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What Every Engineer Should Know About Data-Driven Analytics provides a com-
prehensive introduction to the theoretical concepts and approaches of machine learn-
ing that are used in predictive data analytics. By introducing the theory and providing
practical applications, this text can be understood by students of every engineering
discipline. It offers a detailed and focused treatment of the important machine learn-
ing approaches and concepts that can be exploited to build models to enable decision
making in different domains.

» Utilizes practical examples from different disciplines and sectors within
engineering and other related technical areas to demonstrate how to go from
data, to insight, and to decision making.

* Introduces various approaches to building models that exploit different
algorithms.

* Discusses predictive models that can be built through machine learning and
used to mine patterns from large datasets.

* Explores the augmentation of technical and mathematical materials with
explanatory worked examples.

* Includes a glossary, self-assessments, and worked-out practice exercises.

Written to be accessible to non-experts in the subject, this comprehensive introduc-
tory text is suitable for students, professionals, and researchers in engineering and
data science.
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Preface

INTRODUCTION

This book provides a comprehensive introduction to the machine learning theoretical
concepts and approaches that are used in predictive data analytics through practical
applications (case studies and examples). Using machine learning we can build pre-
dictive models that can be used to mine patterns from large datasets. Such models can
also be tailored to reason why it sees a particular pattern in the dataset.

Mining large datasets from different domains (healthcare, financial, sports, manu-
facturing, social media, advertisement, etc.) needs a different type of mindset and
skillset for predictive model building. This textbook will offer a detailed and focused
treatment of the important machine learning approaches and concepts that can be
exploited to build models to enable decision making in different domains. Whenever
required, technical and mathematical materials will be augmented with explanatory
worked examples to illustrate their importance in the given context.

Through case studies, this book demonstrates how to go from data, to insight, to
decision making. In each of the case studies, we have taken a unique approach to
building models that exploit different algorithms. In addition to that, the case studies
also highlight the techniques used for validating and evaluating predictive models.
The book, informed by the author’s many years of teaching machine learning, and
working on predictive data analytics projects, is suitable for use by graduates, profes-
sionals, and researchers in the area of data science.

AUDIENCE

This book is intended for professional data engineers, software engineers, systems
engineers, and senior and graduate students of analytics and artificial intelligence.
Much of the material is derived from the graduate-level “Data Analytics” course
taught at Penn State’s Great Valley School of Graduate and Professional Studies and
online through its World Campus, where the authors work. The typical student in that
course has five years of work experience in any of a variety of technical or business
roles and an undergraduate degree in engineering, science, or business. Typical read-
ers of this book will have one of the following or similar job titles:

Data analyst

Data scientist

IT analyst

Software engineer

Systems engineer

Sales engineer

Systems analyst

[XYZ] engineer (where “XYZ” is an adjective for most engineering disci-
plines, such as “electrical,” “computer,” or “mechanical’)

xiii
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Project manager
Business analyst
Technical architect
Lead architect
Product owner

Many others can benefit from this text including the users of complex systems and
other stakeholders.

COURSE ADOPTION

This text is suitable for use in the following courses as a primary reference: predic-
tive analytics, machine learning, data-driven decision making, and data science.

It can also be used as a secondary reference, typically in courses such as data min-
ing, statistics, natural language processing, and artificial intelligence.

ERRORS

The authors have tried to uphold the highest standards for accuracy in terms of fact
and quality of presentation. Despite these best efforts and those of the reviewers and
publisher, there are still likely a few errors to be found. Therefore, if you believe that
you have found an error—whether it is a referencing issue, factual error, or typo-
graphical error—please contact the authors at sus64 @psu.edu or pall 1 @psu.edu.
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'I Data Collection
and Cleaning

In the 21st century, data are everywhere. Across different application areas, data are
being collected at an unprecedented rate. Decisions in past were purely made based
on guesswork, expert opinions, or by using constructed models; but these days deci-
sions are made solely based on the data available. Large amounts of data or so-called
“Big Data” has the potential to revolutionize different aspects of modern society.
Application areas of Big Data include scientific research, financial services, retail
manufacturing, biological and physical sciences, healthcare, transportation, environ-
mental modeling, energy saving, homeland security, social network analysis, and
much more [1].

So how should an engineer or data scientist approach the analysis of all this data?
Here is the general approach. After recording the data in the repositories, the next
step is to curate and analyze the data. The discussions in this book will focus on ana-
lyzing the data using the tools and techniques in the domain of machine learning,
data mining, and predictive analytics. The potential uses of Big Data are exciting. For
example, in the education sector, the collected data related to the academic perfor-
mance of every student can be used as a guide for delivering future instructions. In
the healthcare sector, Information Technology (IT) and data analytics can reduce the
cost of healthcare while improving its quality and outcomes by making preventive
care more personalized and affordable. In the United States alone, the advent of Big
Data technology can result in IT savings for the healthcare sector, which is estimated
to be close to 300 billion dollars [1, 2].

While the potential benefits are significant, there remain many technical chal-
lenges to be addressed for realizing the potential of Big Data. Challenges exist along
several different dimensions, namely: Volume, Variety, Velocity, Veracity, and Value
[1-3].

The dimension of volume represents the amount of data. The collected data can be
either structured (numeric, relational model) or unstructured (non-numeric, text type,
video, audio) which is represented by the dimension of variety. The velocity dimen-
sion represents the rate at which the data arrive over time (every second, every min-
ute, hourly, daily, etc.) and also accounts for the time within which the data have to
be acted upon. The dimension of veracity is all about the validity and the correctness
of data, i.e., how accurate and usable are the data? Finally, how valuable are the data
captured by the value dimension? [1-3]

A data analysis pipeline to deal with the different dimensions of Big Data is shown
in Figure 1.1. The data analysis pipeline includes multiple phases, namely the
data acquisition/recording phase, the extraction/cleaning/annotation phase, the
integration/aggregation/representation phase, the analysis/modeling phase, and the

DOI: 10.1201/9781003278177-1 1
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FIGURE 1.1 The Big Data analysis pipeline. (Source: Figure adapted from Challenges
and Opportunities with Big Data, A community white paper developed by leading research-
ers across the United States, https://cra.org/ccc/wp-content/uploads/sites/2/2015/05/bigdata
whitepaper.pdf.)

interpretation phase. Each of these phases is crucial and has its own set of challenges
that needs to be addressed [1].

In the data acquisition phase, the challenge is to generate the right metadata to
describe what data needs to be recorded and measured. Data provenance' is also an
issue in this phase. Any data not originating from its source would have gone through
several stages of transformation or edition. Therefore, an error in the data processing
can render subsequent analysis useless. Thus, in the data analysis pipeline, it is
important to carry both the provenance of data and metadata together [1].

The information extraction and cleaning phase is responsible for converting the
collected data in a format that is ready for analysis [1].

The data integration, aggregation, and representation phase is devoted to hiding
the heterogeneity of the data and making it available in the required format for analy-
sis and modeling [1].

The query processing, data modeling, and analysis phase is devoted to building
tools and techniques for the effective large-scale analysis of data in a completely
automated manner [1].

Finally, the interpretation phase provides the means for the decision makers to
interpret the results of the analysis and make Big Data more actionable [1].

Now let us focus our discussion on the challenges associated with the data analy-
sis pipeline. The challenges involved in the analysis pipeline can be classified as
heterogeneity, scale, timelines, privacy, and human collaboration [1].



Data Collection and Cleaning 3

The heterogeneity and incompleteness are challenges because the data represent-
ing the same entity in different sources lack a consistent format, are erroneous, and
incomplete. Again, managing large and rapidly increasing volumes of data chal-
lenges the limitation of the tools, techniques, and the algorithms that process them.
Often analyzing the large datasets takes a longer time, which is a challenge because
with time, the value of the data diminishes for a decision maker [1].

Privacy in Big Data is a major concern as still there is no established protocol that
allows the sharing of private data while limiting the disclosure and ensuring suffi-
cient data utility [1].

Finally, the advances in computing analysis have still left a gap in identifying
many patterns that are only detectable by humans. This is a challenge to the automa-
tion of the data analysis pipeline as human intervention and collaboration are of
paramount importance in the successful realization of the potentiality of the data [1].

DATA-COLLECTION STRATEGIES

Big Data collection is the methodical approach to collecting and analyzing mas-
sive amounts of information from a variety of sources. Earlier it was indicated that
Big Data collection entails collecting structured, semi-structured, and unstructured
data generated by sources such as people, computers, and sensors. The value of the
data does not depend on its quantity but on its quality. Structured data are highly
organized and exist in a predefined format. On the other hand, there is no predefined
format for unstructured data. Therefore, it exists in the format in which it was gener-
ated. Semi-structured data on the other hand is a mix of structured and unstructured
data. For example, data related to GPS? coordinates is an example of structured data.
Data collected from social media sites is a good example of unstructured data. Data
like email addresses and their contents are good examples of semi-structured data.
Data can also be classified as quantitative and qualitative. Quantitative data have
numerical forms such as statistics and percentages, while qualitative data are more
descriptive in nature, like sex, religion, etc. The typical sources of data include [1-3]:

* Operational systems producing transactional data,

* JoT endpoint device,

¢ Social media data from users and customers,

* Location data and other vitals from the smartphone devices,
e and more.

To provide access to accurate and consistent data, integration of data from several
sources into a data warehouse® is very vital. Data warehouses require and provide
extensive support for data cleaning. Since data warehouses need to load and continu-
ously refresh huge amounts of data from a variety of sources, the probability of data
being dirty* or inconsistent is very high. In order to provide effective and timely
responses to queries, data cleaning in data warehouses is important and is supported
by a so-called ETL process. The ETL process comprises of three phases namely the
extraction phase, the transformation phase, and the loading phase [1, 3].
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During the extraction phase data from several sources are collected. The source
systems files (data) can be in multiple file formats including flat files with delimiters
(CSV format), XML, non-relational database structures including IMS (Information
Management Systems), data structures such as VSAM (Virtual Storage Access
Method) or ISAM (Indexed Sequential Access Method) or data fetched through
screen-scraping or web spidering. A source for data could also be a legacy system in
which the files are in the arcane format. In this step, the schema (metadata) from dif-
ferent sources is extracted and translated. In addition to the schemas, instances are
also extracted from the data source and are moved/stored into intermediate data
sources before loading them into the data staging area [1, 3].

In the transformation stage, multiple data manipulation steps are performed such
as moving, splitting, translating, merging, sorting, and pivoting data, all in accor-
dance with the data quality rules. In this phase, the translated schema is matched and
integrated to create a unique schema for the data warehouse. In addition to the sche-
mas, the instances are also matched and integrated into the data staging area. A series
of rules or functions is applied on the data extracted from the data sources which
includes selective loading of the columns, translation of the coded values, encoding
of free-form values, deriving calculated values, sorting, joining data from multiple
sources, aggregation, transposing, etc. A large number of tools of varying functional-
ities are available to support these tasks, but often a significant portion of the cleaning
and transformation work has to be done manually or by a low-level program that is
difficult to write and maintain [1, 3].

Finally, in the loading stage, the translated and integrated schema from the trans-
formation is implemented on the target (data warehouse) system and the instances
from the data staging area are filtered, aggregated, and loaded into the data ware-
house. Depending on the organization requirements, the process of loading the
extracted data into the data warehouse is frequently done on a daily, weekly, or
monthly basis [1, 3].

DATA PREPROCESSING STRATEGIES

Data preprocessing is performed to transform the raw data into a useful and efficient
format. Major tasks involved in the data preprocessing stage are data cleaning, data
integration, data reduction, data transformation, and data discretization. Data collec-
tion results in accumulating noisy, missing, and inconsistent data which need to be
corrected for downstream analysis. Data preprocessing avoids any potential prob-
lems with accuracy, completeness, consistency, timeliness, believability, and inter-
pretability [1-5].

Data Cleaning: Data can have many irrelevant and missing parts. Therefore, it
is important to perform data cleaning to deal with missing and noisy data.
Missing data can be handled by either ignoring the entire tuple or by imput-
ing the missing values. On the other hand, noisy data can be handled by
using the binning method, regression, or clustering [1, 3-5].

Data Integration: In this step tasks such as entity identification, removal of
redundant data, and data deduplication are performed. Data fused from
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different sources and single entities from two different sources can have
attributes that are referred to different naming conventions or might be
referring to the same characteristic. Redundant attributes can be detected
by correlation and covariance analysis. Duplicated data can be identified
by recognizing the repeated tuples or by performing descriptive statistics
[1, 3-5].

Data Reduction: Data reduction is the process to obtain a reduced representa-
tion of the dataset that is much smaller in volume but yet produces the same
analytical results. A database or a data warehouse may store terabytes of
data and analyzing this amount of data can take a very long time. Therefore,
it is important to perform data reduction. Data reduction strategies include
dimensionality reduction (attribute subset selection, attribute creation,
wavelet transformation, principal components analysis (PCA), etc.), numer-
osity reduction (regression and log-linear models, histograms, clustering,
sampling, data cube aggregation, etc.), data compression (string compres-
sion, audio/video compression, etc.), etc [1, 3-5].

Data Transformation: Data transformation is the process of converting
data from one type to another. The strategy here is to map the values of
a given attribute to a new set. The motivation behind the data transforma-
tion is to remove the skewness in the data to achieve symmetric distribu-
tion. Transforming data makes it easier to visualize, and to improve the
data interpretability. Data transformations involve different operations such
as smoothing to remove noise from the data, attribute/feature construction,
normalization i.e., to scale data to fall within a smaller and specified range,
discretization where raw values are replaced by intervals or conceptual
labels, min-max normalization, z-score normalization, normalization by
decimal scaling, concept hierarchy generation, etc [1, 3-5].

Data Discretization: Data discretization is a process of converting a large
number of data values into smaller ones. Data discretization is performed
in order to make data evaluation, visualization, and management easier
[1, 3-5].

A brief introduction to the basics of R and Python programming is provided here,
which will be very helpful for the readers to navigate through the other chapters in
this book [2].

PROGRAMMING WITH R
Data Types IN R

The basic data types in R are character, numeric, integer, and logical. The assignment
operator («) can be used to assign any data to a variable.

For example
x <- 10
y <- 'This is a sample string'
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# Let us now print the value of x & y
x
[1] 10

Y
[1] "This is a sample string"

DATA STRUCTURES IN R

The commonly used data structures in R include vectors, matrices, dataframe, lists,
and factors.

Vectors—A vector is a sequence of data elements of the same basic type. A vector
can be defined as

a <- ¢(1,2,5.3,6,-2,4) # numeric vector
<- c("one", "two", "three") # character vector
¢ <- c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE) #logical vector

o

Matrices—A matrix is a collection of data elements arranged in a two-dimensional
rectangular layout. For example, the matrix A of size 2 x 3 can be created as:

A = matrix(

c(2, 4, 3, 1, 5, 7), # the data elements

nrow=2, # number of rows

ncol=3, # number of columns
#

byrow = TRUE) fill matrix by rows

The matrix A can then be viewed by just entering the matrix name

A
(.11 [,2]1 [,3]

. 2 4 3

. 1 5 7

The elements of the matrix can be directly accessed by specifying the correspond-
ing row and column number as shown

A2, 3] # element at 2nd row, 3rd column
[1] 7

Dataframe—Compared to matrices, in a dataframe, the different columns can
have different modes (numeric, character, factor, etc.). A dataframe in R can be cre-
ated as

d <- c(1,2,3,4)
e <- c("green", "blue", "green", NA)
f <- ¢ (TRUE, TRUE, TRUE, FALSE)
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mydata <- data.frame(d,e,f) # create a data frame called
mydata
names (mydata) <- c("ID","Color","Passed") # variable names

Now let us display the created dataframe mydata

mydata

ID Color Passed
1 green TRUE
2 blue TRUE
3 green TRUE
4 <NA> FALSE

W N R

Lists—A list is defined as an ordered collection of objects. The objects can be of
different types and possibly unrelated. For example,

Example of a list with 4 components -

a string, a numeric vector, a matrix, and a scaler

<- list (name="Sam", mynumbers=xyz, mymatrix=abc, age=5.3)
Example of a list containing two lists

<- c(listl,1list2) # where listl and list2 are lists

< ¥ = HH

Factors—Conceptually speaking factors are variables in R which take on a lim-
ited number of different values. These variables are often referred to as categorical
variables.

# Define the variable gender with 20 "male" entries and 30
"female" entries

gender <- c(rep("male",20), rep("female", 30))

gender <- factor(gender)

# The gender variable stores gender as 20 1s and 30 2s and
associates 1 to male and 2 to female

# R now treats gender as a nominal variable
summary (gender)
female male

30 20

An ordered factor is used to represent an ordinal variable.

# A variable rating can be coded as "large", "medium", "small'
rating <- c("large", "medium", "small")

rating <- ordered(rating)

# recodes the variable rating to 1,2,3 and associates

# l=large, 2=medium, 3=small internally

# R now treats rating as ordinal
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PACKAGE INSTALLATION IN R

To install a package in R, use the following command:
install.packages('chron') # “chron” is the name of the package

Once the package is installed, the command to load the installed package is
library(). For example,

library (chron)

ReEADING AND WRITING DATA IN R

R supports various packages that allow developers to read data from various file for-
mats and load them into objects or write data to various file formats. Here, we will
discuss about how to read data from the CSV file and write data into the CSV file.

To read data from a CSV file and assign it to a dataframe “df,” use the following
command:

df <- read.csv(“<file-name>"”, header=TRUE, sep=",")
Note here that

df : Name of the dataframe

<file-name>: Name of the source file with complete path to its
location. If path is not specified, the file will be read
from the working directory.

Header: Setting this parameter to TRUE indicates that the
source file has the names of the columns to be read.

Sep: this parameter is used to indicate the delimiter in the
source file, traditionally the delimiter for a csv is a
comma (,)

To write the contents from the dataframe to a CSV file, use the following
command:

write.csv(df, file = “<file-name>",row.names=FALSE)
Note:

df: the dataframe that you want to write to the CSV file.

<file-name>: target file name with complete path to its
location. If path is not specified, the file will be written
to the working directory.

row.names: this parameter will indicate whether you want to
write the row.names (the index number of each row) to the
target file.



Data Collection and Cleaning 9

Some commonly used functions that might come in handy in R programming are:

* length(object) # number of elements or components

* str(object) # structure of an object

 class(object) # class or type of an object

* names(object) # names

* c(object,object,...) # Combine objects into a vector

» cbind(object, object, ...) # Combine objects as columns

* rbind(object, object, ...) # Combine objects as rows

* rm(object) # delete an object

* colnames(object) # retrieve the column names of a matrix like object
(matrix, dataframe, etc.)

Now consider some general programming examples.

UsING THE FOR Loor IN R

The for loop in R can be implemented with the traditional syntax

# Creating a vector and assigning values to it

new <- ¢(2010,2011,2012,2013,2014,2015)

# for loop to display the values in the vector

for (year in new){ print(paste("The year is", year))}

UsING THE WHILE Loor IN R

We will be using the same vector “new” that was created for the previous example.

# creating an increment counter

i <- 2010

# while loop to display the values in the vector
while (i < 2016) {print(i); i = i+1}

UsING THE IF-ELSE STATEMENT IN R

We will try to determine if the years mentioned in the vector “new” is a leap-year or
not. For this we first need to define a function which checks the same.

# Function definition

is.leapyear=function (year) {
return( ((year %% 4 == 0) & (year %% 100 != 0)) | (year %%

400 == 0))

}

# Using the for loop and the if-else statements to determine
the result

# the paste0 function is used to print different types of data
together, both text and variable value



