technique to design nonlinear electronic hardware for both discrete [63,80] and mono-

lithic [35,62,79] design styles uses polynomial approximating functions,

g(x) ¼
XQ
j¼0

ajx
j (8:2)

obtained through expansion by either Taylor series or orthogonal polynomials (Chebyshev, Legendre,
or Laguerre) [26]. Other related approaches use rational functions,

g(x) ¼

P
j¼0,Q

ajx j

P
j¼0,R

bjx j
(8:3)
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to improve accuracy in the approximation of certain classes of functions [14]. These can be realized by
polynomial building blocks connected in feedback configuration [63]. In addition, Ref. [39] presents an
elegant synthesis technique relying on linearly controlled resistors and conductors to take advantage of
linear circuits synthesis methods (further extended in Ref. [28]).
From a more general point of view, hardware-oriented approximating functions can be classified into

two major groups:

1. Those involving the linear combination of basis functions

g(x) ¼
XQ
j¼1

wjFj(x) (8:4)

which include polynomial expansions. PWL and PWP interpolation and radial basis functions
(RBF). The hardware for these functions consists of two layers, as shown in Figure 8.2a. The
first layer contains Q nonlinear processing nodes to evaluate the basis functions; the second
layer scales the output of these nodes and aggregates these scaled signals in a summing node.

2. Those involving a multilayer of nested sigmoids [51]; for instance, in the case of two layers [82],

g(x) ¼ h
X
j¼1,Q

w2jh w1jx � d1j
� �( )

� d2

" #
(8:5)

with the sigmoid function given by

h(x) ¼ 2
1þ exp (�lx)

� 1 (8:6)

where l> 0 determines the steepness of the sigmoid. Figure 8.2b shows a hardware concept for
this approximating function, also consisting of two layers.

8.2.2 Piecewise-Linear and Piecewise-Polynomial Approximants

A drawback of polynomial and rational approximants is that their behavior in a small region determines
their behavior in the whole region of interest [78]. Consequently, they are not appropriate to fit functions
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+
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FIGURE 8.2 Block diagram for approximating function hardware. (a) Using linear combination of basis functions;
(b) using two layers of nested sigmoids.
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that are uniform throughout the whole region (see Figure 8.3a). Another drawback is their lack of
modularity, a consequence of the complicated dependence of each fitting parameter on multiple target
data, which complicates the calculation of optimum parameter values. These drawbacks can be overcome
by splitting the target definition interval into Q subintervals, and then expressing approximating function
as a linear combination of basis functions, each having compact support over only one subinterval,
i.e., zero value outside this subinterval. For the limiting case in which Q!1, this corresponds to
interpolating the function by its samples associated to infinitely small subintervals (Figure 8.3b). Such
action is functionally equivalent to expressing a signal as its convolution with a delta of Dirac [10].
This splitting and subsequent approximation can be performed ad hoc, by using different functional

dependences to fit each subregion. However, to support the systematic design of electronic hardware it is
more convenient to rely on well-defined classes of approximating functions. In particular, Hermite PWPs
provide large modularity by focusing on the interpolation of measured data taken from the target function.
Any lack of flexibility as compared to the ad hoc approach may be absorbed in the splitting of the region.
Consider the more general case in which the function, y¼ f(x), is defined inside a real interval

[d0,dNþ 1] and described as a collection of data measured at knots of a given interval partition,
D¼ {d0, d1, d2, . . . , dN, dNþ 1}. These data may include the function values at these points, as well as
their derivatives, up to the (M� 1)th order,

f (k)(di) ¼ dk

dxk
f (x)

����
x¼di

i ¼ 0, 1, 2, . . . ,N ,N þ 1 (8:7)

where k denotes the order of the derivative and is zero for the function itself. These data can be
interpolated by a linear combination of basis polynomials of degree 2M� 1,

g(x) ¼
XNþ1

i¼0

XM�1

k¼0

f (k)(di)Fik(x) (8:8)

where the expressions for these polynomials are derived from the interpolation data and continuity
conditions [78]. Note that for a given basis function set and a given partition of the interval, each
coefficient in Equation 8.8 corresponds to a single interpolation kust.
The simplest case uses linear basis functions to interpolate only the function values,

g(x) ¼
XNþ1

i¼0

f (di)li(x) (8:9)

with no function derivatives interpolated. Figure 8.4 shows the shape of the inner jth linear basis
function, which equals 1 at di and decreases to 0 at di�1 and diþ1. Figure 8.5a illustrates the representation

Exponential Parabolic
f (x) f (x)

xx

(a) (b)Linear

FIGURE 8.3 Example of nonuniform function. (a) A functions that is uniform throughout the whole region.
(b) Interpolating the function by its samples associated to infinitely small subintervals.
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in Equation 8.9. By increasing the degree of the polynomials, the function derivatives also can be
interpolated. In particular, two sets of third-degree basis functions are needed to retain modularity in
the interpolation of the function and its first derivative at the knots

g(x) ¼
XNþ1

i¼0

f (di)vi(x)þ
XNþ1

i¼0

f (1)(di)si(x) (8:10)

where Appendix B shows the shapes and expressions of the value, vi(x), and slope, si(x), basis functions.
The modularity of Hermite polynomials is not free; their implementation is not cheapest in terms of

components and, consequently, may not be optimal for application in which the target function is fixed.
These applications are more conveniently handled by the so-called canonical representation of PWP
functions. A key concept is the extension operator introduced in Ref. [6]; the basic idea behind this
concept is to build the approximating function following an iterative procedure. At each iteration, the
procedure starts from a function that fits the data on a subinterval, enclosing several pieces of the
partition interval, and then adds new terms to also fit the data associated to the next piece. Generally,
some pieces are fit from left to right and others from right to left, to yield

g(x) ¼ g0(x)þ
XNþ

i¼1

Dþgi(x)þ
X�1

i¼�N�

D�gi(x) (8:11)

It is illustrated in Figure 8.5b. The functions in Equation 8.11 have the following general expressions

li(x)

δi–1
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0.0
xδi δi+1

FIGURE 8.4 Hermite linear basis function.

g(x) g(x)
y1

*

y2
*

(a)

x

(b)

x

FIGURE 8.5 Decomposition of a PWL function using the extension operator. (a) Illustrating the representation in
Equation 8.9. (b) Fitting some pieces from left to right and others from right to left.
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Dþg(x) ¼ wuþ(x � d) � w(x � d)sgn(x � d)

D�g(x) ¼ wu�(x � d) � w(x � d)sgn(d� x)

g0(x) ¼ ax þ b

(8:12)

where sgn(�) denotes the sign function, defined as an application of the real axis onto the discrete set {0,1}.
This representation, based on the extension operator, is elaborated in Ref. [6] to obtain the following

canonical representation for unidimensional PWL functions:

g(x) ¼ ax þ bþ
XN
i¼1

wi x � dij j (8:13)

which has the remarkable feature of involving only one nonlinearity: the absolute value function.
The extension operator concept was applied in Ref. [30] to obtain canonical representations for cubic

Hermite polynomials and B-splines. Consequently, it demonstrates that a PWP function admits a global
expression consisting of a linear combination of powers of the input variable, plus truncated powers of
shifted versions of this variable. For instance, the following expression is found for a cubic B-spline:

g(x) ¼
X3
r¼0

arx
r þ

XN
i¼1

bi(x � di)
3sgn(x � di) (8:14)

with ar and bi obtainable through involved operations using the interpolation data. Other canonical
PWP representations devised by these authors use

(x � di)
rsgn(x � di) ¼ 1

2
x � dij j þ x � dið Þf g(x � di)

r�1 (8:15)

to involve the absolute value, instead of the sign function, in the expression of the function.

8.2.3 Gaussian and Bell-Shaped Basis Functions

The Gaussian basis function belongs to the general class of RBF [51,52], and has the following expression:

F(x) ¼ exp � (x � d)2

2s2

� �
(8:16)

plotted in Figure 8.6. The function value is significant only for a small region of the real axis centered
around its center, d, and its shape is controlled by the variance parameter, s2. Thus, even though the

Φ(x)

δ

1.0

0.5

0.0
x

FIGURE 8.6 Guassian basis function.
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support of Gaussian functions is not exactly compact, they are negligible except for well-defined local
domains of the input values.
By linear combination of a proper number of Gaussians, and a proper choice of their centers and

variances, as well as the weighting coefficients, it is possible to approximate nonlinear functions to any
degree of accuracy [51]. Also, the local feature of these functions renders this adjustment process simpler
than for multilayer networks composed of nested sigmoids, whose components are global [43,50].
A similar interpolation strategy arises in the framework of fuzzy reasoning, which is based on local

membership functions whose shape resembles a Gaussian. For instance, in the ANFIS system proposed
by Jang [33]

F(x) ¼ 1

1þ x�d
s

� �2h ib (8:17)

as plotted in Figure 8.7a where the shape is controlled by b and s, and the position is controlled by d.
Other authors, for instance, Yamakawa [81], use the PWL membership function shape of Figure 8.7b,
which is similar to the Hermite linear basis function of Figure 8.4. From a more general point of view,
cubic B-splines [78] used to build hardware [59] and for device modeling [76] also can be considered to
be members of this class of functions.

8.2.4 Multidimensional Functions

Approximation techniques for multidimensional functions are informally classified into five groups:

1. Sectionwise PWP functions [6,30]
2. Canonical PWL representations [11]
3. Neurofuzzy interpolation [33,81]
4. Radial basis functions [51,52]
5. Multilayers of nested sigmoids [82]

8.2.4.1 Sectionwise Piecewise-Polynomial Functions

This technique reduces the multidimensional function to a sum of products of functions of only one
variable:

g(x) ¼
XM1

k1¼1

XM2

k2¼1

. . .
XMP

kP¼1

a(k1, k2, . . . , kP)
YP
j¼1

Fkj (xj) (8:18)

where a(k1, k2, . . . , kP) denotes a constant coefficient. These function representations were originally
proposed by Chua and Kang for the PWL case [6] where

Φ(x) Φ(x)

Slope = –β/2σ1.0

0.5

0.0

1.0

0.5

0.0

(a) (b)
δ x x

2σ
δ

Slope = –β

2σ

FIGURE 8.7 Fuzzy membership functions: (a) polynomial; (b) PWL.
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F1(xj) ¼ 1 F2(xj) ¼ xj F3(xj) ¼ xj � dj1
�� �� � � �

FMP xj
� � ¼ xj � djMP�2

�� �� (8:19)

Similar to the unidimensional case, the only nonlinearity involved in these basis functions is the absolute
value. However, multidimensional functions not only require weighted summations, but also multipli-
cations. The extension of Equation 8.18 to PWP functions was covered in Ref. [30], and involves the same
kind of nonlinearities as Equations 8.14 and 8.15.

8.2.4.2 Canonical Piecewise Linear Representations

The canonical PWL representation of Equation 8.13 can be extended to the multidimensional case, based
on the following representation:

g(x) ¼ aTx þ bþ
XQ
i¼1

ci w
T
i x � di

�� �� (8:20)

where
a and wi are P-vectors
b, ci, and di are scalars

Q represents the number of hyperplanes that divide the whole space RP into a finite number of polyhedral
regions where g(�) can be expressed as an affine representation.
Note that Equation 8.20 avoids the use of multipliers. Thus, g(�) in Equation 8.20 can be realized

through the block diagram of Figure 8.8, consisting of Q absolute value nonlinearities and weighted
summers.
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+
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FIGURE 8.8 Canonical block diagram for a canonical PWL function.
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8.2.4.3 Radial Basis Functions

The idea behind RBF expansion is to represent the function at each point of the input space as a linear
combination of kernel functions whose arguments are the radial distance of the input point to a selected
number of centers

g(x) ¼
XQ
j¼1

wjFj(kx � djk) (8:21)

where jj�jj denotes a norm imposed on RP, usually assumed Euclidean. The most common basis function
is a Gaussian kernel similar to Equation 8.16,

F(x) ¼ exp �kx � dk2
2s2

� �
(8:22)

although many other alternatives are available [51], for instance,

F(r) ¼ (s2 þ r2)�a, F(r) ¼ r, a � �1 (8:23)

where r is the radial distance to the center of the basis function, r� jjx� djj. Micchelli [42] demonstrated
that any function where the first derivative is monotonic qualifies as a RBF. As an example, as Equation
8.23 displays, the identity function F(r)¼ r falls into this category, which enables connecting the
representation by RBF to the canonical PWL representation [40]. Figure 8.9 is a block diagram for the
hardware realization of the RBF model.

8.2.4.4 Neurofuzzy Interpolation

This technique exploits the interpolation capabilities of fuzzy inference, and can be viewed as the
multidimensional extension of the use of linear combination of bell-shaped basis functions to approximate
nonlinear functions of a single variable (see Equations 8.4 and 8.17). Apart from its connection to
approximate reasoning and artificial intelligence, this extension exhibits features similar to the sectionwise
PWP representation, namely, it relies on a well-defined class of unidimensional functions. However,
neurofuzzy interpolation may be advantageous for hardware implementation because it requires easy-
to-build collective computation operators instead of multiplications.
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δQ
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FIGURE 8.9 Concept of RBF hardware.
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Figure 8.10 depicts the block diagram of a neurofuzzy interpolator for the simplest case in which
inference is performed using the singleton algorithm [33] to obtain

g(x) ¼
XQ
j¼1

wj
sj(x)P

i¼1,Q
si(x)

(8:24)

where the functions si(x), called activities of the fuzzy rules, are given as

sj(x) ¼ G Fj1(x1),Fj2(x2), . . . ,FjP(xP)
� �

(8:25)

where
G(�) is any T-norm operator, for instance, the minimum
F(�) has a bell-like shape (see Figure 8.7)

8.2.4.5 Multilayer Perceptron

Similar to Equation 8.5, but consists of the more general case of several layers, with the input to each
nonlinear block given as a linear combination of the multidimensional input vector [82].

8.3 Aggregation, Scaling, and Transformation Circuits

The mathematical techniques presented in Section 8.2 require several nonlinear operators and the linear
operators of scaling and aggregation (covered for completeness in this section). This section also covers
transformation circuits. This is because in many practical situations we aim to exploit some nonlinear
mechanism which intrinsically involves a particular kind of characteristics. For instance, a MOS
transistor has inherent square-law transconductance, while a diode exhibits an exponential driving-
point. Similarly, many nonlinear operators are naturally realized in current-mode domain and involve
currents at both the input and the output. Thus, transformation circuits are needed to exploit these
mechanisms for other types of characteristics.

8.3.1 Transformation Circuits

Two basic problems encountered in the design of transformation circuits are how to convert a voltage
node into a current node and vice versa. We know no unique way to realize these functions. Instead, there
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FIGURE 8.10 Conceptual architecture of a neurofuzzy interpolator.
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are many alternatives which depend on which active component from Appendix A is used. The OTA can
be represented to a first-order model as a voltage-controlled current source (VCCS) with linear
transconductance parameter gm. Regarding the op-amp and CCII, it is convenient to represent them
by the first-order models of Figure 8.11, which contain nullators and norators.* A common appealing
feature of both models is the virtual ground created by the input nullator. It enables us to sense the
current drawn by nodes with fixed voltage—fully exploitable to design transformation circuits.

8.3.1.1 Voltage-to-Current Transformation

A straightforward technique for voltage-to-current conversion exploits the operation of the OTA as
a VCCS (see Figure 8.12a) to obtain i0¼ gmvi, where gm is the OTA transconductance parameter [22].
A drawback is that its operation is linear only over a limited range of the input voltage. Also, the
scaling factor is inaccurate and strongly dependent on temperature and technology. Consequently,

* A nullator simultaneously yields a short circuit and an open circuit, while the voltage and the current at a norator are
determined by the external circuitry. The use of a nullator to model the input port of an op amp is valid only if the
component is embedded in a negative feedback configuration. With regard to the CCII, the required feedback is created by
the internal circuitry.
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FIGURE 8.11 First-order models for voltage op-amps and CCIIs using nullators and norators.
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FIGURE 8.12 Voltage-to-current transformation: (a) using an OTA; (b) using voltage feedback; (c) using a current
conveyor; (d) using virtual ground of an op-amp; (e) same as Figure 8.12d, but with active resistors.
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voltage-to-current conversion using this approach requires circuit strategies to increase the OTA linear
operation range [17,70], and tuning circuits to render the scaling parameter accurate and stable [70]. As
counterparts, the value of the scaling factor is continuously adjustable through a bias voltage or current.
Also, because the OTA operates in open loop, its operation speed is not restricted by feedback-induced
pole displacements.
The use of feedback attenuates the linearity problem of Figure 8.12a by making the conversion rely on

the constitutive equation of a passive resistor. Figure 8.12b illustrates a concept commonly found in op-
amp-based voltage-mode circuits [29,59]. The idea is to make the voltage at node A of the resistor change
linearly with vo, v1¼ voþ avi, and thus render the output current independent of vo, to obtain io¼G
(voþ avi� vo)¼ aGvi. The summing node in Figure 8.12b is customarily realized using op-amps and
resistors, which is very costly in the more general case in which the summing inputs have high
impedance. The circuits of Figure 8.12c and d reduce this cost by direct exploitation of the virtual
ground at the input of current conveyors (Figure 8.12c) and op-amps (Figure 8.12d). For both circuits,
the virtual ground forces the input voltage vi across the resistor. The resulting current is then sensed
at the virtual ground node and routed to the output node of the conveyor, or made to circulate through
the feedback circuitry of the op-amp, to obtain io¼Gvi.

Those implementations of Figure 8.12b through d that use off-the-shelf passive resistors overcome the
accuracy problems of Figure 8.12a. However, the values of monolithic components are poorly controlled.
Also, resistors may be problematic for standard VLSI technologies, where high-resistivity layers are not
available and consequently, passive resistors occupy a large area. A common IC-oriented alternative uses
the ohmic region of the MOS transistor to realize an active resistor [69] (Figure 8.12e). Tuning and
linearity problems are similar to those for the OTA. Circuit strategies to overcome the latter are ground
in Refs. [13,32,66,69].

8.3.1.2 Current-to-Voltage Transformation

The most straightforward strategy consists of a single resistor to draw the input current. It may be passive
(Figure 8.13a) or active (Figure 8.13b). Its drawback is that the node impedance coincides with the
resistor value, and thus makes difficult impedance matching to driving and loading stages. These
matching problems are overcome by Figure 8.13c, which obtains low impedances at both the input
and the output ports. On the other hand, Figure 8.13d obtains low impedance at only the input terminal,
but maintains the output impedance equal to the resistor value. All circuits in Figure 8.13 obtain vo¼Rii,
where R¼ gm

�1 for the OTA.
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FIGURE 8.13 Current-to-voltage transformation: (a) using a resistor; (b) using a feedback OTA; (c) using op-amps;
(d) using current conveyors.
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8.3.1.3 Voltage=Charge Domain Transformations for Sampled-Data Circuits

The linearity and tuning problems of previous IC-related transformation approaches are overcome
through the use of dynamic circuit design techniques based on switched-capacitors [72]. The price is
that the operation is no longer asynchronous: relationships among variables are only valid for a discrete
set of time instants. Variables involved are voltage and charge, instead of current, and the circuits use
capacitors, switches, and op-amps.
Figure 8.14a is for voltage-to-charge transformation, while Figure 8.14b is for charge-to-voltage

transformation. The switches in Figure 8.14a are controlled by nonoverlapping clock signals, so that
the structure delivers the following incremental charge to the op-amp virtual ground node:

Dqe ¼ C viþ � vi�ð Þ ¼ �Dqo (8:26)

where the superscript denotes the clock phase during which the charge is delivered. Complementarily,
the structure of Figure 8.14b initializes the capacitor during the even clock phase, and senses the
incremental charge that circulates through the virtual ground of the op-amp during the odd clock
phase. Thus, it obtains

vo0 ¼ C(Dqo) (8:27)

References [45,46,68] contain alternative circuits for the realization of the scaling function. Such circuits
have superior performance in the presence of parasitics of actual monolithic op-amps and capacitors.

8.3.1.4 Transformation among Transfer Characteristics

Figure 8.15 depicts the general architecture needed to convert one kind of transfer characteristics,
e.g., voltage transfer, into another, e.g., current transfer. Variables x0 and y0 of the original characteristics
can be either voltage or current, and the same occurs for x and y of the converted characteristic. The
figure depicts the more general case, which also involves a linear transformation of the characteristics
themselves:

x
y

	 

¼ A

x 0

y 0

	 

¼ a11 a12

a21 a22

	 

x 0

y 0

	 

(8:28)

For example, Figure 8.15 encloses the matrices to rotate the characteristics by an angle u, and to reflect
the characteristics with respect to an edge with angle u. This concept of linear transformation converters
and its applications in the synthesis of nonlinear networks was proposed initially by Chua [5] for driving-
point characteristics, and further extended by Glover [24] and Huertas [29].
In the simplest case, in which the nondiagonal entries in Equation 8.28 are zero, the transformation

performed over the characteristics is scaling, and the circuits of Figures 8.12 and 8.13 can be used directly
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FIGURE 8.14 Transformations for sampled-data circuits: (a) voltage to charge; (b) charge to voltage.
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to convert x into x 0 at the input front-end, and y 0 at the output front-end. Otherwise, aggregation
operation is also required, which can be realized using the circuits described elsewhere.

8.3.1.5 From Driving Point to Transfer and Vice Versa

Figure 8.16 illustrates circuits to transform driving-point characteristics into related transfer character-
istics. Figure 8.16a and b uses the same principle as Figure 8.12c and d to transform a voltage-controlled
driving-point characteristic, ii¼ f (vi), into a transconductance characteristics. On the other hand Figure
8.16c operates similarly to Figure 8.13c to transform a current-controlled driving-point characteristic,
vi¼ f (ii), into a transimpedance characteristic. If the resistance characteristics of the resistor in Figure
8.16a and b, or the conductance characteristic of the resistor in Figure 8.16c, is invertible, these circuits
serve to invert nonlinear functions [63]. For instance, using a common base BJT in Figure 8.16c obtains a
logarithmic function from the BJT exponential transconductance. Also, the use of a MOST operating in
the ohmic region serves to realize a division operation.
Lastly, let us consider how to obtain driving-point characteristics from related transfer characteristics.

Figure 8.17a and b corresponds to the common situation found in op-amp-based circuits, where the
transfer is between voltages. Figure 8.17a is for the voltage-controlled case and Figure 8.17b is for the
current-controlled case. They use feedback strategies similar to Figure 8.17b to render either the input
voltage or the input current independent of the linear contributions of the other port variable. A general
theory for this kind of transformation converter can be found in Ref. [29].
Note that these figures rely on a Thévenin representation. Similar concepts based on Norton repre-

sentations allow us to transform current transfer characteristics into driving-point characteristics.
However, careful design is needed to preserve the input current while sensing it.
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FIGURE 8.15 Concept of linear transformation converter for transfer characteristics: general architecture, and
transformation matrices for rotation (left) and reflection (right).
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Other interesting transformation circuits are depicted in Figure 8.17c and d. The block in Figure 8.17c
is a transconductor that obtains io¼�f (vi) with very large input impedance. Then, application of
feedback around it obtains a voltage-controlled resistor, io¼ f (vi). Figure 8.17d obtains a current-
controlled resistor, vi¼ f (ii), using a current conveyor to sense the input current and feedback the output
voltage of a transimpedance device with vo¼ f(ii).

8.3.2 Scaling and Aggregation Circuitry

8.3.2.1 Scaling Operation

Whenever the weights are larger than unity, or are negatives, the operation of scaling requires active
devices. Also, because any active device acts basically as a transconductor, the scaling of voltages is
performed usually through the transformation of the input voltage into an intermediate current and the
subsequent transformation of this current into the output voltage. Figure 8.18 illustrates this for an op-
amp-based amplifier and an OTA-based amplifier. The input voltage is first scaled and transformed in io,
and then this current is scaled again and transformed into the output voltage. Thus, the scaling factor
depends on two design parameters. Extra control is achieved by also scaling the intermediate current.
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Let us now consider how to scale currents. The most convenient strategy uses a current mirror, whose
simplest structure consists of two matched transistors connected as shown in Figure 8.19a [25]. Its
operating principle relies on functional cancellation of the transistor nonlinearities to yield a linear
relationship

io ¼ p2f (vi) ¼ p2f f �1 ii
p1

� �	 

¼ p2

p1
ii (8:29)

where p1 and p2 are parameters with value that can be designer controlled; for instance, b of the MOST or
Is of the BJT (see Appendix A and Ref. [44]). The input and output currents in Figure 8.19a must be
positive. Driving the input and output nodes with bias currents IB and (p2=p1)IB, respectively, one obtains
ii¼ ii0 þ IB and io¼ I 0o þ (p2þ p1)IB, and this enables bilateral operation on ii0 and io0 .

In practical circuits, this simple design concept must be combined with circuit strategies to reduce
errors due to nonnegligible input current of BJTs, DC voltage mismatch between input and output
terminals, finite input resistance, and finite output resistance. Examples of these strategies can be found
in Refs. [25,56,77]. On the other hand, sizing and layout strategies for other problems related to random
mismatches between input and output devices are found in Ref. [41,48], which are applicable to most
matching problems in MOS IC design.
The current mirror concept is extensible to any pair of matched transconductors, provided their

transconductance characteristics are invertible and parameterized by a designer-controlled scale
factor p, and that the dependence of the output current with the output voltage is negligible. In particular,
the use of differential transconductors enables us to obtain bilateral operation simply, requiring no
current-shifted biasing at the input and output nodes. It also simplifies achieving noninverting ampli-
fication (that is, positive scale factors), as Figure 8.19b illustrates. This figure also serves to illustrate
the extension of the mirror concept to multiple current outputs. Note that except for loading consider-
ations, no other limitations exist on the number of output transconductors that can share the input
voltage. Also, because fan-out of a current source is strictly one, this replication capability is needed
to enable several nodes to be excited by a common current. On the other hand, the fact that the
different current output replicas can be scaled independently provides additional adjusting capability
for circuit design.
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FIGURE 8.19 Current scaling using current mirrors. (a) Two matched transistors. (b) Noninverting amplification.
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8.3.2.2 Signal Aggregation

As for the scaling operation, aggregation circuitry operates in current domain, based on Kirchhoff’s
current law (KCL). Thus, the aggregation of voltages requires that first they be transformed into currents
(equivalently, charge packets in the switched-capacitor circuitry) and then added through KCL, while
currents and incremental charges are added by routing all the components to a common node. If the
number of components is large, the output impedance of the driving nodes is not large enough, and=or
the input importance of the load is not small enough, this operation will encompass significant
loading errors due to variations of the voltage at the summing node. This is overcome by clamping the
voltage of this node using a virtual ground, which in practical circuits is realized by using either the
input port of an op-amp, or terminals X and Y of a current conveyor. Figure 8.20 illustrates the current
conveyor case.

8.4 Piecewise-Linear Circuitry

Consider the elementary PWL function that arise in connection with the different methods of represen-
tation covered in Section 8.2:

. Two-piece concave and convex characteristics (see Equation 8.12)

. Hermite linear basis function (see Figure 8.4 and Appendix B)

. Absolute value (see Equation 8.13)

where rectification is the only nonlinear operator involved. The circuit primitives in Appendix A exhibit
several mechanisms which are exploitable in order to realize rectification:

. Cutoff of diodes and transistors—specifically, current through a diode negligible for negative
voltage, output current of BJTs, and MOSTs negligible under proper biasing

. Very large resistance and zero offset voltage of an analog switch for negative biasing of the control
terminal

. Digital encoding of the sign of a differential voltage signal using a comparator

Similar to scaling and aggregation operations, rectification is performed in current domain, using the
mechanisms listed previously to make the current through a branch negligible under certain conditions.
Three techniques are presented, which use current transfer in a transistor-based circuit, current-
to-voltage transfer using diodes and op-amp, and charge transfer using switches and comparators,
respectively.

8.4.1 Current Transfer Piecewise-Linear Circuitry

Figure 8.21a and b presents the simplest technique to rectify the current transferred from node A to
node B. They exploit the feature of diodes and diode-connected transistors to support only positive
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FIGURE 8.20 Aggregation of voltages through intermediate currents and current conveyor.
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currents. Figure 8.21a operates by precluding negative currents to circulate from node A to node B, while
Figure 8.21b also involves the nonlinear transconductance of the output transistor Mo; negative currents
driving the node A force vi to become smaller than the cut-in voltage and, consequently, the output
current becomes negligible. A drawback to both circuits is that they do not provide a path for negative
input currents, which accumulates spurious charge at the input node and forces the driving stage to
operate outside its linear operating regime. Solutions to these problems can be found in Refs. [57,61].
Also, Figure 8.21a produces a voltage displacement equal to the cut-in voltage of the rectifying device,
which may be problematic for applications in which the voltage at node A bears information. A common
strategy to reduce the voltage displacements uses feedback to create superdiodes (shown in Figure 8.21c
for the grounded case and Figure 8.21d for the floating case), and where the reduction of the voltage
displacement is proportional to the DC gain of the amplifier.
Figure 8.22a, called a current switch, provides paths for positive and negative currents entering

node A, and obtains both kinds of elementary PWL characteristics exploiting cutoff of either BJTs or
MOSTs. It consists of two complementary devices: npn (top) and pnp BJTs, or n-channel (top) and
p-channel MOSTs. Its operation is very simple: any positive input current increases the input voltage,
turning the bottom device ON. Because both devices share the input voltage, the top device becomes
OFF. Similarly, the input voltage decreases for negative input currents, so that the top device becomes ON
and the bottom OFF. In sum, positive input currents are drawn to the bottom device, while negative
currents are drawn to the top device.
An inconvenience of Figure 8.22a is the dead zone exhibited by its input driving-point characteristics,

which is very wide for MOSTs. It may produce errors due to nonlinear loading of the circuitry that drives
the input node. Figure 8.22b overcomes this by using a circuit strategy similar to that of the superdiodes.
The virtual ground at the op-amp input renders the dead zone centered around the voltage level E, and its
amplitude is reduced by a factor proportional to the amplifier DC gain. Some considerations related to
the realization of this amplifier are found in Ref. [58].
Proper routing and scaling of the currents ip and in in Figure 8.22a gives us the concave and convex

basic characteristics with full control of the knot and position and the slope in the conducting region.
Figure 8.22c is the associated circuit, in which the input bias current controls the knot position, and the
slope in the conducting region is given by the gain of the current mirrors. Note that this circuit also
obtains the absolute value characteristics, while Figure 8.22d obtains the Hermite linear basis function.
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FIGURE 8.21 (a) and (b) Circuit techniques for current rectification; (c) and (d) superdiodes.
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The way to obtain the PWL fuzzy membership function from this latter circuit is straightforward, and
can be found in Ref. [58].

8.4.2 Transresistance Piecewise-Linear Circuitry

The circuit strategies involved in PWL current transfer can be combined in different ways with the
transformation circuits discussed previously to obtain transconductance and voltage-transfer PWL
circuits. In many cases design ingenuity enables optimum merging of the components and consequently,
simpler circuits. Figure 8.23a depicts what constitutes the most extended strategy to realize the elemen-
tary PWL functions using off-the-shelf components [63,80]. The input current is split by the feedback
circuitry around the op-amp to make negative currents circulate across Dn and positive currents circulate
across Dp. Consequently, this feedback renders the input node of the op-amp a virtual ground and thus
reduces errors due to finite diode cut-in voltage in the transresistance characteristics. Similar to Figure
8.22, the position of the knot in these elementary characteristics is directly controlled by an input bias
current. Also note that the virtual ground can be exploited to achieve voltage-to-current transformation
using the strategy of Figure 8.12d and thus, voltage-transfer operation.
Algebraic combination of the elementary curves provided by Figure 8.23a requires transforming the

voltages von and vop into currents and then aggregating these currents by KCL. For example, Figure 8.23b
is the circuit for the absolute value and Figure 8.23c presents a possible implementation of the Hermite
basis function.
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Other related contributions found in the literature focus on the systematic realization of PWL driving-
point resistors, and can be found in Refs. [7,10].

8.4.3 Piecewise-Linear Shaping of Voltage-to-Charge
Transfer Characteristics

The realization of PWL relationships among sampled-data signals is based on nonlinear voltage-to-
charge transfer and uses analog switches and comparators. Figure 8.24a is a circuit structure, where one
of the capacitor terminals is connected to virtual ground and the other to a switching block. Assume that
nodes A and B are both grounded. Note that for (v� d)> 0 the switch arrangement set node D to d,
while node E is set to v. For (v� d)< 0, nodes D and E are both grounded. Consequently, voltage at
node C in this latter situation does not change from one clock phase to the next, and consequently, the
incremental charge becomes null for (v� d)< 0. On the other hand, for (v� d)> 0, the voltage at node
C changes from one clock phase to the next, and generates an incremental charge

Dqe ¼ C v � dð Þ ¼ �Dqo (8:30)
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FIGURE 8.23 PWL transimpedance circuits. (a) Circuit for algebraic combination of the elementary curves.
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which enables us to obtain negative and positive slopes using the same circuit, as shown in Figure 8.24a.
To make the characteristics null for (v� d)> 0, it suffices to interchange the comparator inputs. Also,
the technique is easily extended to the absolute value operation by connecting terminal A to v, and
terminal B to d. The realization of the Hermite linear basis function is straightforward and can be found
in Ref. [55].
Other approaches to the realization of PWL switched-capacitor circuitry use series rectification of

the circulating charge through a comparator-controlled switch (Figure 8.24b), and can be found in
Refs. [16,31]. The latter also discusses exploitation of these switched-capacitor circuits to realize con-
tinuous-time driving-point characteristics, the associated transformation circuits, and the dynamic
problematics.

8.5 Polynomials, Rational, and Piecewise-Polynomial
Functions

These functions use rectification (required for truncation operation in the PWP case) and analog
multiplication,

z ¼ xy
a

(8:31)

as basic nonlinear operators.* Joining the two inputs of the multiplier realizes the square function.
Analog division is realized by applying feedback around a multiplier, illustrated at the conceptual level in
Figure 8.25a; the multiplier obtains e¼ (zy)=a, and for A ! 1, the feedback forces x¼ e. Thus, if y 6¼ 0,
the circuit obtains z¼a(x=y). Joining y and z terminals, the circuit realizes the square root, z¼ (ax)1=2.
This concept of division is applicable regardless of the physical nature of the variables involved. In the
special case in which e and x are current and z is a voltage, the division can be accomplished using KCL to
yield x¼ e. Figure 8.25b shows a circuit for the case in which the multiplication is in voltage domain, and
Figure 8.25c is for the case in which multiplication is performed in transconductance domain. The
transconductance gain for input z in the latter case must be negative to guarantee stability.
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FIGURE 8.25 Division operator using a feedback multiplier: (a) concept; (b) with voltage multiplier and op-amp;
(c) with transconductance multiplier and OTA.

* Scale factor a in Equation 1.31 must be chosen to guarantee linear operation in the full variation range of inputs
and outputs.
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8.5.1 Concepts and Techniques for Polynomic and Rational Functions

Figure 8.26 illustrates conceptual hardware for several polynomials up to the fifth degree. Any larger
degree is realized similarly. Figure 8.27 uses polynomials and analog division to realize rational
functions

g(x) ¼

P
i¼0,Q

ajx j

P
j¼0,R

bjx j
(8:32)

For simplicity, we have assumed that the internal scaling factors of the multipliers in Figures 8.26 and
8.27 equal one.
An alternative technique to realize rational functions is based on linearly controlled resistors, described

as v¼ (Lx)i, and linearly controlled conductors, i¼ (Cx)v, where L and C are real parameters. This
technique exploits the similarity between these characteristics and those which describe inductors and
capacitors in the frequency domain, to take advantage of the synthesis techniques for rational transfer
function in the s-plane through interconnection of these linear components [28,39] (Figure 8.28). As for
the previous cases, realization of linearly controlled resistors and conductors require only multipliers and,
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depending upon the nature of the variables involved in the multipliers, voltage-to-current and current-
to-voltage transformation circuits.

8.5.2 Multiplication Circuitry

Two basic strategies realize multiplication circuitry: using signal processing and exploiting some non-
linear mechanism of the primitive components. Signal processing multipliers rely on the generation of a
pulsed signal whose amplitude is determined by one of the multiplicands and its duty cycle by the other,
so that the area is proportional to the result of the multiplication operation. Figure 8.29a presents an
implementation concept based on averaging. This is performed by a low-pass filter where the input is a
pulse train with amplitude proportional to x and duty cycle proportional to y. The latter proportionality
is achieved through nonlinear sampling by comparing y with a time reference sawtooth signal. Thus, the
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area under each pulse in the train is the product of x3 y, extracted by the low-pass filter. This
implementation concept is discussed in further detail in classical texts on analog computation [63],
and applied more recently to analog VLSI signal processing [72].
Figure 8.29b is an alternative implementation concept based on signal shaping in the time domain.

It uses two linear blocks with normalized unit step response given as hz(t) and hy(t). The first is driven by
level x to obtain

z(t) ¼ xhz(t), 0 � t < t (8:33)

where t denotes the duration of the time interval during which the switch S remains closed. The other is
driven by a references level a, to render t given by

t ¼ h�1
y

y
a

� �
(8:34)

Assuming both linear blocks are identical and the time function invertible, one obtains the steady-state
value of z, z(t), as the product of levels x and y.
The simplest implementation of Figure 8.29 uses integrators, i.e., h(t)¼ t, as linear blocks (see Figure

8.41b). Also note that the principle can be extended to the generation of powers of an input signal
by higher-order shaping in time domain. In this case, both linear blocks are driven by reference levels.
The block hy(t) consists of a single integrator, t¼ y=a. The other consists of the cascade of P integrators,
and obtains z(t)¼btp. Thus, z(t)¼b(y=a)p. Realizations suitable for integrated circuits are found in
Refs. [34,55].

8.5.3 Multipliers Based on Nonlinear Devices

The primitives in Appendix A display several mechanisms that are exploitable to realize analog
multipliers:

. Exponential functionals associated to the large-signal transconductance of BJTS, and the possibility
of obtaining logarithmic dependencies using feedback inversion

. Square-law functionals associated to the large-signal transconductance of the MOS transistor
operating in saturation region

. Small-signal transconductance of a BJT in active region as a linear function of collector current

. Small-signal transconductance of a MOST in saturation as a linear function of gate voltage

. Small-signal self-conductance of a MOS transistor in ohmic region as a linear function of gate
voltage

These and related mechanisms have been explained in different ways and have resulted in a huge catalog
of practical circuits. To quote all the related published material is beyond the scope of this section. The
references listed at the end were selected because of their significance, and their cross-references contain a
complete view of the state of the art. Also, many of the reported structures can be grouped according to
the theory of translinear circuits, which provides a unified framework to realize nonlinear algebraic
functions through circuits [23,62,79].

8.5.3.1 Log–Antilog Multipliers

Based on the exponential large-signal transconductance of the BJT, and the following relationships,

z0 ¼ ln(x)þ ln(y) ¼ ln(xy)

z ¼ ez
0 ¼ eln(xy) ¼ xy

(8:35)
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which can be realized as illustrated in Figure 8.30a [65]. This circuit operates on positive terminal
currents to obtain i0¼ (i1i2)=i3, which can be understood from translinear circuit principles by noting
that the four base-to-emitter voltages define a translinear loop,

0 ¼vbe1 þ vbe2 � vbe3 � vbe4

¼ln
i1
Is

� �
þ ln

i2
Is

� �
�ln

i3
Is

� �
�ln

io
Is

� �
(8:36)

The circuit can be made to operate in four-quadrant mode, though restricted to currents larger than �IB,
by driving each terminal with a bias current source of value IB. Also, because all input terminals
are virtual ground the circuit can be made to operate on voltages by using the voltage-to-current
transformation concept of Figure 8.12d. Similarly, the output current can be transformed into a voltage
by using an extra op-amp and the current-to-voltage transformation concept of Figure 8.13c. Extension
of this circuit structure to generate arbitrary powers is discussed in Ref. [23]. Figure 8.30b [1] uses similar
techniques, based on introducing scaling factors in the translinear loop, to obtain

iy ¼ i1�k
a ikx (8:37)

8.5.3.2 Square-Law Multipliers

Square-law multipliers are based on the algebraic properties of the square function, most typically

z ¼ 1
4

(x þ y)2 � (x � y)2

 � ¼ xy (8:38)

shown conceptually in Figure 8.31a, and the possibility of obtaining the square of a signal using circuits,
typically consisting of a few MOS transistors operating in saturation region. Figure 8.31b through f depict
some squarer circuits reported in the literature.
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The completeness of square-law operators for the realization of nonlinear circuits was demonstrated
from a more general point of view in Ref. [47], and their exploitation has evolved into systematic circuit
design methodologies to perform both linear and nonlinear functions [3].

8.5.3.3 Transconductance Multipliers

A direct, straightforward technique to realize the multiplication function exploits the possibility of
controlling the transconductance of transistors through an electrical variable (current or voltage).
Although this feature is exhibited also by unilateral amplifiers, most practical realizations use differential
amplifiers to reduce offset problems and enhance linearity [25]. Figure 8.32 presents a generic schematic
for a differential amplifier, consisting of two identical three-terminal active devices with common bias
current. The expressions on the right display its associated transconductance characteristics for npn-BJTs
and n-channel MOSTs, respectively [25]. These characteristics are approximated to a first-order model as

izBJT � iy
4Ut

vx , izMOST � ffiffiffiffiffiffiffi
biy

p� �
vx (8:39)

which clearly displays the multiplication operation, although restricted to a rather small linearity
range. Practical circuits based on this idea focus mainly on increasing this range of linearity, and follow
different design strategies. Figure 8.33 gives an example known as the Gilbert cell or Gilbert multiplier
[23]. Corresponding realizations using MOS transistors are discussed in Refs. [2,53]. Sánchez-Sinencio
et al. [61] present circuits to realize this multiplication function using OTA blocks. On the other
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hand, Ref. [17] presents a tutorial discussion of different linearization techniques for MOS differential
amplifiers.

8.5.3.4 Multiple Based in the Ohmic Region of MOS Transistors

The ohmic region of JFETs has been used to realize amplifiers with controllable gain for automatic gain
control [54]. It is based on controlling the equivalent resistance of the JFET transistor in its ohmic region
through a bias voltage. More recently, MOS transistors operating in the ohmic region were used to realize
linear [69,70] and nonlinear [35] signal processing tasks in VLSI chips. There exist many ingenious
circuits to eliminate second and higher-order nonlinearities in the equivalent resistance characteristics.
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good nonlinear cancellation through cross-coupling and fully differential operation. (b) A more general view showing
the conductance as well as the resistance of the MOS ohmic region used to obtain a versatile amplifier-divider
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The circuit in Figure 8.34a achieves very good nonlinearity cancellation through cross-coupling and fully
differential operation, obtaining

izþ � iz� ¼ 2b(vxþ � vx�)(vyþ � vy�) (8:40)

and its use in multiplication circuits is discussed in Refs. [35,66]. A more general view is presented
in Figure 8.34b [35], where the conductance as well as the resistance of the MOS ohmic region are used
to obtain a versatile amplifier-divider building block. Enomoto and Yasumoto [18] report another
interesting multiplier that combines the ohmic region of the MOS transistor and sampled-data circuits.

8.6 Sigmoids, Bells, and Collective Computation Circuits

8.6.1 Sigmoidal Characteristics

As Equation 8.5 illustrates, approximating a nonlinear function through a multilayer perceptron requires
the realization of sigmoidal functions, with arguments given as linear combinations of several variables.
The exact shape of the sigmodial is not critical for the approximation itself, although it may play an
important role in fitting [82]. Figure 8.35 depicts two shapes used in practice. Figure 8.35a, the hard
limiter, has an inner piece of large (ideally infinite) slope, while for Figure 8.35b, the soft limiter, this
slope is smaller and can be used as a fitting parameter.

Most amplifiers have large-signal transfer characteristics whose shape is a sigmoid or an inverted
sigmoid. We present only those circuits whose inputs are currents because this simplifies the circuitry
needed to obtain these inputs as linear combinations of other variables. The op-amp circuit of
Figure 8.36a realizes the soft limiter characteristics in transimpedance form. The center is set by the
input bias current and the slope through the resistor (b¼R). If the branch composed of the two Zener
diodes is eliminated, the saturation levels Eþ and E� are determined through the internal op-amp
circuitry, inappropriate for accurate control. (Otherwise, they are determined through the Zener break-
down voltages.) On the other hand, Figure 8.36b also realizes the hard sigmoid in transimpedance
domain [58]. The output saturation levels for this structure are Eþ¼VTn and E�¼ jVTpj, where VTn and
VTp are the threshold voltages of the NMOS transistor and the PMOS transistor, respectively. To obtain
the output represented by a current, one can use voltage-to-current transformation circuits. References
[15,57,58] discuss simpler alternatives operating directly in current domain. For instance, Figure 8.36c
and d depicts circuits for the soft limiter characteristics and the hard limiter characteristics.
With regard to the calculation of the input to the sigmoid as a linear combination of variables, note

that the input node of all circuits in Figure 8.36 is virtual ground. Consequently, the input current can be
obtained as a linear combination of voltages or currents using the techniques for signal scaling and
aggregation presented in Section 8.3.

E+

–E–

y

xδ0.0

(a)
–E–

E+

y

xδ

Slope = β

0.0

(b)

FIGURE 8.35 Typical sigmoidal shapes: (a) hard limiter; (b) soft limiter.
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8.6.2 Bell-Like Shapes

The exact shapes of Equations 8.16 and 8.17 involve the interconnection of squarers, together with blocks
to elevate to power, and exponential blocks—all realizable using techniques previously discussed in this
chapter. However, these exact shapes are not required in many applications, and can be approximated
using simpler circuits. Thus, let us consider the differential amplifier of Figure 8.32, and define vi¼ vx,
IB¼ iy, and io¼ iz for convenience. The expressions for the large-signal transconductance displayed along
with the figures show that they are sigmoids with saturation levels at IB and �IB. They are centered at
vi¼ 0, with the slope at this center point given by Equation 8.39. The center can be shifted by making
vi¼ vxþ and d¼ vx�.

Similar to the differential amplifier, most OTAs exhibit sigmoid-like characteristics under large-signal
operation, exploitable to realize nonlinear functions [19,37,56,61,71]. This may rely on the mathematical
techniques behind multilayer perceptrons, or on those behind RBF and fuzzy interpolation.
Figure 8.37a obtains a bell-shaped transconductance through a linear, KCL combination of the two

sigmoidal characteristics, one of negative slope and the other of positive slope. The width and center of
the bell (see Figure 8.7) are given respectively by

2s ¼ d2 � d1, d ¼ d2 þ d1
2

(8:41)

controlled by the designer. The slope of the bell at the cross-over points is also controlled through the
transconductance of the OTAs.
For simpler circuit realizations, this technique can be used directly with differential amplifiers, as

shown in Figure 8.37b. The differential output current provided by the circuit can be transformed into a

ii
ii io

io

IB IBIBIB

IB

IB

A

(c) (d)

+
+ – –

δδ

ii ii

vo vo

R

++
– –

(a) (b)

FIGURE 8.36 Realization of sigmoidal characteristics with input current: (a) transimpedance soft limiter;
(b) transimpedance hard limiter; (c) and (d) soft and hard limiters in current transfer domain.
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unilateral one using a p-channel current mirror. Equation 8.41 also applies for this circuit, and the slope
at the cross-overs is

slopeMOST ¼ k
ffiffiffiffiffiffiffi
bIB

p
, slopeBJT ¼ kIB

4Ut
(8:42)

Note that the control of this slope through the bias current changes the height of the bell. It motivates the
use of a voltage gain block in Figure 8.37. Thus, the slope can be changed through its gain parameter k.
The slope can also be changed through b for the MOSTs. Practical realizations of this concept are found
in Refs. [4,71,74]. The voltage amplifier block can be realized using the techniques presented in this
chapter. Simpler circuits based on MOS transistors are found in Ref. [53].

8.6.3 Collective Computation Circuitry

RBF and fuzzy inference require multidimensional operators to calculate radial distances in the case of
RBF, and to normalize vectors and calculate T-norms in the case of fuzzy inference. These operators can
be expressed as the interconnection of the nonlinear blocks discussed previously, or realized in a simpler
manner through dedicated collective computation circuitry. Most of these circuits operate intrinsically in
current domain and are worth mentioning because of this simplicity and relevance for parallel informa-
tion processing systems.

8.6.3.1 Euclidean Distance

Figure 8.38 [38] presents a current-mode circuit to compute

iy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k¼1,P

i2xk

s
(8:43)

IBIB
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io+ io–
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FIGURE 8.37 Transconductance circuits for bell-shaped function: (a) using OTAs; (b) using differential amplifiers.
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based on the square-law of MOS transistors in the saturation region. If the current ik at each terminal is
shifted through a bias current of value dk, the circuit serves to compute the Euclidean distance between
the vector of input currents and the vector d.

8.6.3.2 Normalization Operation

Figure 8.39 depicts circuits to normalize an input current vector, for the BJT [23] and the CMOS [74] cases,
respectively. Their operation is based on KCL and the current mirror principle. Kirchhoff’s circuit law
forces the sum of the output currents at node A to be constant. On the other hand, the current mirror
operation forces a functional dependency between each pair of input and output currents. Thus, they obtain

�ik � ikP
j¼1,P

ij
(8:44)

for each current component.

8.6.3.3 T-Norm Operator

The calculation of the minimum of an input vector x is functionally equivalent to obtaining the
complement of the maximum of the complements of its components. Figure 8.40a illustrates a classical
approach used in analog computation to calculate the maximum of an input vector x. It is based on the
following steady-state equation:

�y þ
X
k¼1,P

u�1(A(xk � y)) ¼ 0 (8:45)

ix1 ix2

(1) (4/P)(2(P + 1)/P)
iy

ixP

FIGURE 8.38 CMOS self-biased Euclidean distance circuit. (From Landolt, O., Vittoz, E., and Heim, P., Electr.
Lett., 28, 352, 1992. With permission.)
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FIGURE 8.39 Current-mode normalization circuits: (a) BJT; (b) CMOS.
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where A is large. This concept can be realized in practice using OTAs, op-amps, or diodes. Both of these
have voltage input and output. Alternatively, Figure 8.40b shows a CMOS current-mode realization [74].
In this circuit the maximum current determines the value of the common gate voltage, vG. The only input
transistor operating in the saturation region is that which is driven by maximum input current; the rest
operate in the ohmic region.

8.7 Extension to Dynamic Systems

A dynamic system with state vector x and dynamics represented as

Tk
dxk
dt

¼ fk(X), 1 � k � P (8:46)

can be mapped on the block diagram of Figure 8.41a, and realized by the interconnection of nonlinear
resistive blocks and integrators. This approach is similar to that followed in classical analog computation

(a) (b)

ix1+IB ix2 + IB ixP + IB Vref

x1

x2

xP iy + IBM12 M22
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MP1 ID
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A u–1

Σ

Σ

+

+

+

+ –

–

–

–

yA

A u–1

u–1Σ

Σ

FIGURE 8.40 Concept for maximum operator and current-mode realization. (a) A classical approach used in
analog computation to calculate the maximum of an input vector. (b) A CMOS current-mode realization.
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FIGURE 8.41 Conceptual state-variable block diagram of dynamic systems integrator circuits. (a) Block diagram
realized by the interconnection of nonlinear resistive blocks and integrators. (b) Several integrated circuits.
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[26] and has integrators as key components. Figure 8.41b illustrates several integrator circuits. Combin-
ing these circuits with the circuitry for nonlinear functions provides systematic approaches to synthesize
nonlinear dynamic systems based on the approximations presented in this chapter [56]. On the other
hand, Rodríguez-Vázquez and Delgado-Restituto [57] discuss related techniques to synthesize nonlinear
systems described by finite-difference equations.

Appendix A: Catalog of Primitives

Figure 8.42 outlines our catalog of primitive components, all of which are available off-the-shelf, and,
depending on the fabrication technology, can be realized on a common semiconductor substrate [44].
Generally, the catalog differs between individual technologies; for instance, no npn-BJTs are available in a
CMOS n-well technology. The use of linear capacitors may appear surprising because we constrain
ourselves to cover only static characteristics. However, we will not exploit their dynamic i–v relationship,
but instead their constitutive equation in the charge–voltage plane, which is algebraic.
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Appendix B: Value and Slope Hermite Basis Functions
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FIGURE 8.43 Hermite basis functions: (a) PWL case; (b) PWC case.
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9.1 Introduction

Representation, approximation, and identification of physical systems, linear or nonlinear, deterministic
or random, or even chaotic, are three fundamental issues in systems theory and engineering. To describe
a physical system, such as a circuit or a microprocessor, we need a mathematical formula or equation
that can represent the system both qualitatively and quantitatively. Such a formulation is what we call
a mathematical representation of the physical system. If the physical system is so simple that the
mathematical formula or equation, or the like, can describe it perfectly without error, then the repre-
sentation is ideal and ready to use for analysis, computation, and synthesis of the system. An ideal
representation of a real system is generally impossible, so that system approximation becomes necessary
in practice. Intuitively, approximation is always possible. However, the key issues are what kind of
approximation is good, where the sense of ‘‘goodness’’ must first be defined, of course, and how to find
such a good approximation. On the other hand, when looking for either an ideal or a approximate
mathematical representation for a physical system, one must know the system structure (the form of the
linearity or nonlinearity) and parameters (their values). If some of these are unknown, then one must
identify them, leading to the problem of system identification.
This chapter is devoted to a brief description of mathematical representation, approximation, and

identification of, in most cases, nonlinear systems. As usual, a linear system is considered to be a special
case of a nonlinear system, but we do not focus on linear systems in this chapter on nonlinear circuits. It is
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known that a signal, continuous or discrete, is represented by a function of time. Hence, a signal can be
approximated by other functions and also may be identified using its sampled data. These are within the
context of ‘‘representation, approximation, and identification,’’ but at a lower level—one is dealing
with functions. A system, in contrast, transforms input signals to output signals, namely, maps functions
to functions, and is therefore at a higher level—it can only be represented by an operator (i.e., a mapping).
Hence, while talking about representation, approximation, and identification in this chapter, we essentially
refer to operators. However, we notice that two systems are considered to be equivalent over a set of input
signals if and only if (iff) they map the same input signal from the set to the same output signal, regardless
of the distinct structures of the two systems. From this point of view, one system is a good approximation
of the other if the same input produces outputs that are approximately the same under certain measure.
For this reason, we also briefly discuss the classical function approximation theory in this chapter.
The issue of system representation is addressed in Section 9.2, while approximation (for both operators

and functions) is discussed in Section 9.3, leaving the system identification problem to Section 9.4.
Limited by space, we can discuss only deterministic systems. Topics on stochastic systems are hence
referred to some standard textbooks [13,17].
It is impossible to cover all the important subjects and to mention many significant results in the field

in this short and sketchy chapter. The selections made only touch upon the very elementary theories,
commonly used methods, and basic results related to the central topics of the chapter, reflecting the
author’s personal preference. In order to simplify the presentation, we elected to cite only those closely
related references known to us, which may or may not be the original sources. From our citations, the
reader should be able to find more references for further reading.

9.2 Representation

The scientific term ‘‘representation’’ as used here refers to a mathematical description of a physical
system. The fundamental issue in representing a physical system by a mathematical formulation, called a
mathematical model, is its correct symbolization, accurate quantization, and strong ability to illustrate
and reproduce important properties of the original system.
A circuit consisting of some capacitor(s), inductor(s), and=or resistors(s), and possibly driven by a

voltage source or a current source, is a physical system. In order to describe this system mathematically
for the purpose of analysis, design, and=or synthesis, a mathematical model is needed. Any mathematical
model, which can correctly describe the physical behavior of the circuit, is considered a mathe-
matical representation of the circuit. A lower level mathematical representation of a circuit can, for
instance, be a signal flow chart or a circuit diagram like the nonlinear Chua’s circuit shown in Figure 9.1,
which is discussed next.
A circuit, such as that shown in Figure 9.1, can be used to describe a physical system, including its

components and its internal as well as external connections. However, it is not convenient for carrying
out theoretical analysis or numerical computations. This is because no qualitative or quantitative

description exists about the relations among the
circuit elements and their dynamic behavior.
Hence, a higher level mathematical model is needed
to provide a qualitative and quantitative represen-
tation of the real physical circuit.
Among several commonly used mathematical

modeling approaches for various physical systems,
differential equations, state-space formulations, I–O
mappings, and functional series (particularly, the
Volterra series) are the most important and useful,
which have been very popular in the field of circuits

+

––

+
R

L NC2 C1Vc1

iL

Vc2

FIGURE 9.1 Chua’s circuit.
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and systems engineering. In the following, we introduce these mathematical representation methods,
along with some brief discussions of other related issues. Limited by space, detailed derivations are
omitted.

9.2.1 Differential Equation and State-Space Representations

Mathematical modeling via differential equations and via state-space descriptions are the most basic
mathematical representation methods. We illustrate the concept of mathematical modeling and the two
representation methods by a simple, yet representative example: the nonlinear circuit in Figure 9.1. This
circuit consists of one inductor L, two capacitors C1 and C2, one linear resistor R, and one nonlinear
resistor, N, which is a nonlinear function of the voltage across its two terminals: N¼N(VC1

(t)). Let iL(t)
be the current through the inductor L, and Vc1(t) and Vc2(t) be the voltages across C1 and C2, respectively.
For the time being, let us remove the nonlinear resistor N from Figure 9.1 and consider the remaining
linear circuit. This nonlinear resistor N is readded to the circuit with detailed discussions in Equation 9.6.
For this linear circuit without the resistor N, it follows from Kirchhoff’s laws that

C1
d
dt

VC1 (t) ¼
1
R

VC2 (t)� VC1 (t)½ � (9:1)

C2
d
dt

VC2 (t) ¼
1
R

VC1 (t)� VC2 (t)½ � þ iL(t) (9:2)

L
d
dt

iL(t) ¼ �VC2 (t) (9:3)

By simple calculation we can eliminate both Vc2(t) and iL, leaving a single ordinary differential equation
on the unknown voltage Vc1(t) as follows:

d3

dt3
VC1 (t)þ

1
R

1
C1

þ 1
C2

� �
d2

dt2
VC1 (t)þ

1
C2L

d
dt

VC1 (t)þ
1

C1C2RL
VC1 (t) ¼ 0 (9:4)

Once Vc1(t) is obtained from Equation 9.4, based on certain initial conditions, the other two unknowns,
Vc2(t) and iL, can be obtained by using Equations 9.1 and 9.3, successively. Hence, this third-order
ordinary differential equation describes both qualitatively and quantitatively the circuit shown in
Figure 9.1 (without the nonlinear resistor N). For this reason, Equation 9.4 is considered to be a
mathematical representation, called a differential equation representation, of the physical linear circuit.
Very often, a higher-order, single-variable ordinary differential equation similar to Equation 9.4 is not

as convenient as a first-order multivariable system of ordinary differential equations as is the original
system of Equations 9.1 through 9.3, even when an analytic formulation of the solution is desired. Hence,
a more suitable way for modeling a physical system is to introduce the concept of system state variables,
which leads to a first-order higher dimensional system of ordinary differential equations.

If we introduce three state variables in Equations 9.1 through 9.3:

x1(t) ¼ VC1 (t), x2(t) ¼ VC2 (t), x3(t) ¼ iL(t)

then we can rewrite those equations in the following vector form:

_x(t) ¼ Ax(t)þ Bu(t), t � 0
x(0) ¼ x0

�
(9:5)
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with an initial value x0 (usually given), where

x(t) ¼
x1(t)
x2(t)
x3(t)

2
4

3
5 and A ¼

� 1
RC1

1
RC1

0

1
RC2

� 1
RC2

1
C2

0 � 1
L

0

2
6666664

3
7777775

in which x(t) is called the state vector of the system. Here, to be more general and for convenience in the
discussions following, we formally added the term Bu(t) to the system, in which B is a constant matrix
and u(t) is called the control input of the system. In the present case, of course, u¼ 0 and it is not
important to specify B. However, note that u can be a nonzero external input to the circuit [19], which is
discussed in more detail below.
This first-order, vector-valued linear ordinary differential equation is equivalent to the third-order

differential equation representation (Equation 9.4) of the same physical circuit. A special feature of this
state vector formulation is that with different initial state vectors and with zero control inputs, all the
possible system state vectors together constitute a linear space of the same dimension [31]. Hence,
Equation 9.5 is also called a linear state-space representation (or, a linear state-space description) for the
circuit.
A few important remarks are in order. First, if the circuit is nonlinear, its state vectors do not constitute

a linear space in general. Hence, its mathematical model in the state vector form should not be called a
‘‘state-space’’ representation. Note, however, that some of the linear system terminology such as state
variables and state vectors usually make physical sense for nonlinear systems. Therefore, we use the term
nonlinear state-variable representation to describe a first-order, vector-valued nonlinear ordinary differ-
ential equation of the form �x(t)¼ f(x(t), u(t), t), where f(�, �, t) is generally a vector-valued nonlinear
function. This is illustrated in more detail shortly.
Second, a linear state-space representation for a given physical system is not unique because one can

choose different state variables. For example, in Equations 9.1 through 9.3 if we instead define x1¼Vc2(t)
and x2¼Vc1(t), we arrive at a different linear state-space representation of the same circuit. However, we
should note that if a linear nonsingular transformation of state vectors can map one state-space
representation to another, then these two seemingly different representations are actually equivalent in
the sense that the same initial values and control inputs will generate the same outputs (perhaps in
different forms) through these two representations. Also worth noting is that not every circuit element
can be used as a state variable, particularly for nonlinear systems. A basic requirement is that all the
chosen state variables must be ‘‘linearly independent’’ in that the first-order, vector-valued ordinary
differential equation has a unique solution (in terms of the control input) for any given initial values of
the chosen state variables.
Finally, because A and B in the state-space representation (Equation 9.5) are both constant (inde-

pendent of time), the representation is called a linear time-invariant system. If A or B is a matrix-valued
function of time, then it will be called a linear time-varying system. Clearly, a time-invariant system is a
special case of a time-varying system.
Now, let us return to the nonlinear circuit, with the nonlinear resistor N being connected to the

circuit, as illustrated in Figure 9.1. Similar to Equations 9.1 through 9.3, we have the following circuit
equations:

C1
d
dt

VC1 (t) ¼
1
R

VC2 (t)� VC1 (t)½ � � N VC1 (t)ð Þ (9:6)
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C2
d
dt

VC2 (t) ¼
1
R

VC1 (t)� VC2 (t)½ � þ iL(t) (9:7)

L
d
dt

iL(t) ¼ �VC2 (t) (9:8)

Note that if the nonlinear resistor N is given by

N VC1 (t)ð Þ ¼ N VC1 (t);m0,m1ð Þ
¼ m0VC1 (t)þ

1
2

m1 �m0ð Þ
���VC1 (t)þ 1

���� ���VC1 (t)� 1
���� �

(9:9)

with m0< 0 and m1< 0 being two appropriately chosen constant parameters, then this nonlinear circuit
is the well-known Chua’s circuit [24].

It is clear that compared with the linear case, it would be rather difficult to eliminate two unknowns,
particularlyVc1(t), in order to obtain a simple third-order, nonlinear differential equation that describes the
nonlinear circuit. That is, it would often be inconvenient to use a higher-order, single-variable differential
equation representation for a nonlinear physical system in general. By introducing suitable state variables,
however, one can easily obtain a nonlinear state-variable representation in a first-order, vector-valued,
nonlinear differential equation form. For instance, we may choose the following state variables:

x tð Þ ¼ VC1 (t), y(t) ¼ VC2 (t), and z(t) ¼ RiL(t) with t ¼ t=RC2

where the new variable z(t)¼RiL(t) and the rescaled time variable t¼ t=RC2 are introduced to simplify
the resulting representation of this particular circuit. Under this nonsingular linear transform, the
previous circuit equations are converted to the following state-variable representation:

_x(t) ¼ p �x(t)þ y(t)� ~N(x(t))
� 	

_y(t) ¼ x(t)� y(t)þ z(t)

_z(t) ¼� qy(t)

8><
>: (9:10)

where
p¼C2=C1

q¼R2C2=L

and

~N(x(t)) ¼ N x(t); ~m0, ~m1ð Þ
¼ ~m0x(t)þ 1

2
(~m1 � ~m0)

��x(t)þ 1
��� ��x(t)� 1

��
 �
(9:11)

with ~m0¼Rm0 and ~m1¼Rm1.
It is easy to see that this state-variable representation can be written as a special case in the following

form, known as a canonical representation of Chua’s circuit family:

_x(t) ¼ aþ Ax(t)þ
Xk
i¼1

��hTi x tð Þ � bi

��ci þ Bu tð Þ (9:12)

namely, with a¼ 0, k¼ 2, h1¼ h2¼ [1 0 0]T, b1¼�b2¼�1, c1¼�c2¼H(~m1� ~m0), Bu(t) being a
possible control input to the circuit [19], and

A ¼
�~m0 � p p 0

1 �1 1
0 �q 0

2
4

3
5
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The canonical (piecewise-linear) representation
given by Equation 9.12 describes a large class of
circuits that have very rich nonlinear dynamics
[25,55].
Now, we return to Equations 9.6 through 9.8 and

Figure 9.1. If we replace the L�C2 part of Chua’s
circuit by a lossless transmission line (with the
spatial variable j) of length l terminated on its left-
hand side (at j¼ 0) by a short circuit, as depicted in
Figure 9.2, then we obtain a time-delayed Chua’s
circuit [89]. This circuit has a partial differential
equation representation of the form:

@v=@j ¼�L@i j, tð Þ=@t
@i(j, t)=@j ¼�C1@v j, tð Þ=@t

v 0, tð Þ ¼ 0

i l, tð Þ ¼N v l, tð Þ � e� Ri l, tð Þð Þ þ C1@ v l, tð Þ � Ri l, tð Þ½ �=@t

8>>><
>>>:

(9:13)

where v(j, t) and i(j, t) are the voltage and current, respectively, at the point j 2 [0, l] at time t, and
Vc1¼ e> 0 is a constant, with the nonlinear resistor N satisfying

N VC1 � eð Þ ¼ m0 VC1 � eð Þ ��VC1 � e
�� < 1

m1 VC1 � eð Þ � m1 �m0ð Þsgn VC1 � eð Þ ��VC1 � e
�� � 1

�

In general, systems that are described by (linear or nonlinear) partial differential equations, with initial-
boundary value conditions, are studied under a unified framework of (linear or nonlinear) operator
semigroup theory, and are considered to have an infinite-dimensional system representation [7].

9.2.2 Input–Output Representation

A state-variable representation of a nonlinear physical system generally can be written as

_x(t) ¼ f x(t), u(t), tð Þ, t � 0
x(0) ¼ x0

�
(9:14)

where
f(�, �, t) is a nonlinear, vector-valued function
x0 is a (given) initial value for the state vector x at t¼ 0
u is a control input to the system

Because not all state variables in the state vector x can be measured (observed) in a physical system, let
us suppose that what can be measured is only part of x, or a mixture of its components, expressed by a
vector-valued function of x in the form

y(t) ¼ g x(t), tð Þ, t � 0 (9:15)

where
y is called a (measurement or observation) output of the physical system
g is in general a lower dimensional vector-valued nonlinear function

+ R

NC1VC1

+

+
v (ξ , t)

ξ l0

i (ξ, t)

–

––

FIGURE 9.2 Time-delayed Chua’s circuit.
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As a particular case, g can be linear or, even more so, be g(x(t), t)¼ x(t) when all the components of the
state vector are directly measurable.
If both f¼ f(x(t), u(t)) and g¼ g(x(t)) are not explicit functions of the independent time variable t, the

corresponding state-variable representation (Equations 9.14 and 9.15) is said to be autonomous.
It is clear that with both the system input u and output y, one can simply represent the overall physical

system by its input-output (I–O) relationship, as illustrated in Figure 9.3.
Now, under certain mild conditions on the nonlinear function f, for a given control input u, and an

initial value x0, the state-variable representation (Equation 9.14) has a unique solution, x, which depends
on both u and x0. If we denote the solution as

x(t) ¼ ^(t; u(t), x0) (9:16)

where ^ is called an input-state mapping, then the overall I–O relationship shown in Figure 9.3 can be
formulated as

y(t) ¼ g(^(t; u(t), x0), t) (9:17)

This is an I–O representation of the physical system having the state-variable representation (Equations
9.14 and 9.15).
As a simple example, let us consider the linear state-space representation (Equation 9.5), with a

special linear measurement equation of the form y(t)¼Cx(t), where C is a constant matrix. It is well
known [31] that

y(t) ¼ C^(t; u(t), x0) ¼ C etAx0 þ
ðt

0

eðt�tÞABu(t)dt

8<
:

9=
;, t � 0 (9:18)

yielding an explicit representation formula for the I–O relationship of the linear circuit (together with the
assumed measurement equation).
Note that because the state-variable representation (Equation 9.14) is not unique, as mentioned

previously, this I–O representation is not unique in general. However, we note that if two state-variable
representations are equivalent, then their corresponding I–O relationships also will be equivalent.
It is also important to note that although the above I–O relationship is formulated for a finite-

dimensional open-loop system, it can also be applied to infinite-dimensional [7] and closed-loop systems
[39]. In particular, similar to linear systems, many finite-dimensional, closed-loop nonlinear systems
possess an elegant coprime factorization representation. The (left or right) coprime factorization repre-
sentation of a nonlinear feedback system is a general I–O relationship that can be used as a fundamental
framework, particularly suitable for studies of stabilization, tracking, and disturbance rejection. The
problem is briefly described as follows. Let a nonlinear system (mapping) P be given, not necessarily
stable, and assume that it has a right-coprime factorization P¼ND�1, where both N and D are stable
(D�1 usually has the same stability as P). One is looking for two stable, nonlinear subsystems (mappings),

u x yx.
g(·, t)∫f (·, ·, t)

FIGURE 9.3 System I–O relationship.
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A and B�1, representing feedback and feed-forward controllers, respectively, satisfying the Bezout
identity

AN þ BD ¼ I

which are connected as shown in Figure 9.4, where B is also stable. If two controllers, A and B, can be
found to satisfy such conditions, then even with an unstable P, the resulting closed-loop control system
will be I–O, as well as internally, stable. In this sense, A and B together stabilize P.
For the left-coprime factorization, one simply uses formulas P¼D�1N and NAþDB¼ I instead and

interchanges the two blocks of A and B�1 in Figure 9.4.
Taking into account causality and well-posedness of the overall closed-loop system, it is a technical

issue as to how to construct the four subsystems A, B, D, and N, such that the preceding requirements can
be satisfied. Some characterization results and construction methods are available in the literature
[38,45,51,95].

9.2.3 Volterra Series Representation

Recall from the fundamental theory of ordinary differential equations that an explicit I–O representation
of the overall system still can be found, even if the linear state-space representation (Equation 9.5) is time
varying, via the state transition matrix F(t, t) determined by

d
dt

F t, tð Þ ¼ A(t)F(t, t), t � t

F(t, t) ¼ I

8><
>: (9:19)

where I is the identity matrix. The formula, for the simple case y(t)¼C(t)x(t), is

y(t) ¼ C(t) F(t, 0)x0 þ
ðt

0

F(t, t)B(t)u(t)dt

8<
:

9=
;, t � 0 (9:20)

For linear time-invariant systems, we actually have F(t, t)¼ e(t�t)A, so that Equation 9.20 reduces to the
explicit formula (Equation 9.18).
For a nonlinear system, a simple explicit I–O representation with a single integral of the form

(Equation 9.18 or Equation 9.20) is generally impossible. A natural generalization of such an integral
formulation is the Volterra series representation. For simplicity, let us consider the one-dimensional case
in which y(t)¼ g(x(t), t)¼ x(t) below. A Volterra series representation for a nonlinear I–O relationship
^(�), convergent in some measure, is an infinite sum of integrals in the following form:

+
– B–1 P

A

FIGURE 9.4 Right-coprime factorization of a nonlinear feedback system.
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^(t,u(t)) ¼ f0(t; x0)þ
ðt

0

f1(t, t1)u(t1)dt1 þ � � � þ
ðt

0

� � �
ðt2
0

fn(t, t1, . . . , tn)u(t1) � � � u(tn)dt1 � � �dtn þ � � �

(9:21)

where {fn}n¼ 0
1 are called the Volterra kernels of the series. Here, we note that this Volterra series

representation can be extended easily to higher-dimensional systems.
For some representations ^, the corresponding Volterra series may have only finitely many nonzero

terms in the above infinite sum. In this case, it is called a Volterra polynomial, which does not have
convergence problem for bounded inputs, provided that all the integrals exist. In particular, when ^ is
affine (or linear, if initial conditions are zero, so that f0¼ 0), its Volterra series has at most two nonzero
terms, as given by Equations 9.18 and 9.20, and is called a first-order Volterra polynomial. In general,
however, the Volterra series (Equation 9.21) is an infinite sum. Hence, the convergence of a Volterra
series is a crucial issue in formulating such a representation for a given nonlinear I–O relationship
[5,12,59,85].
In order to state a fundamental result about the convergence of a Volterra series, we must first recall

that a mapping that takes a function to a (real or complex) value is called a functional and a mapping that
takes a function to another function is called an operator. A functional may be considered to be a special
operator if one views a value as a constant function in the image of the mapping. Clearly, the I–O
relationship (Equation 9.17) and the Volterra series (Equation 9.21), including Volterra polynomials, are
nonlinear operators. Recall also that an operator 7: X ! Y, where X and Y are normed linear spaces, is
said to be continuous at x 2 X if jjxn� xjjx ! 0 implies jj7(xn)�7(x)jjy ! 0 as n!1. Note that for a
linear operator, if it is continuous at a point, then it is also continuous on its entire domain [34], but this
is not necessarily true for nonlinear operators.
As usual, we denote by C[0,T] and Lp[0,T], respectively, the space of continuous functions

defined on [0,T] and the space of measurable functions f satisfying
Ð T
0 j f(t)jpdt<1 for 1� p<1 or

supt2[0,T]jf(t)j<1 for p¼1. The following result [5] is an extension of the classical Stone–Weierstrass
theorem [22,36,40].

THEOREM 9.1

Let X be either C[0, T] or Lp[0,T], with 1� p<1, and V be a compact subset in X. Then, for any
continuous operator ^: V ! Lq[0,T], where (1=p)þ (1=q)¼ 1, and for any e> 0, a Volterra polynomial
Pn(�) exists, with n determined by e, such that

sup
x2V

k^(x)� Pn(x)jLq < «

In other words, Pn ! ^ uniformly on the compact subset V � X as n ! 1.

In the literature, many variants of this fundamental convergence theorem exist under various condi-
tions in different forms, including the L1[0,T] case [45,59,84,85]. We may also find different methods
for constructing the Volterra kernels {fn}n¼ 0

1 for ^ [83]. In addition, specially structured Volterra series
representations abound for nonlinear systems, such as the Volterra series with finite memory [5],
approximately finite memory [86], and fading memory [10].
Finally, it should be mentioned that in a more general manner, a few abstract functional series

representations exist, including the generating power series representation for certain nonlinear systems
[48], from which the Volterra series can be derived. Briefly, an important result is the following theorem
[6,54,71,91].
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THEOREM 9.2

Consider a nonlinear control system of the form

_x(t) ¼ g0(x(t))þ
Pm
k¼ 1

gk(x(t))uk(t), t 2 [0,T]

y(t) ¼ h(x(t))

8<
:

where h(�) and {gi(�)}i¼ 0
m are sufficiently smooth functionals, with an initial state x0. If the control inputs

satisfy max0� t�T juk(t)j< 1, then the corresponding output of this nonlinear system has a convergent
functional series of the form

y(t) ¼ h(x0)þ
X1
i¼0

Xm
k0,...,k1¼0

Lgk0 � � � Lgki h(x0)
ðt

0

djki � � � djk0 (9:22)

where Lgh(x0):¼ [@h=@x]g(x)jx¼ x0 and jk are defined by

j0 tð Þ ¼ t jk tð Þ ¼
ðt

0

uk tð Þdt, k ¼ 1, . . . , m

with the notation

ðt

0

djki � � � djk0 :¼
ðt

0

djki (t)
ðt

0

djki�1
� � � djk0

Note that in order to guarantee the convergence of the functional series (Equation 9.22), in many cases it
may be necessary for T to be sufficiently small.
Analogous to the classical Taylor series of smooth functions, a fairly general series representation for

some nonlinear systems is still possible using polynomial operators, or the like [90]. As usual, however,
the more general the presentation is, the less concrete the results. Moreover, a very general series
expansion is likely to be very local, and its convergence is difficult to analyze.

9.3 Approximation

The mathematical term ‘‘approximation’’ used here refers to the theory and methodology of function
(functional or operator) approximation. Mathematical approximation theory and techniques are import-
ant in engineering when one seeks to represent a set of discrete data by a continuous function, to replace
a complicated signal by a simpler one, or to approximate an infinite-dimensional system by a finite-
dimensional model, etc., under certain optimality criteria.
Approximation is widely used in system modeling, reduction, and identification, as well as in many

other areas of control systems and signal processing [32]. A Volterra polynomial as a truncation of the
infinite Volterra series (discussed earlier) serves as a good example of system (or operator) approxima-
tion, where the question ‘‘In what sense is this approximation good?’’ must be addressed further.

9.3.1 Best Approximation of Systems (Operators)

Intuitively, approximation is always possible. However, two key issues are the quality of the approxima-
tion and the efficiency of its computation (or implementation). Whenever possible, one would like to
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have the best (or optimal) approximation, based on the available conditions and subject to all the
requirements.
A commonly used criterion for best (or optimal) approximations is to achieve a minimum norm

of the approximation error using a norm that is meaningful to the problem. Best approximations
of systems (operators) include the familiar least-squares technique, and various other uniform
approximations.

9.3.1.1 Least-Squares Approximation and Projections

Let us start with the most popular ‘‘best approximation’’ technique (the least-squares method), which can
also be thought of as a projection, and a special min–max approximation discussed in the Section 9.3.1.2.
Discrete data fitting by a continuous function is perhaps the best-known example of least-squares. The
special structure of Hilbert space, a complete inner-product space of functions, provides a general
and convenient framework for exploring the common feature of various least-squares approximation
techniques. Because we are concerned with approximation of nonlinear systems rather than functions, a
higher-level framework, the Hilbert space of operators, is needed. We illustrate such least-squares system
(or operator) approximations with the following two examples.
First, we consider the linear space, H, of certain nonlinear systems that have a convergent Volterra

series representation (Equation 9.21) mapping an input space X to an output space Y. Note that although
a nontrivial Volterra series is a nonlinear operator, together they constitute a linear space just like
nonlinear functions.
To form a Hilbert space, we first need an inner product between any two Volterra series. One way

to introduce an inner product structure into this space is as follows. Suppose that all the Volterra series,
^: X ! Y, where both X and Y are Hilbert spaces of real-valued functions, have bounded admissible
inputs from the set

V ¼ x 2 X
��kxkX� � g < 1g

For any two convergent Volterra series of the form (Equation 9.21), say ^ and &, with the corresponding
Volterra kernel sequences {fn} and {cn}, respectively, we can define an inner product between them via
the convergent series formulation

h ,̂&iH:¼
X1
n¼0

rn
n!

��fncn

��

with the induced norm jj^jjH¼h^,^iH1=2, where the weights {rn} satisfy

X1
n¼0

1
rn

g2n

n!
< 1

Recall also that a reproducing kernel Hilbert space ~H is a Hilbert space (of real-valued functions or
operators) defined on a set S, with a reproducing kernel K(x, y), which belongs to ~H for each fixed x or y
in S and has the property

hK(x, y), ^(y)i~H ¼ ^(x) 8^2 ~H and 8x, y 2 S

Using the notation defined above, the following useful result was established [43,45] and is useful for
nonlinear systems identification (see Theorem 9.23).
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THEOREM 9.3

The family of all the convergent Volterra series of the form (Equation 9.21) that maps the bounded input
set V to Y constitutes a reproducing kernel Hilbert space with the reproducing kernel

K(x, y) ¼
X1
n¼0

1
n!

1
rn

hx, yinX , x, y 2 V � X (9:23)

The reproducing kernel Hilbert space H defined above is called a generalized Fock space [46]. For the
special case in which rn � 1, its reproducing kernel has a nice closed-form formula as an exponential
operator K(x, y)¼ e(xy).
Now, suppose that a nonlinear system ^ is given, which has a convergent Volterra series represen-

tation (Equation 9.21) with infinitely many nonzero terms in the series. For a fixed integer n� 0, if we
want to find an nth-order Volterra polynomial, denoted Vn*, from the Hilbert space H such that



^� Vn*



H
¼ infVn2H



^� VnkH (9:24)

then we have a best approximation problem in the least-squares sense. To solve this optimization
problem is to find the best Volterra kernels {fk(t)}k¼ 0

n over all the possible kernels that define the
Volterra polynomial Vn, such that the minimization (Equation 9.24) is achieved.

Note that, if we view the optimal solution Vn* as the projection of ^ onto the (nþ 1)-dimensional
subspace of H, then this least-squares minimization is indeed a projection approximation. It is then clear,
even from the Hilbert space geometry (see Figure 9.5), that such an optimal solution, called a best
approximant, always exists due to the norm-completeness of Hilbert space and is unique by the convexity
of inner product space.
As a second example, let H be a Hilbert space consisting of all the linear and nonlinear systems that

have an nth-order Taylor series representation of the form

Pn( � ) ¼
Xn
k¼0

ak(t)Mk(�) ¼ a0(t)þ a1(t)(�)(t)þ � � � þ an(t)(�)n(t) (9:25)

where
Mk(�) :¼ (�)k is the monomial operator of degree k
{ak}k¼0

n are continuous real-valued functions satisfying certain conditions arising from some basic
properties of both the domain and the range of the operator

Suppose that the monomial operators {Mk}k¼0
1

are orthogonal under the inner product of H.
Given an lth-order polynomial operator Pl with
al(t) 6¼ 0 almost everywhere, if for a fixed integer
n< l we want to find an nth-order polynomial
operator Pn* of the form (Equation 9.25) from H,
such that

kPl � Pn*



H
¼ infPn2HkPl � Pn




H

(9:26)

then we have a best approximation problem
in the least-squares sense. To solve this opti-
mization problem is to find the best coefficient

H F

Vn

0

(n + 1)-dimensional subspace of H

*

FIGURE 9.5 Projection in a Hilbert space.
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functions {ak(t)}k¼0
n over all possible functions that define the polynomial operator Pn. Again, because the

optimal solution is the projection of Pl onto the (nþ 1)-dimensional subspace H of a Hilbert space to
which Pl belongs, it always exists and is unique.

We now state a general result of least-squares approximation for systems, which is a straightforward
generalization of the classical result of least-squares approximation for functions [22,36].

THEOREM 9.4

Let H be a Hilbert space of nonlinear operators, and let Hn be its n-dimensional subspace. Then, given an
^ 2 H, the least-squares approximation problem



^�1n*



H
¼ inf1n2Hn



^�1n




H

is always uniquely solvable, with the optimal solution given by

1*(�) ¼
Xn
k¼1

h ,̂ hkiHhk(�)

where {hk)}k¼ 1
n is an orthonormal basis of Hn.

A more general setting is to replace the Hilber space H by a Banach space (a complete normed linear
space, such as L1 and L1, which may not have an inner product structure). This extension includes the
Hilbert space setting as a special case, but generally does not have so many special features. Even
the existence and uniqueness of best approximants cannot be taken for granted in general—not even
for the simpler case of best approximation of real-valued functions—if a Banach (non-Hilbert) space is
considered [73]. Nevertheless, the following result is still convenient to use [22].

THEOREM 9.5

Let B be a uniformly convex Banach space andV be a closed convex set in B. Then, for any given^ 2 B, the
optimal approximation problem




^� v*




B
¼ inf

v2V




^� v




B

has a unique solution.

Here, a space (or subset) B is said to be uniformly convex if, for any e> 0, there exists a
kf jjB¼ jjgjjB¼ 1 and jj1=2( fþ g)jjB> 1� d together imply k f� gjjB< e. Geometrically, a disk is uni-
formly convex while a triangle is only convex, but not uniformly so. It is then intuitively clear that for a
given point outside (or inside) a disk, only a single point exists in the disk that has the shortest distance to
the given point. However, this is not always true for a nonuniform case. In fact, a best approximation
problem in the general Banach space setting has either a unique solution or has infinitely many solutions
(if it is solvable), as can be seen from the next result [32].
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THEOREM 9.6

Let V be a closed convex set in a Banach space B, and v1* and v2* be two optimal solutions of the best
approximation problem




^� v*




B
¼ inf

v2V




^� v




B

Then, any convex combination of v1* and v2* in the form

v* ¼ av1*þ 1� að Þv2*, 0 � a � 1

is also an optimal solution of the problem.

Usually, a best approximant (if it exists) for an optimal approximation problem in a Banach space is
also called a (minimal) projection of the given operator from a higher-dimensional subspace onto a
lower-dimensional subspace. In this extension, the projection has no simple geometric meaning of
‘‘orthonormality’’ due to the lack of an inner product structure. However, a projection operator with a
unity norm in the Banach space setting is a natural generalization of the orthonormal projection in the
Hilbert space framework.

9.3.1.2 Min–Max (Uniform) Approximation

It is clear from the least-squares approximation formulation that if the given nonlinear representation
(operator) ^ and the lower-order approximant (used to approximate ^) do not have the same structure
(the same type of series), then the least-squares approximation cannot be applied directly or efficiently.
To introduce another approach, we first recall that for two given normed linear spaces X and Y and for

a given bounded subset V of X, with 0 2 V, the operator norm of a nonlinear operator 1: V ! Y
satisfying 1(0)¼ 0, can be defined as

���

1

��� ¼ supx,y2V
x 6¼y



1(x)�1(y)



y

x � y




x

(9:27)

Thus, given a norm-bounded nonlinear operator ^, representing a given physical system, we may
consider the problem of finding another norm-bounded nonlinear operator 1* from a certain class 1
of desired nonlinear operators (systems), not necessarily having the same structure as ^, to best
approximate ^ in the sense that

���

^�1*


��� ¼ inf12N

���

^�1


��� (9:28)

For example, N can be the family of nth-order Volterra polynomilas or nth-order polynomial operators
discussed previously. Commonly used function spaces X and Y include the space of all continuous
functions, the standard Lp space (or lp for the discrete case), and the Hardy space Hp (for complex-
variable functions [32]), with 1� p�1.
Because the nonlinear operator norm defined by Equation 9.27 is a sup (max) norm and this

optimization is an inf (min) operation, the best approximation problem (Equation 9.28) is called a
min–max approximation. Note also that because the nonlinear operator norm (Equation 9.27) is defined
over all the bounded inputs in the set V, this approximation is uniform, and thus independent of each
individual input function of the set V. For this reason, this approximation is also called a uniform
approximation, indicating that the best approximant is the optimal solution over all input functions.
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It should be noted that both existence and uniqueness of best approximation solutions to the min–max
approximation problem (Equation 9.28) must be investigated according to the choice of the operator
family N and the I–O spaces X and Y, which generally cannot be taken for granted, as previously
discussed.
An important and useful class of nonlinear operators which can be put into a Banach space setting

with great potential in systems and control engineering is the family of generalized Lipschitz operators
[45]. To introduce this concept, we first need some notation. Let X be a Banach space of real-valued
functions defined on [0, 1) and, for any f 2 X and any T[0, 1), define

[f ]T(t) ¼ f (t), t < T
0, t > T

�

Then, form a normed linear space Xe, called the extended linear space associated with X, by

Xe ¼ f 2 X
��


[ f ]T





X
< 1, 8T < 1

n o

For a subset D 	 Xe, any (linear or nonlinear) operator &: D ! Ye satisfying



[&(x1)]T � [&(x2)]T



Y
� L



[x1]T � [x2]T



X
, 8x1, x2 2 D, 8T 2 [0,1)

for some constant L<1, is called a generalized Lipschitz operator defined on D. The least of such
constants L is given by the seminorm of the operator &:



&

: sup
T2[0,1)

sup
x1,x22D

[x1]T 6¼[x2]T



[&(x1)]T � [&(x2)]T



Y

[x1]T � [x2]T




X

and the operator norm of & is defined via this seminorm by



&


Lip

¼ 

&(x0)

Y þ 

&



for an arbitrarily chosen and fixed x0 2 D. The following result has been established [45].

THEOREM 9.7

The family of generalized Lipschitz operators

Lip(D,Ye) ¼ {&:D 	 Xe ! Ye
���

&

Lip < 1 on D}

is a Banach space.

Based on this theorem, a best approximation problem for generalized Lipschitz operators can be
similarly formulated, and many fundamental approximation results can be obtained. In addition,
generalized Lipschitz operators provide a self-unified framework for both left and right coprime
factorization representations of nonlinear feedback systems. Under this framework, the overall closed-
loop system shown in Figure 9.4 can have a causal, stable, and well-posed coprime factorization
representation, which can be applied to optimal designs such as tracking and disturbance rejection [45].
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We now discuss briefly a different kind of min–max (uniform) approximation: the best Hankel norm
approximation, where the norm (Equation 9.27) is replaced by the operator norm of a Hankel operator
defined as follows [32,77]. Consider, for instance, the transfer function

H zð Þ ¼ a0 þ a1z
�1 þ a2z

�2 þ � � �

of a discrete time linear time-invariant system. The Hankel operator associated with this series is defined
as the infinite matrix

Ga :¼
�
a��i�j

��
�
¼

a0 a1 a2 � � �
a1 a2 � � �
a2 � � �
..
.

2
6664

3
7775

which is a linear operator on a normed linear space of sequences. The operator norm of Ga over the l2
space is called the Hankel norm of Ga.

One important feature of the Hankel operators is reflected in the following theorem [32,77].

THEOREM 9.8

An infinite Hankel matrix has a finite rank iff its corresponding functional series is rational (it sums up to a
rational function); and this is true iff the rational series corresponds to a finite-dimensional bilinear system.

Another useful property of Hankel operators in system approximation is represented in the following
theorem [28].

THEOREM 9.9

The family of compact Hankel operators is an M-ideal in the space of Hankel operators that are defined on
a Hilbert space of real-valued functions.

Here, a compact operator is one that maps bounded sets to compact closures and anM-ideal is a closed
subspace X of a Banach space Z such that X?, the orthogonal complemental subspace of X in Z, is the
range of the projection P from the dual space Z* to X? that has the property



f 

 ¼ 

P(f )

þ 

f � P(f )


 8f 2 Z*

The importance of the M-ideal is that it is a proximinal subspace with certain useful approximation
characteristics, where the proximinal property is defined as follows. Let L(X) and C(X) be the classes of
bounded linear operators and compact operators, respectively, both defined on a Banach space X. If every
+ 2 L(X) has at least one best approximant from C(X), then C(X) is said to be proximinal in L(X).
A typical result would be the following: for any 1< p<1, C(lp) is proximinal in L(lp). However, C(X) is
not proximinal in L(X) if X¼C [a, b], the space of continuous functions defined on [a, b], or X¼ Lp[a, b]
for all 1< p<1 except p¼ 2.
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9.3.2 Best (Uniform) Approximation of Signals (Functions)

Best approximations of signals for circuits and systems are also important. For example, two (different)
systems (e.g., circuits) are considered to be equivalent over a setV of admissible input signals iff the same
input from V yields the same outputs through the two systems. Thus, the problem of using a system to
best approximate another may be converted, in many cases, to the best approximation problem for their
output signals.
A signal is a function of time, usually real valued and one-dimensional. The most general formulation

for best approximation of functions can be stated as follows. Let X be a normed linear space of real-
valued functions and V be a subset of X. For a given f in X but not in V, find a g* 2 V such that



f � g*



X ¼ inf

g2V



 f � g



X (9:29)

In particular, if X¼ L1, l1, or H1, the optimal solution is the best result for the worst case.
If such a g* exists, then it is called a best approximant of f from the subset V. In particular, if

V1 � V2 �� � � is a sequence of subspaces in X, such that [Vn ¼ X, an important practical problem is
to find a sequence of best approximants gn* 2 Vn satisfying the requirement (Equation 9.29) for each
n¼ 1, 2, . . . , such that jjgn*� g*jjX ! 0 as n! 1. In this way, for each n, one may be able to construct a
simple approximant gn* for a complicated (even unknown) function f, which is optimal in the sense of the
min–max approximation (Equation 9.29).
Existence of a solution is the first question about this best approximation. The fundamental result is

the following [22,36].

THEOREM 9.10

For any f 2X, a best approximant g* of f in V always exists, if V is a compact subset of X; or V is a finite-
dimensional subspace of X.

Uniqueness of a solution is the second question in approximation theory, but it is not as important as
the existence issue in engineering applications. Instead, characterization of a best approximant for a
specific problem is significant in that it is often useful for constructing a best approximant.
As a special case, the preceding best approximation reduces to the least-squares approximation if X is a

Hilbert space. The basic result is the following (compare it with Theorem 9.4, and see Figure 9.5).

THEOREM 9.11

Let H be a Hilbert space of real-valued functions, and let Hn be its n-dimenstional subspace. Then, given an
f 2 H, the least-squares approximation problem



f � hn*



H
¼ infhn2Hn



f � hn



H

is always uniquely solvable, with the optimal solution given by

hn*(t) ¼
Xn
k¼1

hf , hkiHhk(t)

where {hk}k¼ 1
n is an orthonormal basis of Hn.
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Here, the orthonormal basis of Hn is a Chebyshev system, a system of functions which satisfy the Haar
condition that the determinant of thematrix [hi (tj)] is nonzero at n distinct points t1<� � �< nn in the domain.
Chebyshev systems includemanycommonlyused functions, suchas algebraicandtrigonometricpolynomials,
splines, and radial functions. Best approximation by these functions is discussed in more detail below.
We remark that the least-squares solution shown in Theorem 9.11 is very general, which includes the

familiar truncations of the Fourier series [36] and the wavelet series [29] as best approximation.

9.3.2.1 Polynomial and Rational Approximations

Let pn be the space of all algebraic polynomials pn(t) of degree not greater than n. For any continuous
function f(t) defined on [a, b], one is typically looking for a best approximant gn*pn* 2 pn for a fixed n,
such that



 f � pn*



L1[a,b]

¼ min
pn2pn



 f � pn



L1[a,b]

(9:30)

This is a best (min–max and uniform) algebraic polynomial approximation problem. Replacing the
algebraic polynomials by the nth-order trigonometrix polynomials of the form

P
k¼ 0
n (ak cos(kt)þ bk

sin(kt)) changes the problem to the best trigonometric polynomial approximation, in the same sense as
the best algebraic polynomial approximation, for a given function f2C[�p,p]. This can be much further
extended to any Chebyshev system, such as the radial basis functions and polynomial spline functions,
which are discussed later. According to the second part of Theorem 9.10, the best uniform polynomial
approximation problem (Equation 9.30) always has a solution that, in this case, is unique. Moreover, this
best approximant is characterized by the following important sign-alternation theorem. This theorem is
also valid for the best uniform approximation from any other Chebyshev system [22,36].

THEOREM 9.12

The algebraic polynomial pn* is a best uniform approximant of f2C[a, b] from pn iff there exist nþ 2 points
a� t0 <� � �< tnþ1� b such that

f (tk) ¼ pn*(tk ¼ c(�1)k


 f � pn*




L1[a,b], k ¼ 0, 1, . . . , nþ 1

where c¼ 1 or �1.

An efficient Remes (exchange) algorithm is available for constructing such a best approximant [79].
Another type of function is related to algebraic polynomials: the algebraic rational functions of the

form rn,m(t)¼ pn(t)=qm(t), which has finite values on [a, b] with coprime pn2pn and qm2pm. We denote
by Rn,m the family of all such rational functions, or a subset of them, with fixed integers n� 0 and m� 1.
Although Rn,m is not a compact set or a linear space, the following result can be established [22].

THEOREM 9.13

For any given function f2C [a, b], there exists a unique rn,m* (t)2Rn,m such that



 f � rn,m*



L1[a,b]

¼ inf rn,m«Rn,m



 f � rn,m



L1[a,b]

(9:31)

The optimal solution rn,m* (t) of Equation 9.31 is called the best uniform rational approximant of f(t) on
[a, b] from Rn,m.

9-18 Feedback, Nonlinear, and Distributed Circuits



Note that the unique best rational approximant may have different expressions unless it is coprime, as
assumed previously. The following theorem [22] characterizes such a best approximant, in which we use
d(pn) to denote the actual degree of pn, 0� d(pn)� n.

THEOREM 9.14

A rational function rn,m* ¼ pn*=qm* is a best uniform approximant of f2C [a, b] from Rn,m iff there exist s
points a� t1 <� � �< ts� b, with s¼ 2þmin{nþ d(qm), mþ d(pn)}, such that

f (tk)� rn,m* (tk) ¼ c(�1)k


 f � rn,m*



L1[a,b], k ¼ 1, . . . , s

where c¼ 1 or �1.

The Remes (exchange) algorithm [79] also can be used for constructing a best rational approximant.
An important type of function approximation, which utilizes rational functions, is the Padé approxi-

mation. Given a formal power series of the form

f (t) ¼ c0 þ c1t þ c2t
2 þ � � � , t 2 [�1, 1]

not necessarily convergent, the question is to find a rational function pn(t)=qm(t), where n and m are both
fixed, to best approximate f(t) on [�1, 1], in the sense that

f (t)� pn(t)
qm(t)

����
���� � c

��t��l , t 2 [�1, 1] (9:32)

for a ‘‘largest possible’’ integer l. It turns out that normally the largest possible integer is l¼ nþmþ 1. If
such a rational function exists, it is called the [n, m]th-order Padé approximant of f(t) on [�1, 1]. The
following result is important [22].

THEOREM 9.15

If f(t) is (nþmþ 1) times continuously differentiable in a neighborhood of t¼ 0, then the [n, m]th-order
Padé approximant of f(t) exists, with l> n. If l� nþmþ 1, then the coefficients {ak}nk¼0 and {bk}mk¼0
of pn(t) and qm(t) are determined by the following linear system of algebraic equations:

Xi
j¼0

f j(0)
j!

bi�j ¼ ai, i ¼ 0, 1, . . . , l � 1

with anþj¼ bmþj¼ 0 for all j¼ 1, 2, . . . . Moreover, if pn=qm is the [n, m]th-order Padé approximant
of f(t)¼S1{ak}k¼ 0

n fkt
k, then the approximation error is given by

f (t)� pn(t)
qm(t)

����
���� ¼

X1
k¼nþ1

Xm
j¼0

fk�jbj

 !
tk

qm(t)
, t 2 [�1, 1]

Padé approximation can be extended from algebraic polynomials to any other Chebyshev sys-
tems [22].
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9.3.2.2 Approximation via Splines and Radial Functions

Roughly speaking, spline functions, or simply splines, are piecewise smooth functions that are structur-
ally connected and satisfy some special properties. The most elementary and useful splines are polyno-
mial splines, which are piecewise algebraic polynomials, usually continuous, with a certain degree of
smoothness at the connections. More precisely, let

a ¼ t0 < t1 < � � � < tn < tnþ1 ¼ b

be a partition of interval [a, b]. The polynomial spline of degree m with knots {tk}nk¼1 on [a, b] is defined
to be the piecewise polynomial gm(t) that is a regular algebraic polynomial of degree m on each
subinterval [tk, tkþ 1], k¼ 0, . . . , n, and is (m� 1) times continuously differentiable at all knots [41,88].
We denote the family of these algebraic polynomial splines by Sm(t1, . . . , tn), which is an (nþmþ 1)-
dimensional linear space.
Given a continuous function f(t) on [a, b], the best uniform spline approximation problem is to find a

gm* 2 Sm(t1, . . . , tn) such that



 f � gm*



L1[a,b] ¼ inf gm2Sm



 f � gm



L1[a,b] (9:33)

According to the second part of Theorem 9.10, this best uniform approximation problem always has a
solution. A best spline approximant can be characterized by the following sign-alteration theorem [72],
which is a generalization of Theorem 9.12, from polynomials to polynomial splines.

THEOREM 9.16

The polynomial spline gm*(t) is a best uniform approximant of f2C [a, b] from Sm(t1, . . . , tn) iff there
exists a subinterval [tr, trþs] � [a, b], with integers r and s� 1, such that the maximal number g of sign-
alteration points on this subinterval [tr, trþ s], namely,

f (tk)� gm(tk) ¼ c(�1)k


 f � gm




L1[a,b]

, tk 2 [tr ,trþs], k ¼ 1, . . . ,g

satisfies g�mþ sþ 1, where c¼ 1 or �1.

Polynomial splines can be used for least-squares approximation, just like regular polynomials, if the
L1-norm is replaced by the L2-norm in Equation 9.33. For example, B-splines, i.e., basic splines with a
compact support, are very efficient in least-squares approximation. The spline quasi-interpolant provides
another type of efficient approximation, which has the following structure

gm(t) ¼
X
k

f (tk)f
m
k (t) (9:34)

and can achieve the optimal approximation order, where {fm
k } is a certain linear combination of

B-splines of order m [18].
Spline functions have many variants and generalizations, including natural splines, perfect splines,

various multivariate splines, and some generalized splines defined by linear ordinary or partial differntial
operators with initial-boundary conditions [27,41,42,44,88].
Splines are essentially local, in the sense of having compact supports, perhaps with the exception

perhaps of the thin-plate splines [94], where the domains do not have a boundary.
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Radial functions are global, with the property f(r) ! 1 as r ! 1 and, normally, f(0)¼ 0. Well-
conditioned radial functions include jrj2mþ1, r2m log(r), (r2þ a2)
1=2, 0< a ! 1, etc. [80]. Many radial
functions are good candidates for modeling nonlinear circuits and systems [63,64]. For example, for l
distinct points t1, . . . , tl in Rn, the radial functions {f(jt� tkj)}lk¼ 1 are linearly independent, and thus the
minimization

min
{ck}

�����f (t)�
Xl
k¼1

ckf
��t� tk

��
 ������
2

(9:35)

at some scattered points can yield a best least-squares approximant for a given function f(t), with some
especially desirable features [81]. In particular, an affine plus radial function in the form

a � tþ bþ
Xl
k¼1

ckf(
��t� tk

��), t 2 Rn (9:36)

where a, b, {ck}
l
k¼ 1 are constants, provides a good modeling framework for the canonical piecewise linear

representation (Equation 9.12) of a nonlinear circuit [63].

9.3.2.3 Approximation by Means of Interpolation

Interpolation plays a central role in function approximation theory. The main theme of interpolation is
this: suppose that an unknown function exists for which we are given some measurement data such as its
function values, and perhaps some values of its derivatives, at some discrete points in the domain. How
can we use this information to construct a new function that interpolates these values at the given points
as an approximant of the unknown function, preferably in an optimal sense? Constructing such a
function, called an interpolant, is usually not a difficult problem, but the technical issue that remains is
what kind of functions should be used as the interpolant so that a certain meaningful and optimal
objective is attained?
Algebraic polynomial interpolation is the simplest approach for the following Lagrange interpolation

problem [22,36].

THEOREM 9.17

For arbitrarily given nþ 1 distinct points 0� t0< t1 <� � �< tn� 1 and nþ 1 real values v0, v1, . . . , vn, there
exists a unique polynomial pn(t) of degree n, which satisfies

pn(tk) ¼ vk, k ¼ 0, 1, . . . , n

This polynomial is given by

pn(t) ¼
Xn
k¼0

vkLk(t)

with the Lagrange basis polynomials

Lk(t) :¼ (t � t0) � � � (t � tk�1)(t � tkþ1)(t � tn)
(tk � t0) � � � (tk � tk�1)(tk � tkþ1)(tk � tn)

, k ¼ 0, . . . , n
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Moreover, if f(t) is l (�nþ 1) times continuously differentiable on [a, b], then the interpolation error is
bounded by



 f � pn



L1[0,1]

� 1
n!




f (l)



L1[0,1]



h


L1[0,1]

where h(t)¼Pk¼0
n�1 (t� tk), and jjhjjL1[0,[1]] attains its minimum at the Chebyshev points tk¼ cos (2kþ 1)

p=2(nþ 1)), k¼ 0, 1, . . . , n.

Note that the set {Lk(t)}k¼0
n is a Chebyshev system on the interval [t0, tn], which guarantees the

existence and uniqueness of the solution. This set of basis functions can be replaced by any other
Chebyshev system to obtain a unique interpolant.
If not only functional values, but also derivative values, are available and required to be interpolated by

the polynomial,

p(ik)n (tk) ¼ vk,ik ik ¼ 0, . . . ,mk, k ¼ 0, 1, . . . , n

then we have a Hermite interpolation problem. An algebraic polynomial of degree d¼ nþPk¼0
n mk

always exists as a Hermite interpolant. An explicit closed-form formula for the Hermite interpolant also
can be constructed. For example, if only the functional values {vk}

n
k¼0 and the first derivative values

{wk}
n
k¼0 are given and required to be interpolated, then the Hermite interpolant is given by

p2n(t) ¼
Xn
k¼0

vkAk(t)þ wkBk(t)f g

where, with notation L0k(tk) :¼ (d=dt)Lk(t)jt¼ tk,

Ak(t) ¼ 1� 2(t � tk)L
0
k(tk)

� 	
L2k(t) and Bk(t) ¼ (t � tk)L

2
k(t)

in which Lk(t) are Lagrange basis polynomials, k¼ 0, 1, . . . , n.
However, if those derivative values are not consecutively given, we have a Hermite–Birkhoff interpol-

ation problem, which is not always uniquely solvable [61].
The preceding discussions did not take into consideration any optimality. The unique algebraic

polynomial interpolant obtained previously may not be a good result in many cases. A well-known
example is provided by Runge, in interpolating the continuous and smooth function f(t)¼ 1=(1þ 25t2) at
nþ 1 equally spaced points on the interval �[1, 1]. The polynomial interpolant pn(t) shows extremely
high oscillations near the two end-points (jtj> 0.726, . . . ). Hence, it is important to impose an additional
optimality requirement (e.g., a uniform approximation requirement) on the interpolant. In this concern,
the following result is useful [36].

THEOREM 9.18

Given a continuous function f2C �[1, 1], let {tk}k¼ 1
n be the Chebyshev points on �[1, 1]; namely, tk¼ cos

((2k� 1)p=(2n)), k¼ 1, . . . , n. Let also P2n�1(t) be the polynomial of degree 2n� 1 that satisfies the
following special Hermite interpolation conditions: P2n�1(tk)¼ f(tk) and P2n�1(tk)¼ f(tk) and P0

2n�1(tk)
t(k)¼ 0, k¼ 1, . . . , n. Then, the interpolant P2n(t) has the uniform approximation property



 f � P2n�1




L1[�1,1]

! 0 as n ! 1
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Because polynomial splines are piecewise algebraic polynomials, similar uniform approximation results
for polynomial spline interpolants may be established [41,72,88].
Finally, a simultaneous interpolation and uniform approximation for a polynomial of a finite (and

fixed) degree may be very desirable in engineering applications. The problem is that given and f2C [a, b]
with nþ 1 points a� t0< t1 <� � �< tn� b and a given e> 0, find a polynomial p(t) of finite degree
(usually, larger than n) that satisfies both



 f � p



L1[a,b]

< e and p(tk) ¼ f (tk), k ¼ 0, 1, . . . , n

The answer to this question is the Walsh theorem, which states that this is always possible, even for
complex polynomials [36]. Note that natural splines can also solve this simultaneous interpolation and
uniform-approximation problem.

9.3.3 Best Approximation of Linear Functionals

As already mentioned, a functional is a mapping that maps functions to values. Definite integrals,
derivatives evaluated at some points, and interpolation formulas are good examples of linear functionals.
The best approximation problem for a given bounded linear functional, L, by a linear combination of

n independent and bounded linear functionals L1, . . . , Ln, all defined on the same normed linear space X
of functions, can be similarly stated as follows: determine n constant coefficients {ak*}

n
k¼1 such that






L�
Xn
k¼1

ak*Lk







X*

¼ min{ak}






L�
Xn
k¼1

akLk







X*

(9:37)

where X* is the dual space of X, which is also a normed linear space. A basic result is described by the
following theorem [36].

THEOREM 9.19

If X is a Hilbert space, then the best approximation problem (Equation 9.37) is uniquely solvable.
Moreover, if r and {rk}

n
k¼1, are the functional representors of L and {Lk}

n
k¼1, respectively, then






r �
Xn
k¼1

akrk







X*

¼ min )





L�

Xn
k¼1

akLk







X*

¼ min

It is important to note that for linear functionals, we have an interpolation problem: given bounded
linear functionals L and {Lk}k¼1

n , all defined on a normed linear space X, where the last n functionals are
linearly independent on X, and given also n points xk2X, k¼ 1, . . . , n, determine n constant coefficients
{ak}k¼1

n , such that

Xn
k¼1

akLk(xi) ¼ L(xi), i ¼ 1, . . . , n
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Obviously, this problem is uniquely solvable. Depending on the specific formulation of the linear
functionals, a bulk of the approximation formulas in the field of numerical analysis can be derived
from this general interpolation formulation.
Finally, convergence problems also can be formulated and discussed for bounded linear func-

tionals in a manner similar to interpolation and approximation of functions. The following result is
significant [36].

THEOREM 9.20

Let L and {Lk}
1
k¼1 be bounded linear functionals defined on a Banach space X. A necessary and sufficient

condition for

lim
k!1



Lk � L



X* ¼ 0

is that {Lk}
1
k¼1 are uniformly bounded:



Lk

X* � M < 1 8k ¼ 1, 2, . . .

and there is a convergent sequence {xi}
1
i¼1 2X, such that

lim
k!1

Lk(xi) ¼ L(xi) for each i ¼ 1, 2, . . .

9.3.4 Artificial Neural Network for Approximation

Artificial neural networks offer a useful framework for signal and system approximations, including
approximation of continuous and smooth functions of multivariables. Due to its usually mutilayered
structure with many weights, an artificial neural network can be ‘‘trained,’’ and hence has a certain
‘‘learning’’ capability in data processing. For this reason, artificial neural networks can be very efficient in
performing various approximations. The main concern with a large-scale artificial neural network is its
demand on computational speed and computer memory.
Both parametrized and nonparametrized approaches to approximations use artificial neural networks.

In the parametrized approach the activation function, basic function, and network topology are all
predetermined; hence, the entire network structure is fixed, leaving only a set of parameters (weights) to
be adjusted to best fit the available data. In this way, the network with optimal weights becomes a best
approximant, usually in the least-squares sense, to a nonlinear system. Determining the weights from the
data is called a training process. Back-propagation multilayered artificial neural networks are a typical
example of the parametrized framework. The nonparametrized approach requires that the activation
and=or basic functions also be determined, which turns out to be difficult in general.
To illustrate how an artificial neural network can be used as a system or signal approximant, we first

describe the structure of a network. The term neuron used here refers to an operator or processing unit,
which maps R00–R, with the mathematical expression

oi ¼ fa(fb(ii,wiÞÞ (9:38)

where ii¼ [il, . . . , in]
T is the input vector, wi¼ [wi1, . . . , win]

T is the weight vector associated with the
ith neuron, oi the output of the ith neuron, fa the activation function (usually sigmoidal or Gaussian), and
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fb the basic function (which can be linear, affine, or radial). For example, if an affine basic function is
used, Equation 9.38 takes on the form

oi ¼ fa(ii � wi þ biÞ (9:39)

where bi is a constant.
A fully connected feed-forward artificial neural network is generally a multi-input=multi-output

network, where the output from each neuron of each layer is an input to each neuron of the next
layer. Such a network, arranged in one input layer, multiple hidden layers, and one output layer, can be
constructed as follows (see Figure 9.6). Suppose we have n-inputs, nL-outputs and L� 1 hidden layers,
and a linear basic function is used with a sigmoidal activation function fa(t)¼s(t):

s(t) ! 1 as t ! þ1
0 as t ! �1

�

Also, let ol,i be the output of the ith neuron at the lth layer and wl,i¼ [wl,i,1 � � �wl,i,s]
T be the weight vector

associated with the same neuron connected to the neurons at the (l� 1)st layer. Then, we have

ol,i ¼ s
Xnl
j¼1

0l�1,jwl,i,j þ wl,i,0

 !
(9:40)

Inductively, the output of the ith neuron in the last (the Lth) layer is given by

oL,i ¼ s
XnL�1

j¼1

wL,i,j � � �s
Xni
q¼1

w1,p,qin0 þ w1,p,o

 !
þ w2,p,0

 !
þ � � � þ wL,i,o

 !
(9:41)

where i¼ 1, . . . , nL.
The following best uniform approximation property of an artificial neural network is a fundamental

result in neural-network approximation [35].

nL = n2 = 2

n2 = 2

n1= 3

n = 4

Layer 3 (output layer)

Layer 2 (second hidden layer)

Layer 1 (first hidden layer)

Input layer

FIGURE 9.6 A two-hidden layer, feed-forward artificial neural network.
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THEOREM 9.21

Let f(t) be a continuous function defined on a compact subset V � Rn. Then, for any 2> 0, there exists an
integer m� 1 and real parameters {ck, wki, bk}mk¼1 such that using any nonconstant, bounded, and
monotonically increasing continuous function fa as the activation function, the artificial neural network
can uniformly approximate f on V, in the sense that



 f � N



L1(V) < e

where the network has the form

N(t) ¼
Xm
k¼1

ckfa
Xn
i¼1

wk,iti þ bk

 !
, t ¼ t1 � � � tn½ �T 2 V

Neural networks can also provide approximation for a mapping together with its derivatives [52]. On the
other hand, neural networks can provide localized approximation, which is advantageous in that if a
certain portion of the data is perturbed, only a few weights in the network need to be retrained. It was
demonstrated that a single hidden layered network cannot provide localized approximation of continu-
ous functions on any compact set of a Euclidean space with dimension higher than one; however, two
hidden layers are sufficient for the purpose [33].
As mentioned previously, the basic function fb in a network need not be linear. An artificial neural

network, using a radial function for fb, can also give very good approximation results [76]. Also, as a
system approximation framework, stability of a network is very important [68]. Finally, a major issue that
must be addressed in designing a large-scale network is the computer memory, which requires some
special realization techniques [67].

9.4 Identification

System identification is a problem of finding a good mathematical model, preferably optimal in some
sense, for an unknown physical system, using some available measurement data. These data usually
include system outputs and sometimes also inputs. Very often, the available data are discrete, but the
system to be identified is continuous [97].
A general formulation of the system identification problem can be described as follows. Let S be the

family of systems under consideration (linear or nonlinear, deterministic or stochastic, or even chaotic),
with input u and output g, and let R(u,y) be the set of I–O data. Define a mapping M: S ! R(u,y). Then, a
system ^2 S is said to be (exactly) identifiable if the mapping M is invertible, and the problem is to find
the ^¼M�1(~u,~y) using the available data (~u, ~y)2R(u,y). Here, how to define the mapping M, linear or
not, is the key to the identification problem. Usually, we also want M�1 to be causal for the implemen-
tation purpose.
The first question about system identification is of course the identifiability [82]. Not all systems, not

even linear deterministic systems, are exactly identifiable [21]. Because many physical systems are not
exactly identifiable, system identification in a weaker sense is more realistic.
Suppose that some inputs and their corresponding outputs of an unknown system, 61, are given. We

want to identify this unknown system by an approximate model, 62, using the available I–O data, such
that the corresponding outputs produced by any input through 61 and 62, respectively, are ‘‘very close’’
under certain meaningful measure. If the structure of 61 (hence, 62) is known a priori, then what we
need is to identify some system parameters. If the structure of 61 is not clear, the task becomes much
more difficult because we must determine what kind of model to choose in approximating the unknown
system [50]. This includes many crucial issues such as the linearity and dimension (or order) of the
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model used. In particular, if the system is nonlinear and contains uncertainties, special techniques from
set-valued mapping and differential inclusion theories may be needed [58].
Usually, the basic requirement is that 62 should be a best approximant of 61 from a desired class of

simple and realizable models under a suitably chosen criterion. For example, the least-squares operator
approximation discussed previously can be thought of as an identification scheme. For this reason,
identification in the weak sense is traditionally considered to be one of the typical best approximation
problems in mathematics. If a minimal, worst-case model-matching error bound is required, the
approximation is known as the optimal recovery problem, for either functions or functionals [65,66],
or for operators [15,45]. In system engineering it usually refers to system identification or reconstruction,
with an emphasis on obtaining an identified model or a reconstruction scheme.

Generally speaking, system identification is a difficult problem, often leading to nonunique solutions
when it is solvable. This is typically true for nonlinear circuits and systems. In systems and control
engineering, an unknown system is identified by a desired model such that they can produce ‘‘close
enough’’ outputs from the same input, measured by a norm in the signal space, such as Lp, lp, or Hp

(1� p�1). For dynamic systems, however, this norm-measure is generally not a good choice because
one is concerned with nonlinear dynamics of the unknown system, such as limit cycles, attractors,
bifurcations, and chaos. Hence, it is preferable to have an identified model that preserves the same
dynamic behavior. This is a very challenging research topic; its fundamental theories and methodologies
are still open for further exploration.

9.4.1 Linear Systems Identification

Compared to nonlinear systems, linear systems, either autoregressive with moving-average (ARMA) or
state-space models, can be relatively easily identified, especially when the system dimension (order) is
fixed. The mainstream theory of linear system identification has the following characteristics [37]:

1. The model class consists of linear, causal, stable, finite-dimensional systems with constant param-
eters.

2. Both system inputs and their corresponding outputs are available as discrete or continuous data.
3. Noise, if any, is stationary and ergodic (usually with rational spectral densities), white and

uncorrelated with state vectors in the past.
4. Criteria for measuring the closeness in model-matching are of least-squares type (in the deter-

ministic case) or of maximum likelihood type (in the stochastic case).
5. Large-scale linear systems are decomposed into lower-dimensional subsystems, and nonlinear

systems are decomposed into linear and simple (e.g., memoryless) nonlinear subsystems.

Because for linear systems, ARMA models and state-space models are equivalent under a nonsingular
linear transformation [17,32], we discuss only ARMA models here.
An (n, m, l)th-order ARMAX model (an ARMA model with exogenous noisy inputs) has the general

form

a z�1

 �

y(t) ¼ b z�1

 �

u(t)c z�1

 �

e(t), t ¼ . . . ,�1, 0, 1, . . . (9:42)

in which z�1 is the time-delay operator defined by z�1f(t)¼ f(t� l), and

a z�1

 � ¼Xn

i¼0

Aiz
�i, b z�1


 � ¼Xm
j¼0

Bjz
�j, c z�1


 � ¼Xl
k¼1

Ckz
�k

with constant coefficient matrices {Ai}, {Bj}, {Ck} of appropriate dimensions, where A0¼ I (or, is
nonsingular). In the ARMAX model (Equation 9.42) u(t), y(t), and e(t) are considered to be system
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input, output, and noise vectors, respectively, where the input can be either deterministic or random. In
particular, if l¼ 0 and n¼ 0 (orm¼ 0), then Equation 9.42 reduces to a simple moving-average (MA) (or
autoregressive, AR) model. Kolmogorov [56] proved that every linear system can be represented by an
infinite-order AR model. It is also true that every nonlinear system with a Volterra series representation
can be represented by a nonlinear AR model of infinite order [53].
The system identification problem for the ARMAX model (Equation 9.42) can now be described as

follows. Given the system I–O data (u(t), y(t)) and the statistics of e(t), determine integers (n, m, l)
(system-order determination) and constant coefficient matrices {Ai}, {Bj}, {Ck} (system-parameter iden-
tification). While many successful methods exist for system parameter identification [3,23,49,60], system
order determination is a difficult problem [47].
As already mentioned, the identifiability of an unknown ARMAX model using the given I–O data is a

fundamental issue. We discuss the exact model identification problem here. The ARMAX model
(Equation 9.42) is said to be exactly identifiable if (ã(z�1), ~b(z�1), ~c(z�1)) is an ARMAX model with
ñ� n, ~m�m, and ~l� l, such that

~a z�1ð Þ½ ��1~b z�1ð Þ ¼ a z�1ð Þ½ ��1b z�1ð Þ
~a z�1ð Þ½ ��1

~c z�1ð Þ ¼ a z�1ð Þ½ ��1c z�1ð Þ

�

Note that not all ARMAX models are exactly identifiable in this sense. A basic result about this
identifiability is the following [21].

THEOREM 9.22

The ARMAX model (Equation 9.42) (with t� 0) is exactly identifiable iff a(z�1), b(z�1), and c(z�1) have
no common left factor and the rank of the constant matrix [An, Bm, Cl], consisting of the highest-order
coefficient terms in a(z�1), b(z�1), c(z�1), respectively, is equal to the dimension of the system output y.

Even if an unknown system is exactly identifiable and its identification is unique, how to find the
identified system is still a very technical issue. For simple AR models, the well-known Levinson–Durbin
algorithm is a good scheme for constructing the identified model; for MA models, one can use Trench–
Zohar and Berlekamp–Massey algorithms. There exist some generalizations of these algorithms in the
literature [23]. For stochastic models with significant exogenous noise inputs, various statistical criteria
and estimation techniques, under different conditions, are available [82]. Various recursive least-
squares schemes, such as the least-mean-square (LMS) algorithm [96], and various stochastic searching
methods, such as the stochastic gradient algorithm [49], are popular. Because of their simplicity and
efficiency, the successful (standard and extended) Kalman filtering algorithms [16,30] have also been
widely applied in parameters identification for stochastic systems [13,17,62], with many real-world
applications [92].
Finally, for linear systems, a new framework, called the behavioral approach, is proposed for mathe-

matical system modeling and some other related topics [2,98].

9.4.2 Nonlinear Systems Identification

Identifying a nonlinear system is much more difficult than identifying a linear system in general, whether
it is in the exact or in the weak sense, as is commonly known and can be seen from its information-based
complexity analysis [15,45].
For some nonlinear systems with simple Volterra series representations, the least-squares approxima-

tion technique can be employed for the purpose of identification in the weak sense [8]. As a simple
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illustrative example, consider the cascaded nonlinear system with noise input shown in Figure 9.7. In this
figure h1(t) and h2(t) are unit impulse responses of two linear subsystems, respectively, and Vn(�) is a
memoryless nonlinear subsystem which is assumed to have an nth-order Volterra polynomial in the
special form

y(t) ¼
Xn
k¼1

ck

ðt

0

. . .

ðt

0

fk t1, . . . , tkð Þx(t1) � � � x(tk)dt1 � � � dtk (9:43)

where all the Volterra kernels {fk}
n
k¼0 are assumed to be known, but the constant coefficients {ck}

n
k¼0

must be identified.
It is clear from Figure 9.7 that the output of the cascaded system can be expressed via convolution-type

integrals as

z(t) ¼ c1

ð
h2f1h1u

� �
(t)þ � � � þ cn

ð
� � �
ð
h2f1h1 � � � h2u � � � u

� �
(t)þ e(t) (9:44)

Now, because all the integrals can be computed if the input function u(t) is given, the standard least-
squares technique can be used to determine the unknown constant coefficients {ck}

n
k¼0, using the

measured system output z(t).
A neural network implementation of Volterra series model identification is described in Ref. [1].

Neural network for system identification has been used in many different cases, as can also be seen from
Ref. [70].
Finally, we consider one approach to nonlinear systems identification which combines the special

structure of the generalized Fock space of Volterra series (Theorem 9.3) and the ‘‘training’’ idea from
neural networks discussed previously (Theorem 9.21). For simplicity, consider the scalar nonlinear
system

y(t)þ f y(t � 1), y(t � 2), . . . , y(t � n)ð Þ ¼ u(t), t ¼ 0, 1, . . . (9:45)

where n is a fixed integer, with the given initial conditions y(�1)¼ y1, . . . , y(�n)¼ yn. Introducing a
simple notation

yt�1 ¼ y(t � 1), . . . , y(t � n)ð Þ (9:46)

we first rewrite this system as

g(t)þ f gt�1

 � ¼ u(t) (9:47)

Then, we denote by En as the n-dimensional Euclidean space of continuous functions and let u1, . . . ,
um 2 En, called the domain training samples, be given data vectors that are componentwise nonzero and

ε(t)

z(t)u(t) x(t) y(t)
h1(t) Vn(∙) h2(t)

FIGURE 9.7 A cascaded linear–nonlinear system with noise input.
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distinct, namely, uki 6¼ ukj if i 6¼ j for all k¼ 1, . . . , m, 1� i, j� n. Here, Equation 9.46 also has been used
for these domain training samples. Also, let r1, . . . , rm, be given real numbers, called the corresponding
range training samples. The identification problem is to find an approximate system, f *(�), among all
Volterra series representations from the generalized Fock space formulated in Theorem 9.3, such that f *
maps all the domain training samples to their corresponding range training samples:

f *(uk) ¼ rk, k ¼ 1, . . . , m (9:48)

and f * has the minimum operator-norm among all such candidates. The following theorem provides an
answer to this problem [45].

THEOREM 9.23

There is a unique element f * of minimum norm in the generalized Fock space defined in Theorem 9.3, with
the domain V¼ En therein, that satisfies the constraint (Equation 9.48). Moreover, f * has the following
expression:

f *(v) ¼
Xm
k¼1

akK uk,v

 � 8v 2 En

where K(�, �) is the reproducing kernel defined in Theorem 9.3, and the system parameters are deter-
mined by

a1
..
.

am

2
64

3
75 ¼

K u1, u1ð Þ � � � K u1, umð Þ
..
. ..

.

K um, u1ð Þ � � � K um, umð Þ

2
64

3
75
�1

r1
..
.

rm

2
64

3
75

Here, it should be noted that because K is a reproducing kernel, the set of functions {K(uk, �)}mk¼1 are
linearly independent, so that the above inverse matrix exists.
Also, note that this system identification method can be applied to higher-dimensional systems and the

continuous-time setting [45].

9.4.3 Nonlinear Dynamic Systems Identification from Time Series

Measurement (observation) data obtained from an unknown system are often available in the form
of time series. There are some successful techniques for identification of linear and nonlinear systems
from time series if the time series is generated from Gaussian white noise. For example, for linear
systems we have the Box–Jenkins scheme and for nonlinear systems, a statistical method using a
nonlinear filter [75].
Concerned with nonlinear dynamic systems, however, statistical methods and the commonly used

norm-measure criterion may not be capable of identifying the system dynamics in general. This is
because the main issue in this concern is the nonlinear dynamic behavior of the unknown system, such as
limit cycles, attractors, bifurcations, and chaos. Hence, it is preferable that the identified model can
preserve the nonlinear dynamics of the unknown system. This turns out to be a very challenging task;
many fundamental theories and methodologies for this task remain to be developed.
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When an unknown nonlinear dynamic system is measured to produce a set of continuous or discrete
data (a time series), a natural approach for studying its dynamics from the available time series is to take
an integral transform of the series, so as to convert the problem from the time domain to the frequency
domain. Then, some well-developed engineering frequency domain methods can be applied to perform
analysis and computation of the nonlinear dynamics [69].
One common approach formulated in the time domain is the (delay-coordinate) embedding method

that can be applied to reconstruct (identify) an unknown nonlinear dynamic model from which only a set
of discrete measurement data (a time series) is available.
Let us consider the problem of identifying a periodic trajectory of an unknown, nonlinear dynamic

system using only an experimental time series measured from the system. Let {rk} be the available
data. The embedding theory guarantees this can be done in the space Rm with the embedding dimension
m� 2nþ 1, where n is the dimension of the dynamic system 93], or m� 2dA, where dA is the dimen-
sion of the attractor [87]. A way to achieve this is to use the delay-coordinate technique, which
approximates the unknown, nonlinear dynamics in Rm by introducing the embedding vector

rk ¼ rkrk�m � � � rk�(m�1)m
� 	T

(9:49)

where m is the time-delay step. This embedding vector provides enough information to characterize the
essence of the system dynamics and can be used to obtain an experimental Poincaré map, which helps in
understanding the dynamics. For example, one may let the map be the equation of the first component of
the vector being equal to a constant: rki¼ constant. This procedure yields the successive points

ji :¼ rki�m � � � rki�(m�1)m
� 	T

(9:50)

at the ith piercing of the map by the trajectory (or the vector rk), where ki is the time index at the ith
piercing. Then, one can locate the periodic trajectories of the unknown system using the experimental
data [4,14]. In this approach, however, determining a reasonably good time-delay step size, i.e., the real
number m in Equation 9.49, remains an open technical problem.
Finally, we note that the embedding method discussed previously has been applied to the control of

chaotic circuits and systems [19,20,74].
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10.1 Transformation of Nonlinear Dynamical Circuit Equations

One of the basic problems in studying linear and nonlinear dynamical electrical circuits is the analysis of
the underlying descriptive equations and their solution manifold. In the case of linear or affine circuits, the
constitutive relations of circuit elements are restricted to classes of linear or affine functions and, therefore,
possess rather restricted types of solutions. In contrast, the solution manifold of nonlinear networks may
consist of many different types. Naturally, it is useful to decompose nonlinear networks into classes that
possess certain similarities. One approach, for example, is to consider the solution manifold and to
decompose solutions into similar classes. Furthermore, if the descriptive differential equations of dynamic
networks are considered to be mathematical sets, their decompositions will be of interest.
The technique of equivalence relations is the preferred method used to decompose a set of mathemati-

cal objects into certain classes. A well-known approach to define equivalence relations uses transform-
ation groups. For example, real symmetric n3 n matrices Rn�n

s can be decomposed into equivalence
classes by using the general linear transformation group GL(n; R), and by applying the following
similarity transformation:

M ! U�1MU, (10:1)

where U 2 GL(n; R). By applying GL(n; R), the set Rn�n
s is decomposed into similarity classes that are

characterized by their eigenvalues. Furthermore, each class of Rn�n
s contains a diagonal matrix D with

these eigenvalues on the main diagonal [35]. These eigenvalues are invariants of the group and
characterize different classes. These and other related results can be applied to classify linear and affine
dynamical networks [20]. Thus, properties of the A-matrix of the state-space equations are used for the
classification. Note that each linear and affine dynamical network can be described in state-space form.
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We discuss the theory of equivalence of linear and affine dynamical networks only as special cases of
nonlinear networks. An interesting reformulation of the classical material of the decomposition of real
matrices by using similarity transformations in the framework of one-parameter groups in GL(n; R) is
given by Ref. [21].
A classification of the vector fields is needed in order to classify differential equations of the type

_x¼ f(x), where x 2 R
n and f: Rn ! R

n is a vector field on R
n. A first concept is established by a k-times

differentiable change of coordinates that transforms a differentiable equation _x¼ f(x) into _y¼ g(y) by
a function h 2 Ck. Ck is the set of k-times continuously differentiable functions h: Rn ! R

n. In other
words, two vector fields are called Ck-conjugate if there exists a Ck-diffeomorphism h (k� 1) such that
h s f¼ g s h. An equivalent formulation uses the concept of flows associated with differential equations
_x¼ f(x). A flow is a continuously differentiable function w: R3R

n ! R
n such that, for each t 2 R,

the restriction w(t, �) ¼ : wt(�) satisfies w0¼ idRn and wt s ws¼wtþs for all t, s 2 R
n. The relationship to a

associated differential equation is given by

f(x) :¼ dwt

dt
(x)

����
t¼0

¼ lim
e!0

w(e, x)� w(0, x)
e

� �
: (10:2)

For more details see, for example, Ref. [13]. Two flows wt andCt (associated with f and g, respectively)
are called Ck-conjugate, if there exists a Ck-diffeomorphism h (k� 1) such that h s wt¼Ct s h. In the
case that k¼ 0, the term Ck-conjugate needs to be replaced by C0 or topological conjugate and h is a
homeomorphism. Clearly, differential equations, vector fields, and flows are only alternative ways of
presenting the same dynamics.
By the previous definitions, equivalence relations can be generated and the set of differential equations

_x¼ f(x) (as well as vector fields and flows) can be decomposed in certain classes of inequivalent differential
equations and so on with different behavior (with respect to the equivalence relation). Although
Ck-conjugate seems to be a natural concept for classifying differential equations, vector fields, and flows,
this approach leads to a very refined classification (up to a diffeomorphism). In other words, too many
systems become inequivalent. We consider two examples for illustrating this statement. Consider the
nonlinear dynamical circuit (see Figure 10.1) with the descriptive equations (in a dimensionless form):

C
dvC
dt

¼ i(vC , iL)� iL, (10:3)

L
diL
dt

¼ vC þ v(vC , iL), (10:4)

where the nonlinear functions i: R2 ! R and v: R2 ! R characterize the nonlinear controlled sources.
If these controlled sources are given in the following form:

i ¼ i(vC , iL) :¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2C þ i2L � 1

q� �
vC , (10:5)

C vC

i(vC , iL) V(ve, iL)

K

M
L

– +
iL

FIGURE 10.1 Circuit with nonlinear controlled sources.
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v ¼ v(vC , iL) ¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2C þ i2L � 1

q� �
iL, (10:6)

we obtain the following concrete descriptive equations for the circuits

C
dvC
dt

¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2C þ i2L � 1

q� �
vC � iL, (10:7)

L
diL
dt

¼ vC � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2C þ i2L � 1

q� �
iL: (10:8)

These equations can be transformed into the following form if we use polar coordinates (r, f) by nC :¼ r
cos(ft) and iL :¼ r sin(ft):

dr
dt

¼ 1
2
(1� r)r, _f ¼ 1, (10:9)

where C¼ 1 and L¼ 1. If we consider the same circuit with the parameters C¼ 1=2 and L¼ 1=2 we
obtain the slightly different descriptive equations:

dr
dt

¼ 1
2
(1� r)r, _f ¼ 2: (10:10)

Note that both differential equations differ only by a time rescaling t ! 2t. The question arises whether
these two sets of equations are C1 conjugate.

It can be demonstrated (see Refs. [2,29]) that if a diffeomorphism converts a singular point of a vector
field into a singular point of another vector field, then the derivative of the diffeomorphism converts the
Jacobian matrix of the first vector field at its singular point into the Jacobian matrix of the second field at
its singular point. Consequently, these two Jacobian matrices are in the same similarity class and
therefore, have the same eigenvalues. In other words, the eigenvalues of the Jacobian matrices are
invariants with respect to a diffeomorphism, and the corresponding decomposition of the set of vector
fields (differential equations and flows) is continuous rather than discrete. Obviously, the eigenvalues of
Equations 10.9 and 10.10 (l1¼ 1=2, l2¼ 1 and ~l1¼ 1, ~l2¼ 2, respectively) are different and, in
conclusion, the two vector fields are not C1 conjugate. Moreover, these two vector fields are not
topologically or C0 conjugate. A more ‘‘coarse’’ equivalence relation is needed in order to classify
these vector fields, differential equations, and flows. As mentioned above, a time rescaling transforms
the differential equations (Equations 10.9 and 10.10) into one another and therefore it should be no
essential difference between these two differential equations. This motivates the following definition.

Definition 10.1: Two flows wt and ct are called Ck equivalent (k� 1) if there exists a Ck

diffeomorphism h that takes each orbit of ct into an orbit of ct, preserving their orientation. In the case
of k¼ 0, the flows are called C0 or topologically equivalent.

Because Ck equivalence preserves the orientation of orbits, the relation h(wt(x))¼wty(y)
with y¼ h(x)

between wt and ct is allowed, where ty is an increasing function of t for every y.
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It can be demonstrated (see Ref. [29]) that the eigenvalues of the Jacobian matrices of the two vector
fields must be in the same ratio if a monotonic time rescaling is allowed. Therefore, the two vector fields
(Equations 10.9 and 10.10) are C1 equivalent. However, the two linear vector fields of the equations

_x
_y

� �
¼ 1 0

0 1

� �
x
y

� �
,

_x
_y

� �
¼ 1 0

0 1þ e

� �
x
y

� �
(10:11)

are not C1 equivalent for any e 6¼ 0, although the solutions of the differential equations are very close
for small e in a finite time interval. In conclusion, topological equivalence is the appropriate setting for
classifying differential equations, vector fields, and flows. Note, that the decomposition of the set of linear
vector fields into equivalence classes using the topological equivalence does not distinguish between
nodes, improper nodes, and foci, but does distinguish between sinks, saddles, and sources. This suggests
the following theorem [3]:

THEOREM 10.1

Let _x¼Ax (x 2 R
n and A 2 R

n3 n) define a hyperbolic flow on R
n, e.g., the eigenvalues of A have only

nonzero parts, with ns eigenvalues with a negative real part. Then, _x¼Ax is topological equivalent to the
system (nu :¼ n� ns):

_xs ¼ �xs, xs 2 Rns , (10:12)

_xu ¼ þxs, xu 2 Rnu : (10:13)

Therefore, it follows that hyperbolic linear flows can be classified in a finite number of types using
topological equivalence.

A local generalization of this theorem to nonlinear differential equations is known as the theorem of
Hartmann and Grobman; see, e.g., Ref. [3].

THEOREM 10.2

Let x* be a hyperbolic fixed point of _x¼ f(x) with the flow wt: U�R
n ! R

n, i.e., the eigenvalues of the
Jacobian matrix Jf (x*) have only nonzero real parts. Then, there is a neighborhood N of x* on which _x¼ f(x)
is topologically equivalent to _x¼ Jf (x*) x.

The combination of the two theorems implies that a very large set of differential equations can be
classified in an isolated hyperbolic fixed point by a finite number of types (namely, ns (or nu)). The reason
behind this interesting result is that the theorem of Hartman and Grobman, based on homeomorphisms,
leads to a coarse decomposition of the set of vector fields under consideration.
As a consequence of the preceding theorems, the behavior of nonlinear differential equations near

hyperbolic fixed points is equivalent up to a homeomorphism to the behavior of a simple system of linear
differential equations. In the theory of nonlinear circuits, these mathematical results can be interpreted in
the following way: The behavior of nonlinear circuits near an operational point where the Jacobian
matrix of the descriptive equations (in statespace form) has only eigenvalues with nonzero real parts is
‘‘similar’’ to that of a corresponding linear dynamical circuit. Therefore, the analysis of these nonlinear
circuits can be decomposed into two steps: (1) calculation of the operational points and the eigenvalues of
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their Jacobian matrix and (2) restricting to the hyperbolic operational points we consider the behavior of
the dynamics near these operational points; that is called small-signal behavior.
In the following section, we discuss more general methods for the analysis of vector fields that have at

least one nonhyperbolic fixed point.

10.2 Normal Forms of Nonlinear Dynamical Circuit Equations

In Section 10.1, we present theorems useful for classifying the ‘‘local’’ behavior of nonlinear differential
equations near hyperbolic fixed points by using ‘‘global’’ results from the theory of linear differential
equations. An essential remaining problem is to calculate a homeomorphic transformation h in concrete
cases. An alternative way to circumvent some of the difficulties is to apply the theory of normal forms
that goes back to the beginning of the twentieth century and is based on classical ideas of Poincaré and
Dulac. Detailed investigations of this subject are beyond the scope of this section and, therefore, an
interested reader should consult the monographs of Refs. [2,3,10] as well as Ref. [29], where also further
references of the theory of normal forms can be found. In this section, we present only the main ideas to
illustrate its areas of applications.
In contrast to the theory described in Section 10.1, which is dedicated to hyperbolic cases, the theory of

normal forms applies diffeomorphisms instead of homeomorphisms. This is necessary in order to
distinguish the dynamical behavior of differential equations in more detail. To classify the topological
types of fixed points of nonlinear differential equations _x¼ f(x) one proceeds in two steps:

1. Construction of a ‘‘normal form’’ in which the nonlinear terms of the vector field f take their
‘‘most simple’’ form

2. Determination of the topological type of the fixed point (under consideration) from the normal
form

We present the main aspects of this ‘‘algorithm’’ without a proof. First, we suppose that the vector field
f(x) of the nonlinear differential equation _x¼ f(x) satisfies f(0)¼ 0 (otherwise, using a suitable trans-
formation) and that it is represented by a formal Taylor expansion:

f(x) ¼ Ax þ ~f(x), (10:14)

where
A¼ Jf (x)
~f(x)¼O(kxk2) is of class Cr

Power (Taylor) series with no assumptions about convergence are called formal series. In practice, we
begin with the formal series and then we determine the corresponding region of convergence (if available).
Otherwise we use the framework of the theory of the so-called asymptotic series where a convergence in
a strict sense is not necessary. In perturbation theory of differential equations most of the power series
have to be considered as asymptotic series since a convergence in a strict sense is not available. More
details about asymptotic series and perturbation theory can be, e.g., found in Refs. [28,45,57].
If a power series representation is derived, we apply a diffeomorphic Cr change of coordinates

h: Rn ! R
n with y 7! x¼ h(y) (h(0)¼ 0) in the form of a near identity transformation:

h(y) :¼ y þ hk(y), (10:15)

where hk(y) is a homogeneous polynomial of order k in y (k� 2). The result of the transformation is

_y ¼ id þ Jh(y)f g�1A y þ hk(y)
� 	þ id þ Jh(y)f g�1~f y þ hk(y)

� 	
(10:16)

¼ Ay þ g(y) (10:17)
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where
Jh(y) is the Jacobian matrix of hk with respect to y
g(h)¼O(kyk2) is a class Cr

For the following discussion it is useful to define fkT of a sufficient differentiable function f: Rn ! R
n as

the ‘‘truncated’’ Taylor series in 0 expansion that have a degree less or equal k; the ith-order term of the
Taylor series of f is denoted by fi. In a more abstract setting these ‘‘truncated’’ Taylor series are called
k-jets; see Ref. [38] for more details. The set of fkT ’s forms a real vector space of functions and is denoted
by Hn

k where the components are homogeneous polynomials in n variables of degree k. Using the k-jet
notation and expanding g into a (formal) Taylor series, Equation 10.17 can be reformulated as

_y ¼ gk�1
T (y)þ gkR(y), (10:18)

where gkR contains all terms of degree k or higher.
Expanding ~f of Equation 10.14 into a Taylor series

~f ¼ ~f2 þ ~f3 þ � � � (10:19)

and using it to represent gkR of Equation 10.18 we can get

_y ¼ gk�1
T (y)þ fk � Ay, hk


 �� 
þ O kykkþ1
� �

, (10:20)

where in the sense of Equation 10.17 the so-called Lie bracket [Ay, hk] of the linear vector field Ay and
of hk(y) is introduced by

Ay, hk

 �

(y) :¼ Jh(y)Ay � Ahk(y): (10:21)

Now we define the linear operator LkA:H
n
k ! Hn

k by

LkAh
k: y ! Ay, hk


 �
(y) (10:22)

with the range R k, and let C k ba any complementary subspace to R k in Hn
k , i.e., H

n
k ¼ R k � C k(k � 2).

Then, the following theorem implies a simplification of a nonlinear differential equation _x¼ f(x), which
can be interpreted as an equivalent representation of the associated dynamical circuit equations.

THEOREM 10.3

Let f:Rn!R
n be a Cr vector field with f(0)¼ 0 andA 2R

n3 n, and let the decomposition R k � C k of Hn
k be

given. Then, there exists a series of near identity transformations x¼ yþ hk(y) 2V for k¼ 2, 3, . . . , r, where
V � Rn is a neighborhood of the origin and hk 2 Hn

k , such that the equation _x¼ f(x) is transformed to

_y ¼ Ay þ g2(y)þ g3(y)þ � � � þ gk(y)þ O(kykrþ1), y 2 V, (10:23)

where gk 2 C k for k¼ 2, 3, . . . .

A proof of this theorem and the following definition can be found in, e.g., Ref. [4].
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Definition 10.2: Let R k � C k be decompositions of Hn
k for k¼ 2, 3, . . . , r. The ‘‘truncated’’ equation

of (Equation 10.23)

_y ¼ Ay þ g2(y)þ g3(y)þ � � � þ gk(y), (10:24)

where gk 2 C k (k¼ 2, 3, . . . , r) is called normal form of _x¼Axþ~f(x) associated with matrix A up to order
r� 2 (with respect to the decomposition where gk 2 C k for k¼ 2, 3, . . . , R k � C k).

Theorem 10.3 suggests an equivalence relation in the set of vector fields f that decomposes the set into
equivalence classes. Each class can be represented by using the definition of normal forms. Because a
concrete normal form depends on the choice of complementary subspaces C k, it is not unique. In
practical problems a constructive method of finding these subspaces is needed. An elegant way to find
these subspaces is to start with the introduction of a suitable inner product h � j � in in Hn

k that is needed to
define the adjoint operator (LkA)* of L

k
A (in a sense of linear algebra) by

hhjLkA(j)in :¼ h(LkA)*(h)jjin, for all h, j 2 Hn
k : (10:25)

It can be shown that LkA
� 	

* ¼ Lk
A* where A*¼AT is the transposed matrix of the matrix A. The desired

construction is available as an application of the following theorem.

THEOREM 10.4

Vector space ker Lk
A*

n o
that is the solution space of the equation Lk

A*j ¼ 0 is a complementary subspace
of R k in Hn

k , i.e.,

Hn
k ¼ R k � ker Lk

A*

n o
: (10:26)

The interesting reader is referred to Ref. [4] for a detailed discussion of this subject. As a consequence,
finding a normal form in the above sense up to the order r requires solving the partial differential
equation Lk

A*j ¼ 0 with definition (Equation 10.22). From an algebraic point of view this means that a
base of ker {Lk

A*} has to be chosen, but this can be done, again, with some degrees of freedom. For
example, the two sets of differential equations are distinct normal form of _x¼Ax�~f(x) associated with
the same matrix A (see Ref. [4]):

d
dt

x1
x2

� �
¼ 0 1

0 0

� �
x1
x2

� �
þ ax21

bx22 þ ax1x2

� �
, (10:27)

d
dt

x1
x2

� �
¼ 0 1

0 0

� �
x1
x2

� �
þ 0

bx21 þ bx1x2

� �
: (10:28)

To reduce the number of nonlinear monomials in the normal forms, a more useful base of Ck must be
determined. If a nonlinear differential equation of the form _x¼Ax�~f(x) is given with an arbitrary
matrix A, several partial differential equations need to be solved. This, in general, is not an easy task.
If A is diagonal or has an upper triangular form, methods for constructing a base are available. For this
purpose we introduce the following definition:

Definition 10.3: Let A 2 R
n3 n possesses the eigenvalues l1, . . . , ln and let xa1

1 xa2
1 � � � xa1 xan

1 ej be a
monomial in n variables. It is called a resonant monomial if the so-called resonant condition:
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a � l� lj ¼ 0 (10:29)

is satisfied (aT :¼ (a1, . . . , an), l
T :¼ (l1, . . . , ln)). If the resonant condition holds for some

ffiffiffiffiffiffiffiffiffi
aTa

p
� 2

and some j 2 {1, . . . , n}, we say that A has a resonant set of eigenvalues.

The importance of this definition is that the following statement can be shown: a monomial
xa1
1 xa2

1 � � � xa1 xan
1 ej is an element of ker {Lk

A*} if and only if aT � l�lj¼ 0 [4]. The next theorem proves
that if A is diagonal, a minimal normal form exists (in certain sense).

THEOREM 10.5

Let A¼ diag(l1, . . . , ln). Then an A-normal form equation up to order r can be chosen to contain all
resonant monomials up to order r.
If some eigenvalues of A are complex, a linear change to complex coordinates is needed to apply this

theorem. Furthermore, theorems and definitions need to be modified to such complex cases. In the case of
differential equation:

d
dt

x1
x2

� �
¼ 0 �1

þ1 0

� �
x1
x2

� �
þ O kxk2� 	

(10:30)

that can be used to describe oscillator circuits, the coordinates are transformed to

_z1 :¼ x1 þ jx2, (10:31)

_z2 ¼ x1 � jx2 (10:32)

with the resonant set of eigenvalues {� j,þ j} that can be written in a complex normal form (z represents
z1 and z2, respectively):

_z ¼ jþ a1jzj2z þ � � � þ akjzj2kz : (10:33)

This normal form equation—Poincaré normal form—is used intensively in the theory of the Poincaré–
Andronov–Hopf bifurcation. The monograph of Hale and Ko�cak [30] is worth reading for the illustration
of this phenomenon in nonlinear dynamical systems. A detailed proof of the Poincaré–Andronov–Hopf
theorem can be found, e.g., in Ref. [32]. These authors emphasize that further preparation of the system of
differential equations is needed before the normal form theorem is applicable. In general, the linearized
part of _x¼Axþ~f(x) (in a certain fixed point of the vector field f) has two classes of eigenvalues: (a) central
eigenvalues li 2 j R � C and (b) noncentral eigenvalues li 2 C \ j R. The dynamic behavior of a system
associated with the noncentral eigenvalues is governed by the theorem of Grobman and Hartman
(see Section 10.1) and therefore it is oriented in generic sense at the exponential behavior of linear systems.
If a system has no central eigenvalues it is called a hyperbolic system. In circuit applications network,models
with a hyperbolic behavior are related to, e.g., amplifiers and active filters; see, e.g., Ref. [44].
A more complex behavior is only possible if the theorem of Grobman and Hartman cannot be

applied, i.e., we have systems with central eigenvalues see Ref. [49]. Therefore in the design of oscillator
circuits we have to derive conditions to get central eigenvalues, e.g., Barkhausen criterion. The noncentral
eigenvalues in these systems are related with the relaxation behavior and should be eliminated if we
are interested in the dominant asymptotic behavior. A systematic procedure to eliminate noncentral
eigenvalues from the system is based on the so-called center manifold theorem (see Ref. [11]) that is
used also in the paper of Hassard and Wan [32]. A numerical algorithm is presented by Hassard et al. [31].
A more detailed discussion of this essential theorem goes beyond the scope of this section; however,
more about the theory of normal forms of vector fields and its applications in circuit analysis can be found
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in Refs. [21,22]. Until now, we have discussed
differential equations of the type _x¼ f(x). Descrip-
tive equations of circuits consist, in general, of
linear and nonlinear algebraic equations, as well
as differential equations. Therefore, the so-called
constrained differential equations need to be con-
sidered for applications in circuit theory. A typical
example is the well-known circuit shown in Figure
10.2, containing a model of a tunnel diode (see
Refs. [9,53]). Circuit equations can be written as

C
dvC
dt

¼ iL � f (vC), (10:34)

L
diL
dt

¼ �vC � RiL þ V0, (10:35)

where iD¼ f (vD) is the characteristic of the tunnel diode (see Figure 10.3).
If the behavior of the circuit is considered with respect to the timescale t :¼ RC, then the differential

equations (Equations 10.34 and 10.35) can be reformulated as

dv
du

¼ i� F(v), (10:36)

e
di
du

¼ �v � iþ 1, (10:37)

where
u : t=t
i :¼ (R=V0) iL
v :¼ vC=V0

e : L=(CR2)
F(v) :¼ (R=V0) f(V0 � v)

The behavior of the idealized circuit, where «¼ 0 is often of interest. These types of descriptive equations
are called constrained equations or differential-algebraic equations (DAEs). The above discussed theory
of normal forms for vector fields cannot be applied directly to DAEs; however, a generalized theory is
available, as presented (with applications) in Refs. [24,25].

10.3 Dimensionless Forms of Circuit Equations

In Section 10.1, the problem of equivalence is considered in a rather complex manner by adopting the
mathematical point of view of dynamical systems. We use this approach in Section 10.6 to classify a

R

V0

L

VC C

i

f(V )

V

iL

FIGURE 10.2 Nonlinear circuit with tunnel diode.

i D

iD = f (vD)

vD

FIGURE 10.3 Characteristic of a tunnel diode.
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special class of nonlinear dynamical circuits. In
contrast to this approach, another kind of equiva-
lence of descriptive equations for linear time-
invariant circuits and for certain nonlinear cir-
cuits is well known. It is illustrated by means of
a simple example. The RLC parallel circuit in
Figure 10.4, analyzed in the frequency domain,
can be described by its impedance

Z( jv) ¼ 1
1=Rþ j(vC � 1

vL )
: (10:38)

In the case of small damping, this formula can be simplified using the so-called Q-factor that is
defined as the ratio of the current flowing through L (or C) to the current flowing through the
whole circuit in the case of resonance. The case of small damping is characterized by the condition
R=(2L) 	 v0, where v0 :¼ 1 =

ffiffiffiffiffiffi
LC

p
(Thompson’s formula for LC circuits with R¼ 0). The Q-factor

is given by Q :¼ 1=(v0

ffiffiffiffiffiffi
RC

p
). Simple calculations lead to a so-called normalized impedance

~Z :¼ Z
R
¼ 1� jQ�1 v

v0
� v0

v

� �� ��1

(10:39)

that contains only two instead of three parameters. By using this method, a whole class of RLC circuits
may be described by the same normalized impedance and which can be ‘‘de-normalized’’ at a certain
frequency if a special filter application is considered. Therefore, an equivalence relation is defined in this
manner. Handbooks of filter design written for practical electrical engineers contain diagrams of those
and similar frequency curves of normalized impedances as well as admittances. Nor that the formula
(Equation 10.39) is exact, although the interpretation of the parameters Q and v0 depends on the
condition R=(2L) 	 v0.
Methods for normalizing descriptive equations of circuits and for reducing the number of parameters

are known in linear and nonlinear circuit theory; see, e.g., Ref. [20]. Unfortunately, these methods are
stated without a presentation of their mathematisch reasoning. The main ideas for justification of
normalization procedures are based on the so-called dimensional analysis. Their first applications in
physics and the development of their mathematical foundations can be traced to the end of the
nineteenth century. In this section, we discuss only a few aspects of this subject. Interested readers
may find more details about the theory and applications of dimensional analysis as well as further
references in a paper of Mathis and Chua [50]. In this paper they demonstrated that for a complete
mathematical discussion of physical quantities, several algebraic concepts (e.g., Lie groups, etc.) are
needed. In this section, a concise introduction into dimensional analysis is preferred and therefore, an
intuitive introduction based on multiparameter Lie groups is presented. We use main ideas from the
monograph of Ovsiannikov [55].
For describing physical systems, suitable descriptive physical quantities are required that can be

measured. To perform a physical measurement of one of these quantities, we need at least one measuring
instrument that provides us with corresponding measuring values on its scale. This scale is calibrated
with respect to a standard cell. Therefore, an intuitive mathematical model of a physical quantity f

consists of two parts: a real number jfj that characterizes its value, and a symbol Ef that is due to the
standard cell. In general, a measuring instrument is composed of elementary measuring instruments to
evaluate, e.g., time or frequency, length, voltage, and charge. Each elementary instrument is calibrated
with a corresponding standard cell and, therefore, associated to the instrument. Entirely, an arbitrary
physical quantity f is defined by

C L R

FIGURE 10.4 LCR circuit.
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f :¼ jfjEl1
1 El2

2 � � � Elr
r , (10:40)

where
r is the number of elementary instruments for measuring f

lk determine how many times an elementary instrument have to be applied and whether the value on
the scale needs to multiplied or divided

The dimensionality of a physical quantity f is defined by

[f] :¼ El1
1 El2

2 � � � Elr
r , (10:41)

where r� n such that a physical quantities is fully described by f¼ j f j [f].
A physical quantity f is called dimensionless if its dimensionality is null, that is if l1¼ 0, l2¼ 0, . . . ,
lr¼ 0. Moreover, a set of n physical quantities f1, f2, . . . , fn is called dependent (in the sense of their
dimensionality) if there exist integers x1, x2, . . . , xn (not all equal zero) such that the product of these
quantities

f
x1
1 f

x2
2 � � �fxn

n (10:42)

is dimensionless. Otherwise f1 f2 � � � fn are called independent.
The main problem of (physical) dimension theory is to determine how many independent physical

quantities are included in a set of n describing quantities, to find them, and then express the other
quantities in the set in terms of these independent quantities. As an application, a systematic procedure
to normalize physical descriptive equations can be given—instead a intuitive manner as considered
above.
In order to solve the main problem, the change of measuring instruments and measuring scales needs

to be introduced and modeled in a mathematical manner. Obviously, in terms of modeling physical
quantities, the same f can be represented in different ways. Using two sets of measuring instruments,
denoted by E1, E2, . . . , Er and ~E1, ~E2, . . . , ~Er, respectively, f is given by

jfjEl1
1 El2

2 � � � Elr
r ¼ j~fj~E~l1

1
~E
~l2
2 � � � ~E~lr

r , (10:43)

where in general r 6¼ p. This suggests the so-called analogy transformation (see Ref. [50]):

Ek ¼ aa1
1 � � � aak

k
~Ea1
1 � � � ~Eak

k , k ¼ 1, . . . , r: (10:44)

Transformations of the scales of measuring instruments—in the following denoted as scale transform-
ations—are special analogy transformations:

Ek ¼ ak~Ek, k ¼ 1, . . . , r: (10:45)

It can be demonstrated that analogy transformations of dimension theory are special cases of the so-called
extension groups. These groups belong to the r-parameter Lie groups and, subsequently, all results of
dimension theory can be interpreted by theorems from this mathematical theory. Further details are
contained in Ref. [55]. To introduce the main ideas, we consider only scale transformations in this section.
Let Z :¼ R

n3R
m be the Cartesian product of the set of n-column vectors x and m-column vectors y,

and let {e1, . . . , en} and {f1, . . . , fm}, be, respectively, arbitrary (but fixed) bases of these vector spaces.
Endowing Z with the structure of a direct sum R

n � R
m, each z 2 Z can be represented by (with respect

to these bases)
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z ¼
Xn
i¼1

xiei þ
Xm
k¼1

ykfk: (10:46)

An extension of Z (with respect to these bases) is defined by the transformation:

h: z !
Xn
i¼1

cixiei þ
Xm
k¼1

dkykfk (ci > , dk > 0): (10:47)

Obviously, the set of all extensions generates an Abelian group of transformations on Z that is an
(nþm)-parameter Lie group. this group is denoted by diag{ei, fk}. Any subgroup H� diag{ei, fk} is called
an extension group of Z. We now consider extension groups Hr, with 0< r
 nþm.

Ovsiannikov [55] demonstrated that extensions of Hr can be represented, choosing a parametric
group, in the form:

~xi ¼ xi
Yr
a¼1

(aa)
lia , ~yk ¼ yk

Yr
a¼1

(aa)
mk
a , (10:48)

where
i¼ 1, . . . , n
k¼ 1, . . . , m

The main property of transformation groups is that they induce equivalence relations decomposing the
subjects on which the group acts into equivalence classes. If hp acts on elements x 2 X, and let p 2 R

p

the vector of parameters, an orbit U (x) of a point x 2 X is defined by the setU (x) :¼ {j 2 Xjj¼ hp (x, p), for
all p2R

p}. In this sense, the points of an orbit can be identified by a transformation group. A transformation
group acts transitive on X if there exists an orbit U(x) that is an open subset of X, with �U ¼X.
To study the so-called local Lie groups with actions that are defined near a null neighborhood of the

parameter space (including the vector 0), we can discuss the Lie algebra that characterizes the local
behavior of the associated local Lie group. In finite dimensional parameter spaces, a Lie algebra is
generated by certain partial differential operators. Using the representations (Equation 10.48) of Hr, the
operators are of the form:

Xn
i¼1

liax
i @

@xi
þ
Xm
i¼1

mk
ay

k @

@yk
, (10:49)

where
i¼ 1, . . . , n
k¼ 1, . . . , m

These operators can be represented in a matrix form:

M(z) :¼ M1 s diag{x1, . . . , xn; y1, . . . , ym}, (10:50)

where

M1 :¼
l11 � � � ln1 ,m

1
1 � � � mm

1

..

. � � � � � � ..
.

l1r � � � lnr ,m
1
r � � � mm

r

0
B@

1
CA: (10:51)

Obviously, Hr is not transitive if r< nþm.
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In order to solve the main problem of dimension theory, we need to introduce invariants of a Lie
group. Let F : X ! Y be a function on X and let transformations hp of a transformation group act on X,
then F is an invariant of the group if F(hp(x))¼ F(x) holds for any x 2 X and p 2 R

p. The invariant J :
X ! Y is called a universal invariant if there exists, for any invariant F : X ! Y of the group, a function
F such that F¼F s J. The following main theorem can be proved for the extension group [55].

THEOREM 10.6

For the extension group Hr on Z, there exists a universal invariant J : Z ! R
nþm� r if the condition

r< nþm is satisfied. The independent components of J have the monomial form:

Jt(Z) ¼
Yn
i¼1

xi
� 	utk �Ym

k¼1

yk
� 	st

k , (10:52)

where t¼ 1, . . . , nþm� r.

If dimensional analysis considers only scale transformations (Equation 10.45), this theorem contains the
essential result of the so-called Pi-theorem. For this purpose we present a connection between the
dimensionalities and the extension group Hr (see Ref. [55]). The group Hr of the space R

n, defined
only be the dimensions of the physical quantities fk with respect to the set of symbols {Ea}, has a one-to-
one correspondence with every finite set {fk} of n physical quantities, which can be measured in the
system of symbols {Ea} consisting of r independent measurement units; see Equation 10.43. The
transformations belonging to the group Hr give the rule of change in the form

j~fj ¼ jfj
Yr
a¼1

(aa)la (10:53)

of the numerical values jfkj as a result of the transition from the units {Ea} to {~Ea} by means of
Equation 10.45.
As a consequence of this relationship, a quantity f is dimensionless if and only if its numerical value

is an invariant of the group Hr. Thus, the problem to determine the independent physical quantities
of a given set of quantities is solved by the construction of a universal invariant of Hr stated by the
Pi-theorem; see also Ref. [7]. Normalization as well as the popular method of dimension comparison, are
consequences of the invariance of physical equations with respect to the group of analogy (scale)
transformations. In applications of dimensional theory, a normal form that has certain advantageous
properties is desired. For example, it is useful to reduce the number of parameters in physical equations.
Normal forms of this type are used very often in practical calculations, but with no clarification of their
mathematical foundations.
Circuit equations, similar to other physical equations, contain numberous parameters. In applications,

it is often desired to suppress some of these parameters and moreover, they should be replaced by the
numerical value 1.
For this purpose, Desloge [26] chooses a new system of units {Ea}. A theory of Desloge’s method,

based on analogy transformation (Equation 10.44) instead of scale transformation (Equation 10.45), was
presented by Mathis and Chua [50]. The main idea behind this method is that, beside the foundation
units time [T], voltage [E], and charge [Q] that are useful in circuit theory, the units of other parameters
are considered as foundational units. We denote the units by [Aa] instead of Ea. For example, in the case
of the tunnel-diode circuit (see Figure 10.2), [T], [E], and [Q], as well as [R], [C], and [L], need to be
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discussed. As a consequence of Desloge’s method, three of the four parameters can be suppressed and the
other variables will be normalized. The method works in the case of linear as well as nonlinear circuits.
The method is illustrated using the tunnel-diode circuit equations (Equations 10.34 and 10.35). At

first, the dimensional matrix is determined by

[T] [E] [Q]

[R]

[L]

[C]

1 1 �1

2 1 �1

0 �1 1

0
B@

1
CA (10:54)

that characterizes the relation between the dimensions of t, v, q, R, C, and L.
Now, Desloge considers another set of power independent dimensional scalars A1, A2, and A3 with

[Ai] ¼ [T]a
1
i [E]a

1
i 2[Q]a

3
i , i ¼ 1, 2, 3: (10:55)

These relations are interpreted as an analogy transformation (Equation 10.44). Applying the map L(�)
that has the same properties as the logarithmic function (see Ref. [50]) to Equation 10.55, the symbols L
([A1]), L([A2]), and L([A3]) are represented by linear combinations of L([T]), L([E]), L([Q]). The
coefficient matrix in Equation 10.55 is regular and contains the exponents. Solving these linear equations
using ‘‘antilog,’’ the [T], [E], and [Q] are products of powers of [A1], [A2], and [A3]. In this manner,
dimensionsless versions of differential equations of the tunnel-diode circuit can be derived.
By using the independent units A1 :¼ L, A2 :¼C, and A3 :¼V0 to replace their values jV0j, jLj, and jCj

by 1 (with respect to the new units), the following equation is derived by Desloge’s approach sketched
previously

[T] [E] [Q]

[V0]

[L]

[C]

0 1 0

2 1 �1

0 �1 1

0
B@

1
CA

ln [T]ð Þ
ln [E]ð Þ
ln [Q]ð Þ

0
B@

1
CA ¼

ln [V0]ð Þ
ln [L]ð Þ
ln [C]ð Þ

0
B@

1
CA:

(10:56)

Multiplying Equation 10.56 by the inverse of the dimensional matrix

[V0] [L] [C]

[T]

[E]

[Q]

0 1=2 1=2

1 0 0

1 0 1

0
B@

1
CA (10:57)

and applying ‘‘antilog’’ to the result, we obtain

[T] ¼ [L]1=2[C]�1=2, [E] ¼ [V0], [Q] ¼ [V0] [C]: (10:58)

From these equations, the relations between the old and new units can be derived; see Ref. [50]. T, E, and
Q are expressed by the new units L, C, and V0 and the parameters and variables in Equations 10.34 and
10.35 can be reformulated if the numerical values of V0, L, and C are added

T ¼ jLj�1=2jCj�1=2L1=2C1=2, E ¼ jV0j�1V0, Q ¼ jV0j�1jCj�1V0C: (10:59)

10-14 Feedback, Nonlinear, and Distributed Circuits



These relations represent parameters and variables of the tunnel-diode circuit with respect to the new
quantities

R ¼ jRjjCj1=2
jLj1=2

L1=2C�1=2, V0 ¼ 1 � V0, L ¼ 1 � L, C ¼ 1 � C, (10:60)

iL ¼ jiLjjLj1=2
jV0jjCj1=2

V0L
�1=2C1=2, vC ¼ jvCj

jV0jV0, t ¼ jtj
jLj1=2jCj1=2

L1=2C1=2: (10:61)

The dimensional exponents for these quantities can be found by using the inverse dimensional matrix
(Equation 10.57):

1. T, E, Q: their exponents correspond the associated rows of Equation 10.57
2. V0, L, C, R: premultiply Equation 10.57 with the corresponding row of Equation 10.54

For example, taking [C] ¼D (0� 11) results in

[C]
[T] [E] [Q]

( 0 �1 1 )
[T]
[E]
[Q]

1
A

0
@

[V0] [L] [C]

0 1=2 1=2
1 0 0
1 0 1

¼ [C]
[V0] [L] [C]
( 0 0 1 ) (10:62)

or with the corresponding row [R] ¼D (11� 1) of Equation 10.54

[R]
[T] [E] [Q]

( 1 1 �1)
[T]
[E]
[Q]

1
A

0
@

[V0] [L] [C]

0 1=2 1=2
1 0 0
1 0 1

¼ [R]
[V0] [L] [C]
( 0 1=2 �1=2): (10:63)

With these representations of the dimensional quantities, we can obtain a dimensionless representation
of Equations 10.34 and 10.35

d�vC
d�t

¼ �iL � �f (�vC), (10:64)

d�iL
d�t

¼ 1� ffiffiffi
e

p
�iL � �vC , (10:65)

where

�vC :¼ jvCj
jV0j ,

�t :¼ jtjffiffiffiffiffiffiffiffiffiffiffijLjjCjp ,
ffiffiffi
e

p
:¼ jRjjCj1=2

jLj1=2
, �iL :¼ jiLjjLj1=2

jV0jjCj1=2
: (10:66)

Furthermore, the dimensionless tunnel-diode current �f is defined by

�f (�vC) :¼ V�1
0 L1=2C�1=2f (V0�vC): (10:67)

The associated dimensionless form of Equations 10.36 and 10.37 can be derived by another scaling of the
current îL :¼ ffiffiffi

e
p

�iL. Obviously, the dimensionless normal form is not unique.
The classical dimensional analysis shows that R2C=L is the only dimensionless constant of the

quantities in Equations 10.34 and 10.35. Because the describing equations of the parallel LCR circuit
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include the same variables constants, the results of the previous dimensional analysis of the tunnel-diode
circuit can be used to normalize Equation 10.38.
Further interesting applications of Desloge’s approach of suppressing superfluous parameters in the

describing equations can be found in the theory of singular perturbation analysis. The reader is referred,
e.g., to the monograph of Smith [57] for further details. Miranker [53] demonstrated that the differential
equations of the tunnel-diode circuit can be studied on three timescales t1 :¼ L=R, t2 :¼ RC, and
t3 :¼

ffiffiffiffiffiffi
LC

p
where different phenomena arise. If these phenomena are known, corresponding timescales

can be written down. However, since all dimensionless equations can be derived in a systematic manner
using Desloge’s approach also the corresponding timescales result. In this way, e.g., all normalized
differential equations describing Chua’s circuit (see Ref. [42]) can be obtained but other representations
of these differential are possible using dimensional analysis.

10.4 Equivalence of Nonlinear Resistive n-Ports

In this section, we only consider equivalence of nonlinear resistive n-ports; however, resistive circuits
without accessible ports will not be included in the discussion. Although the explanations that follow are
restricted to resistive n-ports, this theory can be easily extended to pure capacitive and inductive n-ports;
see Ref. [23]. In Section 10.5, we give a definition of those n-ports.

At first, we consider linear resistive 1-ports that contain Ohmic resistors described by vk¼Rkik
or=and ik¼Gkuk, and independent current and voltage sources vk ¼ Vk

0 and ik ¼ Ik0 . We can use
Helmholtz–Thevenin’s or Mayer–Norton’s theorem [40,51] to compare any two of those 1-ports and
reduce a complex 1-port to a more simple ‘‘normal’’ form. Therefore, two of those 1-ports are called
equivalent if they have the same Helmholtz–Thevenin or Mayer–Norton resistor-source 1-port repre-
sentation. Clearly, by this approach, an equivalence relation is defined in the set of linear resistive
1-ports and it is decomposed into ‘‘rich’’ classes of 1-ports. To calculate these normal forms,
D-Y and=or Y-D transformations are needed; see Refs. [20,51]. It is known that this approach is not
applicable to nonlinear resistive networks because, e.g., D-Y and=or Y-D transformations generally do
not exist for nonlinear networks. This was observed by Millar [52] for the first time. Certain circuits
where these transformations can be performed were presented by Chua [14]. More recently, Boyd and
Chua [5,6] clarified the reasons behind this difficulty from the point of view of Volterra series. As a
conclusion, the set of nonlinear resistive 1-ports can be decomposed into equivalence classes, but no
reasonable large classes of equivalent 1-ports exist. More general studies of this subject are based on the
well-known substitution theorem, which can be used successfully in a certain class of nonlinear
circuits. A detailed discussion of the classical substitution theorem can be found in Refs. [27,57] and
in an abstract setting in Refs. [33,56]. Some results applicable to 1-ports can be generalized to linear
resistive n-ports (extraction of independent sources), but this point of view is not suited for
nonlinear resistive n-ports.
Better understanding of nonlinear resistive n-ports and the problem of equivalence cannot be based on

the ‘‘operational’’ approach mentioned earlier. Instead, a geometrical approach that was developed by
Brayton and Moser [9] is more useful. These authors (see also Ref. [8]) characterize a resistive n-port in a
generic manner by n independent relations between the 2n port variables, n-port currents i1, . . . , in, and
n-port voltages u1, . . . , un. Geometrically, this means that in the 2n-dimensional space of port variables,
the external behavior of a resistive n-port can be represented generically by an n-dimensional surface.
The classical approach formulates a system of equations by

y1 � f1(x1, . . . , xn) ¼ 0,

..

.

yn � fn(x1, . . . , xn) ¼ 0,

(10:68)
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where x’s and y’s are the port variables. The zero set of equations (Equation 10.69) corresponds to the
n-dimensional surface. Therefore, two n-ports are called equivalent if they are different parametrizations
of the same n-port surface. As an application of this point of view, Brayton and Moser [9] demonstrated
that a 2-port consisting of a Y-circuit and a circuit consisting of a D-circuit cannot be equivalent, in
general. For example, they proved by means of Legendre transformations that a Y-circuit with two
Ohmic resistors and a third resistor can be equivalent to a D-circuit if and only if the third resistor is also
linear. Therefore, the operational approach is not a very useful equivalence concept for nonlinear n-ports.

The subject of synthesizing a prescribed input–output behavior of nonlinear resistive n-ports is closely
related to the problem of of equivalence. Several results were published in this area using ideal diodes,
resistors with a concave and convex characteristic, dc voltage and current sources, ideal op-amps, and
controlled sources. Therefore, we give a short review of some of these results. On the other hand we do
not consider the synthesis of resistive n-ports.
Although the synthesis of nonlinear resistive n-ports was of interest to many circuit designers since the

beginning of twentieth century, the first systematic studies of this subject based on previous studies of
Millar [52] were published by Chua [13,14]; see, e.g., Itoh [37] for more recent aspects of nonlinear
circuit synthesis. Chua’s synthesis approach based on the introduction of new linear 2-ports (R-rotators,
R-reflectors, and scalors) as well as their electronic realizations. Now, curves in the i–v space of port
current i and port voltage v that characterize a (nonlinear) resistive 1-port can be reflected and scaled in a
certain manner. Chua suggested that a prescribed behavior of an active or passive nonlinear resistive
1-port can be reduced essentially to the realization of passive i–v curves. Piecewise-linear approximations
of characteristics of different types of diodes, as well as the previously mentioned 2-ports, are used to
realize a piecewise-linear approximation of any prescribed passive i–v curve. In another article, Chua [15]
discussed a unified procedure to synthesize a nonlinear dc circuit mode that represents a prescribed
family of input and output curves of any strongly passive 3-terminal device (e.g., a transistor). It was
assumed that the desired curves are piecewise-linear. Since then, this research area has grown very
rapidly and piecewise-linear synthesis and modeling has become an essential tool in the simulation of
nonlinear circuits; see Refs. [19,34,39,41].

10.5 Equivalence of Nonlinear Dynamical n-Ports

In this section, we consider more general n-ports that can be used for device modeling; see Ref. [16].
Although many different lumpedmultiterminal and multiport circuits are used, a decomposition into two
mutually exclusive classes is possible: algebraic and dynamic multiterminal and multiports. Adopting the
definition of Chua [16], an (nþ 1)-terminal of n-port circuit is called an algebraic element if and only if
its constitutive relations can be expressed symbolically by algebraic relationships involving at most two
dynamically independent variables for each port. In the case of an 1-port, a so-called memristor is
described by flux and charge, a resistor by voltage and current, an inductor by flux and current, and a
capacitor by voltage and charge. An element is called a dynamic element if and only if it is not an
algebraic element.
Despite the fact that the class of all dynamic elements is much larger than that of algebraic ones, the

following theorem of Chua [16] suggests that resistive multiports are essential for dynamic elements, too.

THEOREM 10.7

Every lumped (nþ 1)-terminal or n-port element can be synthesized using only a finite number n of linear
2-terminal capacitors (or inductors) and one (generally nonlinear) (nþm)-port resistor with n accessible
ports and m ports for the capacitors.
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This theorem demonstrates that any n-port made of lumped multiterminal and=or multiport elements is
equivalent to a multiterminal network where all of its nonlinear elements are memoryless. This fact offers
a possibility to classify (nþ 1)-terminal and n-port elements in an operational manner.
The proof of this theorem provides the answer of a fundamental question: what constitutes a minimal

set of network elements from which all lumped elements can be synthesized?

THEOREM 10.8

The following set M of network elements constitutes the minimal basic building blocks in the senses that
any lumped multiterminal or multiport element described by a continuous constitutive relation on any
closed and bounded set can be synthesized using only a finite number of elements of M , and that this
statement is false if even one element is deleted from M :

1. Linear 2-terminal capacitors (or inductors)
2. Nonlinear 2-terminal resistors
3. Linear 2-port current-controlled voltage sources (CCVS) defined by v1¼ 0 and v2¼ ki1
4. Linear 2-port current-controlled current sources (CCCS) defined by i1¼ 0 and i2¼~kv1

The proof of Theorem 10.8 (see Ref. [16]) is based on a remarkable theorem of Kolmogoroff, which asserts
that a continuous function f:Rn!R can always be decomposed over the unit cube ofRn into a certain sum
of functions of a single variable. Although the proof of Theorem 10.8 is constructive, it is mainly of
theoretical interest since the number of controlled sources needed in the realization is often excessive.

10.6 Equivalence of Reciprocal Nonlinear Dynamic Circuits

As already mentioned in Section 10.1, a certain set of circuits can be decomposed into classes of
equivalent circuits by some type of equivalence relation. Such equivalence relations are introduced in a
direct manner with respect to the descriptive equations, using a transformation group of classifying the
behavior of the solution of the descriptive equations. In the last few sections, several useful ideas for
defining equivalence relations were discussed that can be suitable for circuit theory. In this section
equivalent dynamical circuits are considered in more detail. It should be emphasized again that
equivalence has a different meaning depending of the applied equivalence relation.
As the so-called state-space equations in circuit and system theory arose in the early 1960s, a first type

of equivalence was defined because various circuits can be described by the same state-space equations.
Of course, from this observation an equivalence relation is induced; see Ref. [61] for further references.
Although this approach is interesting, in some cases different choices of variables for describing non-
linear circuits exist that need not lead to equivalent state-space equations; see, e.g., Ref [17]. In other
words, the transformations of coordinates are not well conditioned. This approach was applied also to
nonlinear input–output systems.
If we consider nonlinear reciprocal circuits, the Brayton–Moser approach [9] to formulate the

describing equations for this class of circuits is very suitable; see also Ref. [48]. In order to formulate a
generalized type of state-space equations, Brayton and Moser used a so-called mixed-potential function
P. P depends on the capacitor voltages v and the inductor currents i where the vector field of the circuit
equations can be derived by partial derivatives. The Brayton–Moser equations can be formulated in the
following manner:

C(v)
dv
dt

¼ � @P
@v

(v, i), �L(i)
di
dt

¼ � @P
@i

(v, i): (10:69)
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A discussion of the Brayton–Moser equations from a point of view of constrained differential equation in
a differential geometric setting can be found in Ref. [46]. A very general concept of constructing mixed-
potential functions is presented by Weiss et al. [60]. In the following, we consider the equivalence concept
for reciprocal nonlinear dynamical circuits based in Brayton–Moser equations where Varaiya and Verma
[58] included external ports (input–output description). For this purpose they use a more compact form
of the Brayton–Moser where the generalized state vector x :¼ (v, i) and the coefficient matrix A :¼ diag
(C(v),�L(i)) is introduced. It should be noted that another geometric approach for nonlinear dynamical
input–output circuits is available based on Hamiltonian equations with external ports—the so-called port
Hamiltonian equations—where a so-called Dirac structure is used for energy preserving interconnec-
tions. With respect to this concept, the reader is referred to the literature; see recent publications of
Maschke [47] and can der Schaft [12]) and the cited older publications.
The input–output circuit description of Verma [59] is formulated in the following manner: Let x 2 R

n

the state-space vector, u 2 R
m the input vector, and e 2 R

m the output vector, then the Brayton–Moser
type state-space equations can be generated by a matrix-valued function A(x): Rn ! R

n3n and a real-
valued function P: Rn3R

m ! R

A(x)
dx
dt

¼ � @P
@x

(x, u), (10:70)

e ¼ @P
@u

(x, u): (10:71)

For two such circuits N1¼ {A1, P1} and N2¼ {A2, P2}, Varaiya and Verma [58] defined the following
equivalence concept.

Definition 10.4: Two Brayton–Moser type circuits N1 and N2 with the outputs e1¼ @P1=@u and
e2¼ @P2=@u are input–output equivalent if there exists a diffeomorphism Q with y¼Q(x), such that for
all x0 2 R

n, all input functions u, and all t� 0 the following assumptions are satisfied

1. Q(x(t, x0, u))¼ y(t, Q(x0), u)
2. e1(t, x0, u)¼ e2(t, Q (x0), u)

The diffeomorphism Q is called the equivalence map.

Thus, two circuits are equivalent if their external behavior is identical, i.e., if for the same input and
corresponding states they yield the same output. It is clear that this definition results an equivalence
relation on the set of all dynamical circuits under consideration. In their paper, Varaiya and Verma [58]
showed that, under the additional assumption of controllability, the diffeomorphism Q establishes an
isometry between the manifold with the (local) pseudo-Riemannian metric (dx, dx) :¼hdx, A1 dxi and
the manifold with the (local) pseudo-Riemannian metric (dy, dy) :¼hdy, A2 dyi in many interesting
cases of nonlinear reciprocal circuits. This statement has an interesting interpretation in the circuit
context. It can be proven thatQmust relate the reactive parts of the circuits N1 and N2 in such a way that,
if N1 is in the state x and N2 is in the state y¼Q(x), and if the input u is applied, then

di
dt

, L(i)
di
dt

� �
� dv

dt
, C(v)

dv
dt

� �
¼ d~i

dt
, ~L(~i)

d~i
dt

� �
� d~v

dt
, ~C(~v)

d~v
dt

� �
: (10:72)

The concept of equivalence defined in a certain subset of nonlinear dynamic circuits with input and
output terminals given by Varaiya and Verma [58] is based on diffeomorphic coordinate transformations
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(the transformation group of diffeomorphisms). Unfortunately, the authors present no ideas about the
kind of ‘‘coarse graining’’ produced in this set of circuits by their equivalence relation. However, a
comparison to Ck conjugacy or Ck equivalence of vector fields in Section 10.1 implies that input–output
equivalence leads to a ‘‘fine’’ decomposition in the set of Brayton–Moser input–output circuits. To
classify the main features of the dynamics of circuits, the concept of topological equivalence (the
transformation group of homeomorphisms) is useful. On the other hand, in the case of circuits with
nonhyperbolic fixed points, the group of diffeomorphisms is needed to distinguish the interesting
features. An interesting application of C1 equivalence of vector fields is given by Chua [18]. To compare
nonlinear circuits that generate chaotic signals, Chua applied the concept of equivalence relation and
concluded that the class of circuits and systems that are C1 equivalent to Chua’s circuit (see Figure 10.5)
is relative small. The nonlinearity in this circuit is described by a piecewise-linear i–v characteristic; see
Ref. [42] for further details. The equations describing Chua’s circuit are

dvC1

dt
¼ 1

C1
G(vC2 � vC1 )� f (vC1 )½ �, (10:73)

dvC2

dt
¼ 1

C2
G(vC1 � vC2 )þ iL)½ �, (10:74)

diL
dt

¼ 1
L
vC2 � R0iL)½ �, (10:75)

where R0¼ 0 and the piecewise-linear function is defined by (Ga, Gb, E suitable constants)

f (vC1 ) :¼ GbvC1 þ
1
2
(Ga � Gb) jvC1 þ Ej � jvC1 � Ejð Þ: (10:76)

Chua’s extended approach to study the set of the piecewise-linear circuits that includes Chua’s circuit
introduces the concept of global unfoldings. This concept can be considered as an analogy to the theory
of ‘‘local unfoldings’’ of nonhyperbolic systems in a small neighborhood of singularities [3,30].
Heuristically, a minimum number of parameters in a given nonhyperbolic system is obtained. Chua
demonstrated that Chua’s circuit with arbitrary R0 6¼ 0 can be considered as an ‘‘unfolding’’ of the
original circuit. Furthermore, he proved that a class of circuits that can be described without any loss of
generality by

_x ¼ Ax þ b, x1 
 �1 (10:77)

¼ Ax, �1 
 x1 
 þ1 (10:78)

¼ Ax þ b, x1 � þ1 (10:79)

R0

L
iL

C1 VC1
VC2

C2 VR

iR
1
RG =

FIGURE 10.5 Modified Chua’s circuit.
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is equivalent to the unfolded Chua’s circuit if certain conditions are satisfied. In the associated parameter
space, these conditions defined a set of measure zero. The proof of this theorem as well as some
applications are included in Ref. [18].
The ideas of normal forms presented in Section 10.2 can be applied to nonlinear circuits with

hyperbolic and nonhyperbolic fixed points. A similar theory of normal forms of maps can be used to
study limit cycles, but this subject is beyond our scope; see Ref. [3] for further details. In any case the
vector field has to be reduced to lower dimensions and that can be achieved by the application of the so-
called center manifold theorem. Altman [1] illustrated this approach by calculating the center manifold
of Chua’s circuit equations and its normal form in a tutorial style. To perform the analytical computa-
tions the piecewise nonlinearity (Equation 10.78) is replaced by a cubic function f(x)¼ c0xþ c1x

3. Based
on this normal form, Altman studied bifurcations of Chua’s circuits.

In the following, we describe applications of normal form theory from Section 10.2 to decompose
nonlinear dynamical circuits at an arbitrary fixed point into nondynamical and dynamical parts; a sketch
of this concept is presented by Keidies and Mathis [43]. In this section we restrict ourself to nonlinear
dynamical circuits with constant sources where the describing equations are formulated in a state-space
form:

_x ¼ f(x), f:Rn ! Rn, (10:80)

where all nonlinear reactances are replaced by linear reactances, nonlinear resistors, and linear controlled
sources; see, e.g., Ref. [20]. It is assumed that all nonlinearities are polynomial functions and can be
interpreted as nonlinear controlled sources. It can be assumed that the circuit is decomposed into a linear
part that consists of linear reactances and resistive elements, and the nonlinear controlled sources. In
other words, the RHS f of Equation 10.82 can be reformulated in the form f(x)¼Axþ~f(x); a block
diagram is shown in Figure 10.6. Now, the normal form theorem is applied to transform the nonlinear
controlled sources to the input. It is known from Section 10.2 that all nonresonant parts of ~f(x) can be
eliminated until a prescribed order k if the associated homological equation is satisfied. Therefore, after a
nearly identity transformation (Equation 10.15) the normal form of the nonresonant part can be
described by (see Figure 10.6)

_y ¼ Ay, x ¼ y þ h(y): (10:81)

For this decomposition we have to define the nonresonant and resonant terms of the vector field where
the eigenvalues of the linear part A of f and the degree of the polynomial nonlinearities must be studied.

Snl =
fnl (X1, ..., Xn)

Sres =
fnl (X1, ..., Xn)

Source Snl nonresonent
Normal form

transformation

Linear
dynamic
network

Linear
dynamic
network

Linear
dynamic
network

Source Snl resonant

Snl

Xi

XiXiYi
trafo

FIGURE 10.6 Decomposition of nonlinear dynamic circuits.
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Under certain conditions, a finite recursive process exists, such that all nonlinear controlled sources can
be transformed to the input of the linear part of the circuit under consideration. In these cases, the
circuits are described by Equation 10.83 and the corresponding block diagram is shown on the left-hand
side in Figure 10.6. If resonant terms occur, a number of additional sources are generated by means of a
recursive process. In these cases the controlled cannot transforme to the input what is shown on the
right-hand side of Figure 10.6. In order to illustrate these statements, a simple example is presented in
Figure 10.7. After a nearly identity transformation, a reduction of the nonresonant terms, and the
recursive process with respect to the resonant terms, the decomposed circuit is shown in Figure 10.8.
Therefore, this application of normal form theorems in circuit analysis can be interpreted as a kind
of extraction of nonlinear controlled sources from a nonlinear dynamic circuit. Finally it should be
mentioned that this decomposition based on the normal form theorem is related in a certain sense to
the so-called exact linearization that is studied in the theory of nonlinear control systems; see, e.g.,
Refs. [36,54].

iNL = vC1vC2 vC1

+

–

+

–

vC2

G1 C1

G2 C2

FIGURE 10.7 Decomposition of a simple nonlinear dynamic circuits.
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~
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vC
~ ~ ~ ~ ~ ~v4
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FIGURE 10.8 Decomposition
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11.1 Introduction and Motivation

In this chapter, we present a comprehensive description of the use of piecewise-linear (PWL) methods in
modeling, analysis, and structural properties of nonlinear circuits. The main advantages of piecewise-
linear circuits are fourfold. (1) Piecewise-linear circuits are the easiest in the class of nonlinear circuits to
analyze exactly, because many methods for linear circuits can still be used. (2) The piecewise-linear
approximation is an adequate approximation for most applications. Moreover, certain operational
amplifier (op-amp), operational transconductance amplifier (OTA), diode and switch circuits are essen-
tially piecewise linear. (3) Quite a number of methods exist to analyze piecewise-linear circuits. (4) Last,
but not least, piecewise-linear circuits exhibit most of the phenomena of nonlinear circuits while still
being manageable. Hence, PWL circuits provide unique insight in nonlinear circuits.
This chapter is divided into six sections. First, the piecewise-linear models will be presented and

interrelated. A complete hierarchy of models and representations of models is presented. Rather than
proving many relations, simple examples are given. Second, the piecewise-linear models for several
important electronic components are presented. Third, since many PWL properties are preserved by
interconnection, a short discussion on the structural properties of piecewise-linear circuits is given in
Section 11.4. Fourth, analysis methods of PWL circuits are presented, ranging from the Katzenelson
algorithm to the linear complementarity methods and the homotopy methods. Fifth, we discuss PWL
dynamic circuits, such as the famous Chua circuit, which produces chaos. Finally, in Section 11.7, efficient
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computer-aided analysis of PWL circuits and the hierarchical mixed-mode PWL analysis are described.
A comprehensive reference list is included. For the synthesis of PWL circuits, we refer to Chapter 8.
In order to situate these subjects in the general framework of nonlinear circuits, it is instructive to

interrelate the PWL circuit analysis methods (Figure 11.1). In the horizontal direction of the diagrams,
one does the PWL approximation of the dc analysis from left to right. In the vertical direction, we show
the conversion from a circuit to a set of equations by network equation formulation and the conversion

DC analysisGeneral
dynamic

piecewise linear
circuits

General
resistive

piecewise linear
circuits

Network
equation

formulation

Network
equation

formulation

Set of piecewise
linear differential

equations

Set of piecewise
linear algebraic

equations

Solving Solving

Waveforms
One or more
equilibrium
or DC value

(b)

General
resistive

nonlinear
circuits

General
circuit with

resistive PWL
components

Circuit
with linear

resistors
and ideal diodes

Network
equation
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Network
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complementary
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Linear equations
in polyhedral
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Nonlinear
algebraic
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FIGURE 11.1 Interrelation of PWL circuit analysis methods: (a) resistive and (b) dynamic nonlinear circuits.
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from equations to solutions (waveforms or dc values) by solution methods. The specific methods and
names used in the figure are described in detail in the different parts.

11.2 Hierarchy of Piecewise-Linear Models
and Their Representations

In the past 25 years, much progress has been achieved in the representations of piecewise-linear resistive
multiports and their relationships (see Refs. [1,2]). From a practical point of view, a clear trade-off exists
between the efficiency of a representation in terms of the number of parameters and the ease of
evaluation (explicit versus implicit models) on the one hand and the generality or accuracy on the
other hand. Here, we go from the easiest and most efficient to the most general representations.
We define here a resistive multiport (Figure 11.2) as an n-port whose port variables (the vector of port

currents i¼ [i1, . . . , in]
T and the vector of port voltages v¼ [v1, . . . , vn]

T) are related by m algebraic
equations called constitutive equations

w(i, v) ¼ 0 (11:1)

where i, v2R
n and f(.,.) maps R2n into R

m.
For example, for a bipolar transistor (Figure 11.3), one obtains the explicit form i1¼ f1 (v1, v2) and

i2¼ f2 (v1, v2), and i¼ [i1, i2]
T and v¼ [v1, v2]

T. These relations can be measured with a curve tracer as dc
characteristic curves. Clearly, here f(.,.) is a map from R

4 ! R
2 in the form

i1 � f1(v1, v2) ¼ 0 (11:2)

i2 � f2(v1, v2) ¼ 0 (11:3)

It is easy to see that a complete table of these relationships would require an excessive amount of
computer storage already for a transistor. Hence, it is quite natural to describe a resistive n-port with a
piecewise-linear map f over polyhedral regions Pk by

v ¼ f (i) ¼ ak þ Bki, i 2 Pk, k 2 {0, 1, . . . , 2l � 1} (11:4)

where the Jacobian Bk2R
n3 n and the offset vector ak2R

n are defined over the polyhedral region Pk,
separated by hyperplanes cTi x � di ¼ 0, i ¼ 1, . . . , l and defined by

Pk ¼ x 2 R
njcTj x � dj � 0, j 2 Ik, c

T
j x � dj � 0, j 62 Ik

n o
(11:5)

i1

v1

vn

in

+

–

+

–

FIGURE 11.2 Resistive n-port.

v1 v2

G

i1

+

–

+

–

i2

FIGURE 11.3 Two-port configuration of a
bipolar transistor.
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where
k ¼Sj2Ik 2

j�1

Ik � {1, 2, . . . , l}
cj 2R

n, dj 2Rn

In other words, the hyperplanes cTi x � di ¼ 0, i ¼ 1, . . . , l separate the space R
n into 2l polyhedral

regions Pk (see Figure 11.4) where the constitutive equations are linear.
The computer storage requirements for this representation is still quite large, especially for large

multiports. A more fundamental problem with this rather intuitive representation is that it is not
necessarily continuous at the boundaries between two polyhedral regions. In fact, the continuity of the
nonlinear map is usually desirable for physical reasons and also in order to avoid problems in the
analysis.
The canonical PWL representation [6] is a very simple, attractive, and explicit description for a

resistive multiport that solves both problems:

v ¼ f (i) ¼ aþ Biþ
Xl

j¼1

ej c
T
j i� dj

��� ��� (11:6)

One can easily understand this equation by looking at the
wedge form of the modulus map (see Figure 11.5). It has two
linear regions: in the first x� 0 and y¼ x, while in the
second x� 0 and y¼�x. At the boundary the function is
clearly continuous. Equation 11.6 is hence also continuous
and is linear in each of the polyhedral regions Pk described
by Equation 11.5. If l modulus terms are in Equation 11.6,
there are 2l polyhedral regions where the map Equation 11.6

FIGURE 11.4 PWL function defined in four polyhedral regions in R
n defined by cT1 i� d1 9 0 and cT2 i0 d2 > 0.

y = |x|

x

FIGURE 11.5 Absolute value function
y¼ jxj.
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is linear. Because the map is represented canonically with
nþ n2þ l(nþ 1) real parameters, this is a very compact
and explicit representation.
Several examples of canonical PWL models for compon-

ents are given in Section 11.3.
From Figure 11.5, it should be clear that the right and left

derivative of y¼ jxj at 0 are different, their difference being
2. Hence, the Jacobian Jþ and J� of Equation 11.6 will be
different on the boundary between the two neighboring
polyhedral regions where (cji� dj)� 0 and (cji� dj)� 0.

Jþ � J� ¼ 2ejc
T
j (11:7)

Observe that this difference is a rank 1 matrix, which is also called a dyadic or outer vector product of ej
and cj. Moreover, this difference is independent of the location of the independent variable i on the
boundary. This important observation is made in Ref. [24], and is called the consistent variation property
[10] and essentially says that the variation of the Jacobian of a canonical PWL representation is
independent of the place where the hyperplane cji� dj¼ 0 is crossed. Of course, this implies that the
canonical PWL representation (Equation 11.6) is not the most general description for a continuous
explicit PWL map. In Refs. [26,29] two more general representations, which include nested absolute
values, are presented. These are too complicated for our discussion.
Clearly, the canonical PWL representation (Equation 11.6) is valid only for single-valued functions. It

can clearly not be used for an important component: the ideal diode (Figure 11.6) characterized by the
multivalued (i, v) relation. It can be presented analytically by introducing a real scalar parameter r [31].

i ¼ 1
2

rþ jrjð Þ (11:8)

v ¼ 1
2

r� jrjð Þ (11:9)

This parametric description can easily be seen to correspond to Figure 11.6b because i¼ r and v¼ 0 for
r� 0, while i¼ 0 and v¼ r when r� 0. Such a parametric description i¼ f(r) and v¼ g(r) with f and g
PWL can be obtained for a whole class of unicursal curves [6].
When we allow implicit representations between v and i for a multiport, we obtain a linear comple-

mentarity problem (LCP) model Equations 5.10 through 5.12 with an interesting state space like form [55]:

v ¼ Aiþ Buþ f (11:10)

s ¼ Ciþ Duþ g (11:11)

u � 0, s � 0, uTs ¼ 0 (11:12)

where A2R
n3 n, B2R

n3 l, f2R
n3 n, c2R

l3 n, D2R
l3 l are the parameters that characterize the

relationship between v and i. In the model, u and s are called the state vectors and we say that u� 0
when all its components are nonnegative. Clearly, Equation 11.12 dictates that all components of u and s
should be nonnegative and that, whenever a component uj satisfies uj> 0, then sj¼ 0 and, vice versa,
when sj> 0, then uj¼ 0. This is called the linear complementarity property, which we have seen already
in the ideal diode equation (Equations 11.8 and 11.9) where i� 0, v� 0 and iv¼ 0. Hence, an implicit or
LCP model for the ideal diode equation (Equations 11.8 and 11.9) is

i

v

(a) (b)

0v

+

–

FIGURE 11.6 (a) The ideal diode and (b) the
(i�v) relation of an ideal diode.
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v ¼ u (11:13)

s ¼ i (11:14)

u � 0, s � 0, us ¼ 0 (11:15)

In order to understand that the general equations (Equations 11.10 through 11.12) describe a PWL
relation such as Equations 11.4 and 11.5 between i and v over polyhedral regions, one should observe first
that v¼Aiþ f is linear when u¼ 0 and s¼Ciþ g� 0. Hence, the relation is linear in the polyhedral
region determined by Ciþ g� 0. In general, one can consider 2l possibilities for u and s according to

(uj � 0 and sj ¼ 0) or (uj ¼ 0 and sj ¼ 0) for j ¼ 1, 2, . . . , l

Denote sets of indexes U and S for certain values of u and s satisfying Equation 11.12

U ¼ jjuj � 0 and sj ¼ 0
� �

(11:16)

S ¼ jjuj ¼ 0 and sj � 0
� �

(11:17)

then, clearly, U and S are complementary subsets of {1, 2, . . . , l} when for any j, uj, and sj cannot be both
zero. Clearly, each of these 2l possibilities corresponds to a polyhedral region PU in R

n, which can be
determined from

uj � 0 (Ciþ Duþ g)j ¼ 0 for j 2 U (11:18)

uj ¼ 0 (Ciþ Duþ g)j � 0 for j 2 S (11:19)

The PWL map in region PU is determined by solving the uj for j2U from Equation 11.18 and
substituting these along with uj¼ 0 for j2 S into Equation 11.10. This generates, of course, a map that
is linear in the region PU.

When Equation 11.11 is replaced by the implicit equation

Esþ Ciþ Duþ ga ¼ 0, a � 0

in Equations 11.10 through 11.13, we call the problem a generalized linear complementarity problem
(GLCP).
A nontrivial example of an implicit PWL relation (LCP model) is the hysteresis one port resistor

(see Figure 11.7). Its equations are

v ¼ �iþ [�1 1]
u1
u2

� �
þ 1 (11:20)

s1
s2

� �
¼ �1

1

� �
iþ �1 1

1 �1

� �
u1
u2

� �
þ 1

0

� �

(11:21)

s1 � 0, s2 � 0, u1 � 0, u2 � 0,

u1s1 þ u2s2 ¼ 0
(11:22)

In the first region P, we have

s1 ¼ �iþ 1 � 0, s2 ¼ i � 0, and

v ¼ �iþ 1
(11:23)

v

0

1

1 i

P{ }

P{2}

P{1}

FIGURE 11.7 Hysteresis nonlinear resistor.
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The region P{1,2}, on the other hand, is empty because the following set of equations are contradictory:

s1 ¼ s2 ¼ 0, � i� u1 þ u2 þ 1 ¼ 0,

iþ u1 � u2 ¼ 0
(11:24)

The region P[1] is

u1 � 0, s1 ¼ �i� u1 þ 1 ¼ 0, u2 ¼ 0, s2 ¼ iþ u1 � 0 (11:25)

Hence, u1¼�iþ 1 and s2¼ 1 and v¼�iþ i� 1þ 1¼ 0, while i� 1.
Finally, the region P[2] is

u1 � 0, s1 ¼ �iþ u2 þ 1 � 0, u2 � 0, s2 ¼ i� u2 ¼ 0

Hence

u2 ¼ i and s1 ¼ 1 and v ¼ �iþ iþ 1 ¼ 1, while i � 0 (11:26)

It is now easy to show in general that the canonical PWL representation is a special case of the LCP
model. Just choose uj� 0 and sj� 0 for all j as follows:

cTj i� dj
��� ��� ¼ 1

2
(uj þ sj) (11:27)

cTj i� dj ¼ 1
2
(uj � sj) (11:28)

then, u and s are complementary vectors, i.e.,

u � 0, s � 0, uTs ¼ 0

Observe that the moduli in Equation 11.6 can be eliminated with Equation 11.27 to produce an equation of
the form (Equation 11.10) and that (Equation 11.28) produces an equation of the form (Equation 11.11).
More generally, it has been proven [36] that the implicit model includes all explicit models. Because it

also includes the parametric models, one obtains the general hierarchy of models as depicted in Figure 11.8.

Explicit models
with nested moduli
[Güzelis, Göknar]
[Kahlert, Chua]

Implicit models
LCP

[van Bokhoven]
GLCP

[Vandenberghe e.a.]

Parametric
models

[Chua, Kang]

Canonical PWL
model

[Chua, Kang]
satisfies constant

variation property

FIGURE 11.8 Interrelation of the PWL models.
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A general remark should be made about all models that have been presented until now. Although the
models have been given for resistive multiports where the voltages v at the ports are expressed in terms
of the currents i, analogous equations can be given for the currents i in terms of the voltages, or hybrid
variables. It can even be adapted for piecewise-linear capacitors, inductors, or memristors, where
the variables are, respectively, q, v for capacitors, w, i for inductors, and q, w for memristors.

11.3 Piecewise-Linear Models for Electronic Components

In order to simulate nonlinear networks with a circuit or network simulator, the nonlinear behavior of
the components must be modeled fist. During this modeling phase, properties of the component that are
not considered important for the behavior of the system may be neglected. The nonlinear behavior is
often important, therefore, nonlinear models have to be used. In typical simulators such as SPICE,
nonlinear models often involve polynomials and transcendental functions for bipolar and MOS tran-
sistors. These consume a large part of the simulation time, so table lookup methods have been worked
out. However, the table lookup methods need much storage for an accurate description of multiports and
complex components.
The piecewise-linear models constitute an attractive alternative that is both efficient in memory use

and in computation time. We discuss here the most important components. The derivation of a model
usually requires two steps: first, the PWL approximation of constitutive equations, and second, the
algebraic representation.
Two PWL models for an ideal diode (Figure 11.6) have been derived, that is, a parametric model

(Equations 11.8 and 11.9) and an implicit model (Equations 11.13 through 11.15, while a canonical PWL
model does not exist.
The piecewise-linear models for op-amps and OTAs are also simple and frequently used. The

piecewise-line approximation of op-amps and OTAs of Figure 11.9 is quite accurate. It leads to the

i
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FIGURE 11.9 (a) Op-amp and PWL model and (b) OTA and PWL model.
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following representation for the op-amp, which is in the linear region for �Esat� v0�Esat with voltage
amplification Av and positive and negative saturation Esat and �Esat

v0 ¼ Av

2
vi þ Esat

Av

����
����� vi � Esat

Av

����
����

� �
(11:29)

i� ¼ iþ ¼ 0 (11:30)

This is called the op-amp finite-gain model. In each of the three regions, the op-amp can be replaced by a
linear circuit.
For the OTA, we have similarly in the linear region for� Isat� i0� Isat with transconductance gain gm

and positive and negative saturation Isat and �Isat

i0 ¼ gm
2

vi þ Isat
gm

����
����� vi � Isat

gm

����
����

� �
(11:31)

i� ¼ iþ ¼ 0 (11:32)

Next, for a tunnel diode, one can perform a piecewise-linear approximation for the tunnel-diode
characteristic as shown in Figure 11.10. It clearly has three regions with conductances g1, g2, and g3.
This PWL characteristic can be realized by three components (Figure 11.10b) with conductances, voltage
sources, and diodes. The three parameters G0, G1, and G2 of Figure 11.10b must satisfy

In Region 1: G0 ¼ g1 (11:33)

In Region 2: G0 þ G1 ¼ g2 (11:34)

In Region 3: G0 þ G1 þ G2 ¼ g3 (11:35)

Thus, G0¼ g1, G1¼�g1þ g2, and G2¼�g2þ g3. We can derive the canonical PWL representation as
follows:

i ¼ � 1
2
(G1E1 þ G2E2)þ G0 þ 1

2
G1 þ 1

2
G2

� �
v þ 1

2
G1jv � E1j þ 1

2
G2jv � E2j (11:36)

Next, we present a canonical piecewise-linear bipolar transistor model [12]. Assume a npn-bipolar
transistor is connected in the common base configuration with v1¼ vBE, v2¼ vBC, i1¼ iE, and i2¼ iC, as
shown in Figure 11.3. We consider data points in a square region defined by 0.4� v1� 0.7 and 0.4� v2
� 0.7, and assume the terminal behavior of the transistor follows the Ebers–Moll equation; namely,

i1 ¼ Is
af

ev1=VT � 1
	 


� Is ev2=VT � 1
	 


(11:37)

i2 ¼ Is
ar

ev2=VT � 1
	 


� Is ev1=VT � 1
	 


(11:38)

with Is¼ 10�14 A, VT¼ 26 mV, af¼ 0.99, and ar¼ 0.5. In Ref. [12], the following canonical piecewise-
linear model is obtained, which optimally fits the data points (Figure 11.11)

i1
i2

� �
¼ a1

a2

� �
þ b11 b21

b12 b22

� �
v1
v2

� �
þ c11

c21

� �
jm1v1 � v2 þ t1j

þ c12
c22

� �
jm2v1 � v2 þ t2j þ

c13
c23

� �
jm3v1 � v2 þ t3j (11:39)
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where

a1
a2

� �
¼ 5:8722� 10�3

�3:2652� 10�2

� �
b11
b21

� �
¼ 3:2392� 10�2

�3:2067� 10�2

� �

b12
b22

� �
¼ �4:0897� 10�2

8:1793� 10�2

� �
c11
c21

� �
¼ 3:1095� 10�6

�3:0784� 10�6

� �

c12
c22

� �
¼ �9:9342� 10�3

1:9868� 10�2

� �
c13
c23

� �
¼ �3:0471� 10�2

6:0943� 10�2

� �

m1

m2

m3

2
64

3
75 ¼

1:002� 104

�1:4� 10�4

1:574� 10�6

2
64

3
75

t1
t2
t3

2
64

3
75 ¼

�6472

0:61714

0:66355

2
64

3
75

v
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FIGURE 11.10 (a) Piecewise-linear approximation of the tunnel-diode characteristic. The three-segment approxi-
mation defines the three regions indicated. (b) Decomposition of the piecewise-linear characteristic (a) into three
components, and (c) the corresponding circuit.
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FIGURE 11.11 Three-dimensional plots for the emitter current in the Ebers–Moll model given by Equations 11.37
and 11.38. (b) Three-dimensional plot for the emitter current in the canonical piecewise-linear model given by
Ref. [10, (B.1)] (low-voltage version). (c) Three-dimensional plot for the collector current in the Ebers–Moll model
given by Equations 11.37 and 11.38. (d) Three-dimensional plot for the collector current in the canonical piecewise-
linear model given by Ref. [10, (B.1)] (low-voltage version). (e) Comparison between the family of collector currents
in the Ebers–Moll model (dashed line) and the canonical piecewise-linear model (solid line). (From Chua, L.O. and
Deng, A., IEEE Trans. Circuits Syst., CAS-33, 519, 1986. With permission.)
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Next, a canonical piecewise-linear MOS transistor model is
presented. Assume the MOS transistor is connected in the
common source configuration with v1¼ vGS, v2¼ vDS, i1¼ iG,
and i2¼ iD, as illustrated, in Figure 11.12, where both v1, v2 are
in volts, and i1, i2 are in microamperes. The data points are
uniformly spaced in a grid within a rectangular region defined
by 0� v1� 5, and 0� v2� 5. We assume the data points follow
the Shichman–Hodges model, namely,

i1 ¼ 0

i2 ¼ k (v1 � Vt)v2 � 0:5v22
� �

, if v1 � Vt � v2

or

i2 ¼ 0:5k(v1 � Vt)
2 1þ l(v2 � v1 þ Vt)½ �, if v1 � Vt < v2 (11:40)

with k¼ 50 mA=V2, Vt¼ 1 V, l¼ 0.02 V�1. Applying the optimization algorithm of Ref. [11], we obtain
the following canonical piecewise-linear model (see Figure 11.13):

i2 ¼ a2 þ b21v1 þ b22v2 þ c21jm1v1 � v2 þ t1j
þ c22jm2v1 � v2 þ t2j þ c23jm3v1 � v2 þ t3j (11:41)

where

a2 ¼ �61:167, b21 ¼ 30:242, b22 ¼ 72:7925

c21 ¼ �49:718, c22 ¼ �21:027, c23 ¼ 2:0348

m1 ¼ 0:8175, m2 ¼ 1:0171, m3 ¼ �23:406

t1 ¼ �2:1052, t2 ¼ �1:4652, t3 ¼ 69

Finally, a canonical piecewise-linear model of GaAs FET is presented. The GaAs FET has become
increasingly important in the development of microwave circuits and high-speed digital IC’s due to its
fast switching speed.

i2 ¼ a2 þ b21v1 þ b22v2 þ c21jm1v1 � v2 þ t2j
þ c22jm2v1 � v2 þ t2j þ c23jm3v1 � v2 þ t3j (11:42)

where v1¼ vGS (V), v2¼ vDS (V), i2� iD (mA), and

a2 ¼ 6:3645, b21 ¼ 2:4961, b22 ¼ 32:339

c21 ¼ 0:6008, c22 ¼ 0:9819, c23 ¼ �29:507

m1 ¼ �19:594, m2 ¼ �6:0736, m3 ¼ 0:6473

t1 ¼ �44:551, t2 ¼ �8:9962, t3 ¼ 1:3738

Observe that this model requires only three absolute-value functions and 12 numerical coefficients
and compares rather well to the analytical model (Figure 11.14).

i1

i2

v1

v2

G D

S

+

+

––

FIGURE 11.12 Two-port configuration
of the MOSFET.
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FIGURE 11.13 (a) Three-dimensional plot of drain current from the Shichman–Hodges model. (b) Three-
dimensional plot of the drain current from the canonical piecewise-linear model. (c) Family of drain currents
modeled by Equations 11.40 (dashed line) and 11.41 (solid line). (From Chua, L.O. and Deng, A., IEEE Trans.
Circuits Syst., CAS-33, 520, 1986. With permission.)
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FIGURE 11.14 Comparison of the canonical piecewise linear described by Equation 11.42 (solid line) and the
analytical model (dashed line) for the ion-implanted GaAs FET. (From Chua, L.O. and Deng, A., IEEE Trans. Circuits
Syst., CAS-33, 522, 1986. With permission.)
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More piecewise-linear models for timing analysis of logic circuits can be found in Ref. [21]. In the
context of analog computer design, even PWL models of other nonlinear relationships have been derived
in Ref. [51].

11.4 Structural Properties of Piecewise-Linear Resistive Circuits

When considering interconnections of PWL resistors (components), it follows from the linearity of KVL
and KCL that the resulting multiport is also a piecewise-linear resistor. However, if the components have
a canonical PWL representation, the resulting multiport may not have a canonical PWL representation.
This can be illustrated by graphically deriving the equivalent one port of the series connection of two
tunnel diodes [3] (Figure 11.15). Both resistors have the same current, so we have to add the correspond-
ing voltages v¼ v1þ v2 and obtain an i�v plot with two unconnected parts. Values of i correspond to
three values of v1 for R1 and three values of v2 for R2, and hence to nine values of the equivalent resistor
(Figure 11.15d). This illustrates once more that nonlinear circuits may have more solutions than expected
at first sight. Although the two tunnel diodes R1 and R2 have a canonical PWL representation, the
equivalent one port of their series connection has neither a canonical PWL voltage description, nor a
current one. It, however, has a GLCP description because KVL, KCL, and the LCP of R1 and R2 constitute
a GLCP. If the v–i PWL relation is monotonic, the inverse i–v function exists and then some uniqueness
properties hold.
These observations are, of course, also valid for the parallel connection of two PWL resistors and for

more complicated interconnections.
In Section 11.3, we illustrated with an example how a PWL one-port resistor can be realized with linear

resistors and ideal diodes. This can be proven in general. One essentially needs a diode for each
breakpoint in the PWL characteristic. Conversely, each one port with diodes and resistors is a PWL
one port resistor.
This brings us to an interesting class of circuits composed of linear resistors, independent sources,

linear controlled sources, and ideal diodes. These circuits belong to the general class of circuits with PWL

i1

i2

v1

i

v

(a) (b)

+ +

+
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– –
2
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1 2 3 40 65

(c)
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v2

1
2

3

4

1 2 3 40
(d)

v

i

FIGURE 11.15 (a) The series connection of two tunnel diodes, (b) and (c), their i�v characteristics, and
(d) the composite i�v plot, which consists of two unconnected parts.
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components (see Figure 11.1a) and can be described by GLCP equations. Such networks have not only
shown their importance in analysis but also in the topologic study of the number of solutions and more
general qualitative properties. When only short-circuit and open-circuit branches are present, one
independent voltage source with internal resistance and ideal diodes, an interesting loop cut set exclusion
property holds that is also called the colored branch theorem or the arc coloring theorem (see Section 1.7
of Fundamentals of Circuits and Filters). It says that the voltage source either forms a conducting loop
with forward-oriented diodes and some short circuits or there is a cut set of the voltage source, some
open circuits, and blocking diodes. Such arguments have been used to obtain [23] topologic criteria for
upper bounds of the number of solutions of PWL resistive circuits. In fact, diode resistor circuits have
been used extensively in PWL function generators for analog computers [51]. These electrical analogs can
also be used for mathematical programming problems (similar to linear programming) and have
reappeared in the neural network literature.

11.5 Analysis of Piecewise-Linear Resistive Circuits

It is first demonstrated that all conventional network formulation methods (nodal, cut, set, hybrid,
modified nodal, and tableau) can be used for PWL resistive circuits where the components are described
with canonical or with LCP equations. These network equations may have one or more solutions. In
order to find solutions, one can either search through all the polyhedral regions Pk by solving the linear
equations for that region or by checking whether its solution is located inside that region Pk.
Because many regions often exist, this is a time-consuming method, but several methods can be used

to reduce the search [28,61]. If one is interested in only one solution, one can use solution tracing methods,
also called continuation methods or homotopy methods, of which the Katzenelson method is best known. If
one is interested in all solutions, the problem is more complicated, but some algorithms exist.

11.5.1 Theorem Canonical PWL (Tableau Analysis)

Consider a connected resistive circuit N containing only linear two-terminal resistors, dc-independent
sources, current-controlled and voltage-controlled piecewise-linear two-terminal resistors, linear- and
piecewise-linear-controlled sources (all four types) and any linear multiterminal resistive elements.
A composite branch of this circuit is given in Figure 11.16. If each piecewise-linear function is represented
in the canonical form (Equation 11.6), then the tableau formulation also has the canonical PWL form

f (x) ¼ aþ Bx þ
Xp
iþ1

cijaT
i x � bij ¼ 0 (11:43)

where x ¼ iT, vT, vTn
� �T

and i, respectively v, is the
branch current voltage vector (Figure 11.16) and vn
is the node-to-datum voltage vector.

PROOF. Let A be the reduced incidence matrix of N
relative to some datum node, then KCL, KVL, and
element constitutive relations give

Ai ¼ AJ (11:44)

v ¼ ATvn þ E (11:45)

f1(i)þ fv(v) ¼ S (11:46)
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–

FIGURE 11.16 A composite branch.
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where we can express fI(�) and fv(�) in the canonical form (Equation 11.6)

fI(i) ¼ aI þ BIiþ CIabs DT
l e� e1


 �
(11:47)

fv(v) ¼ av þ Bvv þ Cvabs DT
v v � ev


 �
(11:48)

Substituting Equations 11.47 and 11.48 into Equation 11.46, we obtain

�AJ

�E

aI þ av � S

2
64

3
75þ

A 0 0

0 1 AT

BI Bv 0

2
64

3
75

i

v

vn

2
64

3
75 ¼

0 0 0

0 0 0

CI Cv 0

2
64

3
75

abs

DI 0 0

0 DV 0

0 0 0

2
64

3
75

i

v

vn

2
64

3
75�

eI
eV
0

2
64

3
75

2
64

3
75 ¼ 0 (11:49)

Clearly, Equation 11.49 is in the canonical form of Equation 11.43.
Of course, an analogous theorem can be given when the PWL resistors are given in LCP form. Then

the tableau constitute a GLCP. Moreover, completely in line with the section on circuit analysis (see
Chapter 23 of Fundamentals of Circuits and Filters), one can derive nodal, cut set, loop, hybrid, and
modified nodal analysis from the tableau analysis by eliminating certain variables. Alternatively, one can
also directly derive these equations.
Whatever the description for the PWL components may be, one can always formulate the network

equations as linear equations

0 ¼ f (x) ¼ ak þ Bkx, x 2 Pk (11:50)

in the polyhedral region Pk defined by Equation 11.50. The map f is a continuous PWL map. A solution x
of Equation 11.50 can then be computed in a finite number of steps with the Katzenelson algorithm
[4,33], by tracing the map f from an initial point (x(1), y(1)) to a value (x*, 0) (see Figure 11.18).

11.5.2 Algorithm

STEP 1. Choose an initial point x(1) and determine its polyhedral region P(1), and compute

y(1) ¼ f x(1)

 � ¼ a(1) þ B(1)x and set j ¼ 1

STEP 2. Compute

x̂ ¼ x(j) þ B(j)

 ��1

0� y(j)

 �

(11:51)

STEP 3. If x̂2 P(j), we have obtained a solution x̂ of f(x̂)¼ 0. Stop.

STEP 4. Otherwise, compute

x(jþ1) ¼ x(j) þ l(j) x̂ � x(j)

 �

(11:52)

where l(j) is the largest number such that x(jþ 1)2P(j), i.e., x(jþ 1) is on the boundary between P(j) and
P(jþ 1) (see Figure 11.17).
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STEP 5. Identify P(jþ1) and the linear map y¼ a(jþ1)þ
B(jþ1) x in the polyhedral region P(jþ1) and compute

y(jþ1) ¼ y(j) þ l(j) y*� y(j)

 �

(11:53)

Set j¼ jþ 1. Go to step 2.

This algorithm converges to a solution in a finite
number of steps if the determinants of all matrices B(j)

have the same sign. This condition is satisfied when the
i–v curves for the PWL one port resistors are mono-
tonic. The Katzenelson algorithm was extended in
Ref. [45] by taking the sign of the determinants into

account in Equations 11.52 and 11.53. This requires the PWL resistors to be globally coercive. If by
accident in the iteration the point x(jþ1) is not on a single boundary and instead is located on a corner, the
region P(jþ1) is not uniquely defined. However, with a small perturbation [1], one can avoid this corner
and still be guaranteed to converge.
This algorithm was adapted to the canonical PWL Equation 11.49 in Ref. [8]. It can also be adapted to

the GLCP. However, there exist circuits where this algorithm fails to converge. For the LCP problem, one
can then use other algorithms [20,40,56]. One can also use other homotopy methods [43,57,60], which
can be shown to converge based on eventual passivity arguments. In fact, this algorithm extends the
rather natural method of source stepping, where the PWL circuit is solved by first making all sources zero
and then tracing the solution for increasing (stepping up) the sources. It is instructive to observe here that
these methods can be used successfully in another sequence of the steps in Figure 11.1a. Until now, we
always first performed the horizontal step of PWL approximation or modeling and then the vertical step
of network equation formulation. With these methods, one can first perform the network equation
formulation and then the PWL approximation. The advantage is that one can use a coarser grid in the
simplicial subdivision far away from the solution, and hence dynamically adapt the accuracy of the PWL
approximation.
In any case, if all solutions are requested, all these homotopy-based methods are not adequate, because

not all solutions can be found even if the homotopy method is started with many different x(1). Hence,
special methods have been designed. It is beyond the scope of this text to give a complete algorithm
[39,59], but the solution of the GLCP basically involves two parts. First, calculate the solution set of all
nonnegative solutions to Equations 11.10 and 11.11. This is a polyhedral cone where extremal rays can be
easily determined [44,54]. Second, this solution set is intersected with a hyperplane and the comple-
mentarity condition uTs¼ 0 implies the elimination of vertices (respectively, convex combinations)
where these complementarity (respectively, cross complementarity) is not satisfied. This has allowed to
systematically obtain the complete solution set for the circuit of Figure 11.15 and for circuits with
infinitely many solutions.
A more recent method [46] covers the PWL i–v characteristic with a union of polyhedra and

hierarchically solves the circuit with finer and finer polyhedra.
An important improvement in efficiency for the methods is possible when the PWL function f(�) is

separable, i.e., there exist f i : R!
R
n i¼ 1, 2, . . . , n such that

f (x) ¼
Xn
i¼1

f i(xi) (11:54)

This happens when there are only two terminal PWL resistors, linear resistors, and independent sources,
and if the bipolar transistors are modeled by the Ebers–Moll model (see Equation 11.39). Then, the
subdivision for x is rectangular and each rectangle is subdivided into simplices (see Figure 11.18). This

x-space y-spacef
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p(3)

x(1)

x*

x(2)

x(3)

y(1)
y(2)

y(3)

0

FIGURE 11.17 Iteration in the Katzenelson algo-
rithm for solving y¼ f(x)¼ 0.
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property can be used to eliminate certain polyhedral
regions without solutions [62] and also to speed up the
Katzenelson-type algorithm [60,62]. If there are MOS
transistors, the map f is not separable but one can apply
the extended concept of pairwise separable map [62].

11.6 Piecewise-Linear Dynamic
Circuits

As mentioned at the end of Section 11.2, the piecewise-
linear descriptions of Section 11.2 can be used also for
PWL capacitors, respectively, inductors and memris-
tors, by replacing the port voltages v and currents i by
q, v, respectively, w, i and w, q. Whenever we have a
network obtained by interconnecting linear and=or
PWL resistors, inductors, capacitors, and memristors,
we have a dynamic piecewise-linear circuits. Of course, such networks are often encountered because it
includes the networks with linear R, L, C, and linear-dependent sources, diodes, switches, op-amps, and
components such as bipolar and MOS transistors, and GaAs FETs with PWL resistive models. This
includes several important and famous nonlinear circuits such as Chua’s circuit [18,19], and the cellular
neural networks (CNNs) [48], which are discussed in Chapter 13 and Section 14.2.
Of course, PWL dynamic circuits are much more interesting and much more complicated and can

exhibit a much more complex behavior than resistive circuits and hence this subject is much less
explored. It is clear from the definition of a PWL dynamic circuit that it can be described by linear
differential equations over polyhedral regions. Hence, it can exhibit many different types of behavior.
They may have many equilibria, which can essentially be determined by solving the resistive network (see
Section 11.5 and Figure 11.1) obtained by opening the capacitive ports and short circuiting the inductive
ports (dc analysis). When there is no input waveform, the circuit is said to be autonomous and has
transients. Some transients may be periodic and are called limit cycles but they may also show chaotic
behavior. Next, one may be interested in the behavior of the circuit for certain input waveforms (transient
analysis). This can be performed by using integration rules in simulations.
For the analysis of limit cycles, chaos, and transients, one can of course use the general methods for

nonlinear circuits, but some improvements can be made based on the PWL nature of the nonlinearities.
Here, we only describe the methods briefly. If one is interested in the periodic behavior of a PWL
dynamic circuit (autonomous or with a periodic input), then one can, for each PWL nonlinearity, make
some approximations.
First, consider the case that one is only interested in the dc and fundamental sinusoidal contributions

in all signals of the form i(t)¼A0þA1 cos vt. The widely used describing function method [6] for PWL
resistors v¼ f(i) consists of approximating this resistor by an approximate resistor where v̂(t)¼D0þD1

cos vt has only the dc and fundamental contribution of v(t). This is often a good approximation since the
remainder of the circuit often filters out all higher harmonics anyway. Using a Fourier series, one can
then find D0 and D1 as

D0(A0, A1) ¼ 1
2p

ð2p

0

f (A0 þ A1 cosf)df

D1(A0, A1) ¼ 1
pA1

ð2p

0

f (A0 þ A1 cosf)df

x2

x1

FIGURE 11.18 Simplicial subdivision.
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By replacing all PWL components by their describing functions, one can use linear methods to set up the
network equations in the Laplace–Fourier domain. When this approximation is not sufficient, one can
include more harmonics. Then, one obtains the famous harmonic balance method, because one is
balancing more harmonic components.
Alternatively, one can calculate the periodic solution by simulating the circuit with a certain initial

condition and considering the map F: x0 ! x1 from the initial condition x0 to the state x1 one period
later. Of course, a fixed point x*¼ F(x*) of the map corresponds to a periodic solution. It has been
demonstrated [27] that the map F is differentiable for PWL circuits. This is very useful in setting up an
efficient iterative search for a fixed point of F. This map is also useful in studying the eventual chaotic
behavior and is then called the Poincaré return map.
In transient analysis of PWL circuits, one is often interested in the sensitivity of the solution to certain

parameters in order to optimize the behavior. As a natural extension of the adjoint network for linear
circuits in Ref. [22], the adjoint PWL circuit is defined and used to determine simple sensitivity
calculations for transient analysis.
Another important issue is whether the PWL approximation of a nonlinear characteristic in a dynamic

circuit has a serious impact on the transient behavior. In Ref. [63], error bounds were obtained on the
differences of the waveforms.

11.7 Efficient Computer-Aided Analysis of PWL Circuits

Transient analysis and timing verification is an essential part of the VLSI system design process. The most
reliable way of analyzing the timing performance of a design is to use analog circuit analysis methods. Here as
well, a set of algebraic-differential equations has to be solved. This can be done by using implicit integration
formulas that convert these equations into a set of algebraic equations, which can be solved by iterative
techniques like Newton–Raphson (see Chapter 12). The computation time then becomes excessive for large
circuits. It mainly consists of linearizations of the nonlinear component models and the solution of the linear
equations. In addition, the design process can be facilitated substantially if this simulation tool can be used at
many different levels from the top level of specifications over the logic and switch level to the circuit level.
Such a hierarchical simulator can support the design from top to bottom and allow for mixtures of these
levels. In limited space, we describe here the main simulation methods for improving the efficiency and
supporting the hierarchy of models with piecewise-linear methods. We refer the reader to Chapter 8,
Computer Aided Design and Design Automation for general simulation of VLSI circuits and to the literature
for more details on the methods and for more descriptions on complete simulators.
It is clear from our previous discussion that PWL models and circuit descriptions can be used at many

different levels. An op-amp, for example, can be described by the finite gain model (see Figure 11.9 and
Equations 11.29 and 11.30), but when it is designed with a transistor circuit it can be described by PWL
circuit equations as in Section 11.5. Hence, it is attractive to use a simulator that can support this top-
down design process [35]. One can then even incorporate logic gates into the PWL models. One can
organize the topological equations of the network hierarchically, so that it is easy to change the network
topology. The separation between topological equations and model descriptions allows for an efficient
updating of the model when moving from one polyhedral region into another. Several other efficiency
issues can be built into a hierarchical PWL simulator.
An important reduction in computation time needed for solving the network equations can be

obtained by using the consistent variation property. In fact, only a rank one difference exists between
the matrices of two neighboring polyhedral regions, and hence, one inverse can be easily derived from the
other [8,35]. In the same spirit, one can at the circuit level take advantage of the PWL transistor models
(see Ref. [62] and separability discussion in Section 8.5). In Ref. [53], the circuit is partitioned dynam-
ically into subcircuits during the solution process, depending on the transistor region of operation. Then,
the subcircuits are dynamically ordered and solved with block Gauss–Seidel for minimal or no coupling
among them.
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Interesting savings can be obtained [34] by solving the linear differential equations in a polyhedral
region with Laplace transformations and by partitioning the equations. However, the computation of the
intersection between trajectories in neighboring polyhedral regions can be a disadvantage of this method.
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This chapter deals with the simulation or analysis of a nonlinear electrical circuit by means of a computer
program. The program creates and solves the differential-algebraic equations of a model of the circuit.
The basic tools in the solution process are linearization, difference approximation, and the solution of a set
of linear equations. The output of the analysis may consist of (1) all node and branch voltages and all
branch currents of a bias point (dc analysis), (2) a linear small-signal model of a bias point that may be
used for analysis in the frequency domain (ac analysis), or (3) all voltages and currents as functions of
time in a certain time range for a certain excitation (transient analysis). A model is satisfactory if there is
good agreement between measurements and simulation results. In this case, simulation may be used
instead of measurement for obtaining a better understanding of the nature and abilities of the circuit. The
crucial point is to set up a model that is as simple as possible, in order to obtain a fast and inexpensive
simulation, but sufficiently detailed to give the proper answer to the questions concerning the behavior of
the circuit under study. Modeling is the bottleneck of simulation.
The model is an equivalent scheme—‘‘schematics-capture’’—or a branch table—‘‘net-list’’—describing

the basic components (n-terminal elements) of the circuit and their connection. It is always possible to
model an n-terminal element by means of a number of 2-terminals (branches). These internal
2-terminals may be coupled. By pairing the terminals of an n-terminal element, a port description may
be obtained. The branches are either admittance branches or impedance branches. All branches may be
interpreted as controlled sources. An admittance branch is a current source primarily controlled by its
own voltage or primarily controlled by the voltage or current of another branch (transadmittance). An
impedance branch is a voltage source primarily controlled by its own current or primarily controlled by
the current or voltage of another branch (transimpedance). Control by signal (voltage or current) and
control by time-derivative of signal are allowed. Control by several variables is allowed. Examples of
admittance branches are (1) the conductor is a current source controlled by its own voltage, (2) the
capacitor is a current source controlled by the time-derivative of its own voltage, and (3) the open
circuit is a zero-valued current source (a conductor with value zero). Examples of impedance branches
are (1) the resistor is a voltage source controlled by its own current, (2) the inductor is a voltage source
controlled by the time-derivative of its own current, and (3) the short circuit is a zero-valued voltage
source (a resistor with value zero)
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A component may often be modeled in different ways. A diode, for example, is normally modeled as a
current source controlled by its own voltage such that the model can be linearized into a dynamic
conductor in parallel with a current source during the iterative process of finding the bias point of the
diode. The diode may also be modeled as (1) a voltage source controlled by its own current (a dynamic
resistor in series with a voltage source), (2) a static conductor being a function of the voltage across
the diode, or (3) a static resistor being a function of the current through the diode. Note that in the case
where a small-signal model is wanted, for frequency analysis, only the dynamic model is appropriate.
The primary variables of the model are the currents of the impedance branches and the node

potentials. The current law of Kirchhoff (the sum of all the currents leaving a node is zero) and the
current–voltage relations of the impedance branches are used for the creation of the equations describing
the relations between the primary variables of the model. The contributions to the equations from the
branches are taken one branch at a time based on the question: Will this branch add new primary
variables? If yes, then a new column (variables) and a new row (equations) must be created and updated,
or else the columns and rows corresponding to the existing primary variables of the branch must be
updated. This approach to equation formulation is called the extended nodal approach or the modified
nodal approach (MNA).
In the following, some algorithms for solving a set of nonlinear algebraic equations and nonlinear

differential equations are briefly described. Because we are dealing with physical systems and because we
are responsible for the models, we assume that at least one solution is possible. The zero solution is, of
course, always a solution. It might happen that our models become invalid if we, for example, increase the
amplitudes of the exciting signals, diminish the risetime of the exciting signals, or by mistake create
unstable models. It is important to define the range of validity for our models. What are the consequences
of our assumptions? Can we believe in our models?

12.1 Numerical Solution of Nonlinear Algebraic Equations

Let the equation system to be solved be f(x, u)¼ 0, where x is the vector of primary variables and u is
the excitation vector. Denote the solution by xs. Then, if we define a new function g(x)¼a( f(x, u))þ x,
where a may be some function of f(x, u), which is zero for f(x, u)¼ 0, then we can define an iterative
scheme where g(x) converges to the solution xs by means of the iteration: xkþ 1¼ g(xk)¼a( f(xk, u))þ xk
where k is the iteration counter.

If for all x in the interval [xa, xb] the condition kg(xa)� g(xb)k� L * kxa� xbk for some L< 1 is
satisfied, the iteration is called a contraction mapping. The condition is called a Lipschitz condition.
Note that a function is a contraction if it has a derivative less than 1.
For a¼�1, the iterative formula becomes xkþ1¼ g(xk)¼�f(xk, u)þ xk. This scheme is called the

Picard method, the functional method, or the contraction mapping algorithm. At each step, each
nonlinear component is replaced by a linear static component corresponding to the solution xk.
A nonlinear conductor, for example, is replaced by a linear conductor defined by the straight line
through the origin and the solution point. Each iterative solution is calculated by solving a set of linear
equations. All components are updated and the next iteration is made. When two consecutive solutions
are within a prescribed tolerance, the solution point is accepted.
For a¼�1=(df=dx), the iterative formula becomes xkþ 1¼ g(xk)¼�f(xk, u)=(df(xk, u)=dx)þ xk. This

scheme is called the Newton–Raphson method or the derivative method. At each step, each nonlinear
component is replaced by a linear dynamic component plus an independent source corresponding to the
solution xk. A nonlinear conductor, for example, is replaced by a linear conductor defined by the
derivative of the branch current with respect to the branch voltage (the slope of the nonlinearity) in
parallel with a current source corresponding to the branch voltage of the previous solution. A new
solution is then calculated by solving a set of linear equations. The components are updated and the next
iteration is made. When the solutions converge within a prescribed tolerance, the solution point is
accepted.
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It may, of course, happen that the previously mentioned iterative schemes do not converge before the
iteration limit kmax is reached. One reason may be that the nonlinearity f(x) changes very rapidly for a
small change in x. Another reason could be that f(x) possess some kind of symmetry that causes cycles in
the Newton–Raphson iteration scheme. If convergence problems are detected, the iteration scheme can
be modified by introducing a limiting of the actual step size. Another approach may be to change the
modeling of the nonlinear branches from voltage control to current control or vice versa. Often, the user
of a circuit analysis program may be able to solve convergence problems by means of proper modeling
and adjustment of the program options [1–5].

12.2 Numerical Integration of Nonlinear Differential Equations

The dynamics of a nonlinear electronic circuit may be described by a set of coupled first-order differential
equations–algebraic equations of the form: dx=dt¼ f(x, y, t) and g(x, y, t)¼ 0, where x is the vector of
primary variables (node potentials and impedance branch currents), y is the vector of variables that
cannot be explicitly eliminated, and f and g are nonlinear vector functions. It is always possible to express
y as a function of x and t by inverting the function g and inserting it into the differential equations such
that the general differential equation form dx=dt¼ f(x, t) is obtained. The task is then to obtain a solution
x(t) when an initial value of x is given. The usual methods for solving differential equations reduce to the
solution of difference equations, with either the derivatives or the integrals expressed approximately in
terms of finite differences.
Assume, at a given time t0, we have a known solution point x0¼ x(t0). At this point, the function f can

be expanded in Taylor series: dx=dt¼ f (x0, t)þA (x0) (x� x0) þ � � � where A(x0) is the Jacobian of
f evaluated at x0. Truncating the series, we obtain a linearization of the equations such that the small-
signal behavior of the circuit in the neighborhood of x0 is described by dx=dt¼A * xþ k, where A is a
constant matrix equal to the Jacobian and k is a constant vector.
The most simple scheme for the approximate solution of the differential equation dx=dt¼ f(x, t)¼

Axþ k is the forward Euler formula x(t)¼ x(t0)þ hA(t0) where h¼ t� t0 is the integration time
step. From the actual solution point at time t0, the next solution point at time t is found along the
tangent of the solution curve. It is obvious that we will rapidly leave the vicinity of the exact solution
curve if the integration step is too large. To guarantee stability of the computation, the time step h must
be smaller than 2=jlj where l is the largest eigenvalue of the Jacobian A. Typically, h must not
exceed 0.2=jlj.

The forward Euler formula is a linear explicit formula based on forward Taylor expansion
from t0. If we make backward Taylor expansion from t we arrive at the backward Euler formula:
x(t)¼ x(t0)þ hA(t). Because the unknown appears on both sides of the equation, it must in general be
found by iteration so the formula is a linear implicit formula. From a stability point of view, the backward
Euler formula has a much larger stability region than the forward Euler formula. The truncation error for
the Euler formulas is of order h2.
The two Euler formulas can be thought of as polynomials of degree 1 that approximate x(t) in

the interval [t0, t]. If we compute x(t) from a second-order polynomial p(t) that matches the
conditions that p(t0)¼ x(t0), dp=dt(t0)¼ dx=dt(t0) and dp=dt(t)¼ dx=dt(t), we arrive at the trapezoidal
rule: x(t)¼ x(t0)þ 0.5hA(t0)þ 0.5hA(t). In this case, the truncation error is of order h3.

At each integration step, the size of the local truncation error can be estimated. If it is too large, the step
size must be reduced. An explicit formula such as the forward Euler may be used as a predictor giving a
starting point for an implicit formula like the trapezoidal, which in turn is used as a corrector. The use of
a predictor–corrector pair provides the base for the estimate of the local truncation error. The trapezoidal
formula with varying integration step size is the main formula used in the Simulation Program with
Integrated Circuit Emphasis (SPICE) program.
The two Euler formulas and the trapezoidal formula are special cases of a general linear multistep

formula S(aixn�iþ bih(dx=dt)n�i), where i goes from �1 to m� 1 and m is the degree of the polynomial
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used for the approximation of the solution curve. The trapezoidal rule, for example, is obtained by setting
a�1¼�1, a0¼þ1, and b�1¼ b0¼ 0.5, all other coefficients being zero. The formula can be regarded as
being derived from a polynomial of degree r which matches rþ 1 of the solution points xn-i and their
derivatives (dx=dt)n�i.

Very fast transients often occur together with very slow transients in electronic circuits. We
observe widely different time constants. The large spread in component values, for example, from
large decoupling capacitors to small parasitic capacitors, implies a large spread in the modules of the
eigenvalues. We say that the circuits are stiff. A family of implicit multistep methods suitable for
stiff differential equations has been proposed by C.W. Gear. The methods are stable up to the polynomial
of order 6. For example, the second-order Gear formula for fixed integration step size h may be stated
as xnþ1¼�(1=3)xn�1þ (4=3)xnþ (2=3)h(dx=dt)nþ1.

By changing both the order of the approximating polynomial and the integration step size, the methods
adapt themselves dynamically to the performance of the solution curve. The family of Gear formulas is
modified into a ‘‘stiff-stable variable-order variable-step predictor–corrector’’ method based on implicit
approximation by means of backward difference formulas (BDFs). The resulting set of nonlinear
equations is solved by modified Newton–Raphson iteration. Note that numerical integration, in a
sense, is a kind of low-pass filtering defined by means of the minimum integration step [1–5].

12.3 Use of Simulation Programs

Since 1960, a large number of circuit-simulation programs have been developed by universities, industrial
companies, and commercial software companies. In particular, the SPICE program has become a
standard simulator both in the industry and in academia. Here, only a few programs, which together
cover a very large number of simulation possibilities, are presented. Due to competition, there is a
tendency to develop programs that are supposed to cover any kind of analysis so that only one program
should be sufficient (the Swiss Army Knife Approach). Unfortunately this implies that the programs
become very large and complex to use. Also, it may be difficult to judge the correctness and accuracy of
the results of the simulation having only one program at your disposal. If you try to make the same
analysis of the same model with different programs, you will frequently see that the results from
the programs may not agree completely. By comparing the results, you may obtain a better feel for the
correctness and accuracy of the simulation. The programs SPICE and Analysis Program for Linear Active
Circuits (APLAC) supplemented with the programs Nonlinear Analysis Program version 2 (NAP2),
Engineering System and Circuit Analysis (ESACAP), and DYNAmic Simulation Tool (DYNAST) have
proven to be a good choice in the case where a large number of different kinds of circuits and systems
are to be modeled and simulated (the Tool Box Approach). The programs are available in inexpensive
evaluation versions running on IBM compatible personal computers. The ‘‘net-list’’ input languages are
very close, making it possible to transfer input data easily between the programs. In order to make
the programs more ‘‘user-friendly’’ graphics interphase language ‘‘schematics-capture,’’ where you draw
the circuit on the screen, has been introduced. Unfortunately, this approach makes it a little more difficult
for the user to transfer data between the programs. In the following, short descriptions of the programs
are given and a small circuit is simulated in order to give the reader an idea of the capabilities of
the programs.

12.3.1 SPICE

The first versions of SPICE (Simulation Program with Integrated Circuit Emphasis version 2), based on
the MNA, were developed in 1975 at the Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, CA.
SPICE is a general-purpose circuit analysis program. Circuit models may contain resistors, capacitors,

inductors, mutual inductors, independent sources, controlled sources, transmission lines, and the

12-4 Feedback, Nonlinear, and Distributed Circuits



most common semiconductor devices: diodes, bipolar junction transistors, and field effect transistors.
SPICE has very detailed built-in models for the semiconductor devices, which may be described by
about 50 parameters. Besides the normal dc, ac, and transient analyses, the program can make sensitivity,
noise, and distortion analysis and analysis at different temperatures. In the various commercial versions
of the program many other possibilities have been added; for example, analog behavior modeling (poles
and zeros) and statistical analysis.
In order to give an impression of the ‘‘net-list’’ input language, the syntax of the statements describing

controlled sources is the following:

Voltage Controlled Current Source: Gxxx Nþ N� NCþ NC� VALUE
Voltage Controlled Voltage Source: Exxx Nþ N� NCþ NC� VALUE
Current Controlled Current Source: Fxxx Nþ N� VNAM VALUE
Current Controlled Voltage Source: Hxxx Nþ N� VNAM VALUE

where the initial characters of the branch name G, E, F, and H indicate the type of the branch;Nþ andN�
are integers (node numbers) indicating the placement and orientation of the branch, respectively; NCþ,
NC�, andVNAM indicate fromwhere the control comes (VNAM is a dummy dc voltage source with value
0 inserted as an ammeter!); and VALUE specifies the numerical value of the control, which may be a
constant or a polynomial expression in case of nonlinear dependent sources. Independent sources are
specified with Ixxx for current and Vxxx for voltage sources.

The following input file describes an analysis of the Chua oscillator circuit. It is a simple harmonic
oscillator with losses (C2, L2, and RL2) loaded with a linear resistor (R61) in series with a capacitor (C1)
in parallel with a nonlinear resistor. The circuit is influenced by a sinusoidal voltage source VRS through
a coil L1. Comments may be specified either as lines starting with an asterisk ‘‘*’’ or by means of a
semicolon ‘‘;’’ after the statement on a line. A statement may continue by means of a plus ‘‘þ ’’ as the first
character on the following line.

PSpice input file CRC-CHUA.CIR, first line, title line :
* *: The Chua Oscillator, sinusoidal excitation, F¼150mV > :
* : RL2¼1 ohm, RL1¼0 ohm f¼1286.336389 Hz :
* : ref. K. Murali and M. Lakshmanan, :
* : Effect of Sinusoidal Excitation on the Chua’s Circuit, :
* : IEEE Transactions on Circuits and Systems—1: :
* : Fundamental Theory and Applications, :
* : vol.39, No.4, April 1992, pp. 264–270 :
* : input source; :----------------------------------------:

VRS 7 0 sin(0 150m 1.2863363889332eþ3 0 0) :
* : choke :

L1 6 17 80e-3 ; mH :
VRL1 17 7 DC 0 ; ammeter for measure of IL1 :

* : harmonic oscillator; :----------------------------------:
L2 6 16 13m :
RL2 16 0 1 :
C2 6 0 1.250u :

* : load; :----------------------------------------------:
r61 6 10 1310 :
vrrC1 10 11 DC 0 :
C1 11 0 0.017u :

* i(vrr10)¼current of nonlinear resistor :
vrr10 10 1 DC 0 :
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* : non-linear circuit; :-----------------------------------:
.model n4148 d (is¼0.1p rs¼16 n¼1); vt¼n*k*T=q :
d13 1 3 n4148 :
d21 2 1 n4148 :
rm9 2 22 47k :
vrm9 22 0 DC �9 ; negative power supply :
rp9 3 33 47k :
vrp9 33 0 DC þ9 :
r20 2 0 3.3k :
r30 3 0 3.3k :

* : ideal op. amp.; :--------------------------------------:
evop 4 0 1 5 1eþ20 :
r14 1 4 290 :
r54 5 4 290 :
r50 5 0 1.2k :

* : ----------------------------------------------------:
.TRAN 0.05m 200m 0 0.018m UIC :
.plot tran v(11) :
.probe :
.options acct nopage opts gmin¼1e-15 reltol¼1e-3 :

þ abstol¼1e-12 vntol¼1e-12 tnom¼25 itl5¼0 :
þ limpts¼15000 :

.end :

The analysis is controlled by means of the statements: .TRAN, where, for example, the maximum
integration step is fixed to 18 ms, and .OPTIONS, where, for example, the relative truncation error is
set to 1e-3. The result of the analysis is presented in Figure 12.1. It is seen that transition from chaotic
behavior to a period 5 limit cycle takes place at about 100 ms. A very important observation is that the
result of the analysis may depend on (1) the choice of the control parameters and (2) the order of
the branches in the ‘‘net-list,’’ for example, if the truncation error is set to 1e-6 instead of 1e-3 previously,
the result becomes quite different. This observation is valid for all programs [5–11].
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0 A

–200 µA

0 s 40 ms 80 ms 120 ms 160 ms 200 ms
Time(a)

I(C1)

FIGURE 12.1 (a) PSPICE analysis. The current of C1: I(C1) as function of time in the interval 0–200 ms.

12-6 Feedback, Nonlinear, and Distributed Circuits



200 µA

0 A

–200 µA

–1.99 V –1.00 V 0 V 1.00 V 2.00 V
(b) V(11)

I(C1)

200 µA

0 A

–200 µA

–1.99 V –1.00 V 0 V 1.00 V 2.00 V
V (11)(c)

I(C1)

}

400 mV

0 V

–400 mV
–1.99 V –1.00 V 0 V 1.00 V 2.00 V

V (11)(d)

V(6)

FIGURE 12.1 (continued) (b) The current of C1: I(C1) as function of the voltage of C1: V(11). (c) The current of
C1: I(C1) as function of the voltage of C1: V(11) in the time interval 100–200 ms. (d) The voltage of C2: V(6) as
function of the voltage of C1: V(11) in the time interval 100–200 ms.
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12.3.2 APLAC

The program APLAC [5] has been under constant development at the Helsinki University of
Technology, Finland, since 1972. Over time it has developed into an object-oriented analog circuits
and systems simulation and design tool. Inclusion of a new model into APLAC requires only the labor of
introducing the parameters and equations defining the model under the control of ‘‘C-macros.’’ The code
of APLAC itself remains untouched. The APLAC Interpreter immediately understands the syntax of the
new model. APLAC accepts SPICE ‘‘net-lists’’ by means of the program Spi2a (SPICE to APLAC net-list
converter).
APLAC is capable of carrying out dc, ac, transient, noise, oscillator, and multitone harmonic steady-

state analyses and measurements using IEEE-488 bus. Transient analysis correctly handles, through
convolution, components defined by frequency-dependent characteristics. Monte Carlo analysis
is available in all basic analysis modes and sensitivity analysis in dc and ac modes. N-port z, y, and
s parameters, as well as two-port h parameters, are available in ac analysis. In addition, APLAC includes
a versatile collection of system-level blocks for the simulation and design of analog and digital commu-
nication systems. APLAC includes seven different optimization methods. Any parameter in the design
problem can be used as a variable, and any user-defined function may act as an objective. Combined
time and frequency domain optimization is possible.
The file below is the APLAC ‘‘net-list’’ of the Chua oscillator circuit created by the Spi2a converter

program with the PSpice file CRC-CHUA.CIR above as input. Comments are indicated by means of
the dollar sign ‘‘$’’ or the asterisk ‘‘*.’’ Unfortunately, it is necessary to manually change the file.
Comments semicolon ‘‘;’’ and colon ‘‘:’’ must be replaced with ‘‘$;’’ and ‘‘$:’’. Also, Spi2a indicates a
few statements as ‘‘$ not implemented.’’

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$ $$
$$ Spi2a — SPICE to APLAC netlist converter, version 1.26 $$
$$ $$
$$ This file is created at Tue Jul 17 14:48:02 2001 $$
$$ with command: spi2a C:\WINDOWS\DESKTOP\crc-chua.cir $$
$$ $$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$PSpice input file CRC-CHUA.CIR, first line, title line $:

Prepare gmin¼1e-15 ERR¼1e-3 ABS_ERR¼1e-12 TNOM¼(273.15þ(25))
$ .options acct nopage opts gmin¼1e-15 reltol¼1e-3 $:
$þ abstol¼1e-12 vntol¼1e-12 tnom¼25 itl5¼0 $:
$þ limpts¼15000 $:
$ .MODEL and .PARAM definitions $:

Model ‘‘n4148’’ is¼0.1p rs¼16 n¼1
þ $;¼vt n*k*T=q $:
$ Circuit definition $:
$ Not implemented $:
$ VRS 7 0 sin(0 150m 1.2863363889332eþ3 0 0) $:

Volt VRS 7 0 sin¼[0, 150m, 1.2863363889332eþ3, 0, 0]
* $: choke $:

Ind L1 6 17 80e-3 $; mH $:
Volt VRL1 17 7 DC¼{VRL1¼0} $ $; ammeter for measure of IL1 $:

* $: harmonic oscillator$; $:-------------------------------$:
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þ I¼I_VRL1
Ind L2 6 16 13m $:
Res RL2 16 0 1 $:
Cap C2 6 0 1.250u $:
Res r61 6 10 1310 $:

$ Not implemented $:
$ vrrC1 10 11 DC 0 $:

Volt vrrC1 10 11 DC¼{vrrC1¼0}
þ I¼IC1

Cap C1 11 0 0.017u
$ Not implemented $:
$ vrr10 10 1 DC 0 $:

Volt vrr10 10 1 DC¼{vrr10¼0} $:
þ I¼IRNL
* $: non-linear circuit$; $:-------------------------------$:

Diode d13 1 3 MODEL¼‘‘n4148’’ $:
Diode d21 2 1 MODEL¼‘‘n4148’’ $:
Res rm9 2 22 47k $:
Volt vrm9 22 0 DC¼{vrm9¼-9} $ $; negative power supply $:

þ I¼I_vrm9
Res rp9 3 33 47k $:

$ Not implemented $:
$ vrp9 33 0 DC þ9 $:

Volt vrp9 33 0 DC¼{vrp9¼9} $ þ9 must be 9
Res r20 2 0 3.3k $:
Res r30 3 0 3.3k $:
VCVS evop 4 0 1 1 5 [1eþ20] LINEAR $:
Res r14 1 4 290 $:
Res r54 5 4 290 $:
Res r50 5 0 1.2k $:

$$ Analysis commands $:
$$ .TRAN 0.05m 200m 0 0.018m UIC $:
$ Sweep ‘‘TRAN Analysis 1’’
$þ LOOP (1þ(200m-(0))=(0.05m)) TIME LIN 0 200m TMAX¼0.018m
$þ NW¼1 $ UIC $:
$$ .plot tran v(11) $:
$ Show Y Vtran(11) $ $:
$ EndSweep

$ the following lines are added and the sweep above is commented
Sweep ‘‘TRAN Analysis 2’’
þ LOOP (4001) TIME LIN 0 200m TMAX¼0.018m
$þ NW¼1 $ UIC $:
$ .plot tran v(11) $:
Show Y Itran(IC1) X Vtran(11) $ $:
EndSweep

$.probe $:

The result of the analysis is presented in Figure 12.2. It is observed that limit cycle behavior is not
obtained in the APLAC analysis in the time interval from 0 to 200 ms.
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12.3.3 NAP2

The first versions of NAP2 (Nonlinear Analysis Program version 2) [10], based on the extended nodal
equation formulation were developed in 1973 at the Institute of Circuit Theory and Telecommunication,
Technical University of Denmark, Lyngby, Denmark.
NAP2 is a general-purpose circuit analysis program. Circuit models may contain resistors, conductors,

capacitors, inductors, mutual inductors, ideal operational amplifiers, independent sources, controlled
sources, and the most common semiconductor devices: diodes, bipolar junction transistors, and field
effect transistors. NAP2 has only simple built-in models for the semiconductor devices, which require
about 15 parameters. Besides the normal dc, ac, and transient analyses, the program can make parameter
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0.150 0.200

TRAN Analysis 1
APLAC 7.60 student version for noncommercial use only2.00

1.00

0.00

–1.00

–2.00

250.00 u
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–125.00 u

–250.00 u
–2.000 –1.000 0.000
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TRAN Analysis 2
APLAC 7.60 student version for noncommercial use only

(a)

(b)

Vtran (11)

Itran (IC1)

FIGURE 12.2 (a) The voltage of C1: V(11) as function of time in the interval 0–200 ms. (b) The current of C1: I(C1)
as function of the voltage of C1: V(11).
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variation analysis. Any parameter (e.g., component value or temperature) may be varied over a range in
an arbitrary way and dc, ac, or transient analysis may be performed for each value of the parameter.
Optimization of dc bias point (given: voltages, find: resistors) is possible. Event detection is included so
that it is possible to interrupt the analysis when a certain signal, for example, goes from a positive to a
negative value. The results may be combined into one output plot. It is also possible to calculate the poles
and zeros of driving point and transfer functions for the linearized model in a certain bias point.
Eigenvalue technique (based on the QR algorithm by J.G.F. Francis) is the method behind the calculation
of poles and zeros. Group delay (i.e., the derivative of the phase with respect to the angular frequency) is
calculated from the poles and zeros. This part of the program is available as an independent program
named ANP3 (Analytical Network Program version 3).
In order to give an impression of the ‘‘net-list’’ input language, the syntax of the statements describing

controlled sources is as follows:

Voltage Controlled Current Source: Ixxx Nþ N� VALUE VByyy
Voltage Controlled Voltage Source: Vxxx Nþ N� VALUE VByyy
Current Controlled Current Source: Ixxx Nþ N� VALUE IByyy
Current Controlled Voltage Source: Vxxx Nþ N� VALUE Ibyyy

where the initial characters of the branch name I and V indicate the type of the branch; Nþ and N� are
integers (node numbers) indicating the placement and orientation of the branch, respectively; and
VALUE specifies the numerical value of the control, which may be a constant or an arbitrary functional
expression in case of nonlinear control. IB and VB refer to the current or voltage of the branch,
respectively, from where the control comes. If the control is the time derivative of the branch signal, SI
or SV may be specified. Independent sources must be connected to a resistor R or a conductor G as
follows: Rxxx Nþ N� VALUE E¼VALUE and Gxxx Nþ N� VALUE J¼VALUE, where VALUE may
be any function of time, temperature, and components.
The input file ‘‘net-list’’ below describes the same analysis of the Chua oscillator circuit as performed

by means of SPICE and APLAC. The circuit is a simple harmonic oscillator with losses (C2, L2, and RL2)
loaded with a linear resistor (R61) in series with a capacitor (C1) in parallel with a nonlinear resistor. The
circuit is excited by a sinusoidal voltage source through a coil L1. The frequency is specified as angular
frequency in rps. It is possible to specify more than one statement on one line. Colon ‘‘:’’ indicate start of
a comment statement and semicolon ‘‘;’’ indicates end of a statement. The greater than character ‘‘>’’

indicates continuation of a statement on the following line. It is observed that most of the lines are
comment lines with the PSPICE input statements.

*circuit; *list 2, 9; : file CRC-CHUA.NAP
*: PSpice input file CRC-CHUA.CIR, first line, title line > :
: translated into NAP2 input file
: The Chua Oscillator, sinusoidal excitation, F¼150mV > :
: RL2¼1 ohm, RL1¼0 ohm f¼1286.336389 Hz :
: ref. K. Murali and M. Lakshmanan, :
: Effect of Sinusoidal Excitation on the Chua’s Circuit, :
: IEEE Transactions on Circuits and Systems — 1: :
: Fundamental Theory and Applications, :
: vol.39, No.4, April 1992, pp. 264-270 :
: input source; : ------------------------------------------ :
: VRS 7 0 sin(0 150m 1.2863363889332eþ3 0 0) :

sin=sin=; Rs 7 0 0 e¼150m*sin(8.0822898994674eþ3*time) :
:choke ; L1 6 17 80mH; RL1 17 7 0 :
: L1 6 17 80e-3 ;:mH :
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: VRL1 17 7 DC 0 ;:ammeter for measure of IL1 :
:-----------------------------------:

: harmonic oscillator; L2 6 16 13mH; RL2 16 0 1 :
C2 6 0 1.250uF :

: L2 6 16 13m :
: RL2 16 0 1 :
: C2 6 0 1.250u :

:--------------------------------------------------:
: load; r61 6 10 1310; rrc1 10 11 0; c1 11 0 0.017uF :

rr10 10 1 0: irr10¼current of nonlinear resistor :
: r61 6 10 1310 :
: vrrC1 10 11 DC 0 :
: C1 11 0 0.017u :
: i(vrr10)¼current of nonlinear resistor :
: vrr10 10 1 DC 0 :
: non-linear circuit; :---------------------------------:
: .model n4148 d (is¼0.1p rs¼16 n¼1); vt¼n*k*T=q :

n4148 =diode= is¼0.1p gs¼62.5m vt¼25mV; :
td13 1 3 n4148; td21 2 1 n4148; :

: d13 1 3 n4148 :
: d21 2 1 n4148 :

rm9 2 0 47k e¼�9; rp9 3 0 47k E¼þ9; :
: rm9 2 22 47k :
: vrm9 22 0 DC �9; negative power supply :
: rp9 3 33 47k :
: vrp9 33 0 DC þ9 :

r20 2 0 3.3k; r30 3 0 3.3k; :
: r20 2 0 3.3k :
: r30 3 0 3.3k :
: ideal op. amp.; :---------------------------------------:

gop 1 5 0; vop 4 0 vgop: no value means infinite value;:
: evop 4 0 1 5 1eþ20 :

r14 1 4 290; r54 5 4 290; r50 5 0 1.2k; :
: r14 1 4 290 :
: r54 5 4 290 :
: r50 5 0 1.2k :
: ----- ---------------------------------------------- - :

*time time 0 200m : variable order, variable step:
: .TRAN 0.05m 200m 0 0.018m UIC:

*tr vnall *plot(50 v6) v1 *probe:
: .plot tran v(11) :
: .probe :

*run cycle¼15000 minstep¼1e-20 > :
trunc¼1e-3 step¼50n:

: .options acct nopage opts gmin¼1e-15 reltol¼1e-3 :
:þ abstol¼1e-12 vntol¼1e-12 tnom¼25 itl5¼0 :
:þ limpts¼15000 :
: .end :

*end :
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The program options are set by means of the statement *RUN, where, for example, the minimum
integration step is set to 1e-20 s and the relative truncation error is set to 1e-6. The result of the analysis is
presented in Figure 12.3. It can be observed that transition from chaotic behavior to a period 5 limit cycle
takes place at about 50 ms. If we compare to the results obtained above by means of SPICE and APLAC,
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FIGURE 12.3 (a) NAP2 analysis. The current of C1: I(C1) as function of time in the interval 0–100 ms. (b) The
current of C1: I(C1) as function of the voltage of C1: V(11) in the time interval 0–100 ms. (c) The current of C1: I(C1)
as function of time in the interval 180–200 ms.

(continued)
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we see that although the three programs are ‘‘modeled and set’’ the same way, for example, with the same
relative tolerance 1e-3, the results are different due to the chaotic nature of the circuit and possibly
also due to the different strategies of equation formulation and solution used in the three programs.
For example, SPICE uses the trapezoidal integration method with variable step; APLAC and NAP2 use
the Gear integration methods with variable order and variable step.

12.3.4 ESACAP

The first versions of ESACAP program based on the extended nodal equation formulation were
developed in 1979 at Elektronik Centralen, Hoersholm, Denmark, for the European Space Agency as
a result of a strong need for a simulation language capable of handling interdisciplinary problems (e.g.,
coupled electrical and thermal phenomena). ESACAP was therefore born with facilities that have only
recently been implemented in other simulation programs (e.g., facilities referred to as behavioral or
functional modeling).
ESACAP carries out analyses on nonlinear systems in dc and in the time domain. The nonlinear

equations are solved by a hybrid method combining the robustness of the gradient method with the good
convergence properties of the Newton–Raphson method. The derivatives required by the Jacobian matrix
are symbolically evaluated from arbitrarily complex arithmetic expressions and are therefore exact. The
symbolic evaluation of derivatives was available in the very first version of ESACAP. It has now become a
general numerical discipline known as automatic differentiation. The time-domain solution is found by
numerical integration implemented as BDFs of variable step and orders 1 through 6 (modified Gear
method). An efficient extrapolation method (the epsilon algorithm) accelerates the asymptotic solution in
the periodic steady-state case.
Frequency-domain analyses may be carried out on linear or linearized systems (e.g., after a dc analysis).

Besides complex transfer functions, special outputs such as group delay and poles=zeros are available. The
group delay is computed as the sum of the frequency sensitivities of all the reactive components in the
system. Poles and zeros are found by a numerical interpolation of transfer functions evaluated on a circle in
the complex frequency plane. ESACAP also includes a complex number postprocessor by means of which
any function of the basic outputs can be generated (e.g., stability factor, s-parameters, complex ratios).
Sensitivities of all outputs with respect to all parameters are available in all analysis modes. The

automatic differentiation combined with the adjoint network provides exact partial derivatives in
the frequency domain. In the time domain, integration of a sensitivity network (using the already
LUfactorized Jacobian) provides the partial derivatives as functions of time.
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FIGURE 12.3 (continued) (d) The current of C1: I(C1) as function of the voltage of C1: V(11) in the time interval
100–200 ms.
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The ESACAP language combines procedural facilities, such as if-then-else, assignment statements, and
do-loops, with the usual description by structure (nodes=branches). Arbitrary expressions containing
system variables and their derivatives are allowed for specifying branch values thereby establishing any
type of nonlinearity. System variables of nonpotential and noncurrent type may be defined and used
everywhere in the description (e.g., for defining power, charge). The language also accepts the specification
of nonlinear differential equations. Besides all the standard functions known from high-level computer
languages, ESACAP provides a number of useful functions. One of themost important of these functions is
the delay function. The delay function returns one of its arguments delayed by a specified value, which in
turn may depend on system variables. Another important function is the threshold switch—the ZEROREF
function—used in if-then-else constructs for triggering discontinuities. The ZEROREF function interacts
with the integration algorithm that may be reinitialized at the exact threshold crossing. The ZEROREF
function is an efficient means for separating cause and action in physical models thereby eliminating many
types of causality problems. Causality problems are typical examples of bad modeling techniques and the
most frequent reason for divergence in the simulation of dynamic systems.
Typical ESACAP applications include electronics as well as thermal and hydraulic systems. The

frequency domain facilities have been a powerful tool for designing stable control systems including
nonelectronics engineering disciplines.
In order to give an idea of the input language, the syntax of the statements describing sources is as

follows:

Current Source: Jxxx(Nþ, N�)¼VALUE;
Voltage Source: Exxx(Nþ, N�)¼VALUE;

where the initial characters of the branch name: J and E indicate the type of the branch; Nþ and N� are
node identifiers (character strings), which, as a special case, may be integer numbers (node numbers).
The node identifiers indicate the placement and orientation of the branch. The VALUE specifies the
numerical value of the source, which may be an arbitrary function of time, temperature, and parameters
as well as system variables (including their time derivatives). Adding an apostrophe references the time
derivative of a system variable. V(N1,N2)0, for example, is the time derivative of the voltage drop from
node N1 to node N2.
The next input file—actually, a small program written in the ESACAP language—describes an analysis

of a tapered transmission line. The example shows some of the powerful tools available in the ESACAP
language such as (1) the delay function, (2) the do-loop, and (3) the sensitivity calculation. The
description language of ESACAP is a genuine simulation and modeling language. However, for describ-
ing simple systems, the input language is just slightly more complicated than the languages of SPICE,
APLAC, and NAP2. Data are specified in a number of blocks (‘‘chapters’’ and ‘‘sections’’) starting with $$
and $. Note how the line model is specified in a do-loop where ESACAP creates nodes and branches of a
ladder network [11].

Example.155 Tapered line in the time domain.
# Calculation of sensitivities.
# This example shows the use of a do-loop for the discretization of a
# tapered transmission line into a chain of short line segments. The
# example also demonstrates how to specify partial derivatives of any
# parameter for sensitivity calculations.
$$DESCRIPTION # chapter - - - - - - - - - - - - - - - - - - - - - - - - - - -
$CON: n_sections¼60; END; # section- - - - - - - - - - - - - - - - - - - -
# n_sections is defined as a globally available constant.
# Only this constant needs to be modified in order to change
# the resolution of discretization
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# Transmission line specified by characteristic impedance and length.
# Modelled by the ESACAP delay function (DEL).
$MODEL: LineCell(in,out): Z0,length;
delay¼length=3e8;
J_reverse(0,in)¼DEL(2*V(out)=Z0-I(J_forward), delay);
J_forward(0,out)¼DEL(2*V(in)=Z0-I(J_reverse), delay);
G1(in,0)¼1=Z0; G2(out,0)¼1=Z0;

END; # end of section-- - - - - - - - - - - - - - -- -
# Tapered line specified by input and output impedance and length
# This model calls LineCell n_sections times in a do-loop.
$MODEL: TaperedLine(in,out): Z1,Z2,length;
ALIAS_NODE(in,1); # Let node in and 1 be the same.
ALIAS_NODE(out,[n_sectionsþ1]); # Let node out and n_sectionsþ1 be

# the same.
# Notice that values in square brackets become part of an identifier
FOR (i¼1, n_sections) DO
X[i]([i],[iþ1])¼LineCell(Z1þi*(Z2-Z1)=n_sections, length=n_sections);
ENDDO;
END; # end of section - - - - - - - - - - - - - - - - - -
# Main network calls the model of the tapered line and terminates
# it by a 50 ohm source and 100 ohm load.
$NETWORK: # section- - - - - - - - - - - - - - - - - - --
IF(TIME.LT.1n) THEN
Esource(source,0)¼0;

ELSE
Esource(source,0)¼1;

ENDIF;
# Esource(source,0)¼TABLE(TIME,(0,0),(1n,0),(1.001n,1),(10n,1));
Rsource(source,in)¼50;
Rload(out,0)¼100;
Z1¼50; Z2¼100; length¼1;
X1(in,out)¼TaperedLine(Z1,Z2,length);

END; # end of section - - - - - - - - - - - - - - - - - - - - - -
# Time-domain analysis
$$TRANSIENT # chapter- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Analysis parameters
$PARAMETERS: # section- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TIME¼0,20n; # Total time sweep
HMAX¼2p; # Max integration step

END; # end of section---- - - - - - - - - - - - - - - - - - --
# Specification of desired results. Adding an exclamation mark (!) to an
# output will show the value on the ESACAP real-time graphics display.
$DUMP: # section--- - - - - - - - - - - - - - - - - - - -
FILE¼<dump.155>; TIME¼0,20n,20p;
TIME; V(in)!; V(out)!;
(V(in),DER(Z1))!; # Partial derivatives with respect
(V(out),DER(Z1))!; # to Z1
END; # end of section - - - - - - - - - - - - - - - - - - -
$$STOP # chapter- - - - - - - - - - - - - - - - - - - - - - - - - -

The result of the analysis is presented in Figure 12.4.
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12.3.5 DYNAST

DYNAST [7] was developed in 1992 in a joint venture between the Czech Technical University, Prague,
the Czech Republic and Katholieke Universiteit Leuven, Heverlee, Belgium. The program was developed
as an interdisciplinary simulation and design tool in the field of ‘‘mechatronics’’ (mixed mechanical=
electrical systems).
The main purpose of DYNAST is to simulate dynamic systems decomposed into subsystems defined

independently of the system structure. The structure can be hierarchical. DYNAST is a versatile software
tool for modeling, simulation, and analysis of general linear as well as nonlinear dynamic systems, both in
time and frequency domain. Semisymbolic analysis is possible (poles and zeros of network functions,
inverse Laplace transformation using closed-form formulas).
Three types of subsystem models are available in DYNAST. The program admits systems descriptions

in the form of (1) a multipole diagram respecting physical laws, (2) a causal or an acausal block diagram,
(3) a set of equations, or (4) in a form combining the above approaches.

1. In DYNAST the physical-level modeling of dynamic systems is based on subsystem multipole
models or multiterminal models. These models respect the continuity and compatibility postulates
that apply to all physical energy-domains. (The former postulate corresponds to the laws of
conservation of energy, mass, electrical charge, etc.; the latter is a consequence of the system

0.0000 20.00
Time (ns)

0.0000

1.0000

V(out)

V (in)

0.0000 20.00
Time (ns)

0.0000

5.000 m

d(V (in))/d(Z1)

d(V (out))/d(Z1)

(a)

(b)

V(in)
V(out)

d(V(in))/d(Z1)
d(V(out))/d(Z1)

FIGURE 12.4 (a) ESACAP analysis. The input voltage of the tapered line: V(in) and the output voltage of the
tapered line: V(out) as functions of time in the interval from 0 to 20 ns. (b) The sensitivities of V(in) and V(out) with
respect to Z1.
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connectedness.) The multipole poles correspond directly to those subsystem locations in which the
actual energetic interactions between the subsystems take place (such as shafts, electrical terminals,
pipe inlets, etc.). The interactions are expressed in terms of products of complementary physical
quantity pairs: the through variables flowing into the multipoles via the individual terminals, and
the across variables identified between the terminals.

2. The causal blocks, specified by explicit functional expressions or transfer functions, are typical for
any simulation program. But the variety of basic blocks is very poor in DYNAST, as its language
permits definition of the block behavior in a very flexible way. Besides the built-in basic blocks,
user specified multi-input multi-output macroblocks are available as well. The causal block
interconnections are restricted by the rule that only one block output may be connected to one
or several block inputs. In the DYNAST block variety, however, causal blocks are also available
with no restrictions imposed on their interconnections, as they are defined by implicit-form
expressions.

3. DYNAST can also be used as an equation solver for systems of nonlinear first-order algebro-
differential and algebraic equations in the implicit form. The equations can be submitted in a
natural way (without converting them into block diagrams) using a rich variety of functions
including the Boolean, event-dependent, and tabular ones. The equations, as well as any other
input data, are directly interpreted by the program without any compilation.

The equation formulation approach used for both multipoles and block diagrams evolved from the
extended method of nodal voltages (MNA) developed for electrical systems. Because all the equations of
the diagrams are formulated simultaneously, no problems occur with the algebraic loops. As the
formulated equations are in the implicit form, it does not create any problems with the causality of
the physical models.
The integration method used to solve the nonlinear algebro-differential and algebraic equations is

based on a stiff-stable implicit backward-differentiation formula (a modified Gear method). During
the integration, the step length as well as the order of the method is varied continuously to minimize
the computational time while respecting the admissible computational error. Jacobians necessary for the
integration are computed by symbolic differentiation. Their evaluation as well as their LU decomposition,
however, is not performed at each iteration step if the convergence is fast enough. Considerable savings of
computational time and memory are achieved by a consistent matrix sparsity exploitation.
To accelerate the computation of periodic responses of weakly damped dynamic systems, the iterative

epsilon-algorithm is utilized. Also, fast-Fourier transformation is available for spectral analysis of the
periodic steady-state responses.
DYNAST runs under DOS- or WINDOWS-control on IBM-compatible PCs. Because it is coded in

FORTRAN 77 and C-languages, it is easily implemented on other platforms. It is accompanied by a
menu-driven graphical environment. The block and multiport diagrams can be submitted in a graphical
form by a schematic capture editor. DYNAST can be easily augmented by various pre- and postpro-
cessors because all its input and output data are available in the ASCII code. Free ‘‘net-list’’ access to
DYNAST is possible by means of e-mail or online over the Internet [7].
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13.1 Introduction: Definition and Classification

Current very-large-scale integration (VLSI) technologies provide for the fabrication of chips with several
million transistors. With these technologies a single chip may contain one powerful digital processor, a
huge memory containing millions of very simple units placed in a regular structure, and other complex
functions. A powerful combination of a simple logic processor placed in a regular structure is the cellular
automaton invented by John von Neumann. The cellular automaton is a highly parallel computer
architecture. Although many living neural circuits resemble this architecture, the neurons do not function
in a simple logical mode: they are analog ‘‘devices.’’ The cellular neural network architecture, invented by
Chua and his graduate student Yang [1], has both the properties: the cell units are nonlinear continuous-
time dynamic elements placed in a cellular array. Of course, the resulting nonlinear dynamics in space
could be extremely complex. The inventors, however, showed that these networks can be designed and
used for a variety of engineering purposes, while maintaining stability and keeping the dynamic range
within well-designed limits. Subsequent developments have uncovered the many inherent capabilities of
this architecture (IEEE conferences: CNNA-90, CNNA-92, CNNA-94, 96, 98, 00, 02; Special issues:
International Journal of Circuit Theory and Applications, 1993, 1996, 1998, 2002; and IEEE Transactions
on Circuits and Systems, I and II, 1993, 1999, etc.). In the circuit implementation, unlike analog computers
or general neural networks, the cellular neural=nonlinear network (CNN) cells are not the ubiquitous high-
gain operational amplifiers. In most practical cases, they are either simple unity-gain amplifiers or simple
second- or third-order simple dynamic circuits with one to two simple nonlinear components. Tractability
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in the design and the possibility for exploiting the complex nonlinear dynamic phenomena in space, as well
as the trillion operations per second (TeraOPS) computing speed in a single chip are but some of the many
attractive properties of cellular neural networks. The trade-off is in the accuracy; however, in many cases,
the accuracy achieved with current technologies is enough to solve a lot of real-life problems.
The CNN is a new paradigm for multidimensional, nonlinear, dynamic processor arrays [1,2]. The

mainly uniform processing elements, called cells or artificial neurons, are placed on a regular geometric
grid (with a square, hexagonal, or other pattern). This grid may consist of several two-dimensional (2-D)
layers packed upon each other (Figure 13.1). Each processing element or cell is an analog dynamical
system, the state (x), the input (u), and the output (y) signals are analog (real-valued) functions of time
(both continuous-time and discrete-time signals are allowed). The interconnection and interaction
pattern assumed at each cell is mainly local within a neighborhood Nr, where Nr denotes the first ‘‘r’’
circular layers of surrounding cells. Figure 13.2 shows a 2-D layer with a square grid of interconnection

FIGURE 13.1 CNN grid structure with the processing elements (cells) located at the vertices.

CNN array i – 1 j – 1

i + 1 j – 1

i – 1 j + 1i – 1j

i + 1j

ij – 1 ij + 1

i + 1 j + 1

Each cell has three time variables:Row i

Column j

1. State xij(t)
2. Input uij(t)
3. Output yij(t)
and a constant (threshold)

βij

FIGURE 13.2 A single, 2-D CNN layer and a magnified cell with its neighbor cells with the normal neighborhood
radius r¼ 1.
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radius of 1 (nearest neighborhood). Each vertex contains a cell and the edges represent the interconnec-
tions between the cells. The pattern of interaction strengths between each cell and its neighbors is the
‘‘program’’ of the CNN array. It is called a cloning template (or just template).
Depending on the types of grids, processors (cells), interactions, and modes of operation, several

classes of CNN architectures and models have been introduced. Although the summary below is not
complete, it gives an impression of vast diversities.

13.1.1 Typical CNN Models

1. Grid type
. Square
. Hexagonal
. Planar
. Circular
. Equidistant
. Logarithmic

2. Processor type
. Linear
. Sigmoid
. First-order
. Second-order
. Third-order

3. Interaction type
. Linear memoryless
. Nonlinear
. Dynamic
. Delay-type

4. Mode of operation
. Continuous-time
. Discrete-time
. Equilibrium
. Oscillating
. Chaotic

13.2 Simple CNN Circuit Structure

The simplest first-order dynamic CNN cell used in the seminal paper [1] is illustrated in Figure 13.3. It is
placed on the grid in the position ij (row i and column j). It consists of a single state capacitor with a
parallel resistor and an amplifier [ f(xij)]. This amplifier is a voltage-controlled current source (VCCS),
where the controlling voltage is the state capacitor voltage. To make the amplifier model self-contained, a
parallel resistor of unit value is assumed to be connected across the output port. Hence, the voltage
transfer characteristic of this amplifier is also equal to f(�). In its simplest form this amplifier has a unity-
gain saturation characteristic (see Figure 13.7 for more details).
The aggregate feedforward and feedback interactions are represented by the current sources iinput and

ioutput, respectively. Figure 13.4 shows these interactions in more detail. In fact, the feedforward
interaction term iinput is a weighted sum of the input voltages (ukl) of all cells in the neighborhood
(Nr). Hence, the feedforward template, the so-called B template, is a small matrix of size (2rþ 1)3 (2
rþ 1) containing the template elements bkl, which can be implemented by an array of linear VCCSs. The
controlling voltages of these controlled sources are the input voltages of the cells within the neighborhood
of radius r. This means, for example, that b12 is the VCCS controlled by the input voltage of the cell lying

Cellular Neural Networks and Cellular Wave Computers 13-3



north from the cell ij. In most practical cases the B template is translation invariant, i.e., the interaction
pattern (the B template) is the same for all cells. Hence, the chip layout will be very regular (as in
memories or PLAs). The feedback interaction term ioutput is a weighted sum of the output voltages (ykl) of
all cells in the neighborhood (Nr). The weights are the elements of a small matrix A called the A template
(or feedback template). Similar arguments apply for the A template as for the B template discussed
previously. If the constant threshold term is translation invariant as denoted by the constant current
source I, then in the case of r¼ 1, the complete cloning template contains only 19 numbers (A and B and
I, i.e., 9þ 9þ 1 terms), irrespective of the size of the CNN array. These 19 numbers define the task which
the CNN array can solve.
What kind of tasks are we talking about? The simplest, and perhaps the most important, are image-

processing tasks. In the CNN array computer, the input and output images are coded as follows. For
each picture element (called pixel) in the image, a single cell is assigned in the CNN. This means that a
one-to-one correspondence exists between the pixels and the CNN cells. Voltages in the CNN cells code
the grayscale values of the pixels. Black is coded by þ1 V, white is �1 V, and the grayscale values are in
between. Two independent input images can be defined pixel-by-pixel: the input voltages uij and the
initial voltage values of the capacitors xij (0) (cell-by-cell). Placing these input images onto the cell array
and starting the transient, the steady-state outputs yij will encode the output image. The computing
time is equal to the settling time of the CNN array. This time is below 1 ms using a CNN chip made with a
1.0–1.5 mm technology containing thousands of CNN processing elements, i.e., pixels, in an area of
about 2 cm2. This translates to a computing power of several 100 billion operations per second (GXPS).
The first tested CNN chip [3] was followed by several others implementing a discrete-time CNN
model [4] and chips with on-chip photosensors in each cell [5].
For example, if we place the array of voltage values defined by the image shown in Figure 13.5b as

the input voltage and the initial state capacitor voltage values in the CNN array with the cloning template
shown in Figure 13.5a, then after the transients have settled down, the output voltages will encode
the output image of Figure 13.5c. Observe that the vertical line has been deleted. Since the image

Input OutputState

ioutputuij
xij yij = f(xij)f(xij)

RI
+ +

–

+

–

+
–

–
iinput

FIGURE 13.3 Simple first-order CNN cell.

iinput = Σbkl ukl ioutput  =  Σakl ykl

b11

b21

b31 b32

Coefficients bkl
specified by
Feedforward
template B

Coefficients akl
specified by

Feedback
template A

b33

b22 b23

b12 b13 a11 a12 a13

a21 a22 a23

a33a32a31

FIGURE 13.4 The 19 numbers (a program) that govern the CNN array (the 19th number is the constant bias term
I, but it is not shown in the figure) define the cloning template (A, B, and I).
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contains 403 40 pixels, the CNN array contains 403 40 cells. It is quite interesting that if we had more
than one vertical line, the computing time would be the same. Moreover, if we had an array of 1003 100
cells on the chip, the computing time would remain the same as well. This remarkable result is due to the
fully parallel nonlinear dynamics of the CNN computer. Some propagating-type templates induce
wavelike phenomena. Their settling times increase with the size of the array.
For other image-processing tasks, processing form, motion, color, and depth, more than 100 cloning

templates have been developed to date and the library of new templates is growing rapidly. Using the
Cellular Neural Network Workstation Tool Kit [6], they can be called in from a CNN template library
(CTL). New templates are being developed and published continually.
The dynamics of the CNN array is described by the following set of differential equations:

dxij=dt ¼ �xij þ I þ ioutput þ iinput
yij ¼ f (xij)

i ¼ 1, 2, . . . , N and j ¼ 1, 2, . . . ,M (the array has N �M cells)

where the last two terms in the state equation are given by the sums shown in Figure 13.4.
We can generalize the domain covered by the original CNN defined via linear and time-invariant

templates by introducing the ‘‘nonlinear’’ templates (denoted by ‘‘^’’) and the ‘‘delay’’ templates
(indicated by t in the superscript) as well, to obtain the generalized state equation shown below.
The unity-gain nonlinear sigmoid characteristics f are depicted in Figure 13.6.

dvxij
dt

¼ �vxij þ Iij þ
X

kl2Nr(ij)

Âij;kl (vykl(t), vyij(t))þ
X

kl2Nr(ij)

B̂ij;kl(vukl(t), vuij(t))

þ
X

kl2Nr(ij)

At
ij;klvykl(t � t)þ

X
kl2Nr(ij)

Bt
ij;klvukl(t � t)

Several strong results have been proved that assure stable and reliable operations. If the A template is
symmetric, then the CNN is stable. Several other results have extended this condition [4,7]. The sum of
the absolute values of all the 19 template elements plus 1 defines the dynamic range within which the

(b) (c)

(a)

0 0 0 
0 2 0 , ,A =
0 0 0 

0 –0.25 0
0     0    0B =
0 –0.25 0

I = – 1.5

FIGURE 13.5 An input and output image where the vertical line was deleted.
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state voltage remains bounded during the entire transient, if the input and initial state signals are<1 V in
absolute value [1].
In a broader sense, the CNN is defined [8] as shown in Figure 13.7, see also Ref. [32].

13.3 Stored Program CNN Universal Machine
and the Analogic Supercomputer Chip

For different tasks, say image-processing, we need different cloning templates. If we want to implement
them in hardware, we would need different chips. This is inefficient except for dedicated, mass-
production applications.
The invention of the CNN universal machine [9] has overcome the problem above. It is the first

stored-program array computer with analog nonlinear array dynamics. One CNN operation, for
example, solving thousands of nonlinear differential equations in a microsecond, is just one single
instruction. In addition, a single instruction is represented by just a few analog (real) values (numbers).
In the case when the nearest neighborhood is used, only 19 numbers are generated. When combining
several CNN templates, for example, extracting first contours in a grayscale image, then detecting
those areas where the contour has holes, etc., we have to design a flowchart logic that satisfies the
correct sequence of the different templates. The simple flowchart for the previous example is shown in
Figure 13.8. One key point is that, in order to exploit the high speed of the CNN chips, we have to store
the intermediate results cell-by-cell (pixel-by-pixel). Therefore, we need a local analog memory (LAM).
By combining several template actions we can write more complex flowcharts for implementing almost
any analogic algorithms. The name analogic is an acronym for ‘‘analog and logic.’’ It is important to
realize that analogic computation is completely different from hybrid computing. To cite just one point,
among others, no A=D or D=A conversions occur during the computation of an analogic program. As
with digital microprocessors, to control the execution of an analogic algorithm, we need a global
programming unit. The global architecture of the CNN universal machine is shown in Figure 13.9.

f (V)

1

1

–1

–1

V

FIGURE 13.6 The simple unity-gain sigmoid characteristics.

• 1-, 2-, 3-, or n-dimensional array of mainly identical dynamical systems, called cells or 
 processor units, which satisfies two properties: 
 • Most interactions are local within a finite radius r
 • All state variables are continuous valued signals

FIGURE 13.7 CNN definition.
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Contour detection template

Image with contour lines

Hole detection template

Input: grayscale image

Output image

FIGURE 13.8 Flowchart representing the logic sequence of two templates.
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Switch configuration register
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Global analogic
program unit

FIGURE 13.9 Global architecture of the CNN universal machine.
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As we can see from this figure, the CNN nucleus described in Section 13.2 has been generalized to include
several crucial functions depicted in the periphery. We have already discussed the role of the LAM that
provides the local (on-chip) storage of intermediate analog results. Because the results ofmanydetection tasks
in applications involve only black-and-white logic values, adding a local logic memory (LLM) in each cell is
crucial. After applying several templates in a sequence, it is often necessary to combine their results.
For example, to analyze motion, consecutive snapshots processed by CNN templates are compared. The
local analog output unit (LAOU) and the local logic unit (LLU) perform these tasks, both on the local
analog (gray scale) and the logical (black-and-white) values. The local communication and control unit
(LCCU) of each cell decodes the various instructions coming from the global analogic program unit (GAPU).
The global control of each cell is provided by the GAPU. It consists of four parts:

1. Analog program (instruction) register (APR) stores the CNN template values (19 values for each
CNN template instruction in the case of nearest interconnection). The templates stored here will be
used during the run of the prescribed analogical algorithm.

2. Global logic program register (LPR) stores the code for the LLUs.
3. Flexibility of the extended CNN cells is provided by embedding controllable switches in each cell.

By changing the switch configurations of each cell simultaneously, we can execute many tasks
using the same cell. For example, the CNN program starts by loading a given template, storing
the results of this template action in the LAM, placing this intermediate result back on the input
to prepare the cell, starting the action with another template, etc. The switch configurations of
the cells are coded in the switch configuration register (SCR).

4. Finally, the heart of the GAPU is the global analogic control unit (GACU), which contains the
physical machine code of the logic sequence of analogical algorithm. It is important to emphasize
that here the control code is digital; hence, although its internal operation is analog and logical, a
CNN universal chip can be programmed with the same flexibility and ease as a digital micropro-
cessor—except the language is much simpler. Indeed, a high-level language, a compiler, an
operating system, and an algorithm development system are available for CNN universal chip
architectures. Moreover, by fabricating optical sensors cell-by-cell on the chip [5], the image input
is directly interfaced.

The CNN universal chip is called supercomputer chip because the execution speed of an analogic
algorithm falls in the same range as the computing power of today’s average digital supercomputers
(a TeraOPS). Another reason for this enormous computing power is that the reprogramming time of
a new analog instruction (template) is of the same order, or less, than the analog array execution time
(less than a microsecond). This is about 1 million times faster than some fully interconnected
analog chips.
Based on the previously mentioned novel characteristics, the CNN universal chip can be considered to

be an analogic microprocessor.

13.4 Applications

In view of its flexibility and its very high speed in image-processing tasks, the CNN universal machine is
ideal for many applications. In the following, we briefly describe three areas. For more applications, the
reader should consult the references at the end of this chapter.

13.4.1 Image Processing—Form, Motion, Color, and Depth

Image processing is currently the most popular application of CNN. Of the more than 100 different
templates currently available, the vast majority are for image-processing tasks. Eventually, we will
have templates for almost all conceivable local image-processing operations. Form (shape), motion,
color, and depth can all be ideally processed via CNN. The interested reader can find many examples and
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applications in the references. CNN handles analog pixel values, so grayscale images are processed
directly.
Many templates detect simple features like different types of edges, convex or concave corners, lines

with a prescribed orientation, etc. Other templates detect semiglobal features like holes, groups of objects
within a given size of area, or delete objects smaller than a given size. There are also many CNN global
operations like calculating the shadow, histogram, etc. Halftoning is commonly used in fax machines,
laser printers, and newspapers. In this case, the local gray level is represented by black dots of identical
size, whose density varies in accordance with the gray level. CNN templates can do this job as well.
A simple example is shown in Figure 13.10. The original grayscale image is shown on the left-hand side,
the halftoned image is shown on the right-hand side. The ‘‘smoothing’’ function of our eye completes the
image-processing task.
More complex templates detect patterns defined within the neighborhood of interaction. In this case,

the patterns of the A and B templates somehow reflect the pattern of the object to be detected.
Because the simplest templates are translation invariant, the detection or pattern recognition is

translation invariant as well. By clever design, however, some rotationally invariant detection procedures
have been developed as well.
Combining several templates according to some prescribed logic sequence, more complex pattern

detection tasks can be performed, e.g., halftoning.
Color-processing CNN arrays represent the three basis colors by single layers via a multilayer CNN.

For example, using the red-green-blue (RGB) representation in a three-layer CNN, simple color-
processing operations can be performed. Combining them with logic, conversions between various
color representations are possible.
One of the most complex tasks that has been undertaken by an analogic CNN algorithm is the

recognition of bank notes. Recognition of bank notes in a few milliseconds is becoming more and more
important. Recent advances in the copy machine industry have made currency counterfeiting easier.
Therefore, automatic bank note detection is a pressing need. Figure 13.11 shows a part of this process
(which involves color processing as well). The dollar bill shown in the foreground is analyzed and the
circles of a given size are detected (colors are not shown). The ‘‘color cube’’ means that each color
intensity is within prescribed lower and upper limit values.
Motion detection can be achieved by CNN in many ways. One approach to process motion is to apply

two consecutive snapshots to the input and the initial state of the CNN cell. The CNN array calculates the
various combinations between the two snapshots. The simplest case is just taking the difference to detect

FIGURE 13.10 Halftoning: an original grayscale image (LHS) and its halftoned version (RHS). A low resolution is
deliberately chosen in (b) in order to reveal the differing dot densities at various regions of the image.
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motion. Detecting direction, shape, etc. of moving objects are only the simplest problems that can be
solved via CNN. In fact, even depth detection can be included as well.

13.4.2 Partial Differential Equations

As noted in the original paper [1], even the simple-cell CNN with the linear template

A ¼
0 1 0
1 �3 1
0 1 0

2
4

3
5, B ¼ 0, I ¼ 0

can approximate the solution of a diffusion-type partial differential equation (PDE) on a discrete spatial
grid. This solution maintains continuity in time, a nice property not possible in digital computers.
By adding just a simple capacitor to the output, i.e., by placing a parallel RC circuit across the output port

of the cell of Figure 13.3, the following wave equation will be represented in a discrete space grid:

d2p(t)=dt2 ¼ Dp

(a)

(c) (d)

(b)

FIGURE 13.11 Some intermediate steps in the dollar bill recognition process. An input image (a) shown here in
single color results in the ‘‘color cube’’ (b), the convex objects (c), and the size classification (d).* (From Zarándy, A.,
Werblin, F., Roska, T., Chua, L.O., and Novel type of analogical CNN algorithms for recognizing bank
notes, Memorandum UCB=ERL, M94=29 1994, Electronics Research Laboratory, University of California, Berkeley,
CA, 1994. With permission.)

* Figure 13.11 shows a part of this process [31] (which involves color processing as well). The dollar bill shown in the
foreground is analyzed and the circles of a given size are detected (colors are not shown).
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where
p(t)¼P(x, y, t) is the state (intensity) variable on a 2-D plane (x, y)
D is the Laplacian operator (the sum of the second derivatives related to x and y)

In some cases, it is useful to use a cell circuit that is chaotic. Using the canonical Chua’s circuit, other
types of PDEs can be modeled, generating effects like autowaves, spiral waves, Turing patterns, and so on
(e.g., Perez-Munuzuri et al. in Ref. [7]).

13.4.3 Relation to Biology

Many topographical sensory organs have processing neural-cell structures very similar to the CNNmodel.
Local connectivity in a few sheets of regularly situated neurons is very typical. Vision, especially the
retina, reflects these properties strikingly. It is not surprising that, based on standard neurobiological
models, CNNmodels have been applied to the modeling of the subcortical visual pathway [10]. Moreover,
a newmethod has been devised to use the CNN universal machine for combining retinamodels of different
species in a programmed way. Modalities from other sensory organs can be modeled similarly and
combined with the retina models [11]. This has been called bionic eye.
Many of these models are neuromorphic. This means that there is a one-to-one correspondence

between the neuroanatomy and the CNN structure. Moreover, the CNN template reflects the intercon-
nection pattern of the neurons (called receptive field organizations). Length tuning is such an example.
A corresponding input and output picture of the neuromorphic length tuning model is shown in
Figure 13.12. Those bars that have lengths smaller than or equal to three pixels are detected.

13.5 Template Library: Analogical CNN Algorithms

During the last few years, after the invention of the cellular neural network paradigm and the CNN
universal machine, many new cloning templates have been discovered. In addition, the number of
innovative analogical CNN algorithms, combining both analog cloning templates and local as well as
global logic, is presently steadily increasing at a rapid rate.
As an illustration, let us choose a couple of cloning templates from the CNN library [1,12]. In

each case, a name, a short description of the function, the cloning templates, and a representative
input–output image pair are shown. With regard to the inputs, the default case means that the input
and initial state are the same. If B¼ 0, then the input picture is chosen as the initial state.

FIGURE 13.12 The length tuning effect. The input image on the LHS contains bars of different lengths. The out
image on the RHS contains only those that are smaller than a given length. (From Roska, T., Hámori, J., Lábos, E.,
Lotz, K., Takács, J., Venetianer, P., Vidnyánszki, Z., and Zarándy, A., IEEE Trans. Circuits Syst. I, 40, 182, 1993.
With permission.)
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Name: AVERAGE

Function. Spatial averaging of pixel intensities over the r¼ 1 convolutional window.

A ¼
0 1 0
1 2 1
0 1 0

2
4

3
5, B ¼

0 0 0
0 0 0
0 0 0

2
4

3
5, I ¼ 0

Example. Input and output picture.

Name: AND

Function. Logical ‘‘AND’’ function of the input and the initial state pictures.

A ¼
0 0 0
0 1:5 0
0 0 0

2
4

3
5, B ¼

0 0 0
0 1:5 0
0 0 0

2
4

3
5, I ¼ �1

Example. Input, initial state, and output picture.

Input 1 Input 2 Output 2

Name: CONTOUR

Function. Grayscale contour detector.

A ¼
0 0 0
0 2 0
0 0 0

2
4

3
5, B ¼

a a a
a a a
a a a

2
4

3
5, I ¼ 0:7
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a

0.5

–0.18 0.18

–1

vx1 j –vxk1

Example. Input and output picture.

Name: CORNER

Function. Convex corner detector.

A ¼
0 0 0
0 2 0
0 0 0

2
4

3
5, B ¼

�0:25 �0:25 �0:25
�0:25 2 �0:25
�0:25 �0:25 �0:25

2
4

3
5, I ¼ �3

Example. Input and output picture.

Input 1 Output 1

Name: DELDIAG1
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Function. Deletes one pixel wide diagonal lines (5).

A ¼
0 0 0
0 2 0
0 0 0

2
4

3
5, B ¼

�0:25 0 �0:25
0 0 0

�0:25 0 �0:25

2
4

3
5, I ¼ �2

Example. Input and output picture.

Input 1 Output 2

Name: DIAG

Function. Deletes the diagonal lines.

A ¼

0 0 0 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0

2
66664

3
77775, B ¼

�1 �1 �0:5 0:5 1
�1 �0:5 1 1 0:5
�0:5 1 5 1 �0:5
0:5 1 1 �0:5 �1
1 0:5 �0:5 �1 �1

2
66664

3
77775, I ¼ �9

Example. Input and output picture.

Input 1 Output 1

Name: EDGE

Function. Black-and-white edge detector.

A ¼
0 0 0
0 2 0
0 0 0

2
4

3
5, B ¼

�0:25 �0:25 �0:25
�0:25 2 �0:25
�0:25 �0:25 �0:25

2
4

3
5, I ¼ �1:5
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Example. Input and output picture.

Input 1 Output 1

Name: MATCH

Function. Detects 33 3 patterns matching exactly the one prescribed by the template B, namely, having
a black=white pixel where the template value is �1, respectively.

A ¼
0 0 0
0 1 0
0 0 0

2
4

3
5, B ¼

v v v
v v v
v v v

2
4

3
5, I ¼ �N þ 0:5

where
v¼þ1, if corresponding pixel is required to be black
v¼ 0, if corresponding pixel is don’t care
v¼�1, if corresponding pixel is required to be white

N¼ number of pixels required to be either black or white, i.e., the number of nonzero values in the
B template

Example. Input and output picture, using the following values:

A ¼
0 0 0
0 1 0
0 0 0

2
4

3
5, B ¼

1 �1 1
0 1 0
1 �1 1

2
4

3
5, I ¼ �6:5

Input 1 Output 1

Name: OR
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Function. Logical ‘‘OR’’ function of the input and the initial state.

A ¼
0 0 0
0 3 0
0 0 0

2
4

3
5, B ¼

0 0 0
0 3 0
0 0 0

2
4

3
5, I ¼ 2

Example. Input, initial state, and output picture.

Input 1 Input 2 Output 2

Name: PEELIPIX

Function. Peels one pixel from all directions.

A ¼
0 0:4 0
0:4 1:4 0:4
0 0:4 0

2
4

3
5, B ¼

4:6 �2:8 4:6
�2:8 1 �2:8
4:6 �2:8 4:6

2
4

3
5, I ¼ �7:2

Example. Input and output picture.

Input 1 Output 1

13.6 Recent Advances

After the first few integrated circuit implementations of the basic CNN circuits, stored programmable
analogic CNN universal machine chips have been fabricated. Indeed, a full-fledged version of them [13]
is the first visual microprocessor, all the 4096 cell processors of it contain an optical sensor right on the
surface of the chip (a focal plane). This implementation represents, at the same time, the most complex
operational, stored programmable analog CMOS integrated circuit ever reported, in terms of the number
of transistors operating in analog mode (about 1 million). The equivalent digital computing power of this
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visual microprocessor is about a few TeraOPS. It processes grayscale input images and has a grayscale
output. A 1283 128 processor version has recently been fabricated. A binary input=output CNN
universal machine chip with 483 48 cell processors has a higher cell density [14], and another circuit
design strategy [15] is aiming to implement 53 5 or even higher neighborhood templates.
These chips are the first examples of a new, analogic, topographic (spatial-temporal) computing

technology. Its computational infrastructure (high-level language, called Alpha, compiler, operating
system, etc.) has also been developed [16], and the industrial applications have been started in a couple
of companies worldwide. Moreover, a key application area of this technology is sensor computing [17].
Integrating 2-D topographic sensor arrays with the CNN universal machine on a single chip, providing a
direct, dynamic interaction with tuning of the sensors, this is a capability no other technology offers with
comparable computational power.
Recently, it has been shown that PDE-based techniques, the most advanced methods for complex

image-processing problems, could solve tasks intractable with other methods. Their only drawback is the
excessive digital computing power they need. In our cellular computing technology, however, the
elementary instruction could be a solution of a PDE. It has been shown that, in addition to the simple
diffusion PDE implementation described previously, almost all PDEs can be implemented by CNN [18].
Indeed, active waves [2] have been successfully applied using operational analogic CNN universal
machine chips with 4096 cell processors, manifesting at least three orders of magnitude speed advantage
compared to fully digital chips of comparable IC technology feature size.
Following the first steps in modeling living sensory modalities, especially vision, motivated especially

by a breakthrough in understanding the neurobiological constructs of the mammalian retina [19], new
models and a modeling framework [20] have been developed based on CNNs. Their implementation in
complex cell CNN universal machines [21] is under construction.
Studies on complexity related to CNN models and implementations have been emerging recently.

Following the groundbreaking theoretical studies of Turing on the morphogenesis of CNN-like coupled
nonlinear units [22] and a few experimental case studies of the well-publicized ‘‘complex systems,’’ as
well as many exotic waves generated by coupled A template CNNs, the root of complexity in pattern
formation at the edge of chaos has been discovered [23]. As far as the computational complexity is
concerned, the study of a new quality of computational complexity has been explored [24], showing
qualitatively different properties compared to the classical digital complexity theory as well as the
complexity on reals [25].
To further explore the vast amount of literature on CNN technology and analogic cellular computing,

the interested reader could consult the bibliography at the website of the technical committee on Cellular
Neural Networks and Array Computing of the IEEE Circuits and Systems Society (http:==www.ieee-cas.
org=�cnnactc), some recent monographs [26–28], and an undergraduate textbook [29].

13.7 Recent Developments and Outlook

During the last few years, CNN technology, as well as its offsprings and generalizations, has generated
several significant results and the first few companies have entered into the market. The main events are
as follows.
The appearance of the first commercially available, stored programmable, visual microprocessor,

the Q-Eye (with 1763 144 cell processors and on-chip optical sensors, 10,000 frame per second,
and <300 mW), embedded in the self-contained Eye-RIS system, both are from AnaFocus Ltd., Seville
(www.anafocus.com). A new version of the Bi-i camera-computer, using emulated digital cellular array
architecture, has also been developed, and applied in some mission critical tasks (Eutecus Inc., Berkeley,
California, www.eutecus.com).
Several algorithmic and theoretical results as well as application case studies have been published.

A new type of algorithmic thinking is emerging that is based on spatial-temporal waves as elementary
instructions.
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The CNN universal machine, with some extensions and diverse physical implementations
became a general computational platform: the cellular wave computer. This has been happening in
parallel with a dramatic new trend in microprocessor architecture development, namely the multi- and
many core architectures on a single chip. The other side of the story is the cellular supercomputer
development.
The essence of this new trend is that processor arrays on a single chip are becoming the next main

direction in CMOS technology, when saturating the clock frequency due to the power dissipation
constraints. Today, products are already on the market with about 100 processors and the trend is
continuing, including the latest FPGAs. Hence, the cellular many-core processor arrays are becoming the
major trend in computing in general, and in sensory computing, in particular. Since the wire delay is
becoming greater than the gate delay, the communication speed is reduced dramatically far from a given
processor. Hence, the mainly (not exclusively) locally connected cellular processor array architectures on
a single chip become a physical necessity. Interestingly, the high-end supercomputers are also following
this lead (the highest speed Blue Gene of IBM has a 3-D toroidal cellular architecture).
This new development has made the cellular wave computer architecture a must in many applications.

As an example, a very efficient PDE implementation was made by using CNN models on an FPGA and
on a CELL Multiprocessor (IBM, Sony, Toshiba) developed for a game console, as well.
Interestingly, the circuit hardware implementation issues (now at a 45 nm CMOS technology) are

forcing the conversion of the computing architectures. The details can be found in a recent review article
[30]. It seems that the cellular wave computer might become a prototype architecture, although the cell
processors are of different forms and implementations (digital, analog, mixed mode, optical, etc.), and the
spatial-temporal, mainly locally and sparsely globally connected communication framework is necessary.
Interestingly, many different sensory organs, uncovered recently by neurobiologists, are following this
architecture.
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14.1 Introduction to Chaos

14.1.1 Electrical and Electronic Circuits as Dynamical Systems

A system is something having parts that may be perceived as a single entity. A dynamical system is one
that changes with time; what changes is the state of the system. Mathematically, a dynamical system
consists of a space of states (called the state space or phase space) and a rule, called the dynamic,
for determining which state corresponds at a given future time to a given present state [8]. A determin-
istic dynamical system is one where the state, at any time, is completely determined by its initial state and
dynamic. In this section, we consider only deterministic dynamical systems.
A deterministic dynamical system may have a continuous or discrete state space and a continuous-

time or discrete-time dynamic.
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A lumped* circuit containing resistive elements (resistors, voltage and current sources) and energy-
storage elements (capacitors and inductors) may be modeled as a continuous-time deterministic dynam-
ical system in R

n. The evolution of the state of the circuit is described by a system of ordinary differential
equations (ODEs) called state equations.
Discrete-time deterministic dynamical systems occur in electrical engineering as models of switched-

capacitor (SC) and digital filters, sampled phase-locked loops, and sigma–delta modulators. Discrete-time
dynamical systems also arise when analyzing the stability of steady-state solutions of continuous-
time systems. The evolution of a discrete-time dynamical system is described by a system of difference
equations.

14.1.1.1 Continuous-Time Dynamical Systems

THEOREM 14.1 (Existence and Uniqueness of Solution for a Differential Equation)

Consider a continuous-time deterministic dynamical system defined by a system of ordinary differential
equations of the form

_X(t) ¼ F X(t), tð Þ (14:1)

where X(t) 2 R
n is called the state, _X(t) denotes the derivative of X(t) with respect to time, X(t0)¼X0 is

called the initial condition, and the map F(�, �):Rn3Rþ ! R
n is (1) continuous almost everywherey on

R
n3Rþ and (2) globally Lipschitzz in X. Then, for each (X0, t0) 2 R

n3Rþ, there exists a continuous
function f(�; X0, t0): Rþ ! R

n such that

f(t0;X0, t0) ¼ X0

and

_f(t;X0, t0) ¼ F f(t;X0, t0), tð Þ (14:2)

Furthermore, this function is unique.
The function f(�; X0, t0) is called the solution or trajectory (X0, t0) of the differential Equation 14.1.

The image {f(t; X0, t0) 2 R
njt 2 Rþ} of the trajectory through (X0, t0) is a continuous curve in R

n

called the orbit through (X0, t0).
F(�, �) is called the vector field of Equation 14.1 because its image F(X, t) is a vector that defines the

direction and speed of the trajectory through X at time t.
The vector field F generates the flow f, where f(�; �, �): Rþ3R

n3Rþ ! R
n is a collection of

continuous maps {f(t; �, �): Rn3Rþ ! R
njt 2 Rþ}.

In particular, a point X0 2 R
n at t0 is mapped by the flow into X(t)¼ft(t; X0, t0) at time t.

* A lumped circuit is one with physical dimensions that are small compared with the wavelengths of its voltage and current
waveforms [2].

y By continuous almost everywhere, we mean the following: let D be a set in Rþ that contains a countable number of
discontinuities and for each X 2 R

n, assume that the function t 2 Rþ\D! F(X, t) 2 R
n is continuous and for any t 2 D the

left-hand and right-hand limits F(X, t) and F(X, tþ), respectively, are finite in R
n [1]. This condition includes circuits that

contain switches and=or squarewave voltage and current sources.
z There is a piecewise continuous function k(�): Rþ ! Rþ such that kF(X, t)�F(X0 , t)k� k(t) kX�X0k, 8t 2 Rþ, 8X,
X0 2 R

n.
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14.1.1.2 Autonomous Continuous-Time
Dynamical Systems

If the vector field of a continuous-time determin-
istic dynamical system depends only on the state
and is independent of time t, then the system is
said to be autonomous and may be written as

_X(t) ¼ F[X(t)]

or simply

_X ¼ F(X) (14:3)

If, in addition, the vector field F(�): Rn ! R
n is

Lipschitz,* then there is a unique continuous
function f(�, X0): Rþ ! R

n (called the trajectory
through X0), which satisfies,

_f(t, X0) ¼ F[f(t, X0)], f(t0, X0) ¼ X0 (14:4)

Because the vector field is independent of time, we choose t0� 0. For shorthand, we denote the flow by f
and the map f(t, �): Rn ! R

n by ft.
The t-advance map ft takes a state X0 2 R

n to state X(t)¼ft(X0) t seconds later. In particular, f0 is
the identity mapping. Furthermore, ftþs¼ftfs, because the state Y¼fs(X) to which X evolves after
time s evolves after an additional time t into the same state Z as that to which X evolves after time tþ s:

Z ¼ ft(Y) ¼ ft[fs(X)] ¼ ftþs(X)

A bundle of trajectories emanating from a ball Br(X0) of radius r centered at X0 is mapped by the flow
into some region ft[Br(X0)] after t seconds (see Figure 14.1). Consider a short segment of the trajectory
ft (X0) along which the flow is differentiable with respect to X: in a sufficiently small neighborhood of
this trajectory, the flow is almost linear, so the ball Be(X0) of radius e about X0 evolves into an ellipsoid
ft[Be(X0)], as shown.

An important consequence of Lipschitz continuity in an autonomous vector field and the resulting
uniqueness of solution of Equation 14.3 is that a trajectory of the dynamical system cannot go through
the same point twice in two different directions. In particular, no two trajectories may cross each other;
this is called the noncrossing property [18].

14.1.1.3 Nonautonomous Dynamical Systems

A nonautonomous, n-dimensional, continuous-time dynamical system may be transformed to an
(nþ 1)-dimensional autonomous system by appending time as an additional state variable and writing

_X(t) ¼ F X(t), Xnþ1(t)½ �
_Xnþ1(t) ¼ 1

(14:5)

* There exists a finite k 2 R
n such that kF(X)� F(X0)k� k kX�X0k, 8X, X0 2 R

n.

Br(X0)
φt(Br(X0))

φt(Bε(X0))

Bε(X0)

X0
φt(X0)

φt 

FIGURE 14.1 Vector field F of an autonomous con-
tinuous-time dynamical system generates a flow f that
maps a point X0 in the state space to its image ft(X0) t
seconds later. A volume of state space Br(X0) evolves
under the flow into a region ft[Br(X0)]. Sufficiently
close to the trajectory ft(X0), the linearized flow maps
a sphere of radius e into an ellipsoid.
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In the special case where the vector field is periodic with period T, as for example in the case of an
oscillator with sinusoidal forcing, the periodically forced system Equation 14.5 is equivalent to the (nþ 1)
th-order autonomous system

_X(t) ¼ F X(t), u(t)Tð Þ
_u(t) ¼ 1

T

(14:6)

where u(t)¼Xnþ1=T.
By identifying the n-dimensional hyperplanes corresponding to u¼ 0 and u¼ 1, the state space may be

transformed from R
n3Rþ into an equivalent cylindrical state space Rn3 S1, where S1 denotes the circle.

In the new coordinate system, the solution through (X0, t0) of Equation 14.6 is

X(t)
uS1 (t)

� �
¼ ft(X0, t0)

t=T mod 1

� �

where u(t) 2 Rþ is identified with a point on S1 (which has normalized angular coordinate uS1(t) 2 [0, 1))
via the transformation u1s (t)¼ u(t) mod 1. Using this technique, periodically forced nonautonomous
systems can be treated like autonomous systems.

14.1.1.4 Discrete-Time Dynamical Systems

Consider a discrete-time deterministic dynamical system defined by a system of difference equations
of the form

X(kþ 1) ¼ G X(k), kð Þ (14:7)

where
X(k) 2 R

n is called the state
X (k0)¼X0 is the initial condition
G(�, �): Rn3Zþ ! R

n maps the current state X(k) into the next state X(kþ 1), where k0 2 Zþ

By analogy with the continuous-time case, there exists a function f(�, X0, k0): Zþ ! R
n such that

f(k0; X0, k0) ¼ X0

and

f(kþ 1; X0, k0) ¼ G f(k; X0, k0), kð Þ

The function f(�; X0, k0): Zþ ! R
n is called the solution or trajectory through (X0, k0) of the difference

Equation 14.7.
The image {f(k; X0, k0) 2 R

n jk 2 Zþ} in R
n of the trajectory through (X0, k0) is called an orbit

through (X0, k0).
If the map G(�, �) of a discrete-time dynamical system depends only on the state X(k) and is

independent of k then the system is said to be autonomous and may be written more simply as

Xkþ1 ¼ G(Xk) (14:8)

where Xk is shorthand for X(k) and the initial iterate k0 is chosen, without loss of generality, to be zero.
Using this notation, Xk is the image X0 after k iterations of the map G(�): Rn ! R

n.
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Example: Nonlinear Parallel RLC Circuit

Consider the parallel RLC circuit in Figure 14.2. This circuit contains a linear inductor L, a linear capacitor
C2, and a nonlinear resistor N0

R, where the continuous piecewise-linear driving-point (DP) characteristic
(see Figure 14.3) has slope G0

a for jV 0
Rj � E and slope G0

b for jV 0
Rj > E. The DP characteristic of N0

R may be
written explicitly

I0R(V
0
R) ¼ G0

bV
0
R þ

1
2
(G0

a � G0
b) jV 0

R þ Ej � jV 0
R � Ej� �

This circuit may be described by a pair of ODEs and is therefore a second-order, continuous-time
dynamical system. Choosing I3 and V2 as state variables, we write

dI3
dt

¼ � 1
L
V2

dV2
dt

¼ 1
C2

I3 � 1
C2

I0R(V2)

with I3(0)¼ I30 and V2(0)¼ V20.
We illustrate the vector field by drawing vectors at uniformly spaced points in the two-dimensional

state space defined by (I3, V2). Starting from a given initial condition (I30, V20), a solution curve in state
space is the locus of points plotted out by the state as it moves through the vector field, following
the direction of the arrow at every point. Figure 14.4 illustrates typical vector fields and trajectories of the
circuit.

V2C2L

I3

+

–

+

–

IŔ

V Ŕ N Ŕ

FIGURE 14.2 Parallel RLC circuit where the nonlinear resistorN 0
R has aDP characteristic as illustrated in Figure 14.3.

By Kirchhoff’s voltage law, V 0
R ¼ V2.

EE–E

–E

Gb́

V Ŕ V Ŕ

Gá
Gá

G b́

Gb́

Gb́

IŔ IŔ

0́ 0'

(a) (b)

FIGURE 14.3 DP characteristic of N 0
R in Figure 14.2 when (a) G0

a < 0 and (b) G0
a > 0.
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If L, C2, and G0
b are positive, the steady-state behavior of the circuit depends on the sign of G0

a. When
G0
a > 0, the circuit is dissipative everywhere and all trajectories collapse toward the origin. The unique

steady-state solution of the circuit is the stable dc equilibrium condition I3¼ V2¼ 0.
If G0

a > 0, N0
R looks like a negative resistor close to the origin and injects energy into the circuit,

pushing trajectories away. Further out, where the characteristic has positive slope, trajectories are pulled
in by the dissipative vector field. The resulting balance of forces produces a steady-state orbit called a
limit cycle, which is approached asymptotically by all initial conditions of this circuit.
This limit cycle is said to be attracting because nearby trajectories move toward it and it is structurally

stable in the sense that, for almost all values of G0
a, a small change in the parameters of the circuit has

little effect on it. In the special case when G0
a � 0, a perturbation of G0

a causes the steady-state behavior
to change from an equilibrium point to a limit cycle; this is called a bifurcation.
In the following sections, we consider in detail steady-state behaviors, stability, structural stability, and

bifurcations.

14.1.2 Classification and Uniqueness of Steady-State Behaviors

A trajectory of a dynamical system from an initial state X0 settles, possibly after some transient, onto a
set of points called a limit set. The v-limit set corresponds to the asymptotic behavior of the system as
t ! þ1 and is called the steady-state response. We use the idea of recurrent states to determine when
the system has reached steady state.
A state X of a dynamical system is called recurrent under the flow f if, for every neighborhood Be(X)

of X and for every T> 0, there is a time t>T such that ft(X) \ Be(X) 6¼ Ø. Thus, a state X is recurrent if,
by waiting long enough, the trajectory through X repeatedly returns arbitrarily close to X [7].
Wandering points correspond to transient behavior, while steady-state or asymptotic behavior cor-

responds to orbits of recurrent states.
A point Xv is an v-limit point of X0 if and only if limk!þ1 ftk(X0) ¼ (Xv) for some sequence {tkjk 2

Zþ such that tk ! þ1. The set L(X0) of v-limit points of X0 is called v-limit set of X0.*
A limit set L is called attracting if there exists a neighborhood U of L such that L(X)0¼ L for all X0 2 U.

Thus, nearby trajectories converge toward an attracting limit set as t ! 1.

(a) (b)

FIGURE 14.4 Vector fields for the nonlinear RLC circuit in Figure 14.2. L¼ 18 mH, C2¼ 100 nF, E¼ 0.47 V.
(a) G0

a ¼ 242.424 mS, G0
b ¼ 1045.455 mS: all trajectories converge to the origin. (b) G0

a ¼�257.576 mS, G0
b ¼ 545.455

mS: the unique steady-state solution is a limit cycle. Horizontal axis: I3, 400 mA=div; vertical axis: V2, 200 mV=div.
(From Kennedy, M. P., IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 40, 647, Oct. 1993. With permission.)

* The set of points to which trajectories converge from X0 as t ! �1 is called the a-limit set of X0. We consider only
positive time, therefore, by limit set, we mean the v-limit set.
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An attracting set ! that contains at least one orbit that comes arbitrarily close to every point in ! is
called an attractor [7].
In an asymptotically stable linear system the limit set is independent of the initial condition and

unique so it makes sense to talk of the steady-state behavior. By contrast, a nonlinear system may possess
several different limit sets and therefore may exhibit a variety of steady-state behaviors, depending on the
initial condition.
The set of all points in the state space that converge to a particular limit set L is called the basin of

attraction of L.
Because nonattracting limit sets cannot be observed in physical systems, the asymptotic or steady-state

behavior of a real electronic circuit corresponds to motion on an attracting limit set.

14.1.2.1 Equilibrium Point

The simplest steady-state behavior of a dynamical system is an equilibrium point. An equilibrium point
or stationary point of Equation 14.3 is a state XQ at which the vector field is zero. Thus, F(XQ)¼ 0 and
ft(XQ)¼XQ; a trajectory starting from an equilibrium point remains indefinitely at that point.

In state space, the limit set consists of a single nonwandering point XQ. A point is a zero-dimensional
object. Thus, an equilibrium point is said to have dimension zero.
In the time domain, an equilibrium point of an equilibrium circuit is simply a dc solution or operating

point.
An equilibrium point or fixed point of a discrete-time dynamical system is a point XQ that satisfies

G(XQ) ¼ XQ

Example: Nonlinear Parallel RLC Circuit

The nonlinear RLC circuit shown in Figure 14.2 has just one equilibrium point (I3Q, V2Q)¼ (0,0). When G0
a is

positive, a trajectory originating at any point in the state converges to this attracting dc steady-state
(as shown in Figure 14.4a). The basin of attraction of the origin is the entire state space.
All trajectories, and not just those that start close to it, converge to the origin, so this equilibrium point

is said to be a global attractor.
When G0

a < 0, the circuit possesses two steady-state solutions: the equilibrium point at the origin, and
the limit cycle G. The equilibrium point is unstable in this case. All trajectories, except that which starts at
the origin, are attracted to G.

14.1.2.2 Periodic Steady-State

A state X is called periodic if there exists T> 0 such that fT(X)¼X. A periodic orbit which is not a
stationary point is called a cycle.
A limit cycle G is an isolated periodic orbit of a dynamical system (see Figure 14.5b). The limit

cycle trajectory visits every point on the simple closed curve G with period T. Indeed, ft(X)¼ftþT(X) 8
X 2 G. Thus, every point on the limit cycle G is a nonwandering point.
A limit cycle is said to have dimension one because a small piece of it looks like a one-dimensional

object: a line. Then, n components Xi(t) of a limit cycle trajectory X(t)¼ [X1(t), X2(t), . . . , Xn(t)]
T in R

n

are periodic time waveforms with period T.
Every periodic signal X(t) may be decomposed into a Fourier series—a weighted sum of sinusoids at

integer multiples of a fundamental frequency. Thus, a periodic signal appears in the frequency domain as
a set of spikes at integer multiples (harmonics) of the fundamental frequency. The amplitudes of these
spikes correspond to the coefficient in the Fourier series expansion of X(t). The Fourier transform is an
extension of these ideas to aperiodic signals; one considers the distribution of the signal’s power over a
continuum of frequencies rather than on a discrete set of harmonics.
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The distribution of power in a signal X(t) is most commonly quantified by means of the power density
spectrum, often simply called the power spectrum. The simplest estimator of the power spectrum is the
periodogram [17] which, given N uniformly spaced samples X(k=fs), k¼ 0, 1, . . . , N� 1 of X(t), yields
N=2þ 1 numbers P(nfs=N), n¼ 0, 1, . . . , N=2, where fs is the sampling frequency.

If one considers the signal X(t) as being composed of sinusoidal components at discrete frequencies,
then P(nfs=N) is an estimate of the power in the component at frequency nfs=N. By Parseval’s theorem,
the sum of the power in each of these components equals the mean-squared amplitude of the N samples
of X(t) [17].
If X(t) is periodic with period T, then its power will be concentrated in a dc component, a fundamental

frequency component 1=T, and harmonics. In practice, the discrete nature of the sampling process causes
power to ‘‘leak’’ between adjacent frequency components; this leakage may be reduced by ‘‘windowing’’
the measured data before calculating the periodogram [17].

Example: Periodic Steady-State Solution

Figure 14.5b depicts a state-space orbit, time waveform, and power spectrum of a periodic steady-state
solution of a third-order, autonomous, continuous-time dynamical system.
The orbit in state space is an asymmetric closed curve consisting of four loops. In the time domain, the

waveform has four crests per period and a dc offset. In the power spectrum, the dc offset manifests itself
as a spike at zero frequency. The period of approximately 270 Hz produces a fundamental component at
that frequency. Notice that the fourth harmonic (arising from ‘‘four crests per period’’) has the largest
magnitude. This power spectrum is reminiscent of subharmonic mode locking in a forced oscillator.

14.1.2.3 Subharmonic Periodic Steady-State

A subharmonic periodic solution or period-K orbit of a discrete-time dynamical system is a set of K
points {X1, X2, . . . , Xk} that satisfy

X2 ¼ G(X1), X3 ¼ G(X2) � � � XK ¼ G(XK�1), X1 ¼ G(XK )

More succinctly, we may write Xi¼G(K)(Xi), where G
(K)¼G[G(� � �[G(�)]� � �)] denotes G applied K times

to the argument of the map; this is called the Kth iterate of G.
Subharmonic periodic solutions occur in systems that contain two or more competing frequencies,

such as forced oscillators or sampled-data circuits. Subharmonic solutions also arise following period-
doubling bifurcations (see Section 14.1.5).

14.1.2.4 Quasiperiodic Steady-State

The next most complicated form of steady-state behavior is called quasiperiodicity. In state space, this
corresponds to a torus (see Figure 14.5a). Although a small piece of a limit cycle in R

3 looks like a line, a
small section of two-torus looks like a plane; a two-torus has dimension two.
A quasiperiodic function is one that may be expressed as a countable sum of periodic functions

with incommensurate frequencies, i.e., frequencies that are not rationally related. For example, X(t)¼
sin(t)þ sin(2pt) is a quasiperiodic signal. In the time domain, a quasiperiodic signal may look like an
amplitude-or phase-modulated waveform.
Although the Fourier spectrum of a periodic signal consists of a discrete set of spikes at integer

multiples of a fundamental frequency, that of a quasiperiodic solution comprises a discrete set of spikes at
incommensurate frequencies, as presented in Figure 14.5a.
In principle, a quasiperiodic signal may be distinguished from a periodic one by determining whether

the frequency spikes in the Fourier spectrum are harmonically related. In practice, it is impossible to
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determine whether a measured number is rational or irrational; therefore, any spectrum that appears
to be quasiperiodic may simply be periodic with an extremely long period.
A two-torus in a three-dimensional state space looks like a doughnut. Quasiperiodic behavior on a

higher dimensional torus is more difficult to visualize in state space but appears in the power spectrum as
a set of discrete components at incommensurate frequencies. A K-torus has dimension K.
Quasiperiodic behavior occurs in discrete-time systems where two incommensurate frequencies

are present. A periodically forced or discrete-time dynamical system has a frequency associated with

(a)

(b)
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FIGURE 14.5 Quasiperiodicity (torus breakdown) route to chaos in Chua’s oscillator. Simulated state-space
trajectories, time waveforms V1(t), and power spectra of V2(t). (a) Quasiperiodic steady-state—the signal is charac-
terized by a discrete power spectrum with incommensurate frequency components; (b) periodic window—all
spikes in the power spectrum are harmonically related to the fundamental frequency; (c) chaotic steady-state
following breakdown of the torus—the waveform has a broadband power spectrum. Time plots; horizontal axis—t
(ms); vertical axis—V1 (V). Power spectra: horizontal axis—frequency (kHz); vertical axis—power (mean-squared
amplitude) of V2(t) (dB).
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the period of the forcing or sampling interval of the system; if a second frequency is introduced that is
not rationally related to the period of the forcing or the sampling interval, then quasiperiodicity
may occur.

Example: Discrete Torus

Consider a map from the circle S1 onto itself. In polar coordinates, a point on the circle is parameterized
by an angle u. Assume that u has been normalized so that one complete revolution of the circle
corresponds to a change in u of 1. The state of this system is determined by the normalized angle u and
the dynamics by

ukþ1 ¼ (uk þV) mod 1

If V is a rational number (of the form J=K where J, K 2 Zþ), then the steady-state solution is a period-K
(subharmonic) orbit. If V is irrational, we obtain quasiperiodic behavior.

14.1.2.5 Chaotic Steady-State

DC equilibrium periodic as well as quasiperiodic steady-state behaviors have been correctly identified
and classified since the pioneering days of electronics in the 1920s. By contrast, the existence of more
exotic steady-state behaviors in electronic circuits has been acknowledged only in the past 30 years.
Although the notion of chaotic behavior in dynamical systems has existed in the mathematics literature
since the turn of the century, unusual behaviors in the physical sciences as recently as the 1960s were
described as ‘‘strange.’’ Today, we classify as chaos the recurrent* motion in a deterministic dynamical
system, which is characterized by a positive Lyapunov exponent (LE).
From an experimentalist’s point of view, chaos may be defined as bounded steady-state behavior in a

deterministic dynamical system that is not an equilibrium point, nor periodic, and not quasiperiodic [15].
Chaos is characterized by repeated stretching and folding of bundles of trajectories in state space.

Two trajectories started from almost identical initial conditions diverge and soon become uncorrelated;
this is called sensitive dependence on initial conditions and gives rise to long-term unpredictability.
In the time domain, a chaotic trajectory is neither periodic nor quasiperiodic, but looks ‘‘random.’’

This ‘‘randomness’’manifests itself in the frequency domain as a broad ‘‘noise-like’’ Fourier spectrum, as
presented in Figure 14.5c.
Although an equilibrium point, a limit cycle, and a K-torus each have integer dimension, the repeated

stretching and folding of trajectories in a chaotic steady-state gives the limit set a more complicated
structure that, for three-dimensional continuous-time circuits, is something more than a surface but not
quite a volume.

14.1.2.6 Dimension

The structure of a limit set L � R
n of a dynamical system may be quantified using a generalized notion

of dimension that considers not just the geometrical structure of the set, but also the time evolution of
trajectories on L.

Capacity (D0 Dimension)

The simplest notion of dimension, called capacity (or D0 dimension), considers a limit set simply as set
of points, without reference to the dynamical system that produced it.

* Because a chaotic steady-state does not settle down onto a single well-defined trajectory, the definition of recurrent states
must be used to identify posttransient behavior.
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To estimate the capacity of L, cover the set with n-dimensional cubes having side length e. If L is a
D0-dimensional object, then the minimum number N(e) of cubes required to cover L is proportional
to e�D0. Thus, N(e) / e�D0.

The D0 dimension is given by

D0 ¼ lim
e!0

� lnN(e)
ln e

When this definition is applied to a point, a limit cycle (or line), or a two-torus (or surface) R3, the
calculated dimensions are 0, 1, and 2, respectively, as expected. When applied to the set of nonwandering
points that comprise a chaotic steady-state, the D0 dimension is typically noninteger. An object that has
noninteger dimension is called a fractal.

Example: The Middle-Third Cantor Set

Consider the set of points that is obtained by repeatedly deleting the middle third of an interval, as
indicated in Figure 14.6a. At the first iteration, the unit interval is divided into 21 pieces of length 1=3
each; after k iterations, the set is covered by 2k pieces of length 1=3k. By contrast, the set that is obtained
by dividing the intervals into thirds but not throwing away the middle third each time (Figure 14.6b) is
covered at the kth step by 3k pieces of length 1=3k.
Applying the definition of capacity, the dimension of the unit interval is

lim
k!1

k ln 3
k ln 3

¼ 1:00

By contrast, the middle-third Cantor set has dimension

lim
k!1

k ln 2
k ln 3

� 0:63

The set is something more than a zero-dimensional object (a point) but not quite one-dimensional
(like a line segment); it is a fractal.

Correlation (D2) Dimension

The D2 dimension considers not just the geometry of a limit set, but also the time evolution of trajectories
on the set.

(a) (b)
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FIGURE 14.6 (a) The Middle-third Cantor set is obtained by recursively removing the central portion of an
interval. At the kth step, the set consists of N(e)¼ 2k pieces of length e¼ 3�k. The limit set has capacity 0.63. (b) By
contrast, the unit interval is covered by 3k pieces of length 3�k. The unit interval has dimension 1.00.
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Consider the two limit sets La and Lb in R
2 shown in Figure 14.7a and b, respectively. The D0

dimension of these sets may be determined by iteratively covering them with squares (two-dimensional
‘‘cubes’’) of side length e¼ e0=2

k, k¼ 0, 1, 2, . . . , counting the required number of squares N(e) for each e,
and evaluating the limit

D0 ¼ lim
k!1

� lnN(e)
ln(e)

For the smooth curve La, the number of squares required to cover the set grows linearly with 1=e; hence
D0¼ 1.0. By contrast, if the kinks and folds in set Lb are present at all scales, then the growth of N(e)
versus 1=e is superlinear and the object has a noninteger D0 dimension between 1.0 and 2.0.

Imagine now that La and Lb are not simply static geometrical objects but are orbits of discrete-time
dynamical systems. In this case, a steady-state trajectory corresponds to a sequence of points moving
around the limit set.
Cover the limit set with the minimum number N(e) of ‘‘cubes’’ with side length e, and label the

boxes 1, 2, . . . , i, . . . , N(e). Count the number of times ni(N, e) that a typical steady-state trajectory of
length N visits box i and define

pi ¼ lim
N!1

ni(N , e)
N

(a)

(b)

FIGURE 14.7 Coverings of two limit sets La (a) and Lb (b) with squares of side length e0 and e0=2, respectively.
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where pi is the relative frequency with which a trajectory visits the ith cube. The D2 dimension is
defined as

D2 ¼ lim
e!0

ln
PN(e)

i¼1 p2i
ln e

In general, D2�D0 with equality when a typical trajectory visits all N(e) cubes with the same relative
frequency p¼ 1=N(e). In this special case,

D2 ¼ lim
e!0

ln
PN(e)

i¼1
1

N(e)2

ln e

¼ lim
e!0

� lnN(e)
ln e

¼ D0

An efficient algorithm (developed by Grassberger and Procaccia) for estimating D2 is based on the
approximation

PN(e)
i¼1 p2i � C(e) [15], where C(e) ¼ limN!0

1
N2 (the number of pairs of points (Xi, Xj)

such that kXi�Xjk< e) is called the correlation. The D2 or correlation dimension is given by

D2 ¼ lim
e!0

lnC(e)
ln e

Example: Correlation (D2) Dimension

The correlation dimension of the chaotic attractor in Figure 14.5c, estimated using INSITE, is 2.1, while D2

for the uniformly covered torus in Figure 14.5a is 2.0.

14.1.3 Stability of Steady-State Trajectories

Consider once more the nonlinear RLC circuit in Figure 14.2. If G0
a is negative, this circuit settles to a

periodic steady-state from almost every initial condition. However, a trajectory started from the origin
will, in principle, remain indefinitely at the origin since this is an equilibrium point. The circuit has two
possible steady-state solutions. Experimentally, only the limit cycle will be observed. Why?
If trajectories starting from states close to a limit set converge to that steady state, the limit set is called

an attracting limit set. If, in addition, the attracting limit set contains at least one trajectory that comes
arbitrarily close to every point in the set, then it is an attractor. If nearby points diverge from the limit set,
it is called a repellor.
In the nonlinear RLC circuit with G0

a < 0, the equilibrium point is a repellor and the limit cycle is an
attractor.

14.1.3.1 Stability of Equilibrium Points

Qualitatively, an equilibrium point is said to be stable if trajectories starting close to it remain nearby for
all future time and unstable otherwise. Stability is a local concept, dealing with trajectories in a small
neighborhood of the equilibrium point.
To analyze the behavior of the vector field in the vicinity of an equilibrium point XQ, we write

X¼XQþ x and substitute into Equation 14.3 to obtain
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_XQ þ _x ¼ F(XQ þ x)

F(XQ)þ _x � F(XQ)þDxF(XQ)x
(14:9)

where we have kept just the first two terms of the Taylor series expansion of F(X) about XQ. The Jacobian
matrix DxF(X) is the matrix of partial derivatives of F(X) with respect to X:

DxF(X) ¼

@Fi(X)
@X1

@F1(X)
@X2

� � � @F1(X)
@Xn

@F2(X)
@X1

@F2(X)
@X2

� � � @F2(X)
@Xn

..

. ..
. . .

. ..
.

@Fn(X)
@X1

@Fn(X)
@X2

� � � @Fn(X)
@Xn

6666666664

7777777775

Subtracting F(XQ) from both sides of Equation 14.9 we obtain the linear system

_x ¼ DxF(XQ)x

where the Jacobian matrix is evaluated at XQ. This linearization describes the behavior of the circuit in
the vicinity of XQ; we call this the local behavior.

Note that the linearization is simply the small-signal equivalent circuit at the operating point XQ.
In general, the local behavior of a circuit depends explicitly on the operating point XQ. For example, a
pn-junction diode exhibits a small incremental resistance under forward bias, but a large small-signal
resistance under reverse bias.

14.1.3.2 Eigenvalues

If XQ is an equilibrium point of Equation 14.3, a complete description of its stability is contained in the
eigenvalues of the linearization of Equation 14.3 about XQ. These are defined as the roots l of the
characteristic equation

det[lI�DxF(XQ)] ¼ 0 (14:10)

where I is the identity matrix.
If the real parts of all of the eigenvalues DxF(XQ) are strictly negative, then the equilibrium point XQ is

asymptotically stable and is called a sink because all nearby trajectories converge toward it.
If any of the eigenvalues has a positive real part, the equilibrium point is unstable; if all of the

eigenvalues have positive real parts, the equilibrium point is called a source. An equilibrium point that
has eigenvalues with both negative and positive real parts is called a saddle. A saddle is unstable.
An equilibrium point is said to be hyperbolic if all the eigenvalues of DxF(XQ) have nonzero real parts.

All hyperbolic equilibrium points are either unstable or asymptotically stable.

14.1.3.3 Discrete-Time Systems

The stability of a fixed point XQ of a discrete-time dynamical system

Xkþ1 ¼ G(Xk)

is determined by the eigenvalues of the linearization DXG(XQ) of the vector field G, evaluated at XQ.
The equilibrium point is classified as stable if all of the eigenvalues of DXG(XQ) are strictly less than

unity in modulus, and unstable if any has modulus greater than unity.
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14.1.3.4 Eigenvectors, Eigenspaces, Stable and Unstable Manifolds

Associated with each distinct eigenvalue l of the Jacobian matrix DXF(XQ) is an eigenvector~v defined by

DXF(XQ)~n ¼ l~n

A real eigenvalue g has a real eigenvector ~h. Complex eigenvalues of a real matrix occur in pairs of the
form s	 jv. The real and imaginary parts of the associated eigenvectors ~hr	 j~hc span a plane called a
complex eigenplane.
The ns-dimensional subspace of Rn associated with the stable eigenvalues of the Jacobian matrix

is called the stable eigenspace, denoted Es(XQ). The nu-dimensional subspace corresponding to the
unstable eigenvalues is called the unstable eigenspace, denoted Eu(XQ).

The analogs of the stable and unstable eigenspaces for a general nonlinear system are called the local
stable and unstable manifolds* Ws(XQ) and Wu(XQ).

The stable manifold Ws(XQ) is defined as the set of all states from which trajectories remain in the
manifold and converge under the flow to XQ. The unstable manifold Wu(XQ) is defined as the set of all
states from which trajectories remain in the manifold and diverge under the flow from XQ.
By definition, the stable and unstable manifolds are invariant under the flow (if X 2 Ws, then

ft(X) 2 Ws). Furthermore, the ns- and nu-dimensional tangent spaces to Ws and Wu at XQ are Es and
Eu (as shown in Figure 14.8). In the special case of a linear or affine vector field F, the stable and unstable
manifolds are simply the eigenspaces Es and Eu.
Chaos is associated with two characteristic connections of the stable and unstable manifolds.

A homoclinic orbit (see Figure 14.9a) joins an isolated equilibrium point XQ to itself along its stable
and unstable manifolds. A heteroclinic orbit
(Figure 14.9b) joins two distinct equilibrium
points, XQ1 and XQ2, along the unstable manifold
of one and the stable manifold of the other.

14.1.3.5 Stability of Limit Cycles

Although the stability of an equilibrium point may
be determined by considering the eigenvalues of
the linearization of the vector field near the point,
how does one study the stability of a limit cycle,
torus, or chaotic steady-state trajectory?
The idea introduced by Poincaré is to convert a

continuous-time dynamical system into an
equivalent discrete-time dynamical system by tak-
ing a transverse slice through the flow. Intersec-
tions of trajectories with this so-called Poincaré
section define a Poincaré map from the section to
themselves. Since the limit cycle is a fixed point
XQ of the associated discrete-time dynamical sys-
tem, its stability may be determined by examining
the eigenvalues of the linearization of the Poincaré
map at XQ.

W s(XQ)

W u(XQ)

Es(XQ)

Eu(XQ)XQ

FIGURE 14.8 Stable and unstable manifolds Ws(XQ)
andWu(XQ) of an equilibrium point XQ. The stable and
unstable eigenspaces Es(XQ) and Eu(XQ) derived from
the linearization of the vector field at XQ are tangent to
the corresponding manifolds Ws and Wu at XQ. A
trajectory approaching the equilibrium point along the
stable manifold is tangential to Es(XQ) at XQ; a trajec-
tory leaving XQ along the unstable manifold is tangen-
tial to Eu(XQ) at XQ.

* An m-dimensional manifold is a geometrical object every small section of which looks like Rm. More precisely, M is an
m-dimensional manifold if, for every x 2 M, there exists an open neighborhood U of x and a smooth invertible map which
takes U to some open neighborhood of Rm. For example, a limit cycle of a continuous-time dynamical system is a one-
dimensional manifold.
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14.1.3.6 Poincaré Sections

A Poincaré section of an n-dimensional autonomous continu-
ous-time dynamical system is an (n� 1)-dimensional hyper-
plane S in the state space that is intersected transversally*
by the flow.
Let G be a closed orbit of the flow of a smooth vector field F,

and let XQ be a point of intersection of G with S. If T is the
period of G and X 2 S is sufficiently close to XQ, then the
trajectory ft(X) through X will return to S after a time
t(X)�T and intersect the hyperplane at a point ft(X)(X), as
illustrated in Figure 14.10.
This construction implicitly defines a function (called a

Poincaré map or first return map) G: U ! S

G(X) ¼ ft(X)(X)

where U is a small region of S close to XQ. The corresponding discrete-time dynamical system

Xkþ1 ¼ G(Xk)

has a fixed point at XQ.
The stability of the limit cycle is determined by the eigenvalues of the linearization DXG(XQ) of G at

XQ. If all of the eigenvalues of DXG(XQ) have modulus less than unity, the limit cycle is asymptotically
stable; if any has modulus greater than unity, the limit cycle is unstable.
Note that the stability of the limit cycle is independent of the position and orientation of the Poincaré

plane, provided that the intersection is chosen transverse to the flow. For a nonautonomous system with
periodic forcing, a natural choice for the hyperplane is at a fixed phase uo of the forcing.

WS(XQ)

WU(XQ)

WU(XQ1)

WS(XQ2) XQ2

XQ
XQ1

∑

FIGURE 14.9 (a) Homoclinic orbit joins an isolated equilibrium point XQ to itself along its stable and unstable
manifolds. (b) A heteroclinic orbit joins two distinct equilibrium points, XQ1 and XQ2, along the unstable manifolds
of one and the stable manifold of the other.

XQX

U

(X)

∑

Гφτ(x)

FIGURE 14.10 Transverse Poincaré
section S through the flow of a dynamical
system induces a discrete Poincaré map
from a neighborhood U of the point of
intersection XQ to S.

* A transverse intersection of manifolds in R
n is an intersection of manifolds such that, from any point in the intersection,

all directions in R
n can be generated by linear combinations of vectors tangent to the manifolds.
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In the Poincaré section, a limit cycle looks like a fixed point. A period-K subharmonic of a non-
autonomous system with periodic forcing appears as a period-K orbit of the corresponding map
(see Figure 14.11b).
The Poincaré section of a quasiperiodic attractor consisting of two incommensurate frequencies looks

like a closed curve—a transverse cut through a two-torus (Figure 14.11a).
The Poincaré section of chaotic attractor has fractal structure, as depicted in Figure 14.11c.

14.1.4 Horseshoes and Chaos

Chaotic behavior is characterized by sensitive dependence on initial conditions. This phrase emphasizes
the fact that small differences in initial conditions are persistently magnified by the dynamics of
the system so that trajectories starting from nearby initial conditions reach totally different states in a
finite time.
Trajectories of the nonlinear RLC circuit in Figure 14.2 that originate near the equilibrium point are

initially stretched apart exponentially by the locally negative resistance in the case G0
a < 0. Eventually,

however, they are squeezed together onto a limit cycle, so the stretching is not persistent. This is a
consequence of the noncrossing property and eventual passivity.
Although perhaps locally active, every physical resistor is eventually passive meaning that, for a large

enough voltage across its terminals, it dissipates power. This in turn limits the maximum values of the
voltages and currents in the circuit giving a bounded steady-state solution. All physical systems are
bounded, so how can small differences be magnified persistently in a real circuit?

14.1.4.1 Chaos in the Sense of Shil’nikov

Consider a flow f in R
3 that has an equilibrium point at the origin with a real eigenvalue g> 0 and a pair

of complex conjugate eigenvalues s	 jv with s< 0 and v 6¼ 0. Assume that the flow has a homoclinic
orbit G through the origin.
One may define a Poincaré map for this system by taking a transverse section through the homoclinic

orbit, as illustrated in Figure 14.9a.

THEOREM 14.2 (Shil’nikov)

If js=gj< 1, the flow f can be perturbed to f0 such that f0 has a homoclinic orbit G0 near G and the
Poincaré map of f0 defined in a neighborhood of G0 has a countable number of horseshoes in its discrete
dynamics.

(a) (b) (c)

FIGURE 14.11 Experimental Poincaré sections corresponding to a torus breakdown sequence in Chua’s oscillator.
(a) Torus, (b) period-four orbit, (c) chaotic attractor resulting from torus breakdown. (From Chua, L.O., Wu, C.W.,
Hung, A., and Zhong, G.-Q., IEEE Trans. Circuits Syst., 40, 738, Oct. 1993. With permission.)
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The characteristic horseshoe shape in the Poincaré map stretches and folds trajectories repeatedly
(see Figure 14.12). The resulting dynamics exhibit extreme sensitivity to initial conditions [7].
The presence of horseshoes in the flow of a continuous-time system that satisfies the assumptions of

Shil’nikov’s theorem implies the existence of countable numbers of unstable periodic orbits of arbitrarily
long period as well as an uncountable number of complicated bounded nonperiodic chaotic solutions [7].

Horseshoes

The action of the Smale horseshoe map is to take the unit square (Figure 14.12a), stretch it, fold it into a
horseshoe shape (Figure 14.12b), and lay it down on itself (Figure 14.12c). Under the action of this map,
only four regions of the unit square are returned to the square.
Successive iterations of the horseshoe map return smaller and smaller regions of square to itself, as

shown in Figure 14.12d through f. If the map is iterated ad infinitum, the unit square is ultimately
mapped onto a set of points. These points form an invariant (fractal) limit set L that contains a countable
set of periodic orbits of arbitrarily long periods, an uncountable set of bounded nonperiodic orbits, and at
least one orbit that comes arbitrarily close to every point in L.
The properties of the map still hold if the horseshoe is distorted by a perturbation of small size but

arbitrary shape. Thus, the dynamical behavior of the horseshoe map is structurally stable.*
Although the invariant limit set of a horseshoe map consists of nonwandering points, it is not

attracting. Therefore, the existence of a horseshoe in the flow of a third-order system does not imply

(a) (b) (c)

(d) (e) (f )

G(3)

G(5) G(1)

3

1
2

4
5

FIGURE 14.12 The Smale horseshoe map stretches the unit square (a), folds it into a horseshoe (b), and lays it back
on itself (c), so that only points lying in bands 2 and 4 of (a) are mapped into the square. At the next iteration, only
those points in (G(2)[G(4)) \ (2[ 4) (d) are mapped back to the square. Repeated iterations of the map (d)–(f)
remove all points from the square except an invariant (fractal) set of fixed points.

* Structural stability is discussed in more detail in Section 14.1.5.
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that the system will exhibit chaotic steady-state behavior. However if a typical trajectory in the Poincaré
map remains in a neighborhood of the invariant set, then the system may exhibit chaos. Thus, although
Shil’nikov’s theorem is a strong indicator of choas, it does not provide definitive proof that a system
is chaotic.

Example: Chaos in a Piecewise-Linear System

Although we have stated it for the case s< 0, g> 0, Shil’nikov’s theorem also applies when the
equilibrium point at the origin has an unstable pair of complex conjugate eigenvalues and a stable
real eigenvalue. In that case, it is somewhat easier to visualize the stretching and folding of bundles of
trajectories close to a homoclinic orbit.
Consider the trajectory in a three-region piecewise-linear vector field in Figure 14.13. We assume that

the equilibrium point P� has a stable real eigenvalue g1 (where the eigenvector is E r(P�)) and an
unstable complex conjugate pair of eigenvalues s1	 jv1, the real and imaginary parts of whose
eigenvectors span the plane E c(P�) [2], as illustrated. A trajectory originating from a point X0 on
E c(P�) spirals away from the equilibrium point along Ec(P�) until it enters the D0 region, where it is
folded back into D�1. Upon reentering D�1, the trajectory is pulled toward P� roughly in the direction of
the real eigenvector E r(P�), as illustrated.
Now imagine what would happen if the trajectory entering D�1 from D0 were in precisely the

direction E r(P�). Such a trajectory would follow E r(P�) toward P�, reaching the equilibrium point
asymptotically as t ! 1. Similarly, if we were to follow this trajectory backward in time through D0

and back onto E c(P�) in D�1, it would then spiral toward P�, reaching it asymptotically as t ! �1.
The closed curve thus formed would be a homoclinic orbit, reaching the same equilibrium point P�
asymptotically in forward and reverse time.
Although the homoclinic orbit itself is not structurally stable, and therefore cannot be observed

experimentally, horseshoes are structurally stable. A flow f that satisfies the assumptions of Shil’nikov’s
theorem contains a countable infinity of horseshoes; for sufficiently small perturbations f0 of the flow,
finitely many of the horseshoes will persist. Thus, both the original flow and the perturbed flow exhibit
chaos in the sense of Shil’nikov.

D1

D0

D–1
X0

P–

Er(P–)

Ec(P–)

FIGURE 14.13 Stretching and folding mechanism of chaos generation in Chua’s circult. A trajectory spirals away
from the equilibrium point P� along the eigenplane Ec(P�) until it enters the D0 region, where it is folded back into
D�1 and returns to the unstable eigenplane Ec(P�) close to P�. (From Kennedy, M.P., IEEE Trans. Circuits Syst. I
Fundam. Theory Appl., 40, 657, Oct. 1993. With permission.)
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In Figure 14.13, we see that a trajectory lying close to a homoclinic orbit exhibits similar qualitative
behavior: it spirals away from P� along the unstable complex plane E c(P�), is folded in D0, reenters D�1

above E c(P�), and is pulled back toward E c(P�), only to be spun away from P� once more.
Thus, two trajectories starting from distinct initial states close to P� on E c(P�) are stretched apart

exponentially along the unstable eigenplane before being folded in D1 and reinjected close to P�; this
gives rise to sensitive dependence on initial conditions. The recurrent stretching and folding continues
ad infinitum, producing a chaotic steady-state solution.

14.1.4.2 Lyapunov Exponents

The notion of sensitive dependence on initial conditions may be made more precise through the
concept of LEs. LEs quantify the average exponential rates of separation of trajectories along
the flow.
The flow in a neighborhood of asympototically stable trajectory is contracting so the LEs are zero or

negative.* Sensitive dependence on initial conditions results from a positive LE.
To determine the stability of an equilibrium point, we consider the eigenvalues of the linearization of

the vector field in the vicinity of equilibrium trajectory. This idea can be generalized to any trajectory of
the flow.
The local behavior of the vector field along a trajectory ft(X0) of an autonomous continuous-time

dynamical system (Equation 14.3) is governed by the linearized dynamics

_x ¼ DXF(X)x, x(0) ¼ x0
¼ DXF[ft(X0)]x

This is a linear time-varying system where the state transition matrix, Ft(X0), maps a point x0 into
x(t). Thus

x(t) ¼ Ft(X0)x0

Note thatFt is a linear operator. Therefore, a ball Be(X0) of radius e about X0 is mapped into an ellipsoid,
as presented in Figure 14.1. The principal axes of the ellipsoid are determined by the singular values of
Ft.

The singular values s1(t), s2(t), . . . , sn(t) of Ft are defined as the square roots of the eigenvalues of
FH

t Ft , where FH
t is the complex conjugate transpose of Ft. The singular values are ordered so that

s1(t)> s2(t)>� � �> sn(t).
In particular, a ball of radius e is mapped by the linearized flow into an ellipsoid (see Figure 14.1), the

maximum and minimum radii of which are bounded by s1(t)e and sn(t)e, respectively.
The stability of a steady-state orbit is governed by the average local rates of expansion and contraction

of volumes of state space close to the orbit. The LEs li are defined by

li ¼ lim
t!1

1
t
lnsi(t)

whenever this limit exists. The LEs quantify the average exponential rates of separation of trajectories
along the flow.
The LEs are a property of a steady-state trajectory. Any transient effect is averaged out by taking the

limit as t ! 1. Furthermore, the LEs are global quantities of an attracting set that depend on the local
stability properties of a trajectory within the set.

* A continuous flow that has a bounded trajectory not tending to an equlibrium point has a zero LE (in the direction of flow).
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The set {li, i,¼ 1, 2, . . . , n} is called the Lyapunov spectrum. An attractor has the property that the sum
of its LEs is negative.

Lyapunov Exponents of Dicrete-Time Systems

The local behavior along an orbit of the autonomous discrete-time dynamical system (Equation 14.8) is
governed by the linearized dynamics

xkþ1 ¼ DxG(xk)xk, k ¼ 0, 1, 2, . . .

where the state transition matrix, Fk(X0), maps a point x0 into xk. Thus,

xk ¼ Fk(X0)x0

The LEs li for the discrete-time dynamical system (Equation 14.8) are defined by

li ¼ lim
t!1

1
k
lnsi(k)

whenever this limit exists. si(k) denotes the ith singular value of FH
k Fk.

Lyapunov Exponents of Steady-State Solutions

Consider once more the continuous-time dynamical system (Equation 14.3). If DxF were constant along
the flow, with n distinct eigenvalues ~li,
i¼ 1, 2, . . . , n, then

Ft ¼
exp(~l1t) 0 � � � 0

0 exp(~l2t) � � � 0

..

. ..
. . .

. ..
.

0 0 � � � exp(~lant)

0
BBB@

1
CCCA

and

FH
t Ft ¼

exp 2Re(~l1)t
� �

0 � � � 0
0 exp 2Re(~l2)t

� � � � � 0

..

. ..
. . .

. ..
.

0 0 � � � exp 2Re(~ln)t
� �

0
BBBB@

1
CCCCA

giving si(t)¼ exp(Re(~li)t) and

li ¼ lim
t!1

1
t
ln exp Re(~li)t

� �� �
¼ Re(~li)

In this case, the LEs are simply the real parts of the eigenvalues of DXF.
All the eigenvalues of a stable equilibrium point have negative real parts and therefore the largest LE of

an attracting equilibrium point is negative.
Trajectories close to a stable limit cycle converge onto the limit cycle. Therefore, the largest LE of a

periodic steady-state is zero (corresponding to motion along the limit cycle [15]), and all its other LEs
are negative.
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A quasiperiodic K-torus has K zero LEs because the flow is locally neither contracting nor expanding
along the surface of the K-torus.

A chaotic trajectory is locally unstable and therefore has a positive LE; this produces sensitive
dependence on initial conditions. Nevertheless, in the case of a chaotic attractor, this locally unstable
chaotic trajectory belongs to an attracting limit set to which nearby trajectories converge.
The steady-state behavior of a four-dimensional continuous-time dynamical system which has two

positive, one zero, and one negative LE is called hyperchaos.
The Lyapunov spectrum may be used to identify attractors, as summarized in Table 14.1.

14.1.5 Structural Stability and Bifurcations

Structural stability refers to the sensitivity of a phenomenon to small changes in the parameter of a
system. A structurally stable vector field F is one for which sufficiently close vector fields F0 have
equivalent* dynamics [18].
The behavior of a typical circuit depends on a set of parameters one or more of which may be varied in

order to optimize some performance criteria. In particular, one may think of a one-parameter family of
systems

_X ¼ Fm(X) (14:11)

where the vector field is parametrized by a control parameter m. A value m0 of Equation 14.11 for which
the flow of Equation 14.11 is not structurally stable is a bifurcation value of m [7].
The dynamics in the state space may be qualitatively very different from one value of m to another.

In the nonlinear RLC circuit example, the steady-state solution is a limit cycle if the control parameter
G0
a is negative and an equilibrium point if G0

a is positive. If G0
a is identically equal to zero,

trajectories starting from I30¼ 0, V20< E yield sinusoidal solutions. These sinusoidal solutions are
not structurally stable because the slightest perturbation of G0

a will cause the oscillation to decay
to zero or converge to the limit cycle, depending on whether G0

a is made slightly larger or smaller
than zero.
If we think of this circuit as being parametrized by G0

a, then its vector field is not structurally stable at
G0
a � 0. We say that the equilibrium point undergoes a bifurcation (from stability to instability) as the

value of the bifurcation parameter G0
a is reduced through the bifurcation point G0

a ¼ 0.

TABLE 14.1 Classification of Steady-State Behaviors according to Their Limit Sets,
Power Spectra, LEs, and Dimension

Steady State Limit Set Spectrum LEs Dimension

DC Fixed point Spike at DC 0> l1 
� � �
 ln 0

Periodic Closed curve Fundamental plus l1¼ 0 1

Integer harmonics 0> l2 
� � �
 ln

Quasiperiodic K-torus Incommensurate l1 ¼ � � � ¼ lK¼ 0 K

Frequencies 0> lKþ1 
� � �
 ln

Chaotic Fractal Broad spectrum l1> 0 NonintegerPn
i¼1 li < 0

* Equivalent means that there exists a continuous invertible function h that transforms F into F0 .
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14.1.5.1 Bifurcation Types

In this section, we consider three types of local bifurcation: the Hopf bifurcation, the saddle-node
bifurcation, and the period-doubling bifurcation [18]. These bifurcations are called local because they
may be understood by linearizing the system close to an equilibrium point or limit cycle.

Hopf Bifurcation

A Hopf bifurcation occurs in a continuous-time dynamical system (Equation 14.3) when a simple pair of
complex conjugate eigenvalues of the linearizationDxF(XQ) of the vector field at an equilibrium point XQ

crosses the imaginary axis.
Typically, the equilibrium point changes stability from stable to unstable and a stable limit cycle is

born. The bifurcation at G0
a � 0 in the nonlinear RLC circuit is Hopf-like.*

When an equilibrium point undergoes a Hopf bifurcation, a limit cycle is born. When a limit cycle
undergoes a Hopf bifurcation, motion on a two-torus results.

Saddle-Node Bifurcation

A saddle-node bifurcation occurs when a stable and an unstable equilibrium point merge and disappear;
this typically manifests itself as the abrupt disappearance of an attractor.
A common example of a saddle-node bifurcation in electronic circuits is switching between equilib-

rium states in a Schmitt trigger. At the threshold for switching, a stable equilibrium point corresponding
to the ‘‘high’’ saturated state merges with the high-gain region’s unstable saddle-type equilibrium point
and disappears. After a switching transient, the trajectory settles to the other stable equilibrium point,
which corresponds to the ‘‘low’’ state.
A saddle-node bifurcation may also manifest itself as a switch between periodic attractors of different

sizes between a periodic attractor and a chaotic attractor, or between a limit cycle at one frequency and a
limit cycle at another frequency.

Period-Doubling Bifurcation

A period-doubling bifurcation occurs in a discrete-time dynamical system (Equation 14.8) when a
real eigenvalue of the linearization DXG(XQ) of the map G at an equilibrium point crosses the unit
circle at �1 [7].
In a continuous-time system, a period-doubling bifurcation occurs only from a periodic solution

(an equilibrium point of the Poincaré map). At the bifurcation point, a periodic orbit with period T
changes smoothly into one with period 2T, as illustrated in Figure 14.14a and b.

Blue Sky Catastrophe

A blue sky catastrophe is a global bifurcation that occurs when an attractor disappears ‘‘into the blue,’’
usually because of a collision with a saddle-type limit set. Hysteresis involving a chaotic attractor is often
caused by a blue sky catastrophe [18].

14.1.5.2 Routes to Chaos

Each of the three local bifurcations may give rise to a distinct route to chaos, and all three have been
reported in electronic circuits. These routes are important because it is often difficult to conclude from
experimental data alone whether irregular behavior is due to measurement noise or to underlying chaotic
dynamics. If, upon adjusting a control parameter, one of the three prototype routes is observed, this
indicates that the dynamics might be chaotic.

* Note that the Hopf bifurcation theorem is proven for sufficiently smooth systems and does not strictly apply to piecewise-
linear systems. However, a physical implementation of a piecewise-linear characteristic, such as that of NR, is always
smooth.
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FIGURE 14.14 Period-doubling route to chaos in Chua’s oscillator. Simulated state-space trajectories, time
waveforms V1(t), and power spectra of V2(t) (a) G¼ 530 mS: periodic steady-state—the signal is characterized by a
discrete power spectrum with energy at integer multiples of the fundamental frequency f0; (b) G¼ 537 mS; period-
two—after a period-doubling bifurcation, the period of the signal is approximately twice that of (a). In the power
spectrum, a spike appears at the new fundamental frequency �f0=2. (c) G¼ 539 mS: period-four—a second period-
doubling bifurcation gives rise to a fundamental frequency of �f0=4; (d) G¼ 541 mS: spiral Chua’s attractor—a
cascade of period doublings results in a chaotic attractor that has a broadband power spectrum. Time plots:
horizontal axis—t (ms); vertical axis—V1 (V). Power spectra: horizontal axis—frequency (kHz); vertical axis—
power (mean-squared amplitude of V2(t)) (dB).
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Periodic-Doubling Route to Chaos

The period-doubling route to chaos is characterized by a cascade of period-doubling bifurcations. Each
period-doubling transforms a limit cycle into one at half the frequency, spreading the energy of the
system over a wider range of frequencies. An infinite cascade of such doublings results in a chaotic
trajectory of infinite period and a broad frequency spectrum that contains energy at all frequencies.
Figure 14.14 is a set of snapshots of the period-doubling route to chaos in Chua’s oscillator.

An infinite number of period-doubling bifurcations to chaos can occur over a finite range of the
bifurcation parameter because of a geometric relationship between the intervals over which the control
parameter must be moved to cause successive bifurcations. Period-doubling is governed by a universal
scaling law that holds in the vicinity of the bifurcation point to chaos m1.
Define the ratio dk of successive intervals m, in each of which there is a constant period of oscillation,

as follows,

dk ¼ m2k � m2k�1

m2kþ1 � m2k

where m2k is the bifurcation point for the period from 2kT to 2kþ1T. In the limit as k ! 1, a universal
constant called the Feigenbaum number d is obtained:

lim
k!1

dk ¼ d ¼ 4:6692 . . .

The period-doubling route to chaos is readily identified from a state-space plot, time series, power
spectrum, or a Poincaré map.

Intermittency Route to Chaos

The route to chaos caused by saddle-node bifurcations comes in different forms, the common feature of
which is direct transition from regular motion to chaos. The most common type is the intermittency
route and results from a single saddle-node bifurcation. This is a route and not just a jump because,
straight after the bifurcation, the trajectory is characterized by long intervals of almost regular motion
(called laminar phases) and short bursts of irregular motion. The period of the oscillations is approxi-
mately equal to that of the system just before the bifurcation. This is illustrated in Figure 14.15.
As the parameter passes through the critical value mc at the bifurcation point into the chaotic region,

the laminar phases become shorter and the bursts become more frequent, until the regular intervals
disappear altogether. The scaling law for the average interval of the laminar phases depends on jm – mcj,
so chaos is not fully developed until some distance from the bifurcation point [13].
Intermittency is best characterized in the time domain because its scaling law depends on the length of

the laminar phases.
Another type of bifurcation to chaos associated with saddle-nodes is the direct transition from a

regular attractor (fixed point or limit cycle) to a coexisting chaotic one, without the phenomenon of
intermittency.

Quasiperiodic (Torus Breakdown) Route to Chaos

The quasiperiodic route to chaos results from a sequence of Hopf bifurcations. Starting from a fixed
point, the three-torus generated after three Hopf bifurcations is not stable in the sense that there exists an
arbitrarily small perturbation of the system (in terms of parameters) for which the three-torus gives way
to chaos.
A quasiperiodic–periodic–chaotic sequence corresponding to torus breakdown in Chua’s oscillator is

given in Figure 14.5.
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Quasiperiodicity is difficult to detect from a time series; it is more readily identified by means of a
power spectrum or Poincaré map (see Figure 14.11).

14.1.5.3 Bifurcation Diagrams and Parameter Space Diagrams

Although state-space, time- and frequency-domain measurements are useful for characterizing steady-
state behaviors, nonlinear dynamics offers several other tools for summarizing qualitative information
concerning bifurcations.
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FIGURE 14.15 Intermittency route to chaos in Chua’s oscillator. Simulated state-space trajectories, time wave-
forms V1(t) and power spectra of V2(t) (a) Periodic steady-state—the signal is characterized by a discrete power
spectrum with energy at integer multiples of the fundamental frequency; (b) onset of intermittency—the time signal
contains long regular laminar phases and occasional bursts of irregular motion—in the frequency domain, intermit-
tency manifests itself as a raising of the noise floor; (c) fully developed chaos-laminar phases are infrequent and the
power spectrum is broad. Time plots: horizontal axis—t (ms); vertical axis—V1 (V). Power spectra: horizontal axis—
frequency (kHz); vertical axis—power (mean-squared amplitude of V2(t)) (dB).
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A bifurcation diagram is a plot of the attracting sets of a system versus a control parameter. Typically,
one chooses a state variable and plots this against a single control parameter. In discrete systems, one
simply plots successive values of a state variable. In the continuous-time case, some type of discretization
is needed, typically by means of a Poincaré section.
Figure 14.16 is a bifurcation diagram of the logistic map Xkþ1¼mXk(1 – Xk) for m 2 [2.5, 4] and Xk 2

[0, 1]. Period doubling from period-one to period-two occurs at m2; the next two doublings in the period-
doubling cascade occur at m2 and m4, respectively. A periodic window in the chaotic region is indicated
by m3. The map becomes chaotic by the period-doubling route if m is increased from m3 and by the
intermittency route if m is reduced out of the window.
When more than one control parameter is present in a system, the steady-state behavior may be

summarized in a series of bifurcation diagrams, where one parameter is chosen as the control parameter,
with the others held fixed, and only changed from one diagram to the next. This provides a complete but
cumbersome representation of the dynamics [13].
A clearer picture of the global behavior is obtained by partitioning the parameter space by means of

bifurcation curves, and labeling the regions according to the observed steady-state behaviors within these
regions. Such a picture is called a parameter space diagram.

14.2 Chua’s Circuit: A Paradigm for Chaos

Chaos is characterized by a stretching and folding mechanism; nearby trajectories of a dynamical system
are repeatedly pulled apart exponentially and folded back together.
In order to exhibit chaos, as autonomous circuit consisting of resistors, capacitors, and inductors must

contain (1) at least one locally active resistor, (2) at least one nonlinear element, and (3) at least three
energy-storage elements. The active resistor supplies energy to separate trajectories, the nonlinearity
provides folding, and the three-dimensional state space permits persistent stretching and folding in a
bounded region without violating the noncrossing property of trajectories.
Chua’s circuit (see Figure 14.17) is the simplest electronic circuit that satisfies these criteria. It consists

of a linear inductor, a linear resistor, two linear capacitors, and a single nonlinear resistor NR. The circuit
is readily constructed at low cost using standard electronic components and exhibits a rich variety of
bifurcations and chaos [10].
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FIGURE 14.16 Bifurcation diagram for the logistic map: Xkþ1¼mXk(1�Xk). The first period-doubling bifurcation
occurs at m¼m1, the second at m2, and the third at m4. m3 corresponds to a period-three window. When m¼ 4, the
entire interval (0, 1) is visited by a chaotic orbit {Xk, k¼ 0, 1, . . . }. (From Wu, C.W. and Rul’kov, N.R., IEEE Trans.
Circuits Syst. I Fundam. Theory Appl., 40, 708, Oct. 1993. With permission.)
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14.2.1 Dynamics of Chua’s Circuit

14.2.1.1 State Equations

Chua’s circuit may be described by three ODEs. Choosing V1, V2, and I3 as state variables, we write

dV1

dt
¼ G

C1
(V2 � V1)� 1

C1
f (V1)

dV2

dt
¼ G

C2
(V1 � V2)þ 1

C2
I3

dI3
dt

¼ � 1
L
V2

(14:12)

where G¼ 1=R and f(VR)¼GbVRþ 1=2(GaþGb) (jVRþEj � jVR�Ej), as depicted in Figure 14.18.
Because of the piecewise-linear nature of NR, the vector field of Chua’s circuit may be decomposed into

three distinct affine regions: V1<�E, jV1j �E, and V1> E. We call these the D�1, D0, and D1 regions,
respectively. The global dynamics may be determined by considering separately the behavior in each of
the three regions (D�1, D0, and D1) and then gluing the pieces together along the boundary planes U�1

and U1.

14.2.1.2 Piecewise-Linear Dynamics

In each region, the circuit is governed by a three-dimensional autonomous affine dynamical system
of the form

V1V2 VR NR

IR

I3

L

R

C1C2

+ + +

– – –

FIGURE 14.17 Chua’s circuit consists of a linear inductor L, two linear capacitors (C2,C1), a linear resistor R,
and a voltage-controlled nonlinear resistor NR.
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FIGURE 14.18 The DP characteristic of the nonlinear resistor NR in Chua’s circuit has breakpoints at 	E and
slopes Ga and Gb in the inner and outer regions, respectively.
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_X ¼ AX þ b (14:13)

where
A is the (constant) system matrix
b is a constant vector

The equilibrium points of the circuit may be determined graphically by intersecting the load line
IR¼�GVR with the DP characteristic IR¼ f(VR) of the nonlinear resistor NR, as presented in Figure
14.19 [2]. When G> jGaj or G> jGbj, the circuit has a unique equilibrium point at the origin (and two
virtual equilibria P� and Pþ); otherwise, it has three equilibrium points at P�, 0, and Pþ.
The dynamics close to an equilibrium point XQ are governed locally by the linear system

_x ¼ Ax (14:14)

If the eigenvalues l1, l2, and l3 of A are distinct, then every solution x(t) of Equation 14.14 may be
expressed in the form

x(t) ¼ c1 exp(l1t)~j1 þ c2 exp(l2t)~j2 þ c3 exp(l3t)~j3

where
~j1,~j2, and~j3 are the (possibly complex) eigenvectors associated with the eigenvalues l1, l2, and l3,

respectively
ck’s are (possibly complex) constants that depend on the initial state X0

In the special case when A has one real eigenvalue g and a complex conjugate pair of eigenvalues
s	 jv, the solution of Equation 14.14 has the form

x(t) ¼ cr exp(gt)~jg þ 2cc exp(st) cos(vt þ fc)~hr � sin(vt þ fc)~hi½ �

where
~hr and ~hi are the real and imaginary parts of the eigenvectors associated with the complex conjugate

pair of eigenvalues
~jg is the eigenvector defined by A~jg¼ g~jg
cr, cc, and fc are real constants that are determined by the initial conditions

Let us relabel the real eigenvector Er, and define Ec as the complex eigenplane spanned by ~hr and ~hi.
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FIGURE 14.19 DC equilibrium points of Figure 14.17 may be determined graphically by intersecting the load line
IR¼�GVR with the DP characteristic of NR. (a) If G> jGaj or G< jgbj, the circuit has a unique equilibrium point at
the origin (P� and Pþ are virtual equilibria in this case). (b) When jGbj<G<jGaj, the circuit has three equilibrium
points at P�, 0 and Pþ.
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We can think of the solution x(t) of Equation 14.14 as being the sum of two distinct components xr(t)
2 Er and xc(t) 2 Ec:

xr(t) ¼ cr exp(gt)~jg
xc(t) ¼ 2cc exp(st)[ cos(vt þ fc)~hr � sin(vt þ fc)~hi]

The complete solution X(t) of Equation 14.13 may be found by translating the origin of the linearized
coordinate system to the equilibrium point XQ. Thus,

X(t) ¼ XQ þ x(t)

¼ XQ þ xr(t)þ xc(t)

We can determine the qualitative behavior of the complete solution X(t) by considering separately the
components xr(t) and xc(t) along Er and Ec, respectively.

If g> 0, xr(t) grows exponentially in the direction of Er; if g< 0 the component xr(t) tends asymp-
totically to zero. When s> 0 and v 6¼ 0, xc(t) spirals away from XQ along the complex eigenplane Ec, and
if s< 0, xc(t) spirals toward XQ and Ec.

We remark that the vector E r and plane Ec are invariant under the flow of Equation 14.13: if X(0)2Er,
then X(t) 2 Er for all t; if X(0) 2 Ec then X(t) 2 Ec for all t. An important consequence of this is that a
trajectory X(t) cannot cross through the complex eigenspace Ec; suppose X(t0) 2 Ec at some time t0, then
X(t) 2 Ec for all t> t0.

14.2.2 Chaos in Chua’s Circuit

In the following discussion, we consider a fixed set of component values: L¼ 18 mH, C2¼ 100 nF,
C1¼ 10 nF, Ga ¼�50=66 mS¼�757.576 mS, Gb¼�9=22 mS¼�409.091 mS, and E¼ 1 V. When
G¼ 550 mS, three equilibrium points occur at Pþ, 0, and P�. The equilibrium point at the origin (0) has
one unstable real eigenvalue g0 and a stable complex pair s0	 jv0. The outer equilibria (P� and Pþ) each
have a stable real eigenvalue g1 and an unstable complex pair s0	 jv1.

14.2.2.1 Dynamics of D0

A trajectory starting from some initial state X0 in the D0 region may be decomposed into its components
along the complex eigenplane Ec(0) and along the eigenvector Er(0). When g0> 0 and s0< 0, the
component along Ec(0) spirals toward the origin along this plane while the component in the direction
Er(0) grows exponentially. Adding the two components, we see that a trajectory starting slightly above the
stable complex eigenplane Ec(0) spirals toward the origin along the Ec(0) direction, all the while being
pushing away from Ec(0) along the unstable direction Er(0). As the (stable) component along Ec(0)
shrinks in magnitude, the (unstable) component grows exponentially, and the trajectory follows a helix of
exponentially decreasing radius whose axis lies in the direction of Er(0); this is illustrated in Figure 14.20.

14.2.2.2 Dynamics of D�1 and D1

The eigenvector Er(Pþ) is associated with the stable real eigenvalue g1 in the D1 region. The real
and imaginary parts of the complex eigenvectors associated with s1	 jv1 define a complex eigen-
plane Ec(Pþ).

A trajectory starting from some initial state X0 in the D1 region may be decomposed into its
components along the complex eigenplane Ec(Pþ) and the eigenvector Er(Pþ). When g1< 0 and
s1> 0, the component on Ec(Pþ) spirals away from Pþ along this plane while the component in the
direction of Er(0) tends asymptotically toward Pþ. Adding the two components, we see that a trajectory
starting close to the stable real eigenvector Er(Pþ) above the complex eigenplane moves toward Ec(Pþ)
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along a helix of exponentially increasing radius. Because the component along Er(Pþ) shrinks exponen-
tially in magnitude and the component on Ec(Pþ) grows exponentially, the trajectory is quickly
flattened onto Ec(Pþ), where it spirals away from Pþ along the complex eigenplane; this is illustrated
in Figure 14.21.
By symmetry, the equilibrium point P� in the D�1 region has three eigenvalues: g1 and s1	 jv1. The

eigenvector Er(P�) is associated with the stable real eigenvalue g1; the real and imaginary parts of the
eigenvectors associated with the unstable complex pair s1	 jv1 define an eigenplane Ec(P�), along which
trajectories spiral away from P�.

I3D0
V2

V1

Er(0)

Ec(0)

0

FIGURE 14.20 Dynamics of the D0 region. A trajectory starting slightly above the stable complex eigenplane Ec(0)
spirals toward the origin along this plane and is repelled close to 0 in the direction of the unstabe eigenvector Er(0).
(From Kennedy, M.P., IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 40, 660, Oct. 1993. With permission.)
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FIGURE 14.21 Dynamics of the D1 region. A trajectory starting above the unstable complex eigenplane Ec(Pþ)
close to the eigenvector Er(Pþ) moves toward the plane and spirals away from Pþ along Ec(Pþ). By symmetry, the D�1

region has equivalent dynamics. (From Kennedy, M.P., IEEE Trans. Circuits Syst., 40, 662, Oct. 1993. With
permission.)
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14.2.2.3 Global Dynamics

With the given set of parameter values, the equilibrium point at the origin has an unstable real eigenvalue
and a stable pair of complex conjugate eigenvalues; the outer equilibrium point P� has a stable real
eigenvalue and an unstable complex pair.
In particular, P� has a pair of unstable complex conjugate eigenvalues s1	v1 (s1> 0, v1 6¼ 0) and a

stable real eigenvalue g1, where js1j< jv1j. In order to prove that the circuit is chaotic in the sense of
Shil’nikov, it is necessary to show that it possesses a homoclinic orbit for this set of parameter values.
A trajectory starting on the eigenvector Er(0) close to 0 moves away from the equilibrium point until it

crosses the boundary U1 and enters D1, as illustrated in Figure 14.20. If this trajectory is folded back into
D0 by the dynamics of the outer region, and reinjected toward 0 along the stable complex eigenplane
Ec(0) then a homoclinic orbit is produced.

That Chua’s circuit is chaotic in the sense of Shil’nikov was first proven by Chua et al. [21] in 1985.
Since then, there has been an intensive effort to understand every aspect of the dynamics of this circuit
with a view to developing it as a paradigm for learning, understanding, and teaching about nonlinear
dynamics and chaos [3].

14.2.3 Steady-States and Bifurcations in Chua’s Circuit

In the following discussion, we consider the global behavior of the circuit using our chosen set of
parameters with R in the range 0�R� 2000 V (500 mS�G<1S).
Figure 14.14 is a series of simulations of the equivalent circuit in Figure 14.26 with the follow-

ing parameter values: L¼ 18 mH, C2¼ 100 nF, C1¼ 10 nF, Ga¼�50=66 mS¼�757.576 mS,
Gb¼�9=22 mS¼�409.091 mS, and E¼ 1 V. R0¼ 12.5 V, the parasitic series resistance of a real
inductor. R is the bifurcation parameter.

14.2.3.1 Equilibrium Point and Hopf Bifurcation

When R is large (2000 V), the outer equilibrium points P� and Pþ are stable (g1< 0 and s1< 0, v1 6¼ 0);
the inner equilibrium point 0 is unstable (g0> 0 and s0< 0, v0 6¼ 0).

Depending on the initial state of the circuit, the system remains at one outer equilibrium point or the
other. Let us assume that we start at Pþ in the D1 region. This equilibrium point has one negative real
eigenvalue and a complex pair with negative real parts. The action of the negative real eigenvalue g1 is to
squeeze trajectories down onto the complex eigenplane Ec(Pþ), where they spiral toward the equilibrium
point Pþ.

As the resistance R is decreased, the real part of the complex pair of eigenvalues changes sign
and becomes positive. Correspondingly, the outer equilibrium points become unstable as s1 passes
through 0; this is a Hopf-like bifurcation.* The real eigenvalue of Pþ remains negative so trajectories in
the D1 region converge toward the complex eigenplane Ec(Pþ). However, they spiral away from the
equilibrium point Pþ along Ec(Pþ) until they reach the dividing plane U1 (defined by V1þE) and enter
the D0 region.

The equilibrium point at the origin in the D0 region has a stable complex pair of eigenvalues and an
unstable real eigenvalue. Trajectories that enter the D0 region on the complex eigenplane Ec(0) are
attracted to the origin along this plane. Trajectories that enter D0 from D1 below or above the eigenplane
either cross-over to D�1 or are turned back toward D1, respectively. For R sufficiently large, trajectories
that spiral away from Pþ along Ec(Pþ) and enter D0 above E

c(0) are returned to D1, producing a stable
period-one limit cycle. This is illustrated in Figure 14.14a.

* Recall that the Hopf bifurcation theorem strictly applies only for sufficiently smooth systems, but that physical implemen-
tations of piecewise-linear characteristics are typically smooth.

14-32 Feedback, Nonlinear, and Distributed Circuits



14.2.3.2 Period-Doubling Cascade

As the resistance R is decreased further, a period-doubling bifurcation occurs. The limit cycle now closes
on itself after encircling Pþ twice; this is called a period-two cycle because a trajectory takes approxi-
mately twice the time to complete this closed orbit as to complete the preceding period-one orbit (see
Figure 14.14b).
Decreasing the resistance R still further produces a cascade of period-doubling bifurcations to period-

four (Figure 14.14c), period-eight, period-sixteen, and so on until an orbit of infinite period is reached,
beyond which we have chaos (see Figure 14.14d). This is a spiral Chua’s chaotic attractor.

The spiral Chua’s attractor in Figure 14.14d looks like a ribbon or band that is smoothly folded on
itself; this folded band is the simplest type of chaotic attractor [18]. A trajectory from an initial condition
X0 winds around the strip repeatedly, returning close to X0, but never closing on itself.

14.2.3.3 Periodic Windows

Between the chaotic regions in the parameter space of Chua’s circuit, there exist ranges of the bifurcation
parameter R over which stable periodic motion occurs. These regions of periodicity are called periodic
windows and are similar to those that exist in the bifurcation diagram of the logistic map (see
Figure 14.16).
Periodic windows of periods three and five are readily found in Chua’s circuit. These limit cycles

undergo period-doubling bifurcations to chaos as the resistance R is decreased.
For certain sets of parameters, Chua’s circuit follows the intermittency route to chaos as R is increased

out of the period-three window.

14.2.3.4 Spiral Chua’s Attractor

Figure 14.22 outlines three views of another simulated spiral Chua’s chaotic attractor. Figure 14.22b is a
view along the edge of the outer complex eigenplanes Ec(Pþ) and Ec(P�); notice how trajectories in the
D1 region are compressed toward the complex eigenplane Ec(Pþ) along the direction of the stable real
eigenvector Ec(Pþ) and they spiral away from the equilibrium point Pþ along Ec(Pþ).

When a trajectory enters the D0 region through U1 from D1, it is twisted around the unstable real
eigenvector Er(0) and returned to D1.

Figure 14.22c illustrates clearly that when the trajectory enters D0 from D1, it crosses U1 above the
eigenplace Ec(0). The trajectory cannot cross through this eigenplane and therefore it must return to the
D1 region.

14.2.3.5 Double-Scroll Chua’s Attractor

Because we chose a nonlinear resistor with a symmetric nonlinearity, every attractor that exists in the
D1 and D0 regions has a counterpart (mirror image) in the D�1 and D0 regions. As the coupling
resistance R is decreased further, the spiral Chua’s attractor ‘‘collides’’ with its mirror image and the
two merge to form a single compound attractor called a double-scroll Chua’s chaotic attractor [10], as
presented in Figure 14.23.
Once more, we show three views of this attractor in order to illustrate its geometrical structure.

Figure 14.23b is a view of the attractor along the edge of the outer complex eigenplanes Ec(Pþ) and
Ec(P�). Upon entering the D1 region form D0, the trajectory collapses onto E

c(Pþ) and spirals away from
Pþ along this plane.

Figure 14.23c is a view of the attractor along the edge of the complex eigenplane Ec(0) in the inner
region. Notice once more that when the trajectory crosses U1 into D0 above E

c(0), it must remain above
Ec(0) and so returns to D1. Similarly, if the trajectory crosses U1 below Ec(0), it must remain below Ec(0)
and therefore crosses over to the D�1 region. Thus, Ec(0) presents a knife-edge to the trajectory as it
crosses U1 into the D0 region, forcing it back toward D1 or across D0 to D�1.
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14.2.3.6 Boundary Crisis

Reducing the resistance R still further produces more regions of chaos, interspersed with periodic
windows. Eventually, for a sufficiently small value of R, the unstable saddle trajectory that normally
resides outside the stable steady-state solution collides with the double-scroll Chua’s attractor and a blue
sky catastrophe called a boundary crisis [10] occurs. After this, all trajectories become unbounded.

14.2.4 Manifestations of Chaos

14.2.4.1 Sensitive Dependence on Initial Conditions

Consider once more the double-scroll Chua’s attractor shown in Figure 14.23. Two trajectories starting
from distinct but almost identical initial states in D1 will remain ‘‘close together’’ until they reach the
separating plane U1. Imagine that the trajectories are still ‘‘close’’ at the knife-edge, but that one trajectory
crosses into D0 slightly above E

c(0) and the other slightly below Ec(0). The former trajectory returns to D1

and the latter crosses over to D1: their ‘‘closeness’’ is lost.
The time-domain waveforms V1(t) for two such trajectories are shown in Figure 14.24. These

are solutions of Chua’s oscillator with the same parameters as in Figure 14.23; the initial condi-
tions are (I3, V2, V1)¼ (1.810 mA, 222.014 mV, �2.286 V) [solid curve] and (I3, V2, V1)¼ (1.810 mA,
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FIGURE 14.22 Three views of a simulated spiral Chua’s attractor in Chua’s oscillator with G¼ 550 mS.
(a) Reference view (compare with Figure 14.14d). (b) View of the edge of the outer complex eigenplanes Ec(Pþ)
and Ec(P�); note how trajectory in D1 is flattened onto Ec(Pþ). (c) View along the edge of the complex eigenplane
Ec(0); trajectories cannot cross this plane. (From Kennedy, M.P., IEEE Trans. Circuits Syst. I Fundam. Theory Appl.,
40, 664, Oct. 1993. With permission.)
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222.000 mV, �2.286 V) [dashed curve]. Although the initial conditions differ by less than 0.01% in just
one component (V2), the trajectories diverge and become uncorrelated within 5 ms because one crosses
the knife-edge before the other.
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FIGURE 14.23 Three views of a simulated double-scroll Chua’s attractor in Chua’s oscillator with G¼ 565 mS.
(a) Reference view (compare with Figure 14.14d). (b) View along the edge of the outer complex eigenplanes Ec(Pþ)
and Ec(P�); note how the trajectory in D1 is flattened onto Ec(Pþ) and onto Ec(P�) in D�1. (c) View along the edge
of the complex eigenplane Ec(0); a trajectory entering D0 from D1 above this plane returns to D1 while one entering
D0 below Ec(0) crosses to D�1. (From Kennedy, M.P., IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 40, 665,
Oct. 1993. With permission.)
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FIGURE 14.24 Sensitive dependence on initial conditions. Two time waveforms V1(t) from Chua’s oscillator with
G¼ 550 mS, starting from (I3, V2, V1)¼ (1.810 mA, 222.01 mV, �2.286 V) [solid line] and (I3, V2, V1)¼ (1.810 mA,
222.000 mV, �2.286 V) [dashed line]. Note that the trajectories diverge within 5 ms. Horizontal axis: t (ms); vertical
axis: V1 (V). Compare with Figure 14.23.
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This rapid decorrelation of trajectories that originate in nearby initial states, commonly called sensitive
dependence on initial conditions, is a generic property of chaotic systems. It gives rise to an apparent
randomness in the output of the system and long-term unpredictability of the state.

14.2.4.2 ‘‘Randomness’’ in the Time Domian

Figures 14.14a through d show the state-space trajectories of period-one, period-two, and period-four
periodic attractors, a spiral Chua’s chaotic attractor, respectively, and the corresponding voltage wave-
forms V1(t).
The ‘‘period-one’’ waveform is periodic; it looks like a slightly distorted sinusoid. The ‘‘period-two’’

waveform is also periodic. It differs qualitatively from the ‘‘period-one’’ in that the pattern of a large peak
followed by a small peak repeats approximately once every two cycles of the period-one signal; that is
why it is called period-two.
In contrast with these periodic time waveforms, V1(t) for the spiral Chua’s attractor is quite irregular

and does not appear to repeat itself in any observation period of finite length. Although it is produced by
a third-order deterministic differential equation, the solution looks ‘‘random.’’

14.2.4.3 Broadband ‘‘Noise-Like’’ Power Spectrum

In the following discussion, we consider 8192 samples of V2(t) recorded at 200 kHz; leakage in the power
spectrum is controlled by applying a Welch window [17] to the data.
We remarked earlier that the period-one time waveform corresponding to the attractor in Figure

14.14a, is almost sinusoidal; we expect, therefore, that most of its power should be concentrated at the
fundamental frequency. The power spectrum of the period-one waveform V2(t) shown in Figure 14.14a
consists of a sharp spike at approximately 3 kHz and higher harmonic components that are over 30 dB
below the fundamental.
Because the period-two waveform repeats roughly once every 0.67 ms, this periodic signal has a

fundamental frequency component at approximately 1.5 kHz (see Figure 14.14b). Notice, however, that
most of the power in the signal is concentrated close to 3 kHz.
The period-four waveform repeats roughly once every 1.34 ms, corresponding to a fundamental

frequency component at approximately 750 Hz (see Figure 14.14c). Note once more that most of the
power in the signal is still concentrated close to 3 kHz.
The spiral Chua’s attractor is qualitatively different from these periodic signals. The aperiodic nature

of its time-domain waveforms is reflected in the broadband noise-like power spectrum (Figure 14.14d).
No longer is the power of the signal concentrated in a small number of frequency components; rather, it
is distributed over a broad range of frequencies. This broadband structure of the power spectrum persists
even if the spectral resolution is increased by sampling at a higher frequency fs. Notice that the spectrum
still contains a peak at approximately 3 kHz that corresponds to the average frequency of rotation of the
trajectory about the fixed point.

14.2.5 Practical Realization of Chua’s Circuit

Chua’s circuit can be realized in a variety of ways using standard or custom-made electronic components.
All the linear elements (capacitor, resistor, and inductor) are readily available as two-terminal devices.
A nonlinear resistor NR with the prescribed DP characteristic (called a Chua diode [10]) may be
implemented by connecting two negative resistance converters in parallel as outlined in Figure 14.25.
A complete list of components is given in Table 14.2.
The op-amp subcircuit consisting of A1, A2, and R1–R6 functions as a negative resistance converter

NR with DP characteristic as shown in Figure 14.28b. Using two 9 V batteries to power the op-amps
gives Vþ¼ 9 V and V�¼�9 V. From measurements of the saturation levels of the AD712 outputs,
Esat� 8.3 V, giving E� 1 V. With R2¼R3 and R5¼R6, the nonlinear characteristic is defined by
Ga¼�1=R1–1=R4¼�50=66 mS, Gb¼ 1=R3�1=R4¼�9=22 mS, and E¼R1Esat=(R1 þ R2)� 1 V [10].
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The equivalent circuit of Figure 14.25 is presented in Figure 14.26, where the real inductor is modeled
as a series connection of an ideal linear inductor L and a linear resistor R0. When the inductor’s resistance
is modeled explicitly in this way, the circuit is called Chua’s oscillator [5].

14.2.6 Experimental Steady-State Solutions

A two-dimensional projection of the steady-state attractor in Chua’s circuit may be obtained by
connecting V2 and V1 to the X and Y channels, respectively, of an oscilloscope in X–Y mode.
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FIGURE 14.25 Practical implementation of Chua’s circuit using two op-amps and six resistors to realize the Chua
diode. Component values are listed in Table 14.2. (From Kennedy, M.P., IEEE Trans. Circuits Syst. I Fundam. Theory
Appl., 40, 640–656, 657–674, Oct. 1993. With permission.)

TABLE 14.2 Component List for the Practical Implementation
of Chua’s Circuit, Depicted in Figure 14.25

Element Description Value Tolerance (%)

A1 Op-amp (12 AD712, TL082,
or equivalent)

— —

A2 Op-amp (12 AD712, TL082,
or equivalent)

— —

C1 Capacitor 10 nF 	5

C2 Capacitor 100 nF 	5

R Potentiometer 2 kV —

R1 1
4 W resistor 3.3 kV 	5

R2 1
4 W resistor 22 kV 	5

R3 1
4 W resistor 22 kV 	5

R4 1
4 W resistor 2.2 kV 	5

R5 1
4 W resistor 220 V 	5

R6 1
4 W resistor 220 V 	5

L Inductor (TOKO-type 10 RB,
or equivalent)

118 mH 	10
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14.2.6.1 Bifurcation Sequence with R as Control Parameter

By reducing the variable resistor R in Figure 14.25 from 2000 V to 0, Chua’s circuit exhibits a
Hopf bifurcation from dc equilibrium, a sequence of period-doubling bifurcations to a spiral Chua’s
attractor, periodic windows, a double-scroll Chua’s chaotic attractor, and a boundary crisis, as illustrated
in Figure 14.27.
Notice that varying R in this way causes the size of the attractors to change: the period-one orbit is

large, period-two is smaller, the spiral Chua’s attractor is smaller again, and the double-scroll Chua’s
attractor shrinks considerably before it dies. This shrinking is due to the equilibrium points Pþ and P�
moving closer toward the origin as R is decreased. Consider the load line in Figure 14.19b: as R is
decreased, the slope G increases, and the equilibrium points P� and Pþ move toward the origin. Compare
also the positions of Pþ in Figures 14.22a and 14.23a.

14.2.6.2 Outer Limit Cycle

No physical system can have unbounded trajectories. In particular, any physical realization of a Chua
diode is eventually passive, meaning simply that for a large enough voltage across its terminals, the
instantaneous power PR(t) [¼VR(t)IR(t)] consumed by the device is positive.

Hence, the DP characteristic of a real Chua diode must include at least two outer segments with
positive slopes which return the characteristic to the first and third quadrants (see Figure 14.28b). From a
practical point of view, as long as the voltages and currents on the attractor are restricted to the negative
resistance region of the characteristic, these outer segments will not affect the circuit’s behavior.

The DP characteristic of the op-amp-based Chua diode differs from the desired piecewise-linear
characteristic depicted in Figure 14.28a in that it has five segments, the outer two of which have positive
slopes Gc¼ 1=R5¼ 1=220 S.
The ‘‘unbounded’’ trajectories that follow the boundary crisis in the ideal three-region system are

limited in amplitude by these dissipative outer segments and a large limit cycle results, as illustrated in
Figure 14.27i. This effect could, of course, be simulated by using a five-segment DP characteristic for NR

as illustrated in Figure 14.28b.
The parameter value at which the double-scroll Chua’s attractor disappears and the outer limit cycle

appears is different from that at which the outer limit cycle disappears and the chaotic attractor
reappears. This ‘‘hysteresis’’ in parameter space is the characteristic of a blue sky catastrophe.

14.2.7 Simulation of Chua’s Circuit

Our experimental observations and qualitative descriptive description of the global dynamics of
Chua’s circuit may be confirmed by simulation using a general purpose ODE solver such as MATLAB1

[22] or by employing a customized simulator such as ‘‘ABCþþ’’ [23].
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FIGURE 14.26 Chua’s oscillator.
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For electrical engineers who are familiar with the SPICE circuit simulator but perhaps not with chaos,
we present a net-list and simulation results for a robust op-amp-based implementation of Chua’s circuit.
The AD712 op-amps in this realization of the circuit are modeled using Analog Devices’ AD712
macromodel. The TOKO 10RB inductor has a nonzero series resistance that we have included in the

(a)

(d) (e) (f)

(i)(h)(g)

(b) (c)

FIGURE 14.27 Typical experimental bifurcation sequence in Chua’s circuit (component values as in Table 14.2)
recorded using a digital storage oscilloscope. Horizontal axis V2 (a)–(h) 200 mV=div, (i) 2 V=div; vertical axis V1

(a)–(h) 1 V=div, (i) 2 V=div. (a) R¼ 1.83 kV, period–one; (b) R¼ 1.82 kV, period-two; (c) R¼ 1.81 kV, period-four;
(d) R¼ 1.80 kV, spiral Chua’s attractor; (e) R¼ 1.797 kV, period-three window; (f) R¼ 1.76 kV, spiral Chua’s
attractor; (g) R¼ 1.73 kV, double-scroll Chua’s attractor; (h) R¼ 1.52 kV, double-scroll Chua’s attractor; (i)
R¼ 1.42 kV, large limit cycle corresponding to the outer segments of the Chua diode’s DP characteristic. (From
Kennedy, M.P., IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 40, 669, Oct. 1993. With permission.)
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SPICE net-list; a typical value of RO for this inductor is 12.5 V. Node numbers are as Figure 14.25: the
power rails are 111 and 222; 10 is the ‘‘internal’’ node of the physical inductor, where its series inductance
is connected to its series resistance.
A double-scroll Chua’s attractor results from a PSPICE simulation using the input deck shown in

Figure 14.29; this attractor is plotted in Figure 14.30.

14.2.8 Dimensionless Coordinates and the a–b Parameter-Space Diagram

Thus far, we have discussed Chua’s circuit equations in terms of seven parameters: L, C2, G, C1, E, Ga, and
Gb. We can reduce the number of parameters by normalizing the nonlinear resistor such that its
breakpoints are at 	1 V instead of 	E V. Furthermore, we may write Chua’s circuit Equation 14.12 in
normalized dimensionless form by making the following change of variables: X1¼V1=E, X2¼V2=E,
X3¼ I3=(EG), and t¼ tG=C2. The resulting state equations are

dX1

dt
¼ a[X2 � X1 � f (X1)]

dX2

dt
¼ X1 � X2 þ X3

dX3

dt
¼ �bX2

(14:15)

where a¼C2=C1, b¼C2=(LG
2), and f(X)¼ bXþ 1=2(a� b)(jXþ 1j � jX� 1j); a¼Ga=G and b¼Gb=G.

Thus, each set of seven circuit parameters has an equivalent set of four normalized dimensionless
parameters {a, b, a, b}. If we fix the values of a and b (which correspond to the slopes Ga and Gb of
the Chua diode), we can summarize the steady-state dynamical behavior of Chua’s circuit by means of a
two-dimensional parameter-space diagram.
Figure 14.31 presents the (a,b) parameter-space diagramwith a¼�8=7 and b¼�5=7. In this diagram,

each region denotes a particular type of steady-state behavior: for example, an equilibrium point, period-
one orbit, period-two, spiral Chua’s attractor, double-scroll Chua’s attractor. Typical state-space behaviors
are shown in the insets. For clarity, we show chaotic regions in a single shade; it should be noted that these
chaotic regions are further partitioned by periodic windows and ‘‘islands’’ of periodic behavior.
To interpret the a–b diagram, imagine fixing the value of b¼C2=(LG2) and increasing a¼C2=C1

from a positive value to the left of the curve labeled ‘‘Hopf at P	’’; experimentally, this corresponds to
fixing the parameters L, C2, G, E, Ga, and Gb, and reducing the value of C1—this is called a ‘‘C1 bifurcation
sequence.’’
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FIGURE 14.28 (a) Required three-segment piecewise-linear DP characteristic for the Chua diode in Figure 14.17.
(b) Every physically realizable nonlinear resistor NR is eventually passive—the outermost segments (while not
necessarily linear as presented here) must lie completely within the first and third quadrants of the VR� IR place
for sufficiently large jVRj and jIRj.
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