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Diverse Quasiparticle Properties of Emerging Materials: First-Principles 
Simulations thoroughly explores the rich and unique quasiparticle properties of 
emergent materials through a VASP-based theoretical framework. Evaluations and 
analyses are conducted on the crystal symmetries, electronic energy spectra/wave 
functions, spatial charge densities, van Hove singularities, magnetic moments, spin 
confgurations, optical absorption structures with/without excitonic effects, quantum 
transports, and atomic coherent oscillations. 

Key Features 

• Illustrates various quasiparticle phenomena, mainly covering orbital 
hybridizations and spin-up/spin-down confgurations 

• Mainly focuses on electrons and holes, in which their methods and 
techniques could be generalized to other quasiparticles, such as phonons 
and photons 

• Considers such emerging materials as zigzag nanotubes, nanoribbons, 
germanene, plumbene, bismuth chalcogenide insulators 

• Includes a section on applications of these materials 

This book is aimed at professionals and researchers in materials science, physics, and 
physical chemistry, as well as upper-level students in these felds. 
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Preface 
This book Diverse Quasiparticle Properties of Emerging Materials: First-Principles 
Simulations is completed with intensive cooperation in scientifc research between 
research groups from Taiwan and Vietnam. This book comprises 20 comprehen-
sive chapters on the theoretical framework of quasiparticle properties. There are two 
approaches of quasiparticle viewpoints dominating the theoretical developments, 
namely, frst-principles simulations and phenomenological models. This work is 
focused on the frst-principles simulations. 

The calculated results include the total ground state energies/the chemical modi-
fcation energies, the optimal Moiré superlattices/normal unit cells, the atom- and 
spin-dominated band structures/wave functions, the spatial charge/spin density 
distributions, the atom- orbital- and spin-decomposed van Hove singularities, the 
net magnetic moments, the single-particle and many-body refectance, absorption, 
transmission and energy loss spectra, the ballistic electrical conductivities, the Hall 
quantum ones, and the vibration phonons. They are suffcient to identify the various 
quasiparticle behaviors and to further generalize the previous theoretical framework. 

Most of the research results in this book are carried out by research groups at 
prestigious universities such as National Cheng Kung University, Taiwan; Ho Chi 
Minh City University of Technology (HCMUT)—Vietnam National University Ho 
Chi Minh City, Vietnam; National Kaohsiung University of Science and Technology, 
Taiwan; Can Tho University, Vietnam; Can Tho University of Medicine and 
Pharmacy, Vietnam; Thu Dau Mot University, Vietnam. We are grateful to all the 
authors for their excellent contributions. 

This book will hopefully be of great interest to the scientifc community, and it 
will contribute to the development of research of emergent materials. 
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1 Introduction 

Tran Thi Thu Hanh, Jhao-Ying Wu, 
Vo Khuong Dien, Thi Dieu Hien Nguyen, 
Thi My Duyen Huynh, and Ming-Fa Lin 

A lot of emergent materials, which have been/will be successfully generated by vari-
ous physical and chemical methods, are outstanding candidates in exploring diverse 
phenomena of quasiparticle properties both theoretically and experimentally. Such 
unusual materials cover graphene-related systems (diamond, bulk graphites, layered 
graphene, carbon nanotubes, graphene nanoribbons, fullerenes, onions, and chains) 
[1–8], few-layer group-IV and group-V ones (silicene/germanene/tinene/plumbene/ 
phosphorene/bismuthene/antimonene [9–15]), core anodes, electrolytes, and cath-
odes of lithium-ion-based batteries [e.g., the ternary lithium titanium/silicon/ 
iron compounds [16–19]], perovskite solar cells [20], transition-/rare-earth-metal 
disulfde-related compounds [21, 22], and quantum topological insulators [23]. 
Furthermore, they are easily modulated by chemical adsorptions/substitutions [24, 
25], temperatures [26], mechanical strains [27], gate voltages [electric felds] [28], 
uniform/non-uniform magnetic felds [29, 30], time-dependent/static Coulomb felds 
[31, 32], and electromagnetic waves [33]. The intrinsic and extrinsic mechanism are 
very suffcient for creating diversifed quasiparticle behaviors. This is clearly illus-
trated in crystal symmetries (Moiré superlattices or not [34, 35]), electronic energy 
spectra and wave functions, spatial charge densities [36], van Hove singularities 
[37], net magnetic moments [38], and atom- and orbital-induced spin confgurations 
[39]. Both theoretical calculations and experimental measurements are developed 
to examine and verify various essential properties, being attributed to the dynamic 
and/or static responses of the same/composite quasiparticles (e.g., electrons/polarons 
[40]). This book is focused on the former, which is based on frst-principles simula-
tions [41]. The critical mechanisms in determining rich and unique phenomena are 
thoroughly explored from consistent physical quantities, especially for the orbital 
hybridizations of chemical bonds and the atom- and orbital-induced magnetic confg-
urations [42]. Most importantly, the framework of quasiparticle viewpoints could be 
achieved through the systematic investigations. The predicted results are compared 
with the measured ones in detail [43]. 

In general, there are two approaches of quasiparticle viewpoints in dominating the 
theoretical developments (all the details in Chapter 2), namely, frst-principles simu-
lations (e.g., proposed orbital hybridizations and spin confgurations in Ref [43]) and 
the phenomenological models (e.g., the generalized tight-binding model, the modi-
fed random-phase approximation and self-energy method; [44–46]). Each strategy 
must have plenty of merits and drawbacks. For example, the former/the latter can/ 
cannot successfully deal with optimal geometries, complicated band structures of 

https://doi.org/10.1201/9781003322573-1
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Moiré superlattices [34], spatial multi-orbital hybridizations [47], spin density distri-
butions [48], the net magnetic and electric moments [49], complex excitonic effects 
[50], the low-dimensional quantum transports [51], and the collective atom vibrations 
(phonon spectra and polarization displacements [52]), while they are unable/able to 
explore the various magnetic quantization phenomena (e.g., the featured Landau lev-
els/magneto-optical selection rules/magneto-electronic Coulomb excitations/quantum 
Hall effects [53–56]), the static/dynamic charge screening abilities (such as, the 
unusual Friedel oscillations due to charged impurities, plasma waves arising from 
the external ion beam, and the quasiparticle lifetimes of few-layer graphene/coaxial 
carbon nanotubes [57–59]). These have been clearly identifed in systematic studies, 
as done for graphene-related emergent materials [60]. Apparently, how to promote 
their direct combinations would be very useful in understanding the same/composite 
quasiparticles and thus would achieve much progress of basic sciences. In this work, 
the VASP calculations are chosen for a theoretical development, being partially sup-
ported by the model discussions. The concise motivations of each book chapter are 
stated in the following paragraphs. 

The various high-precision experiments are developed to detect the unusual phys-
ical/chemical/materials properties in emergent materials [the details are in Chapter 
3], covering the delicate examinations and analyses about the geometric, electronic, 
magnetic, optical, Coulomb-excitation, and transport properties. The X-ray diffrac-
tion is frequently utilized to measure the crystal structures of bulk materials since the 
frst theory and experiment by Bragg et al., such as the different Moiré super lattices 
in ternary lithium-titanium [61], lithium-silicon [62] and lithium-iron [63] oxide com-
pounds (anode/electrolyte/cathode materials of lithium-ion-based batteries [64–66]), 
and stage-n graphite intercalation compounds (n corresponding to the number of gra-
phitic layers between two intercalant ones;[67]). How to evaluate the reliable charge 
densities from the measured patterns are very interesting challenges. Specifcally, 
the elastic scattering of the incident electron beams is available in observing the 
three-zero dimensional condensed-matter systems, in which both refection low-
energy electron diffraction (RLEED [68]) and tunneling electron microscopy (TEM 
[69]) are capable of providing the top and side views of surface-related structures, 
respectively. These two methods have clearly verifed the low-dimensional crystal 
symmetries within the coaxial, few-layer, and deformed composite structures, such 
as single-/multi-walled carbon nanotubes [70], layered graphene systems with the 
different layers [71], normal stacking confgurations [72] and twisted angles [73], 
planar/folded/curved/scrolled graphene nanoribbons [74–77], and buckled mono-
layer/bilayer silicene/germanene/tinene/plumbene [the signifcant coupling effects 
of stacking and buckling [78–81]]. As to the nano-scaled crystal structures, scan-
ning tunneling microscopy (STM [82]) can reveal the periodical atom arrangements 
[83] and the local defects (vacancy, adatom intercalation and guest-atom substitution 
[84–86]). It is well known that STM is very successful in identifying the chirality 
and radius of a single-walled carbon nanotube [87], the edge boundary of an achiral/ 
chiral graphene nanoribbon [88], the honeycomb lattices of monolayer group-IV sys-
tems [89], and the non-hexagonal phosphorene [90]. In addition, the spin-polarized 
STM is enhanced for its spatial resolution and thus is very useful in identifying the 
prominent ferromagnetism related to the atomic spin confgurations [48]. 



 

 

3 Introduction 

The theoretical predictions on electronic energy spectra and wave functions are 
directly verifed from scanning tunneling spectroscopy (STS [91]) and angle resolved 
photoemission spectroscopy (ARPES [92]). STS measurements can fully examine the 
dimension-dependent van Hove singularities due to the band-edge states. The very 
successful cases cover the geometry-determined symmetric peaks and the metallic 
or semiconducting behaviors in single-walled carbon nanotubes, the chirality- and 
width-dependent energy gaps of 1D graphene nanoribbons, the layer-number-, stack-
ing-, twist-angle-, and doping-enriched band overlaps, band gaps, energy dispersion 
relations in few-layer graphene systems, and the greatly modifed band properties 
across the Fermi level from 2D group-IV and group-V systems on distinct substrates 
[93]. Specifcally, the spin-polarized STS measurements can distinguish the spin-
split density of states [94]. On the ARPES side, their measurements can clearly 
reveal the quasiparticle energy spectra and lifetimes of occupied electronic states. 
The up-to-now works show that they have shown the diverse band dispersion for 
2D materials, e.g., the linear, parabolic, partially fat, and oscillatory energy bands 
in AB- and ABC-stacked graphene systems [95]. The 1D graphene nanoribbons are 
observed to exhibit the parabolic bands in the presence of semiconducting behav-
iors [96]. In addition, no published papers are found about the ARPES spectra of 
1D carbon nanotubes and 3D lithium titanium/silicon/iron oxides. The diffculty in 
defning vectors/transferred momenta and too many valence subbands should be the 
critical factors. Specifcally, the wave-vector-dependent distribution width of ARPES 
spectra are available in determining the quasiparticle lifetimes, e.g., the enhanced 
Coulomb decay rates in monolayer alkali-doped graphene [97]. 

Four kinds of optical spectroscopies are able to measure the frequency-dependent 
refectance [98], absorption [99], transmission [100], and photoluminescence spec-
tra [101]. Specifcally, the last ones are designed for the clear identifcations of 
many-body effects (the greatly reduced threshold frequency, the extra-prominent 
absorption peaks of excitonic bound states, and the strongly modifed features of 
single-particle vertical transitions [102]). Which kinds of measurements are suitable 
strongly depends on the sample thickness. For example, refectance, transmission, 
and absorption spectra have been successfully measured for AB-stacked graphite 
[103], few-layered graphene systems with the different stacking confgurations and 
carbon nanotubes, respectively. Furthermore, these examinations are able to clarify 
the low-energy π-electronic excitations and middle-energy σ-electronic ones [104], 
the layer-number- and stacking-enriched absorption structures [105], and the exci-
tonic/Aharnov-Bohm effects [106]. It should be noted that the optical refectance 
and photoluminescence spectra are detected for the multi-component lithium oxides 
[107], in which the measured results are too rough to achieve important conclusions. 
This is attributed to Moiré superlattices in creating a lot of valence and conduc-
tion subbands. However, the VASP simulations in this book will clearly specify the 
close relations between the active orbital hybridizations and the prominent absorp-
tion structures [108]. While the dynamic cases are recovered to the static ones [109] 
(the long wavelength limit is extended to any moment transfers [110]), the measured 
transport properties can clarify the semiconducting or metallic behaviors (the elec-
tron energy loss spectra are able to comprehend the single-particle and collective 
charge excitations [111]), especially for the quantum Hall conductivities of layered 
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material [56] (the unusual plasmon modes in low-dimensional systems [112]). Very 
interestingly, experimental measurements are frequently utilized to fully explore the 
screening abilities of quasiparticle charges [113]. 

Numerous 2D materials have been synthesized and predicted since the discovery 
of graphene [114]. As a result, many studies for the structures and properties of 2D 
materials are available [115–117]. Hexagons are basic building blocks of the crystal 
structures for most 2D materials. Following the structure–property relationships that 
have been commonly explored to discover new materials [118], we expect that the 
properties of 2D materials can be modifed if the building blocks for these nanomate-
rials are changed from hexagons to pentagons. Very recently, signifcant efforts have 
focused on stabilization of the pentagonal structure based on carbons, that is mono-
layer penta-graphene [119]. Penta-graphene (PG) is extracted from bulk T12-carbon 
phase. This phase is obtained by heating an interlocking-hexagon-based metastable 
carbon phase at high temperature [120]. It is found that the monolayer PG is an indi-
rect band-gap semiconductor with a band gap of ~3.25 eV [121] which is smaller than 
SiC [122], BN [123], and BeO [124] nanostructures. Those studies showed that this 
structure has obtained dynamical, thermal, and mechanical stability. In a similar 
way to graphene, the PG sheets can be cut along typical crystallographic orienta-
tions in order to construct various penta-graphene nanoribbons (PGNRs) to obtain 
quasi-one-dimensional materials. Their electronic properties were systemically 
investigated [125] including confnement effects and quasiparticle phenomena. The 
resulting four typical nanoribbons, with different edge confgurations, are denoted 
as zigzag-zigzag penta-graphene nanoribbon (ZZ-PGNR), zigzag-armchair penta-
graphene nanoribbon (ZA-PGNR), zigzag-armchair penta-graphene nanoribbon 
(AA-PGNR), and sawtooth-sawtooth penta-graphene nanoribbon (SS-PGNR). This 
study confrmed that SS-PGNR is the most stable structure when compared with the 
other three types of PGNRs with similar width. SS-PGNR possesses semiconductor 
properties. Electronic and transport properties of the sawtooth-sawtooth penta-graphene 
nanoribbons were systematically investigated by using the density-functional theory 
(DFT) in combination with the non-equilibrium Green’s function (NEGF) formalism 
in this chapter. Quasiparticle related electronic diversity of many SS-PGNR struc-
tures is investigated in Chapter 4. This is a very important basis to fnd the way to 
realize electronic devices based on this emergent material. 

A new era of low-dimensional materials has indeed opened since a two-dimensional 
(2D) monolayer of layered graphite was successfully isolated by Geim and Novoselov 
through the mechanical exfoliation method in 2004 [114, 126, 127]. This frst 2D 
monolayer graphitic system is widely known as graphene. Graphene is made of sp2 

hybridized carbon atoms packed in a highly symmetric hexagonal lattice [128]. The 
honeycomb network of graphene can be extended to create the basic building block 
of other carbon allotropes, in which it can be stacked to form 3D graphite [129], 
rolled to form (1D) nanotubes [130], cut to form 1D nanoribbons [131], and wrapped 
to form 0D fullerenes [132]. The orbital hybridization mechanism in graphene is that 
the C-(2s, 2px, and 2py) orbitals are hybridized to create strong σ bonds to hold the 
planar 2D sheet, while C-2pz orbitals remain freestanding to form weak π bonding 
along the z-direction. This evidences that σ and π bonds in graphene are separated, in 
which the π orbitals mainly contribute to a Dirac cone structure at low-lying energy 
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[133]. Specifcally, the long-range π conjugation in graphene leads to many novel qua-
siparticle properties that have been interested in many recent studies [134]. To date, 
graphene has been utilized in various applications such as fexible devices [135], 
transparent conductors [136], high-speed devices, and batteries [137]. Unfortunately, 
graphene displays many disadvantages for nanoelectronic applications due to its 
zero-gap feature [138]. To overcome the critical drawbacks of graphene, various 
approaches have been used to open a band gap in graphene, including chemical func-
tionalizations [139], atom dopings [140], mechanical strains [141], bilayer structures 
[142], fnite-size confnements [143], inducing defects [144], and applying external 
felds [145]. Beyond graphene, many efforts have been strongly focused on graphene-
like 2D materials and other emergent 2D systems, including silicene [146], ger-
manene [147], stanine [148], phosphorene [149], antimonene [150], bismuthine [151], 
transition metal dichalcogenides (TMDs) [152], topological insulators (TIs) [153], 
metal-organic frameworks (MOFs) [154], and Mxenes [155], in which silicene, a 2D 
analog of graphene, is made of silicon atoms packed in a low buckled honeycomb 
lattice. Silicene possesses many graphene-like quasiparticle features [156]; however, 
silicene presents better compatibility in silicon-based electronic devices than gra-
phene so that silicene has stirred studies to extend its potential for practical applica-
tions [157]. Unlike graphene, silicene can only be synthesized through bottom-up 
methods due to a lack of graphite-like layered silicon structure. The most common 
method to synthesize the monolayer silicene is to deposit silicon atoms on the metal-
lic substrates [158–160] that provide the experimental evidence for the presence of 
the 2D silicon sheet, which was theoretically predicted in 1994 [161]. Up to now, 
silicene has been extended in many applications, including room-temperature feld-
effect transistors (FETs) [162], gas sensors [163], and batteries [164]. Nevertheless, 
the critical disadvantage of silicene for electronic devices is its small gap feature 
[165]. Thus, a lot of studies have been conducted in opening band gap for silicene, 
including chemical modifcations [166], quantum confnements [167], stacking con-
fgurations [43], mechanical strains [168], and applying external felds [169]. Among 
these methods, creating the fnite size-quantum confnements is the most powerful 
way to create a band gap that can remain the low-buckled honeycomb lattice of 2D 
host silicene without any modifcation in the chemical hybridization mechanism in 
the honeycomb networks. The fnite size confnements of 2D silicene result in 1D 
silicene nanoribbons (SiNRs) with armchair (ASiNR) and zigzag (ZSiNR) edges 
[170]. SiNRs show the middle-gap quasiparticle properties that can fully overcome 
the main obstacle of 2D host silicene for electronic devices [171]. On the experimen-
tal side, SiNRs have been successfully synthesized from both top-down and bottom-
up methods. The top-down method is to cut the 2D host silicene to create 1D SiNRs 
[172], while the bottom-up approach is to grow 1D SiNRs on metallic substrates or 
an insulating thin flm [173, 174]. SiNRs with their dominant quasiparticle features 
and their compatibility in silicon-based electronic devices have attracted much atten-
tion from the scientifc community recently [175]. On the other hand, a wide range of 
applications requires materials having greater diverse quasiparticle properties such 
that enriching the essential quasiparticle properties of SiNRs is an interesting issue 
for many studies. To diversify the essential quasiparticle properties of SiNRs, vari-
ous methods have been applied, including chemical dopings [176], edge passivations 



 

 
 

 

 
 
 
 

 
 
 

  

 

 

6 Diverse Quasiparticle Properties 

[177], stacking confgurations [178], generating lattice defects [179], applying exter-
nal felds [180], and forming heterostructures [181], in which atom doping is the most 
effective way to dramatically diversify the essential quasiparticle properties. Up to 
now, many kinds of atoms have been successfully doped in SiNRs to result in their 
diversifed quasiparticle properties [182–186]. However, halogen adsorptions on 
SiNRs have not yet been revealed in detail, while halogen adatoms with very strong 
electron affnity can create a strong bonding with silicon atoms to greatly compli-
cate in chemical hybridization mechanism that can result in signifcant diversifed 
quasiparticle properties. Therefore, the diverse quasiparticle properties of halogen-
adsorbed SiNRs are worthy of further investigation in Chapter 5. Furthermore, the 
developed frst-principles theoretical framework in this chapter can be fully general-
ized to many other emergent layered materials. 

Graphene nanoribbon (GNR), a one-dimensional (1D) narrow strip of graphene 
[187–189], has recently attracted much attention due to its remarkable properties. 1D 
quantum confnement effects of a GNR can greatly diversify the essential proper-
ties, which can overcome the limitation of application in 2D graphene with its zero-
gap electronic structure. Nanoribbon width and edge structure play critical roles in 
the essential properties of GNRs. According to the edge structure, there are two typ-
ical GNRs, armchair and zigzag ones (AGNRs and ZGNRs) [190, 191]. The former 
belongs to non-magnetic semiconductors, while the latter are anti-ferromagnetic 
middle-gap semiconductors. Up to now, GNRs have been successfully synthesized 
by various experimental methods such as lithographic [192, 193], sonochemical 
breaking [194], oxidization reaction [195], chemical vapor deposition [196], unzip-
ping CNTs using plasma etching [197], and so on. Recently, GNRs are promising in 
the felds of energy storages, e.g., feld-effect transistors [198], lithium-ion batteries 
[199, 200], and fuel cells [201]. To further expand the range of application, GNRs’ 
properties can be modulated by changing the geometric structures [202, 203], dop-
ing [204, 205], and applying external electric/magnetic felds [206, 207]. Chapter 6 
aims to provide a systematic study on the fundamental properties of the metal/ 
transition metal adatom-adsorbed GNRs. The various Al-/Fe-/Co-/Ni-adsorption 
structures, critical multi-orbital hybridizations, signifcant non-magnetism (NM)/ 
anti-ferromagnetism (AFM)/ferromagnetism (FM), and metallic/semiconducting 
behaviors will be clearly illustrated. 

A single-wall carbon nanotube as well as silicon nanotube can be regarded as 
a rolled honeycomb lattice of graphene and silicene, respectively. The successful 
systematic studies of carbon nanotubes (CNTs) have been synthesized by means of 
arc-discharge evaporation in 1991 [208]. Later, other developments [209–213] such 
as characterization [214–217], property [218–220], and applications [221–223] sprang 
up like mushrooms. Similarly, silicon nanotubes (SiNTs) were successful initially 
synthesized in 2000 via ozone to remove the tubular meso- and nanoporous silicate 
templates [223]. Soon after that, a lot of investigations have been reported such as 
different growth process [224–226], features [226, 227], and applications [228–230]. 
The electronic properties of the planar graphene nanoribbons exhibit semiconducting 
behavior. On the other hand, the cylindrical carbon nanotubes are metals or direct-
gap semiconductors sensitive to the chirality and radius. Metallic nanotubes are 
exclusively comprised of either armchair nanotubes or very small zigzag nanotubes 
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with radii < √3b (b is the C-C bond length) [231]. The cylindrical silicon nanotubes 
exhibit the same behaviors as carbon nanotubes. They can be either metallic or semi-
conducting depending on the radii and chiral vectors. The Metallic silicon nanotubes 
are only comprised of zigzag types, especially for the small size of tubes ((m,0), m ≦9), 
and others are semiconducting such as armchair silicon nanotubes and large size 
of zigzag ones. Large curvature effect enhances the σ and π mixing in the smaller 
tubes, leading to the metallic property. The theoretical calculations [232, 233] and 
experimental measurement have confrmed the curvature effects, the misorientations 
of 2pz orbitals and hybridizations of carbon (2s, 2px, 2py, 2pz) and silicon (3s, 3px, 
3py, 3pz) four orbitals, on a cylindrical surface, leading to the geometry dependent 
energy gaps. Chapter 7 introduces single-wall carbon and silicon nanotubes with 
different diameters and chiralities. The geometric structure, energy bands, spatial 
charge distributions, and orbital-projected density of states are discussed in detail. 
Silicon nanotube is characterized by sp3 hybridization and the gear-like structure. 
The ground state energy E0 obviously decreases with the increasing diameter, owing 
to the reduction of bond length, buckling distance (for SiNTs), and curvature effect. 
The variation of the band structure and PDOSs with the curvature is investigated 
thoroughly. The calculated results clearly indicate the unusual features of the energy 
band, such as energy gap, energy dispersions, band-edge states, mixing bands, band 
overlap, and state degeneracy. The total and local DOSs exhibit a plenty of prominent 
asymmetric peaks in the inverse of the square-root form. The zigzag carbon and 
silicon nanotubes are quite different from each other, mainly owing to the curvature 
effect, unsymmetrical structure, and the open/periodical boundary condition. These 
could be directly verifed by the STS measurements. 

Chapter 8 offers an analysis of electronic, optical properties of pristine silicene 
and substituted-silicene by B, C, and N atoms using density functional theory. Such 
guest-atoms possess three, four, and fve electrons in the outermost cell, being suit-
able for a deep understanding of the quasiparticle properties of the substitutional 
silicene systems. The optical coeffcients such as the real and imaginary dielectric 
function, dielectric function, electron loss function, absorption coeffcient, refractiv-
ity, and refectivity are calculated for both in-plane light polarization (perpendicu-
lar) and out of plane (parallel) polarization. The electronic and optical properties of 
the guest-substituted silicene systems become so different compare with the pris-
tine ones. Our computational results present the p-type doping metallic behavior in 
boron-substituted silicene while in the carbon- and nitrogen-substituted cases, the 
systems become semiconductoring phenomena. The absorption intensity in the case 
of carbon-substituted silicene is highest in both polarization directions, but in the 
case of boron and nitrogen, it is almost unchanged compared to pristine. The com-
parison between the guest-atoms substitution and the pristine systems will be dis-
cussed in detail in all the properties. 

Binary compounds, fully B-/C-/N-substituted germanenes, exhibit the diversi-
fed phenomena through the different chemical bondings presented in Chapter 9. 
The delicate frst-principles calculations can present the buckling/planar honeycomb 
lattices, the atom-dominated band structures, the spatial charge densities, the spin 
density distributions, and the atom-, orbital-, and spin-decomposed density of states, 
being very useful in determining the critical orbital hybridizations and magnetic 
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confgurations. The concise pictures, the strong competition between sp2 and sp3 

bondings, and the guest-dependent spin states, are responsible for the geometric sym-
metries, the metallic/wide-/narrow-gap behaviors, the modifcation/destruction of 
Dirac-cone structures, the nonmagnetic or ferromagnetic properties, the crossings/ 
anti-crossings of π and σ bands, or the pure sp3 energy bands. 

Plumbene, the latest cousin of graphene, has been mentioned as a candidate mate-
rial for topological insulator (TI) and room-temperature operations [12, 234] due to its 
rich and unique geometric and electronic properties. In 2019, Yuhara and his cowork-
ers reported the successful fabrication of the single layer of lead atoms by molecu-
lar beam epitaxy (MBE) [235]. This work has prompted the development of related 
research, e.g., chemical decoration and/or hydrogenate of monolayer Plumbene. The 
chemical modifcations, as revealed in the experimental and theoretical investiga-
tions [236, 237], are one of the most effcient approaches in dramatically chang-
ing the geometric, electronic, and optical properties through orbital hybridization 
modifcation. Very interestingly, the Hydrogen atom with 1s orbital in the electronic 
confguration exhibits the extremely strong chemical bonding with the Pb atom in 
Plumbene. The critical quasiparticle features include the signifcant orbital hybrid-
izations in Pb-H chemical bonds, the signifcant change of the electronic properties 
in double and single side adsorption, the modify of optical spectrum in case of with/ 
without excitonic effect, and very importantly, the effect of spin-orbital couplings 
on the electronic and optical properties of the hydrogenated systems are thoroughly 
examined from the frst-principles simulations in Chapter 10. The current study is 
very useful in comprehending the crucial properties of 2D materials with chemical 
functionality. 

Graphite is one of the mainstream materials in basic science research and potential 
applications [238]. Apparently, this system stirred plenty of theoretical and experi-
mental [239, 240] studies more than one hundred years ago. Its layered structure, 
which consists of carbon mb lattices, exhibits the unusual crystal symmetries [241] 
and thus the unusual phenomena, such as, the AA [242], AB [242], ABC [243], and 
turbostratic stackings [244]. The graphitic spacing, being determined by the Van der 
Waals interactions [245], provides a very active environment in creating the chemi-
cal intercalations or de-intercalations for the various atoms/molecules/ions [246], 
especially for the charging and discharging processes in ion-based batteries [247]. 
The chemical modifcations are capable of generating the n-, p-type dopings [248] 
or even the zero-gap semiconducting behaviors [249], the drastic changes of band 
structures and van Hove singularities through the zone-folding effects and signifcant 
intercalant-related interactions [13], the featured optical refectance and absorption 
spectra in the presence/absence of quasi-stable excitons [250], the diverse (momen-
tum, frequency)-dependent Coulomb excitations under distinct free carriers (the 
rich electron-hole and collective excitations), the very high electrical conductivities 
comparable to those metals, and a great enhancement of the superconducting transi-
tion temperature [250]. Very interestingly, this rather stable system is frequently uti-
lized as the anode/cathode materials of lithium/aluminum-based batteries. The rich 
essential properties have been studied for the Li- and Li+-related graphite intercala-
tion compounds [249]. The critical quasiparticle properties, the signifcant orbital 
hybridizations in various intralayer and interlayer chemical bonds, are thoroughly 
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examined from the frst-principles simulations in Chapter 11. The intercalations 
and de-intercalations of large molecules are expected to become more complicated, 
mainly owing to the enlarged Moiré superlattices [251]. This study is very useful 
in comprehending aluminum-based batteries [252], certain important differences 
among the different graphite intercalation compounds, and close relations between 
the numerical methods and the phenomenological models [253]. 

Batteries [254], which store and release energy in terms of chemical energy, have 
become one of the mainstream items in research recently. Compared with other 
energy store systems, lithium-ion-based batteries (LIBs) have received a great deal 
of attention since they process desirable features, such as light weight, long life cycle, 
fast charging time, and ability to provide a sizable electronic current for electronic 
devices [255, 256]. Generally speaking, the commercial LIB is a complex combina-
tion of the electrolyte with the negative (cathode) and the positive (anode) electrodes 
[255, 256]. Furthermore, the physical/chemical pictures in each component are rather 
complicated and directly related to the performance of storage systems. The previ-
ous few theoretical studies are conducted on the geometric and electronic properties 
of LIBs’ components through the frst-principles calculations. However, the delicate 
results and analyses have been thoroughly absent up to now. That is to say, the calcu-
lated results are insuffcient, and there are no critical mechanisms (concise physical 
pictures) in comprehending the diversifed phenomena. The theoretical framework 
is based on the numerical calculations and delicate analyses were developed and 
applied for the layered LiFeO2-a candidate for cathode compound in Chapter 12. 
The fundamental features, the critical quasiparticle properties, and the signifcant 
orbital hybridizations in various chemical bonds are thoroughly examined from the 
frst-principles simulations. The charging and discharging of LIBs are expected to 
be complicated owing to the variation of chemical bonds and thus, orbital hybrid-
izations. Our predictions provide certain meaningful information about the criti-
cal physical/chemical pictures in LIBs. Such state-of-the-art analysis is very useful 
for fully comprehending the diversifed properties in anode/cathode/electrolyte and 
other emerging materials. 

Beyond graphene, atomically thin TMDs have become a new fatform owing to 
their rich and unique properties [257–260]. Especially, the change in properties from 
monolayer to bilayer is more signifcant than that resulting from multilayers [261– 
264]. Bilayer TMDs reveal the interesting and unique properties compared to their 
monolayers such as higher density of states and carrier mobility [265–268]. This 
phenomenon anticipates superior performance in thin-flm transistors and sensors. 
In addition, stacking orders in bilayer exhibit an alternative method in investigat-
ing their effects. Varying stacking modes in structural engineering can manipulate 
the electronic properties of bilayer TMDs as reported in MoS2 [269–271] and WS2 

[272]. Among TMDs, HfX2 (X = S, Se, or Te) is a group candidate that promises 
opportunities for investigation and applications based on their emergent and satis-
factory fndings. In the attempt to vary layered materials for reduction in the size 
of devices, layered structures such as monolayer or bilayer have been concerned. 
Besides, bulk and monolayer of HfX2 had been explored and used in some electronic 
devices [273–276]. Bilayer HfX2 should be therefore analyzed in order to enhance 
this group. Although bilayer HfSe2 [277] has been studied and found promising for 
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thermal conductivity, the perspective of all these materials in bilayer is still limited. 
Using VASP calculations, the quasiparticle problems related to electrons as formerly 
mentioned are resolved, indicating the close relations between theoretical frame-
work and quasiparticles. In Chapter 13, we focus on the electronic properties of these 
materials constructed in bilayer to provide further information about their features. 

Lithium-ion batteries have become popular and dominate in commercial pur-
poses. They possess many high-performance characteristics such as high power, 
energy density, long life cycle, and friendly to the environment, as well as afford-
able prices. Many candidates are investigated further as potential cathode, anode, 
and electrolyte components. Our study in this chapter focuses on an excellent anode 
material with the zero-strain property of the volume during the lithium intercalation 
or deintercalation process. The ternary compound possesses a lot of advantages, e.g., 
the safety and long cycling life for lithium-ion batteries. Currently, Li4Ti5O12 enters 
into the commercial anode product for Li+-ion based batteries [278, 279]. Lithium 
titanate material presents rich and unique geometric, electronic properties under the 
quasiparticle framework [39, 278, 279]. The primitive cell contains a huge number of 
atoms, which is called a Moiré superlattice [39]. The geometric structure performs 
a non-uniform environment, which fundamentally comes from the Li-O and Ti-O 
bonds. Many signifcant electronic quasiparticle properties are presented such as 
band structures, atom-dominated energy spectrum, spatial charge density distribu-
tions, and the atom- or the orbital-decomposed density of states [279]. The theoreti-
cal quasiparticle properties could be tested under the high-resolution experimental 
measurements. Many experimental examinations can be used for investigating the 
whole structures, e.g., X-ray diffractions for measuring the lattice parameters, trans-
mission electron microscopy (TEM) for morphology [280], angle-resolved photo-
emission spectroscopy (ARPES [281–283]), and scanning tunneling spectroscopy 
(STS [283–285]) for band structures examination along with van Hove singularities. 
Also, the theoretical development of a quasiparticle framework in geometry and the 
electronic in terms of multi-hybridizations is worthy to thoroughly investigate in 
Chapter 14. 

In Chapter 15, the theoretical calculations for the low-lying vibrational H atoms 
adsorbed on the Pt(110) surface are presented. We use the H/Pt(110) model with 
the conventional ultrahigh vacuum (UHV) and the density functional theory (DFT) 
to study the phonon frequency (the quasiparticle frequency). The nature of hydro-
gen atoms, which were adsorbed on the four different sites of the Pt(110) surface, is 
shown. The most stable site of the short bridge is in agreement with previous studies. 
The highest stretching frequency of 2200 cm−1 and the zero-point energy (ZPE) of 
the H atom on the top site ~140 meV are calculated. Our results convincingly dem-
onstrate the need to study the local oscillation to understand the dynamics of this 
system. 

Bismuth chalcogenides are of great interest because of the exciting properties of 
topological insulators (TIs) and their potential applications in low power dissipa-
tion electronic devices, spintronics, and quantum computing. TIs are exotic materi-
als with an insulating bulk and topologically protected surface states (TSSs) that 
exhibits Dirac linear energy dispersion inside the bulk gap, spin-polarization by 
spin-momentum locking nature. In bismuth chalcogenide TIs (e.g., Bi2Te3, Bi2Se3, 
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Bi2Se2Te, etc.), the dominant bulk conduction arising from naturally occurring crys-
tal imperfections and residual carrier doping has greatly hindered the detection of 
Dirac fermions by means of weak anti-localization effect (WAL) and quantum oscil-
lations at low temperatures. Regardless of such challenges, the transport method has 
been great success in probing the TSSs and studying its properties. The WAL effect 
agrees well with the Hikami-Larkin-Nagaoka model that allows to obtain the num-
ber of conduction channel and phase coherent length. However, in TIs, since the 
WAL refects both the 3D contribution of spin–orbit coupling in bulk and the Dirac 
nature of the 2D TSSs, a detailed study of magnetoconductance (ΔG (θ, B)) in tilted 
magnetic felds (θ = 0–90°) is essential to get insight into the origin of the observed 
WAL. If all the ΔG curves coincide with each other in the plot of ΔG (θ, B) versus the 
perpendicular component of the magnetic feld, then the observed WAL effect is 2D 
in nature. In addition, TIs with suffciently high surface electron mobility can present 
pronounced Shubnikov–de Haas (SdH) oscillations. The analysis of SdH oscillations 
leads to elucidating the Dirac nature of TSS with fnite Berry phase and 2D Fermi 
surface; it also enables us to extract the carrier concentration, effective mass, Dingle 
temperature, and the Berry phase of TIs. Chapter 16 presents the recent advances 
in magnetotransport method to study on bismuth chalcogenide TIs and their most 
fascinating results. 

Current emerging materials provide us with various signifcant applications in 
industry, particularly in energy storage and electronic equipment. In battery applica-
tions, LiFeO2 can be served as a cathode material, while silicon-carbon nanotubes 
and Li4Ti5O12 are popular for the anode side. Aluminum-chloride-graphene interca-
lated compounds are known as an abundant and friendly environment, which can 
contribute to the development of ion-based batteries. Other materials have signif-
cant applications in electronic and photoelectronic devices such as transition metal 
dichalcogenides (TMDs) material group HfX2 (X = S, Se, or Te), Bismuth chalco-
genide topological insulators (BiCh-TIs). In addition, penta-graphene nanoribbons 
metals/transition metals and halogen-adsorbed silicene nanoribbons can be devel-
oped for certain heterojunction devices and spintronics, respectively. Remarkably, 
spintronics is used to monitor the spin properties, which are based on the natural 
characteristics of electrons. Furthermore, hydrogenated absorption systems, for 
example, the adsorbed hydrogen on the Pt(110) surface, plumbene adsorption hydro-
gen, and hydrogen adsorption on two-dimensional germanene are developed to 
enhance hydrogen technology and battery applications. substituted silicene systems 
germanene and silence systems can be useful for light and lasers due to their wide 
band gap. Chapter 17 will present diverse practical contributions of these materials 
in industrial and daily applications. 

In summary, Chapter 2 covers the theoretical frameworks of quasiparticle par-
ticles from both viewpoints of frst-principles simulations and phenomenological 
models [286], as generalized from the precious developments [287]. The high-res-
olution experimental measurements are thoroughly characterized in Chapter 3. 
By delicate VASP calculations and analyses, the diverse quasiparticle phenomena 
clearly reveal in penta-graphene nanographene nanoribbons [Chapter 4], haloge-
nated silicene nanoribbons [Chapter 5], metals/transition metals-adsorbed graphene 
nanoribbons [Chapter 6], zigzag silicon nanotubes [Chapter 7], boron-/carbon-/ 
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nitrogen-substituted silicene [Chapter 8], adatom-substituted on germanene sys-
tems [Chapter 9], hydrogen-chemisorption plumbenes [Chapter 10], stage-1/stage-2/ 
stage-3/stage-4 AlCl4 graphite intercalation compounds [Chapter 11], ternary lithium 
iron oxides [Chapter 12], different stacking in bilayer HfX2 (X=S, Se, or Te) [Chapter 13], 
lithium titanium oxides [Chapter 14], H-adsorbed Pt(110) surfaces [Chapter 15], and 
bismuth Chalcogenide topological Insulators [Chapter 16]. In addition to the theoreti-
cal analysis, the diverse related practical applications of these emerging materials 
will be covered in this book [Chapter 17]. 

In concluding remarks, the calculated results include the total ground state energies/ 
the chemical modifcation energies [288], the optimal Moiré superlattices/normal 
unit cells [289], the atom- and spin-dominated band structures/wave functions 
[25], the spatial charge/spin density distributions [36], the atom- orbital- and spin-
decomposed van Hove singularities [37], the net magnetic moments [205], the sin-
gle-particle and many-body refectance [290], absorption [291], transmission [292] 
and energy loss spectra [293], the ballistic electrical conductivities [294], the Hall 
quantum ones [295], and the vibration phonons [296]. They are very suffcient in 
identifying the various quasiparticle behaviors and further generalize the previous 
theoretical framework [297]. Concluding remarks, open issues, and obvious prob-
lems are, respectively, illustrated in Chapter 18–20. 
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