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Foreword

This book aims to provide Operation Research (OR) applications under twelve 
chapters organized in the form of four parts according to the main topics 
considered in these chapters. These four parts are optimization; data mining and 
clustering; business, science and finance; and medical application. Hereby, the 
continuous numbering of chapters is applied in those listed parts.

Accordingly, Part 1 is allocated to Operation Research in optimization, given in 
three chapters.

Chapter 1 proposes a parameter estimation way for partially nonlinear 
problems which are semi-parametric regression models and the extension of the 
partially linear model that has gained importance in the statistical literature. These 
models are employed when the non-parametric regression model does not perform 
well. In this regard, firstly, nonlinear least square estimation is established based 
on the Taylor expansion of the nonlinear function. Then, a kernel-based bridge 
problem is employed to estimate the non-parametric component of the model. In 
the end, the optimization method is applied to choose the best estimation.

Chapter 2 provides a glimpse on the contributions and challenges towards 
more environmentally-friendly road traffic, by reviewing academic studies on 
how Operation Research has been used in controlling the complex transportation 
network since connected and analyzing traffic-related impacts, especially 
regarding environmental and air quality, of automated vehicles are not fully 
deployed yet on the roads. Operation Research in this matter is used to plan for 
future challenges and major impacts can be expected, as well.

Chapter 3 of this part represents some case studies for selecting suppliers and 
portfolio investment schemes by addressing the application of the multi-criteria 
method on discrete variables that are very important in complex decision-making 
problems.

Part II is devoted to new applications of Operations Research to Data Mining 
and Clustering and consists of three chapters. Chapter 4 in this part is based on 
a survey about the dimension reduction methods such as clustering and principal 
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component analysis (PCA). The main aim of this chapter is to investigate a semi-
definite programming model that provides an effective solution to problems 
related to both PCA and clustering methods.

Chapter 5 of this part discusses some practical techniques for different types 
of clustering by using the formulation of the problems as an optimization method. 
Here, the clustering problems can be represented in terms of a real function of 
several real variables, and a set of arguments that give an optimal clustering.

Chapter 6, which is the last chapter of data mining and clustering portion, is 
dedicated to the application of these methods to meteorological data by presenting 
a review of the analysis. Then, as the illustration of the proposal approaches, the 
meteorological data are chosen. In the analyses, the data preparation and pre-
processing are also explained in detail besides the clustering and the modeling in 
terms of the findings.

Part III of this book is based on operation research in business, science, 
and Finance in three distinct chapters. Chapter 7 is about the foundations of 
market-making via stochastic optimal control. Market-making is a type of high-
frequency trading that implies the quantitative trading of a short portfolio holding 
period. This chapter covers several results obtained by traditional techniques 
of stochastic optimal control related to market-making which is a significant 
component of financial research. Chapter 8 is about the decision aid to drive the 
network with a better management of the system while there could be a conflict 
in used criteria such as the minimization of the cost and the maximization of 
the security simultaneously. Furthermore, there can be other objectives that may 
appear unexpectedly. So, this chapter is dedicated to explain why the formulation 
of the multi-objective network flow problem is a necessity and how it can be 
done.

Chapter 9 of the third part of this book is about operation research application 
in decision-making in finance focusing on the behavior of financial problems 
which are based on the investors’ behavior introduced on sentiment. It also 
compares the forecasting performances of sentiments index by using different 
mathematical models.

Part IV represents operation research in medical application in three chapters. 
Chapter 10 starts with a study covering necessary information about an algorithm 
and a stability approach for the acute inflammatory response dynamic model. 
Generally, the filamentary response wipes out the pathogens from the body 
and repairs the healthy case. Recently, mathematical models are being used to 
provide essential insights into the dynamics of the inflammatory response. On 
the other side, nonlinear dynamics have gained high importance in many areas 
that can describe the complicated conceptions within details. This study provides 
a numerical approximation to the complicated systems via nonlinear differential 
equations.



Chapter 11 titled Bayesian inference for the undirected network tries to 
estimate the conditional dependence between genes by using a Monte Carlo 
algorithm in case the number of parameters exceeds the number of observations. 
Here, the parameter in the precision matrix does not have a fixed dimension 
in each iteration. To overcome the problem, a reversible jump Markov chain 
Monte Carlo method, which is one of the OR algorithms optimizing both the 
fitted model to the data and the estimated parameters, is proposed. Furthermore, 
its alternatives such as Gibbs sampling, and Carlin Chibs methods, which 
are other advanced inference methods based on optimization of some score 
functions, are introduced. Moreover, as one of the powerful tools for modeling 
the biological network, the copula is introduced with its special type named the 
vine copula which tries to simplify the multivariate complicated model into the 
bivariate model. In the light of the vine copula, each undirected connection can 
be represented independently with the best copula family.

Finally, Chapter 12, the last chapter of the book, presents the comparison 
and transfer of the EMG data from two stations. In the compression of these 
signal data, two optimization techniques, namely, dynamic cosine transformation 
and principal component analysis, are implemented. Then, their performances 
are compared via distinct accuracy measures once their compressed values are 
classified by different clustering approaches that are well-known in the field of 
operation research.

As a result, we consider that this book can present the variety of applications of 
operation research techniques in different problems. We hope that the references 
used in each part can be also useful for the new researchers while deeply learning 
the theoretical aspects of the selected methods. Hence, we hope that the book can 
open new avenues for novel researches.
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Preface

This original book on Operational Research: New Paradigms and Emerging 
Applications surveys and details newest technology in analytics and intelligence 
computing, artificial intelligence (AI) and operational research (OR) which are 
reducing the dimensions of data coverage as well as variables worldwide. This 
compendium discusses code of intelligent optimization which can be applied in 
various branches of optimization, data mining and clustering, economic/finance 
and medical applications. Involving modern and emerging techniques of OR and 
AI, and applying them together with strong and evolutionary algorithms to real-life 
problems for strategical, but also daily applications, this compendium elaborates 
all areas of OR results, methods and applications. By the rich diversity of this 
handbook, the state-of-the-art developments in quickly advancing key technologies 
are covered. In this way, with our reference work we hope to be useful for students 
and emerging scientists of engineering and science, management and economics, 
social science and the art, for researchers and scholars who are employed in OR 
supported industries, for decision-makers and designers of tomorrow’s World.

We editors hope that the chosen subjects and picked areas reflect a core sample 
of international OR research facing emerging, challenging, complex and even 
long-enduring problems of our environment and their field in economics and 
finance, natural sciences and engineering, healthcare and medicine, industry and 
city planning, through the results and tools of OR-Analytics. We are very grateful 
to the publishing house of CRC Press for the honor of accommodating this front 
running project in intelligence and science, operations and implementation. We 
convey particular thanks to the directors, editors and managers of CRC Press as 
well as to its editorial management and team, for their steady interest, care and 
encouragement, recommendations, support and guide in every respect. We thank 
our respected authors by their diligent work and readiness to share their newest 
findings, insights and results with over international community. Now we hope 
that the research of our authors collected and edited by us will be an inspiration 
for cooperation and joint implementation, improvement and friendship at the 
global stage and premium level.
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OPERATION
RESEARCH IN
OPTIMIZATION

I



Chapter 1

Kernel Based C-Bridge
Estimator for Partially
Nonlinear Model

1.1 Introduction
Semi-parametric regression models (SPRMs) [28] deal with regression models
which consider the effects of both the parametric and nonparametric regression
models simultaneously. They are very helpful for data analysis since they keep
the flexibility of nonparametric models and the properties easy interpretation of
parametric models to comment baseline function f . Therefore, SPRMs have at-
tracted considerable attention in recent years and have been studied by many
researchers interested in data analysis. For this chapter, we consider partially
nonlinear models (PNLMs) that are SPRMs and extensions of partially linear
models (PLMs) [15] which have been popular in the statistical literature. PNLMs
are employed when nonparameric regression does not perform well.

A standard form of partially nonlinear model is defined as

Yi = f (Xi,δ )+h(Ui)+ εi, i = 1,2, ...,n, (1.1)

where Xi = (xi1,xi2, ...,xip)(p ≥ 1) and Ui = (ui1,ui2, ...,uiq)(q ≥ 1) are con-
sidered as the vectors of independent and identically distributed explana-
tory variables, respectively, Yi is the response variable for the ith case, δ =

Pakize Taylan

Dicle University�
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(β1,β2, ...,βp)
T is unknown parameters’ vector, f (., .) is a pre-assigned func-

tion, h is an unknown smooth function from oq to ol , and εi(i = 1,2, ...,n) are
independent random errors with E(εi) = 0,Var(εi) = σ2, respectively.

PNLMs are widely used in the literature due to their usefulness mentioned
above. Li and Mei in 2013 [21] developed new estimation procedures for param-
eters in the parametric component and they formed consistency and asymptotic
normality of the estimator which they achieved. Also, they proposed estimation
procedures that consider a generalized F test for the nonparametric component in
the PNLMs. Severini and Wong in 1992 [30] introduced a geometric framework
that contains the concept of the least favorable curve for PNLMs [30]. Zhong et
al. in 2000 [37] established three types of developed approximate confidence re-
gions for the parameter in terms of curvatures for PNLMs, considering Severin’s
geometric framework. Application of the finite series approximation method to a
partially nonlinear model and its some new results were handled by Xie et al. in
1997 [13]. Hung and Chen in 2008 [18] studied the parameter estimation prob-
lem for the nonlinear partial spline model, f (X ,δ ) = δ T X that is a special form
of PNLMs when a nonparametric component is approximated by some gradu-
ating function. Wang and Ke in 2009 [34] developed an estimation problem for
smoothing spline semi-parametric nonlinear regression models by considering
the penalized likelihood and they solved it by Gauss-Newton and back-fitting
algorithms. The parameters in the problem were estimated by employing gener-
alized cross-validation(GCV) [8] and generalized maximum likelihood methods
(GML) [36].

This chapter proposes an estimation procedure for PNLMs where its non-
parametric component h(Ui) is considered as an additive nonparametric compo-
nent [6, 32]. To achieve an estimation of parameter for both nonparametric and
parametric parts, firstly, we establish a nonlinear least square estimation problem
based on the Taylor expansion of nonlinear function f (.) at initial value δ̂c where
δ̂c is a consistent estimate of δ . Secondly, we establish a kernel based bridge
problem to estimate the nonparametric component of PNLMs, say h(.). Then,
we solve the problem that we established with the famous method of convex op-
timization called conic quadratic programming (CQP) [5]. Finally, for each δ we
evaluate θ̂ and hence, h in kernel based bridge problem that gives a new curve
over h. Then, we produce a solution profile for h and choose the δ̂ which is the
minimum over all these curves as an estimation of δ .

The remainder of this chapter is formed as follows. The second Section in-
cludes an introduction of the bridge estimator for the regression model. Addi-
tive approximation and kernel based bridge estimation problem for PNLMs are
handled in the third section. The fourth section presents the construction of the
estimation problem established in the third section as a CQP problem in order to
use the advantages of CQP. Finally, the fifth section gives a short conclusion.
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1.2 Bridge Estimators
Penalized estimation methods such as penalized linear least squares and penal-
ized likelihood, have drawn much attention in recent years, and it has been used
quite a lot by many researchers because they present a method for selecting of
variables and estimating of parameters simultaneously in linear regression given
as

yi = xT
i δ + εi, i = 1,2, ...,n. (1.2)

Here, yi ∈ o is a i-th response variable, xi(i = 1,2, ...,n) is a p-vector of covari-
ates, δ is a p-vector of unknown parameters, and εi is an n-vector of identically
distributed, independent random errors. The bridge estimation method suggested
by Frank and Friedman in 1993 [11] consists of a large class of the penalty meth-
ods considering penalty function ∑ |δ j|α with α > 0. Bridge estimator, δ̂B, can
be determined by solving optimization problem given as

minimizeδ

n

∑
i=1

(yi − xT
i δ )2 +ϕ

p

∑
j=1

|δ j|α , (1.3)

where |.| is the L2-norm of the vector, ϕ is a penalty parameter that provides
a trade off between the first and the second term. As seen in Equation 1.3, the
objective function is penalized by the Lα -norm to obtain bridge estimator δ̂B and
it shrinks the estimates of the parameters in Equation 1.2 towards 0. Liu et al.
in 2007 [22] discussed the effect of the Lα penalty with different cases of α . If
α = 1, bridge estimation produces Lasso (Least Absolute Shrinkage Operator)
[32]; if α = 2, it produces Ridge or Tikhonov regularization [17] estimation.
For α ≤ 1, the bridge estimator manages to select significant variables for the
regression model by shrinking small |δ j|s to exact zeros. However, Knight and
Fu in 2000 [20] handled the asymptotic distributions of bridge estimators when
the number of covariates is fixed and they noted that the amount of shrinkage
towards zero increases with the magnitude of the regression coefficients being
estimated in case of α > 1.

Also, Liu et al. in 2007 [22] pointed out that in penalized estimation problem,
to obtain acceptable bias for large parameters, the value of α is not chosen too
high than necessary.

They give the following example for α ∈ [0,2] to explain this situation.
Liu et al. in 2007 [22] considered a simple linear regression model with one

parameter δ and one observation y = δ + ε , where ε is a random error with
mean zero and variance σ2 for illustrating the effect of Lα penalties with respect
to different α . As a result of this example, they made the following inferences:

i) Bridge solution is ridge δ̂ = y/(ϕ +1) in case α = 2 and it is biased with
Var(δ̂ ) = Var(y/(ϕ +1)2). Hence, δ̂ is better than y when the bias is
smaller compared to variance deduction.
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Figure 1.1: a: Plots of Lα penalties for different α , b: The solutions δ̂ = argminFα (δ ) with
respect to the Lα penalties in (a) with ϕ = 3 where Fα (δ ) = (δ − y)2 +ϕ|δ |α [22].

ii) Bridge solution is a Lasso solution δ̂ = sgn(y)[|y| − ϕ/2] that gives a
thresholding rule, since small |y| leads to a zero solution.

iii) They conclude that δ̂ = 0 ⇐⇒ ϕ > |y|2−α
( 2

2−α

)[ 2(1−α)
2−α

]1−α

in case

α ∈ (0,1), that is, |y|<
[

ϕ
( 2−α

2

)( 2−α

2(1−α)

)1−α
]1/(2−α)

[20].

As pointed out in [24], Lα penalty in the problem Equation 1.3 is strictly convex
when α > 1 and strictly non-convex when α < 1. When α = 1, it is still convex,
but, not differentiable at the origin. It is clearly shown that the elasticnet penalty
is between α = 1 (Lasso) and α = 2 (ridge), and it is strictly convex. As a result,
when α ≥ 1, the problem Equation 1.3 is convex and solvable without using the
approximation. Therefore, we handle bridge estimators for partially nonlinear
model by using advantages of convex optimization, especially, conic quadratic
programming [5].

1.3 PNLMs with Additive Approximation and Bridge
Estimation

1.3.1 Construction of additive nonparametric component
In this section, we present the form of the bridge penalty for PNLM. Let us
consider {(yi,xi,ui), i = 1,2, ...,n} a random sample from model expressed by
Equation 1.4. The nonlinear least squares objective function for Equation 1.4 is
written as

Q(h,δ ) =
n

∑
i=1

(
yi − f (xi,δ −h(ui))

2. (1.4)

Estimation procedure for parameters in the PNLM consists of two-step through
Equation 1.4. In the first step, a linear approximation of f (.,δ ) is taken into con-
sideration through Taylor expansion since f (.,δ ) is nonlinear with respect to δ .
Then, we try to find the minimizer of Equation 1.4 by solving normal equations
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obtained from the derivative of Q(h,δ ) concerning δ . However, normal equa-
tions cannot be solved analytically due to their non-linearity; therefore, iterative
techniques such as the Newton-Raphson algorithm should be used [3]. By apply-
ing Taylor expansion to f (.,δ ), at δ̂c where δ̂c is a consistent estimate of δ as an
initial point, thus, we get

f (x,δ ) = f (x, δ̂c)+ f ′(x, δ̂c)
T
(

δ − δ̂c

)
+op

(
∥ δ − δ̂c ∥

)
. (1.5)

The initial point δ̂c in Equation 1.5 is obtained from the solution of the following
nonlinear least squares optimization problem:

δ̂c = argminδ

n

∑
i=1

(
y(i+1)− y(i)− f (x(i+1),δ )+ f (x(i),δ )

)2
, (1.6)

where
(
x(i), t(i),y(i)

)
(i = 1,2, ...,n) is an ordered sample from the smallest to the

largest according to the value of the variable ui [35]. Li and Mei in 2013 [21]
have shown that under some conditions, δ̂c is root n consistent. Thus, the ith
sample for response variable Yi, yi can be written as

yi = f (xi, δ̂c)+ f ′(xi, δ̂c)
T
(

δ − δ̂c

)
+h(ui)+ εi. (1.7)

Let zi = yi − f (xi, δ̂c) + f ′(xi, δ̂c)
T f (xi, δ̂c). Then, we get the following linear

approximation model,

zi = f ′(xi, δ̂c)
T

δ +h(ui)+ εi (1.8)

or in matrix
z = Fδ +h(u)+ ε, (1.9)

where z = (z1,z2, ...,zn)
T is n-vector of adjusted response variables, F is (n×

p)-dimensional derivative matrix whose (i, j) element is ∂ f (xi,δ )/∂δ j|(δ=δ̂c)

and h(u) is n-vector of regression function h(ui). In the second step, available
estimation methods can be directly used to estimate δ by considering the partial
linear model given as Equation 1.9.

Here, we prefer the profile least squares technique which is also a two-step
process. In the first step, for a given δ let yi = zi − f ′(xi, δ̂c)

T δ . Then, we rewrite
model Equation 1.4 as

ν = h(u)+ ε, (1.10)

where ν = (ν1,ν2, ...,νn)
T can be considered sample from model Equation 1.10

and h(u) = (h(u1),h(u2), ...,h(un))
T is considered n-vector for unknown regres-

sion function. The model Equation 1.10 is a q-dimensional nonparametric regres-
sion model. Hence, h(.) may be estimated by one of the nonparametric estimation
methods such as smoothing spline [10], k-nearest-neighbors [16], kernel estima-
tion, [29] and local least squares estimation [23] for characterizing nonlinear
trend in the model.
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The large number of explanatory variables U j( j = 1,2, ...,q) in the model
Equation 1.10 causes an increase in the variance of nonparametric estimators
and therefore, an increase in test error. This situation, called the curse of dimen-
sionality [4], makes the interpretations of the model very difficult and prevents
obtaining reliable results. These challenges of nonparametric regression were
overcome with Additive Models recommended by Stone in 1985 [32]. Additive
models [32] offer estimates that have lower variance than nonparametric models,
and can have a lower bias than parametric ones. In additive approximation, the
change in the response variable corresponding to each explanatory variable is ex-
plained by the estimation of individual terms and it employs univariate smooth-
ing. Therefore, the additive regression model will be considered for estimation of
smooth function h(.) to obtain a profile nonlinear least square [21] estimate of δ .
Given n realizations for pairs (ui,νi)(i = 1,2, ...,n) with each ui = (ui1, ...,uiq),
the additive model for h(ui) is written as

E(Vi|ui1, ...,uiq) = h(ui) = δ0 +
q

∑
j=1

h j(ui j), i = 1, ...,n, (1.11)

under the assumption E(h j(ui j))= 0 in order to avoid a different intercept in each
h j function [6, 32]. The additive estimate of each function, h(ui) by consider-
ing Equation 1.11 is obtained by iteration scheme, called back-fitting algorithm,
which is proposed by Friedman and Stuetzle in 1981 [14].

In this study for additive approximation of function h(u), the functions h j will
be considered as spline functions, that is, linear combination of the parametrical
form

h j(u) =
d j

∑
l=1

θ
j

l g j
l (u), (1.12)

where g j
l : R −→ R is the l-th transformation (base spline) of u,(l = 1,2, ...,d j),

θ
j

l is the (l, j)-th entry of the family

θ =
(

θ
j

l

)
in which l = 1, ...,d j and j = 1, ...,q as well as for the sake of simplicity, by
introducing additional terms with coefficients 0, we may assume that g j

l ≡ gl ,
d j ≡ d,( j = 1,2, ...,q) such that the family becomes a matrix.

Natural spline [26], B-spline [9] and multivariate adaptive regression spline
[12] are examples of spline functions commonly used in data analysis.
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Let us now explicitly insert the parametrical form Equation 1.12 of the func-
tions h j into Equation 1.11. Then, Equation 1.11 looks as follows:

E(Vi|ui1, ...,uiq) = h(ui) = δ0 +
q

∑
j=1

d

∑
l=1

θ
j

l gl(ui j), i = 1, ...,n. (1.13)

For all i = 1,2, ...,n we can write

∑
q
j=1 ∑

d
l=1 θ

j
l gl(ui j) = θ 1

1 u1(ui j)+ ...+θ 1
d ud(ui j)+ ...+θ

q
1 u1(uiq)+ ...+θ

q
d ud(uiq)

= (g1(ui1, ...,gd(ui1))
(
θ 1

1 , ...,θ
1
d

)T
+ ...+(g1(uim, ...,gd(uim))

(
θ m

1 , ...,θ m
d

)T

(1.14)
or

q

∑
j=1

d

∑
l=1

θ
j

l gl(ui j) = G1
i θ

1
i + ...+Gq

i θ
q
i +

(
G1

i , ...,G
q
i

)(
θ

1T
i , ...,θ qT

i

)T
= Giθ

(1.15)

where θ j :=
(

θ
j

1 , ...,θ
j

d

)T
, θ =

(
θ 1T , ...,θ qT

)
, G j

i := (g1(ui j), ...,gd(ui j)) and

Gi :=
(
G1

i , ...,G
m
i
)
(i = 1,2, ...,n). If Equation 1.15 is used in Equation 1.11 and

assuming that δ0 is fixed via the estimation δ̂a0 := ave(i|i = 1,2, ...,n) by the
arithmetic mean of the values i, then, Equation 1.11 is obtained δ̂0 as

h(ui) = δ̂0 +Giθ , i = 1, ...,n. (1.16)

Hence, as a result of this last equation, Equation 1.10 turns into the following
form:

ν = δ̂01+Gθ + ε (1.17)

where 1 is a n-vector of ones, G is an (n×qd)-dimensional matrix with ith row
Gi :=

(
G1

i , ...,G
m
i
)
.

1.3.2 Kernel based bridge estimation for PNLMs
To obtain bridge estimation of the parameters θ in Equation 1.17, the objective
function is defined as

LB(δ̂0,θ
1
l , ...,θ

q
d ) :=

n

∑
i=1

{νi − δ̂0 −Giθ}T +ϕ

q

∑
j=1

d

∑
l=1

|θ j
l |

α , (1.18)

which is just a penalized least square objective function penalized by Lα -norm.
This penalization provides shrinking of the estimates of the parameters (θ j

l ) in
Equation 1.17 towards 0. Here, ϕ > 0 is a penalty or smoothing parameter that
provides a trade-off between the goodness of data fitting expressed by the first
sum and the penalty function expressed with the second sum. As can be seen, the
smoothing parameter ϕ influences the smoothness of a fitted curve. Therefore, it
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should be estimated by one of the well known methods such as generalized cross
validation (GCV) [8], Akaike information criteria (AIC) [7] and minimization
of an unbiased risk estimator (UBRE) [8]. The goal of smoothness is sometimes
also called stability, robustness, or regularity. In fact, in the theory of inverse
problems one wants to guarantee that the estimation is sufficiently stable with
respect to noise and other forms of perturbation.

The bridge estimation of θ , θ̂B is obtained by solution of the optimization
problem

minimizeθ L
(

δ̂0,θ
1
l , ...,θ

q
d

)
. (1.19)

To solve problem Equation 1.18, we consider the kernel estimation method [29]
developed for modelling strong non-linearity between independent and depen-
dent variables. This method provides estimates of the regression function by stat-
ing the nature of the local neighborhood expressed by a kernel function Kλ (x0,x),
and the nature of the class of regular functions fitted locally. In this sense, a
transformation of the original data is used through kernel functions which are
considered as weights, and they form a kernel matrix to produce weighted av-
erage estimators. Thus, by using this method, the complexity of the calculations
is considerably reduced since the model is performed by considering the kernel
matrix that summarizes the similarity in the observation values instead of the
original data.

The simplest form of kernel estimate is the Nadaraya-Watson weighted aver-
age [29].

ĥ(u0) =
∑

n
i=1 Kλ (u0,ui)νi

∑
n
i=1 Kλ (u0,ui)

, (1.20)

where Kλ (u0,ui) := K (∥ ui −u0 ∥2 /λ a kernel function defined as K : o −→ o,
providing ∫

K(u)du = 1,K(−x0) = K(x0). (1.21)

The most typical kernels functions for ui ∈ oq are (i) Uniform, (ii) Epanechnikov,
(iii) Gaussian, Quartic (biweight), and (iv) Tricube (triweight) given as follows:

i K(u) = 1
2 1(∥u∥≤1)0

ii K(u) = 3
4(1− ∥ u ∥2)1(1−∥u∥≤1)0

iii K(u) = 15
16(1− ∥ u ∥2)1(1−∥u∥≤1)0

iv K(u) = 35
32(1− ∥ u ∥2)31(1−∥u∥≤1)0

Hence, the bridge estimate of θ in Equation 1.17 based on a kernel function can
be obtained by minimizing the penalized residual sum of squares given

LKB(δ̂0,θ
1
l , ...,θ

q
d ) :=

n

∑
i=1

Kλ (u0,ui){νi − δ̂0 −Giθ}2 +ϕ

q

∑
i=1

d

∑
l=1

|θ j
l |

α , (1.22)
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where dimensions of all matrices and all vectors are the same as the correspond-
ing vectors and matrices in Equation 1.22. If we take bi = νi − δ̂0(i = 1,2, ...,n),
b=(b1, ...,bn)

T , A=K1/2G, a=K1/2b where K1/2 is (n×n)-dimensional diago-
nal matrix with ith diagonal element [Lλ (u0,ui)]

1/2, then, kernel based penalized
residual sum of squares looks as

LKB(δ̂0,θ
1
l , ...,θ

q
d ) : = ∑

n
i=1 Kλ (u0,ui){νi − δ̂0 −Giθ}2 +ϕ ∑

q
i=1 ∑

d
l=1, |θ

j
l |

α .

= ∑
n
i=1 Kλ (u0,ui){bi −Giθ}2 +ϕ ∑

q
i=1 ∑

d
l=1, |θ

j
l |

α .

= (Gθ −b)T Kλ (Gθ −b)+ϕ ∑
q
i=1 ∑

d
l=1, |θ

j
l |

α .

=∥ Aθ −a ∥2 +ϕ ∑
q
i=1 ∑

d
l=1, |θ

j
l |

α .
(1.23)

The kernel based bridge estimation of θ , θ̂KB is obtained by solution of the opti-
mization problem

minimizeθ L(δ̂0,θ
1
l , ...,θ

q
d ). (1.24)

We handle two well known special cases of kernel based bridge estimator. When
α = 2, the kernel based bridge estimator,θ̂KB will be equivalent to the kernel
based ridge estimator θ̂ R

KB [17] and it is obtained from the solution of the follow-
ing problem:

minimizeθ ∥ Aθ −a ∥2
2 +ϕ ∥ θ ∥2

2, (1.25)

where ∥ 0 ∥2 stands for Euclidean norm.
The optimization problem given in Equation 1.24 can be solved by using

SVD of coefficient matrix A [2] and its solution is

θ̂
R
KB =

(
AT A+ϕ

)−1
AT a. (1.26)

For a suitable value of ϕ , the ridge estimator has a smaller mean squared error
than that of the least squares estimator. When α = 1, the kernel based bridge
estimator, θ̂KB will be equivalent to the kernel based Lasso estimator, θ̂ Lasso

KB that
is the solution of the following problem:

minimizeθ ∥ Aθ −a ∥2
2 +ϕ ∥ θ ∥1 (1.27)

where ∥ θ ∥1:= ∑
q
j=1 ∑

d
l=1 |θ

j
l |

α . If some components of T are 0, the objective
function in problem Equation 1.27 will be non-differentiable, so the problem
cannot be solved by standard unconstrained optimization methods.

In this section, we consider a convex optimization method called conic
quadratic programming (CQP) to solve problem Equation 1.22, as they provide
computationally easy study and theoretically efficient solutions, and this solution
will be named CK-bridge estimation.
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1.4 On Conic Optimization and Its Application to
Kernel Based Bridge Problem

1.4.1 Convex and conic optimization
Convex optimization [5] is a special class of mathematical optimization problems
such as least-squares and linear programming, and it handles problems aiming
to minimize a convex function based on a convex set. The great advantage of ex-
pressing a problem as a convex optimization problem is to obtain a reliable and
effective solution employing interior-point methods. Convex optimization pro-
grams have been employed for many years in scientific research including both
theory and practice, as they present a strong theory of duality that has a very in-
teresting comment in terms of the original problem. It has also found wide appli-
cation in combinatorial optimization and global optimization, as it is capable of
finding optimal value bounds as well as its approximate solution for optimization
problems. Convex optimization contains different important classes of optimiza-
tion problems such as CQP which is considered for our problem, semidefinite
programming, and geometric programming. Brief information related with CQP
will be given in the following by benefiting from [5].

A CQP is a conic problem

minimizeφ cT
φ , where Sφ − s ∈C. (1.28)

Here, the cone C consists of direct product of “Lorentz cones” defined as

Lni+1 = {φ = (φ1,φ2, ...,φn+1)
T ∈ Rni+1|φni+1 ≥

√
φ 2

1 +φ 2
2 + ...+φ 2

ni
}(ni ≥ 1,ni ∈ Y ).

(1.29)
The geometric interpretation of a quadratic (or second-order) cone is shown

in Figure 1.2 for a cone with ni variables, and illustrates how the boundary of
the cone resembles an ice-cream cone. The 1-dimensional quadratic cone sim-
ply states non-negativity φni+1 ≥ 0. More generally, partitioning the data matrix
[Si;si] by

[Si;si] =

[
Di di
pT

i qi

]
,

Figure 1.2: Boundary of quadratic cone φni+1 ≥
√

φ 2
1 +φ 2

2 + ...+φ 2
ni

.


