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Preface

This book started out as the class notes used in the HarvardX Data Science Series’.
The link for the online version of the book is https://rafalab.github.io/dsbook/

The R markdown code used to generate the book is available on GitHub?. Note that,
the graphical theme used for plots throughout the book can be recreated using the
ds_theme_set () function from dslabs package.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International (CC BY-NC-SA 4.0)°.

We make announcements related to the book on Twitter. For updates follow @rafalab*

Thttps: //www.edx.org/professional-certificate/harvardx-data-science
2https://github.com/rafalab/dsbook
3https://creativecommons.org/licenses /by-nc-sa,/4.0
4https://twitter.com/rafalab
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Introduction

The demand for skilled data science practitioners in industry, academia, and government is
rapidly growing. This book introduces concepts and skills that can help you tackle real-world
data analysis challenges. It covers concepts from probability, statistical inference, linear
regression, and machine learning. It also helps you develop skills such as R programming, data
wrangling with dplyr, data visualization with ggplot2, algorithm building with caret, file
organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible
document preparation with knitr and R markdown. The book is divided into six parts: R,
Data Visualization, Statistics with R, Data Wrangling, Machine Learning, and
Productivity Tools. Each part has several chapters meant to be presented as one lecture
and includes dozens of exercises distributed across chapters.

Case studies

Throughout the book, we use motivating case studies. In each case study, we try to realistically
mimic a data scientist’s experience. For each of the concepts covered, we start by asking
specific questions and answer these through data analysis. We learn the concepts as a means
to answer the questions. Examples of the case studies included in the book are:

Case Study Concept

US murder rates by state R Basics

Student heights Statistical Summaries
Trends in world health and economics Data Visualization
The impact of vaccines on infectious disease rates Data Visualization
The financial crisis of 2007-2008 Probability
Election forecasting Statistical Inference
Reported student heights Data Wrangling
Money Ball: Building a baseball team Linear Regression
MNIST: Image processing hand-written digits Machine Learning
Movie recommendation systems Machine Learning

Who will find this book useful?

This book is meant to be a textbook for a first course in Data Science. No previous knowledge
of R is necessary, although some experience with programming may be helpful. The statistical
concepts used to answer the case study questions are only briefly introduced, so a Probability

XXix
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and Statistics textbook is highly recommended for in-depth understanding of these concepts.
If you read and understand all the chapters and complete all the exercises, you will be
well-positioned to perform basic data analysis tasks and you will be prepared to learn the
more advanced concepts and skills needed to become an expert.

What does this book cover?

We start by going over the basics of R and the tidyverse. You learn R throughout the
book, but in the first part we go over the building blocks needed to keep learning.

The growing availability of informative datasets and software tools has led to increased
reliance on data visualizations in many fields. In the second part we demonstrate how to
use ggplot2 to generate graphs and describe important data visualization principles.

In the third part we demonstrate the importance of statistics in data analysis by answering
case study questions using probability, inference, and regression with R.

The fourth part uses several examples to familiarize the reader with data wrangling.
Among the specific skills we learn are web scrapping, using regular expressions, and joining
and reshaping data tables. We do this using tidyverse tools.

In the fifth part we present several challenges that lead us to introduce machine learning.
We learn to use the caret package to build prediction algorithms including K-nearest
neighbors and random forests.

In the final part, we provide a brief introduction to the productivity tools we use on a
day-to-day basis in data science projects. These are RStudio, UNIX/Linux shell, Git and
GitHub, and knitr and R Markdown.

What is not covered by this book?

This book focuses on the data analysis aspects of data science. We therefore do not cover
aspects related to data management or engineering. Although R programming is an essential
part of the book, we do not teach more advanced computer science topics such as data
structures, optimization, and algorithm theory. Similarly, we do not cover topics such as
web services, interactive graphics, parallel computing, and data streaming processing. The
statistical concepts are presented mainly as tools to solve problems and in-depth theoretical
descriptions are not included in this book.
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Getting started with R and RStudio

1.1 Why R?

R is not a programming language like C or Java. It was not created by software engineers for
software development. Instead, it was developed by statisticians as an interactive environment
for data analysis. You can read the full history in the paper A Brief History of S'. The
interactivity is an indispensable feature in data science because, as you will soon learn, the
ability to quickly explore data is a necessity for success in this field. However, like in other
programming languages, you can save your work as scripts that can be easily executed at
any moment. These scripts serve as a record of the analysis you performed, a key feature
that facilitates reproducible work. If you are an expert programmer, you should not expect
R to follow the conventions you are used to since you will be disappointed. If you are patient,
you will come to appreciate the unequal power of R when it comes to data analysis and,
specifically, data visualization.

Other attractive features of R are:

R is free and open source?.

It runs on all major platforms: Windows, Mac Os, UNIX/Linux.

Scripts and data objects can be shared seamlessly across platforms.

There is a large, growing, and active community of R users and, as a result, there

are numerous resources for learning and asking questions® * °.

5. It is easy for others to contribute add-ons which enables developers to share
software implementations of new data science methodologies. This gives R users
early access to the latest methods and to tools which are developed for a wide
variety of disciplines, including ecology, molecular biology, social sciences, and
geography, just to name a few examples.

Ll e

1.2 The R console

Interactive data analysis usually occurs on the R console that executes commands as you
type them. There are several ways to gain access to an R console. One way is to simply start
R on your computer. The console looks something like this:

Lhttps://pdfs.semanticscholar.org/9b48 /46f192aa37cal22cfabbled 1b59866d8bfda.pdf
2https://opensource.org/history
Shttps://stats.stackexchange.com/questions/138/free-resources-for-learning-r
4https://www.r-project.org/help.html

Shttps:/ /stackoverflow.com/documentation/r/topics
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File Edit View Misc Packages |Windyws | Help

R version 3.4.4 (2018-03-15) —- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.

Type 'contributors()' for more information and

‘citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, ‘'help()' for on-line help, or
‘help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

>

As a quick example, try using the console to calculate a 15% tip on a meal that cost $19.71:

0.15 * 19.71
#> [1] 2.96

Note that in this book, grey boxes are used to show R code typed into the R
console. The symbol #> is used to denote what the R console outputs.

1.3 Scripts

One of the great advantages of R over point-and-click analysis software is that you can save
your work as scripts. You can edit and save these scripts using a text editor. The material
in this book was developed using the interactive integrated development environment (IDE)
RStudio®. RStudio includes an editor with many R specific features, a console to execute
your code, and other useful panes, including one to show figures.

Shttps://www.rstudio.com/
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e e Rotudo
Q e ~  Addins ~ & Project: (None) =
@1 codeR — ) Environment History =0

SourceonSave & / - - #Run  Se Source + ¥ [ _»import Dataset ~ List ~
1ox<1 % Global Environment «
Code editor Environment/History
17 (fop Level Rscript
Console ) Files Plots Packages Help Viewer -0
R version 3.4.1 (2017-06-30) -- "Single Candle” 5 Export
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwini5.6.0 (64-bit) R console Other panes

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcoe to redistribute it under certain conditions.
Type "license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.

Type *contributors()’ for more information and

*citation()' on how to cite R or R packages in publications.
Type 'demo()" for some demos, 'help()* for on-line help, or
*help.start()' for an HTML browser interface to help.

Type 'qQ)" to quit R.

Most web-based R consoles also provide a pane to edit scripts, but not all permit you to
save the scripts for later use.

All the R scripts used to generate this book can be found on GitHub’.

1.4 RStudio

RStudio will be our launching pad for data science projects. It not only provides an editor
for us to create and edit our scripts but also provides many other useful tools. In this section,
we go over some of the basics.

1.4.1 The panes

When you start RStudio for the first time, you will see three panes. The left pane shows the
R console. On the right, the top pane includes tabs such as Environment and History, while
the bottom pane shows five tabs: File, Plots, Packages, Help, and Viewer (these tabs may
change in new versions). You can click on each tab to move across the different features.

"https://github.com /rafalab/dsbook
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R version 3.4.4 (2018-03-15) -- "someone to Lean on"

Copyright (C) 2018 The R Foundation for statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

Environment is empty
R is free software and comes with ABSOLUTELY NO WAR 2
You are welcome to redistribute it under certain cqnditions.
Type "license()' or "licence()' for distribution ddtails.

R is a collaborative project with many contributors.
Type contributors()’ for more information and
“citation()’ on how to cite R or R packages in publications.

Type 'demo()’ for some demos, ‘help()' for on-line help, or
“help.start ()’ for an HTML browser interface to help.

Type 'q()" to quit R. Files Plots Packages Help Viewer

> @ NewFolder | © Delete =] Rename | More -
O ) Home
& vame size Modtiea
O @r

(R ATRRD)

] Edit Code View Plots Session Build Debug Profle Took Help

New File > RScript Ctrle ShifteN R Project:(None] ~
New Project. 5 .
2 RNotebook Environment  History  Connections =0
OpenFile.. Ctri+0 < | | 7 Import Dataset = sty | @
RMarkdown..
Recent Files > 7 Global Environment + a
Shiny Web App...
Open Project..
G Tet File
Open Project in New Sessian. [t Environment is empty
Recent Projects >
Import Dataset || [Feseecees
RHTML
Save Ctii+s RPresentation
Save As. RDocumentation
Save Al CrlsAltss -
! for on-line help, or
= erface to help.
Fles Plots Packages Help Viewer =0
Clost L QB Neve Folder | O Delete 3] Rename’ | 4 More =
Close Al ClrbashiftsW it
Close Al Bxcept Curent CireAl Shiftr W s 5 P
Close Project 0O &r
Quit Session. cuieQ

This starts a new pane on the left and it is here where you can start writing your script.
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© rsudo
Fle Edit Code View Plots
o .oy -

Session Build Debug Profile Tools Help

~ addins -

0 Untitiea1 ==
] Csourceonsave | Q /° « SRun | % | b Source
e |
11 (opLevel ¢ Rcript +
Console  Terminal =0
R version 3.4.4 (2018-03-15) -- "Someone to Lean on” o

Copyright (C) 2018 The R Foundation for Statistical computing
Platform: x86_64-w6d-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ‘Ticense()' or ‘licence()' for distribution details.

R is a collaborative project with many contributors.
Type "contributors()’ for more information and
“citation()" on how to cite R or R packages in publications.

Type ‘demo()’ for some demos, ‘help()' for on-line help, or
“help.start ()" for an HTML browser interface to help.
Type 'q()" to quit R.

Environment  History  Connections
2 i | 7 import Dataset - | o

h Globs! Environment -

Environment is empt

Fies Plots Packages Help Viewer
@ NewFolder | © Delete =] Rename | More -

& rome

A Name size
R

1.4.2 Key bindings

Many tasks we perform with the mouse can be achieved with a combination of key strokes
instead. These keyboard versions for performing tasks are referred to as key bindings. For
example, we just showed how to use the mouse to start a new script, but you can also use a

folle s
£ project (None) +

=0
st +

=0

Modified

P
o]

key binding: Ctrl+Shift+N on Windows and command-+shift+N on the Mac.

Although in this tutorial we often show how to use the mouse, we highly recommend
that you memorize key bindings for the operations you use most. RStudio provides
a useful cheat sheet with the most widely used commands. You can get it from RStudio

directly:

) RStudio

File Edit Code View Plots Session Build Debug Profile Tools [Help

o .o\ = sl
O] Untitiear* About Rtudio

] Osourceonsave | Q 7 - rel  CheckforUpdtes
* RStudio Docs

RStudio Community Forum
Rstudio Support
Cheatsheets

Keyboard Shortcuts Help
Markdown Quick Reference
Roxygen Quick Reference

History  Conections
import Dataset - | o

onment -

Environment is empt

4 RStydio IDE Cheat Sheet
oul?

e ransformation with dplyr
Data Visualization with ggplot2
Package Development with devtools

Web Applications with shiny.

Eposis 4 Interfacing Spark with sparklyr
R Markdown Cheat Sheet
Flles || Pt R Markdown Reference Guide
@1 New Folder O Delete T3] Rename T Ware <
A Home
A Name size
3
11| oplevel ¢ R Script
Console  Terminal =0
R version 3.4.4 (2018-03-15) —- "omeone to Lean on” a

Copyright (C) 2018 The R Foundation for statistical Computing
Platform: x86_64-wed-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type "license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type "contributors()" for more information and 3
“citation()" on how to cite R or R packages in publications.

Type ‘demo()’ for some demos, 'help()’ for on-line help, or
‘help.start ()’ for an HTML browser interface to help.
Type 'q()" to quit R.

>

[E=S ol o)
& Project: (None)

=0
st +

=0

Modified

T
o]
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You might want to keep this handy so you can look up key-bindings when you find yourself
performing repetitive point-and-clicking.

1.4.3 Running commands while editing scripts

There are many editors specifically made for coding. These are useful because color and
indentation are automatically added to make code more readable. RStudio is one of these
editors, and it was specifically developed for R. One of the main advantages provided by
RStudio over other editors is that we can test our code easily as we edit our scripts. Below
we show an example.

Let’s start by opening a new script as we did before. A next step is to give the script a name.
We can do this through the editor by saving the current new unnamed script. To do this,
click on the save icon or use the key binding Ctrl+S on Windows and command+S on the Mac.

When you ask for the document to be saved for the first time, RStudio will prompt you for
a name. A good convention is to use a descriptive name, with lower case letters, no spaces,
only hyphens to separate words, and then followed by the suffix . R. We will call this script
my-first-script. R.

© FRstudio [ole =]
) Save File - Untitled! =
— B Project (Nong) ~
@\/"- Desktop » )
Envitonment  History  Connections =0
rganize v Newfolder - @ -
org Newfold & 8 |« # Import Dataset = | st «
& Favories —— % Global Environment «
B Desktop | System Folder
18 Downloads -
% Recent Places 1? rafa E
L &, 5y Folder
3 Libraries
Cl 1Ay oo
B Documents O ot
& Music
) Pictures I+ N—
B Videos L System Folder
. Google Chrome. Files Plots Packages Help Viewer
1% Computer - M@ s = = : =C
@ NewFolder | © Delete 3| Rename | {ff More -
File name: | my-first-scriptR - 2 vome
Save as type: | - 4 Name Size Modified
R
< Hieoldes
&
Console  Terminal =0
package ‘purrr’ successfully unpacked and MDS sums checked .

package ‘readr’ successfully unpacked and MD5 sums checked
package ‘readx]’ successfully unpacked and D5 sums checked
package ‘reprex’ successfully unpacked and MD5 sums checked
package ‘rlang’ successfully unpacked and MD5 sums checked
package ‘rstudioapi’ successfully unpacked and WD sums checked
package ‘rvest’ successfully unpacked and MD5 sums checked
package ‘stringr’ successfully unpacked and MD5 sums checked
package ‘Tibble’ successfully unpacked and MD5 sums checked
package ‘Tidyr’ successfully unpacked and MD5 sums checked
package ‘xm12' successfully unpacked and MD5 sums checked
package ‘Tidyverse’ successfully unpacked and MD5 sums checked
package ‘dslabs’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in
:\Users\rafa\apppata\Local \Temp\RtmpdApESv\downToaded_packages [

e L 0 €0 wose

>

Now we are ready to start editing our first script. The first lines of code in an R script are
dedicated to loading the libraries we will use. Another useful RStudio feature is that once we
type library() it starts auto-completing with libraries that we have installed. Note what
happens when we type library(ti):
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O rstudio folle s
File Edit Code View Plots Session Buld Debug Profile Tools Help
° .t =- - addins - B Project: (None) -
O] my-fistscript.Re [  Envionment History Connections =0
] Olsourceonsave | Q. /° ~ “Run | 0% | b Source - 2 [ | 5 Import Dataset = | List -
1 Tibrary(ei) 7k Global Environment -
m tibble tidyverse: Easily Install and Load the ‘Tidyverse'
m tidyr The 'tidyverse is a set of packages that work in harmanybe:ausethey ~
@ tidyselect data and 'APT design. T Environment is emp
B Sesgnecto rake 1 cop 0 mtaland load muliple t\dwevse pa:kages in

a single step. Learn more about the tidyverse' at <https//tidyverse.org>

s £l forsastnsineis

Fles Plots Packages Hep Viewer -0
@) New Folder | © Delete =] Rename | More -
A Home
 Name size Modied
R
L1 (op Leved = Rscrint <
Console | Terminal -0

package ‘purrr’ successfully unpacked and MD5 sums checked a
package ‘readr’ successfully unpacked and MD5 sums checked
package ‘readx]’ successfully unpacked and MD5 sums checked
package ‘reprex’ successfully unpacked and MD5 sums checked
package ‘rlang’ successfully unpacked and MD5 sums checked
package ‘rstudioapi’ successfully unpacked and MD5 sums checked
package ‘rvest’ successfully unpacked and w5 sums checked
package ‘stringr’ successfully unpacked and MD5 sums checked
package ‘Tibble’ successfully unpacked and MD5 sums checked
package ‘Tidyr’ successfully unpacked and MDS sums checked
package ‘xml2’ successfully unpacked and MD5 sums checked
package ‘tidyverse’ successfully unpacked and MD5 sums checked
package ‘dslabs’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in
Ci\Users\rafa\Apppata\Local \Temp\Rtmp4ApESV\downToaded_packages ||
. (3

[ EE Y o e

Another feature you may have noticed is that when you type 1ibrary ( the second parenthesis
is automatically added. This will help you avoid one of the most common errors in coding:
forgetting to close a parenthesis.

Now we can continue to write code. As an example, we will make a graph showing murder
totals versus population totals by state. Once you are done writing the code needed to make
this plot, you can try it out by ezecuting the code. To do this, click on the Run button on
the upper right side of the editing pane. You can also use the key binding: Ctrl4Shift+Enter
on Windows or command-+shift+return on the Mac.

Once you run the code, you will see it appear in the R console and, in this case, the generated
plot appears in the plots console. Note that the plot console has a useful interface that
permits you to click back and forward across different plots, zoom in to the plot, or save the
plots as files.

) Rstudio o[-
File Edit Code View Plots Session Build Debug Profile Tools Help
o -l - - Addins ~ B Project: (None) ~
O] my-fistscript.R 7 Envionment History Connections =0
SourczonSave | 4 /- SRun | o9 Souree ~ # [ ~Import Dataset - & List +
1 Tlibrary(tidyverse) 7k Global Environment +
2 Tibrary(dslabs)
3 data(murders) 1 (T
4 D murders 51 obs. of 5 variables
5 murders %>%
6 ggplot(aes (population, total, label = abb, color = regiom) +
7 geom_label ()
8

Fies Plots Packages Help Viewer =0
A zoom | Fppot~ O | & 4% Publish -

1200~

&1 (opleve) RScript =
Console  Terminal =0
) 800- region
v readr 1.1.1 v forcats 0.3.0 = @ Northeast
- conflicts tidyverse_confli = [F)
cts() £ a South
x dpl ﬂ(er 0 masks stats: Fﬂ(er() = @ North Central
X a1yriilag0 | maske crate:ilag)
> source( (:/users/rafa/Desk(up/my-ﬁrs( script.R’, echo=TRUE) P @ West

> Tibrary(tidyverse)
> library(dslabs)

> data(murders)

> murders %%

+  ggplot(aes(population, total, Tabel = abb, color = region)) + : . . .
+  geom_label ) m 0e+00 1e+07 2e+07 3e+07
> I population

3uspm | |
37222018 |
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To run one line at a time instead of the entire script, you can use Control-Enter on Windows
and command-return on the Mac.

1.4.4 Changing global options

You can change the look and functionality of RStudio quite a bit.
To change the global options you click on Tools then Global Options. . ..

As an example we show how to make a change that we highly recommend. This is to
change the Save workspace to .RData on exit to Never and uncheck the Restore .RData into
workspace at start. By default, when you exit R saves all the objects you have created into a
file called .RData. This is done so that when you restart the session in the same folder, it
will load these objects. We find that this causes confusion especially when we share code
with colleagues and assume they have this .RData file. To change these options, make your
General settings look like this:

Options

Default working directory (when not in a project):
Ceneral
~ Browse...

Code . . - -
| Re-use idle sessions for project links

""'] Appearance | Restore most recently opened project at startup

| Restore previously open source documents at startup

Pane Layout
Restore .RData into workspace =+ ctartun

Always
Packages Save workspace to .RData on exi
Ask
& R Markdown | Always save history (even when not saving .RData)
Remove duplicate entries in histo
@ Sweave P i
- ) Show .Last.value in environment listing
7 Spelling
| Use debug error handler only when my code contains errors
3 Git/SVN Automatically expand tracebacks in error inspector
#%, Publishi igati i
= Fublishing Wrap around when navigating to previous/next tab
- Terminal | Automatically notify me of updates to RStudio
0K Cancel Apply
|

1.5 Installing R packages

The functionality provided by a fresh install of R is only a small fraction of what is possible. In
fact, we refer to what you get after your first install as base R. The extra functionality comes
from add-ons available from developers. There are currently hundreds of these available from
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CRAN and many others shared via other repositories such as GitHub. However, because not
everybody needs all available functionality, R instead makes different components available
via packages. R makes it very easy to install packages from within R. For example, to install
the dslabs package, which we use to share datasets and code related to this book, you would

type:
install.packages("dslabs")

In RStudio, you can navigate to the Tools tab and select install packages. We can then load
the package into our R sessions using the library function:

library(dslabs)

As you go through this book, you will see that we load packages without installing them.
This is because once you install a package, it remains installed and only needs to be loaded
with library. The package remains loaded until we quit the R session. If you try to load a
package and get an error, it probably means you need to install it first.

We can install more than one package at once by feeding a character vector to this function:
install.packages(c("tidyverse", "dslabs"))

Note that installing tidyverse actually installs several packages. This commonly occurs
when a package has dependencies, or uses functions from other packages. When you load a
package using library, you also load its dependencies.

Once packages are installed, you can load them into R and you do not need to install them
again, unless you install a fresh version of R. Remember packages are installed in R not
RStudio.

It is helpful to keep a list of all the packages you need for your work in a script because
if you need to perform a fresh install of R, you can re-install all your packages by simply
running a script.

You can see all the packages you have installed using the following function:

installed.packages()
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R basics

In this book, we will be using the R software environment for all our analysis. You will learn
R and data analysis techniques simultaneously. To follow along you will therefore need access
to R. We also recommend the use of an integrated development environment (IDE), such as
RStudio, to save your work. Note that it is common for a course or workshop to offer access
to an R environment and an IDE through your web browser, as done by RStudio cloud'. If
you have access to such a resource, you don’t need to install R and RStudio. However, if
you intend on becoming an advanced data analyst, we highly recommend installing these
tools on your computer’. Both R and RStudio are free and available online.

2.1 Case study: US Gun Murders

Imagine you live in Europe and are offered a job in a US company with many locations
across all states. It is a great job, but news with headlines such as US Gun Homicide
Rate Higher Than Other Developed Countries® have you worried. Charts like this
may concern you even more:

HOMICIDE PER 100,000 IN G-8 COUNTRIES

Source UNODC Homicide Statistics

3.2

w

=

0.71

Moo o
E()¢) B () o

ITALY ~ CANADA GERMANY FRANCE JAPAN  RUSSIA

# of gun-related homicides
per 100,000 people
N

q 0 No Data

Thttps://rstudio.cloud

2https://rafalab.github.io/dsbook/installing-r-rstudio.html

3http://abcnews.go.com/blogs/headlines/2012/12/us-gun-ownership-homicide-rate- higher-than-other-
developed-countries/
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Or even worse, this version from everytown.org:

GUN HOMICIDES PER 100,000 RESIDENTS

UNITED STATES 3.61
CANADA =mmm (.5
PORTUGAL mmmmmmm 0.48
ITALY = (.35
IRELAND mmmmmm 0.35
BELGIUM mmmmm (.33
FINLAND mmmm (.26
NETHERLANDS mmm 0.2
FRANCE mmm 0.2
DENMARK mmm 0.2
SWEDEN mmm 0.19
SLOVAKIA == 0.19
AUSTRIA == 0.18
NEW ZEALAND == 0.16
AUSTRALIA == 0.16
SPAIN mm 0.15
CZECH REPUBLIC =& 0.12
HUNGARY = 0.1

GERMANY ® 0.06

UNITED KINGDOM & 0.04
NORWAY & 0.04

REPUBLIC OF KOREA I 0.01
JAPAN 1 0.01

But then you remember that the US is a large and diverse country with 50 very different
states as well as the District of Columbia (DC).

W

California, for example, has a larger population than Canada, and 20 US states have
populations larger than that of Norway. In some respects, the variability across states in the
US is akin to the variability across countries in Europe. Furthermore, although not included
in the charts above, the murder rates in Lithuania, Ukraine, and Russia are higher than 4
per 100,000. So perhaps the news reports that worried you are too superficial. You have
options of where to live and want to determine the safety of each particular state. We will
gain some insights by examining data related to gun homicides in the US during 2010 using
R.

Before we get started with our example, we need to cover logistics as well as some of the
very basic building blocks that are required to gain more advanced R skills. Be aware that
the usefulness of some of these building blocks may not be immediately obvious, but later in
the book you will appreciate having mastered these skills.
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2.2 The very basics

Before we get started with the motivating dataset, we need to cover the very basics of R.

2.2.1 Objects

Suppose a high school student asks us for help solving several quadratic equations of the
form axz? 4 bx + ¢ = 0. The quadratic formula gives us the solutions:

—b—vb? —4dac 4 —b+ Vb? — 4ac
2a o 2a
which of course change depending on the values of a, b, and c¢. One advantage of programming
languages is that we can define variables and write expressions with these variables, similar
to how we do so in math, but obtain a numeric solution. We will write out general code for
the quadratic equation below, but if we are asked to solve 2% +z — 1 = 0, then we define:

a<-1
b<-1
c <- -1

which stores the values for later use. We use <- to assign values to the variables.

We can also assign values using = instead of <-, but we recommend against using = to avoid
confusion.

Copy and paste the code above into your console to define the three variables. Note that R
does not print anything when we make this assignment. This means the objects were defined
successfully. Had you made a mistake, you would have received an error message.

To see the value stored in a variable, we simply ask R to evaluate a and it shows the stored
value:

a
#> [1] 1

A more explicit way to ask R to show us the value stored in a is using print like this:

print(a)
#> [1] 1

We use the term object to describe stuff that is stored in R. Variables are examples, but
objects can also be more complicated entities such as functions, which are described later.
2.2.2 The workspace

As we define objects in the console, we are actually changing the workspace. You can see all
the variables saved in your workspace by typing:



16 2 R basics

1s()
#> [1] Ilall llb n ”C” Ildatll Himg_pathll llmurde,r,s n

In RStudio, the Environment tab shows the values:

ene RStudio
= Addins ~ & Project: (None) ~

0] codeR — Environment  History —

Nz~ v C#Run | Be Source ~ 2 E # Import Dataset ~ & st -

X 7 Global Environment ~

Values

41 (Top Leve) R Script

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ‘contributors()' for more information and
"citation)' on how to cite R or R packages in publications.

Type 'demo()’ for some demos, 'help()' for on-line help, or
*help.start()" for an HTML browser interface to help.
Type 'q0)" to quit R.

>a<1
sbe1
>ce -1

We should see a, b, and c. If you try to recover the value of a variable that is not in your
workspace, you receive an error. For example, if you type x you will receive the following
message: Error: object 'x' not found.

Now since these values are saved in variables, to obtain a solution to our equation, we use
the quadratic formula:

(-b + sqrt(b™2 - 4*a*xc) ) / ( 2%a )
#> [1] 0.618
(-b - sqrt(b™2 - 4xa*c) ) / ( 2*a )
#> [1] -1.62

2.2.3 Functions

Once you define variables, the data analysis process can usually be described as a series
of functions applied to the data. R includes several predefined functions and most of the
analysis pipelines we construct make extensive use of these.

We already used the install.packages, library, and 1s functions. We also used the
function sqrt to solve the quadratic equation above. There are many more prebuilt functions
and even more can be added through packages. These functions do not appear in the
workspace because you did not define them, but they are available for immediate use.

In general, we need to use parentheses to evaluate a function. If you type 1s, the function is
not evaluated and instead R shows you the code that defines the function. If you type 1s()
the function is evaluated and, as seen above, we see objects in the workspace.

Unlike 1s, most functions require one or more arguments. Below is an example of how we



2.2 The very basics 17

assign an object to the argument of the function log. Remember that we earlier defined a
to be 1:

log(8)

#> [1] 2.08
log(a)

#> [1] 0O

You can find out what the function expects and what it does by reviewing the very useful
manuals included in R. You can get help by using the help function like this:

help("log")
For most functions, we can also use this shorthand:
7log

The help page will show you what arguments the function is expecting. For example, log
needs x and base to run. However, some arguments are required and others are optional.
You can determine which arguments are optional by noting in the help document that a
default value is assigned with =. Defining these is optional. For example, the base of the
function log defaults to base = exp(1) making log the natural log by default.

If you want a quick look at the arguments without opening the help system, you can type:

args(log)
#> function (z, base = exp(1))
#> NULL

You can change the default values by simply assigning another object:

log(8, base = 2)
#> [1] 3

Note that we have not been specifying the argument x as such:

log(x = 8, base = 2)
#> [1] 3

The above code works, but we can save ourselves some typing: if no argument name is used,
R assumes you are entering arguments in the order shown in the help file or by args. So by
not using the names, it assumes the arguments are x followed by base:

log(8,2)
#> [1] 3

If using the arguments’ names, then we can include them in whatever order we want:

log(base = 2, x = 8)
#> [1] 3
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To specify arguments, we must use =, and cannot use <-.

There are some exceptions to the rule that functions need the parentheses to be evaluated.
Among these, the most commonly used are the arithmetic and relational operators. For
example:

2~ 3
#> [1] 8

You can see the arithmetic operators by typing:
help("+"

or

P

and the relational operators by typing:
help(">")

or

?l|>|l

2.2.4 Other prebuilt objects

There are several datasets that are included for users to practice and test out functions. You
can see all the available datasets by typing:

data()

This shows you the object name for these datasets. These datasets are objects that can be
used by simply typing the name. For example, if you type:

co2
R will show you Mauna Loa atmospheric CO2 concentration data.

Other prebuilt objects are mathematical quantities, such as the constant 7 and oo:

pi

#> [1] 3.14
Inf+1

#> [1] Inf

2.2.5 Variable names

We have used the letters a, b, and ¢ as variable names, but variable names can be almost
anything. Some basic rules in R are that variable names have to start with a letter, can’t
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contain spaces, and should not be variables that are predefined in R. For example, don’t
name one of your variables install.packages by typing something like install.packages
<- 2.

A nice convention to follow is to use meaningful words that describe what is stored, use only
lower case, and use underscores as a substitute for spaces. For the quadratic equations, we
could use something like this:

solution_1 <- (-b + sqrt(b~2 - 4xaxc)) / (2*a)
solution_2 <- (-b - sqrt(b~2 - 4xaxc)) / (2*a)

For more advice, we highly recommend studying Hadley Wickham’s style guide®.

2.2.6 Saving your workspace

Values remain in the workspace until you end your session or erase them with the function
rm. But workspaces also can be saved for later use. In fact, when you quit R, the program
asks you if you want to save your workspace. If you do save it, the next time you start R,
the program will restore the workspace.

We actually recommend against saving the workspace this way because, as you start
working on different projects, it will become harder to keep track of what is saved. Instead,
we recommend you assign the workspace a specific name. You can do this by using the
function save or save.image. To load, use the function load. When saving a workspace, we
recommend the suffix rda or RData. In RStudio, you can also do this by navigating to the
Session tab and choosing Save Workspace as. You can later load it using the Load Workspace
options in the same tab. You can read the help pages on save, save.image, and load to
learn more.

2.2.7 Motivating scripts

To solve another equation such as 322 4 2z — 1, we can copy and paste the code above and
then redefine the variables and recompute the solution:

a <- 3
b <-2
c <- -1

(-b + sqrt(b”2 - 4*axc)) / (2xa)
(-b - sqrt(b”2 - 4*axc)) / (2xa)

By creating and saving a script with the code above, we would not need to retype everything
each time and, instead, simply change the variable names. Try writing the script above into
an editor and notice how easy it is to change the variables and receive an answer.

4http://adv-r.had.co.nz/Style.html
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2.2.8 Commenting your code

If a line of R code starts with the symbol #, it is not evaluated. We can use this to write
reminders of why we wrote particular code. For example, in the script above we could add:

## Code to compute solution to quadratic equation of the form ax™2 + bx + c
## define the variables

a <-3
b <-2
c <- -1

## now compute the solution
(-b + sqrt(b™2 - 4xa*c)) / (2*a)
(-b - sqrt(b~2 - 4xaxc)) / (2*a)

2.3 Exercises

1. What is the sum of the first 100 positive integers? The formula for the sum of integers 1
through n is n(n + 1)/2. Define n = 100 and then use R to compute the sum of 1 through
100 using the formula. What is the sum?

2. Now use the same formula to compute the sum of the integers from 1 through 1,000.

3. Look at the result of typing the following code into R:

n <- 1000
x <- seq(1, n)
sum(x)

Based on the result, what do you think the functions seq and sum do? You can use help.

a. sum creates a list of numbers and seq adds them up.

b. seq creates a list of numbers and sum adds them up.

c. seq creates a random list and sum computes the sum of 1 through 1,000.
d. sum always returns the same number.

4. In math and programming, we say that we evaluate a function when we replace the
argument with a given number. So if we type sqrt (4), we evaluate the sqrt function. In R,
you can evaluate a function inside another function. The evaluations happen from the inside
out. Use one line of code to compute the log, in base 10, of the square root of 100.

5. Which of the following will always return the numeric value stored in x? You can try out
examples and use the help system if you want.

log(107x)

log10(x~10)
log(exp(x))
exp(log(x, base = 2))

oo
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2.4 Data types

Variables in R can be of different types. For example, we need to distinguish numbers from
character strings and tables from simple lists of numbers. The function class helps us
determine what type of object we have:

a <- 2
class(a)
#> [1] "numeric"

To work efficiently in R, it is important to learn the different types of variables and what we
can do with these.

2.4.1 Data frames

Up to now, the variables we have defined are just one number. This is not very useful for
storing data. The most common way of storing a dataset in R is in a data frame. Conceptually,
we can think of a data frame as a table with rows representing observations and the different
variables reported for each observation defining the columns. Data frames are particularly
useful for datasets because we can combine different data types into one object.

A large proportion of data analysis challenges start with data stored in a data frame. For
example, we stored the data for our motivating example in a data frame. You can access
this dataset by loading the dslabs library and loading the murders dataset using the data
function:

library(dslabs)
data(murders)

To see that this is in fact a data frame, we type:

class (murders)
#> [1] "data.frame"

2.4.2 Examining an object
The function str is useful for finding out more about the structure of an object:

str (murders)

#> 'data. frame': 51 obs. of b5 wartables:

#> $ state : chr "Alabama" "Alaska" "Arizonma" "Arkansas" ...

#> $ abb : chr "AL" "AK" "AZ" "AR" ...

#> $ region : Factor w/ 4 levels "Northeast","South”,..: 2 4 4 2 4 4 12 2
#> 2 ...

#> $ population: num 4779736 710231 6392017 2915918 37253956 ...

#> ¢ total : num 135 19 232 93 1257 ...
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This tells us much more about the object. We see that the table has 51 rows (50 states plus
DC) and five variables. We can show the first six lines using the function head:

head (murders)
#> state abb region population total
#> Alabama AL South 4779736 135

1
#> 2 Alaska AK  West 710231 19
#> 3 Arizona AZ  West 6392017 232
#> 4  Arkansas AR South 2915918 93
#> 5 California CA West 37253956 1257
#> 6 Colorado CO  West 5029196 65

In this dataset, each state is considered an observation and five variables are reported for
each state.

Before we go any further in answering our original question about different states, let’s learn
more about the components of this object.

2.4.3 The accessor: $

For our analysis, we will need to access the different variables represented by columns
included in this data frame. To do this, we use the accessor operator $ in the following way:

murders$population

#> [1] 4779736 710231 6392017 2915918 37253956 5029196 3574097
#> [8] 897934 601723 19687653 9920000 1360301 1567582 12830632
#> [15] 6483802 3046355 2853118 4339367 4533372 1328361 5773552
#> [22] 6547629 9883640 5303925 2967297 5988927 989415 1826341
#> [29] 2700551 1316470 8791894 2059179 19378102 9535483 672591
#> [36] 11536504 3751351 3831074 12702379 1052567 4625364 814180
#> [43] 6346105 25145561 2763885 625741 8001024 6724540 185299/
#> [60] 5686986 563626

But how did we know to use population? Previously, by applying the function str to the
object murders, we revealed the names for each of the five variables stored in this table. We
can quickly access the variable names using:

names (murders)
#> [1] "state” "abb" "region" "population” "total"

It is important to know that the order of the entries in murders$population preserves the
order of the rows in our data table. This will later permit us to manipulate one variable
based on the results of another. For example, we will be able to order the state names by
the number of murders.

Tip: R comes with a very nice auto-complete functionality that saves us the trouble of
typing out all the names. Try typing murders$p then hitting the tab key on your keyboard.
This functionality and many other useful auto-complete features are available when working
in RStudio.
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2.4.4 Vectors: numerics, characters, and logical

The object murders$population is not one number but several. We call these types of
objects wvectors. A single number is technically a vector of length 1, but in general we use
the term vectors to refer to objects with several entries. The function length tells you how
many entries are in the vector:

pop <- murders$population
length(pop)
#> [1] 51

This particular vector is numeric since population sizes are numbers:

class(pop)

#> [1] "numeric"

In a numeric vector, every entry must be a number.

To store character strings, vectors can also be of class character. For example, the state

names are characters:

class(murders$state)
#> [1] "character"

As with numeric vectors, all entries in a character vector need to be a character.

Another important type of vectors are logical vectors. These must be either TRUE or FALSE.

z <- 3 ==

z

#> [1] FALSE
class(z)

#> [1] "logical”

Here the == is a relational operator asking if 3 is equal to 2. In R, if you just use one =, you
actually assign a variable, but if you use two == you test for equality.

You can see the other relational operators by typing:
?Comparison

In future sections, you will see how useful relational operators can be.
We discuss more important features of vectors after the next set of exercises.

Advanced: Mathematically, the values in pop are integers and there is an integer class
in R. However, by default, numbers are assigned class numeric even when they are round
integers. For example, class(1) returns numeric. You can turn them into class integer
with the as.integer () function or by adding an L like this: 1L. Note the class by typing:
class(1L)
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2.4.5 Factors

In the murders dataset, we might expect the region to also be a character vector. However,
it is not:

class (murders$region)
#> [1] "factor"

It is a factor. Factors are useful for storing categorical data. We can see that there are only
4 regions by using the levels function:

levels(murders$region)
#> [1] "Northeast" "South" "North Central' "West"

In the background, R stores these levels as integers and keeps a map to keep track of the
labels. This is more memory efficient than storing all the characters.

Note that the levels have an order that is different from the order of appearance in the
factor object. The default is for the levels to follow alphabetical order. However, often we
want the levels to follow a different order. We will see several examples of this in the Data
Visualization part of the book. The function reorder lets us change the order of the levels of
a factor variable based on a summary computed on a numeric vector. We will demonstrate
this with a simple example.

Suppose we want the levels of the region by the total number of murders rather than
alphabetical order. If there are values associated with each level, we can use the reorder
and specify a data summary to determine the order. The following code takes the sum of
the total murders in each region, and reorders the factor following these sums.

region <- murders$region

value <- murders$total

region <- reorder(region, value, FUN = sum)

levels(region)

#> [1] "Northeast" "North Central” "West" "South"

The new order is in agreement with the fact that the Northeast has the least murders and
the South has the most.

Warning: Factors can be a source of confusion since sometimes they behave like characters
and sometimes they do not. As a result, confusing factors and characters are a common
source of bugs.

2.4.6 Lists

Data frames are a special case of lists. We will cover lists in more detail later, but know
that they are useful because you can store any combination of different types. Below is an
example of a list we created for you:
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record

#> $name

#> [1] "John Doe"
#>

#> $student_id

#> [1] 1234

#>

#> $grades

#> [1] 95 82 91 97 93
#>

#> $final_grade
#> [1] "A"
class(record)

#> [1] "list"

As with data frames, you can extract the components of a list with the accessor $. In fact,
data frames are a type of list.

record$student_id
#> [1] 1234

We can also use double square brackets ([[) like this:

record[["student_id"]]
#> [1] 1234

You should get used to the fact that in R, there are often several ways to do the same thing,
such as accessing entries.

You might also encounter lists without variable names.

record2

#> [[1]]

#> [1] "John Doe"
#>

# [[2]]

#> [1] 1234

If a list does not have names, you cannot extract the elements with $, but you can still use
the brackets method and instead of providing the variable name, you provide the list index,
like this:

record2[[1]]
#> [1] "John Doe"

We won’t be using lists until later, but you might encounter one in your own exploration of
R. For this reason, we show you some basics here.
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2.4.7 Matrices

Matrices are another type of object that are common in R. Matrices are similar to data
frames in that they are two-dimensional: they have rows and columns. However, like numeric,
character and logical vectors, entries in matrices have to be all the same type. For this reason
data frames are much more useful for storing data, since we can have characters, factors,
and numbers in them.

Yet matrices have a major advantage over data frames: we can perform matrix algebra
operations, a powerful type of mathematical technique. We do not describe these operations
in this book, but much of what happens in the background when you perform a data analysis
involves matrices. We cover matrices in more detail in Chapter 33.1 but describe them briefly
here since some of the functions we will learn return matrices.

We can define a matrix using the matrix function. We need to specify the number of rows
and columns.

mat <- matrix(1:12, 4, 3)

mat

#> [,1] [,2] [,3]
# [1,] 1 5 9
#> [2,] 2 6 10
#> [3,] 3 7 11
# [4,] 4 8 12

You can access specific entries in a matrix using square brackets ([). If you want the second
row, third column, you use:

mat[2, 3]
#> [1] 10

If you want the entire second row, you leave the column spot empty:

mat[2, ]
#> [1] 2 6 10

Notice that this returns a vector, not a matrix.
Similarly, if you want the entire third column, you leave the row spot empty:

mat[, 3]
#> [1] 9 10 11 12

This is also a vector, not a matrix.

You can access more than one column or more than one row if you like. This will give you a
new matrix.

mat[, 2:3]

#> [,1] [,2]
# [1,] 5 9
#> [2,] 6 10
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#> [3,] 7 11
#> [4,] 8 12

You can subset both rows and columns:

mat[1:2, 2:3]

#> [,1] [,2]
# [1,] 5 9
# [2,] 6 10

We can convert matrices into data frames using the function as.data.frame:

as.data.frame(mat)
#> Vi v2 V3
#> 1 1 5 9
#> 2 2 6 10
#> 3 3 7 11
# 4 4 8 12

You can also use single square brackets ([) to access rows and columns of a data frame:

data("murders")

murders[25, 1]

#> [1] "Mississippi"

murders[2:3, ]

#> state abb region population total
#> 2 Alaska AK  West 710231 19
#> 3 Arizona AZ  West 6392017 232

2.5 Exercises
1. Load the US murders dataset.

library(dslabs)
data(murders)

Use the function str to examine the structure of the murders object. Which of the following
best describes the variables represented in this data frame?

a. The 51 states.
The murder rates for all 50 states and DC.

c. The state name, the abbreviation of the state name, the state’s region, and the
state’s population and total number of murders for 2010.

d. str shows no relevant information.
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2. What are the column names used by the data frame for these five variables?

3. Use the accessor $ to extract the state abbreviations and assign them to the object a.
What is the class of this object?

4. Now use the square brackets to extract the state abbreviations and assign them to the
object b. Use the identical function to determine if a and b are the same.

5. We saw that the region column stores a factor. You can corroborate this by typing:
class(murders$region)
With one line of code, use the function levels and length to determine the number of

regions defined by this dataset.

6. The function table takes a vector and returns the frequency of each element. You can
quickly see how many states are in each region by applying this function. Use this function
in one line of code to create a table of states per region.

2.6 Vectors

In R, the most basic objects available to store data are vectors. As we have seen, complex
datasets can usually be broken down into components that are vectors. For example, in a
data frame, each column is a vector. Here we learn more about this important class.

2.6.1 Creating vectors

We can create vectors using the function c, which stands for concatenate. We use c to
concatenate entries in the following way:

codes <- c(380, 124, 818)
codes

#> [1] 380 124 818

We can also create character vectors. We use the quotes to denote that the entries are
characters rather than variable names.

country <- c("italy", "canada", "egypt")
In R you can also use single quotes:
country <- c('italy', 'canada', 'egypt')

But be careful not to confuse the single quote * with the back quote “.

By now you should know that if you type:

country <- c(italy, canada, egypt)
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you receive an error because the variables italy, canada, and egypt are not defined. If we
do not use the quotes, R looks for variables with those names and returns an error.

2.6.2 Names

Sometimes it is useful to name the entries of a vector. For example, when defining a vector
of country codes, we can use the names to connect the two:

codes <- c(italy = 380, canada = 124, egypt = 818)
codes

#> 1taly canada egypt

#> 380 124 818

The object codes continues to be a numeric vector:

class(codes)
#> [1] "numeric"

but with names:

names (codes)
#> [1] "italy" '"canada" "egypt"

If the use of strings without quotes looks confusing, know that you can use the quotes as
well:

codes <- c("italy" = 380, "canada" = 124, "egypt" = 818)
codes

#> ataly canada egypt

#> 380 124 818

There is no difference between this function call and the previous one. This is one of the
many ways in which R is quirky compared to other languages.

We can also assign names using the names functions:

codes <- ¢(380, 124, 818)

country <- c("italy","canada","egypt")
names (codes) <- country

codes

#> ataly canada egypt

#> 380 124 818

2.6.3 Sequences
Another useful function for creating vectors generates sequences:

seq(1l, 10)
# [1] 1 2 3 4 5 6 7 8 9 10
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The first argument defines the start, and the second defines the end which is included. The
default is to go up in increments of 1, but a third argument lets us tell it how much to jump
by:

seq(1, 10, 2)
#> [1] 1 3579

If we want consecutive integers, we can use the following shorthand:

1:10
# [1] 1 2 3 4 5 6 7 8 9 10

When we use these functions, R produces integers, not numerics, because they are typically
used to index something:

class(1:10)
#> [1] "integer"

However, if we create a sequence including non-integers, the class changes:

class(seq(1l, 10, 0.5))
#> [1] "numeric"

2.6.4 Subsetting

We use square brackets to access specific elements of a vector. For the vector codes we
defined above, we can access the second element using:

codes [2]
#> canada
#> 124

You can get more than one entry by using a multi-entry vector as an index:

codes[c(1,3)]
#> italy egypt
#> 380 818

The sequences defined above are particularly useful if we want to access, say, the first two
elements:

codes[1:2]
#> ataly canada
#> 380 124

If the elements have names, we can also access the entries using these names. Below are two
examples.

codes["canada"]
#> canada
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w124
codes[c("egypt","italy")]
#> egypt italy
#> 818 380

2.7 Coercion

In general, coercion is an attempt by R to be flexible with data types. When an entry does
not match the expected, some of the prebuilt R functions try to guess what was meant
before throwing an error. This can also lead to confusion. Failing to understand coercion can
drive programmers crazy when attempting to code in R since it behaves quite differently
from most other languages in this regard. Let’s learn about it with some examples.

We said that vectors must be all of the same type. So if we try to combine, say, numbers
and characters, you might expect an error:

x <- ¢(1, "canada", 3)
But we don’t get one, not even a warning! What happened? Look at x and its class:

X
#> [1] nyn "ecanada "3"
class(x)

#> [1] "character"

R coerced the data into characters. It guessed that because you put a character string in the
vector, you meant the 1 and 3 to actually be character strings "1" and “3”. The fact that
not even a warning is issued is an example of how coercion can cause many unnoticed errors
in R.

R also offers functions to change from one type to another. For example, you can turn
numbers into characters with:

x <- 1:5
y <- as.character (x)
y

#> [1] Il1 n 112“ II3II II4 n II5II
You can turn it back with as.numeric:

as.numeric(y)
#>[1] 12345

This function is actually quite useful since datasets that include numbers as character strings
are common.
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2.7.1 Not availables (NA)

When a function tries to coerce one type to another and encounters an impossible case, it
usually gives us a warning and turns the entry into a special value called an NA for “not
available”. For example:

X <_ C(“l”, Ile’ Il3l|)

as.numeric(x)

#> Warning: NAs introduced by coercion
#> [1] 1 NA 3

R does not have any guesses for what number you want when you type b, so it does not try.

As a data scientist you will encounter the NAs often as they are generally used for missing
data, a common problem in real-world datasets.

2.8 Exercises

1. Use the function c to create a vector with the average high temperatures in January for
Beijing, Lagos, Paris, Rio de Janeiro, San Juan, and Toronto, which are 35, 88, 42, 84, 81,
and 30 degrees Fahrenheit. Call the object temp.

2. Now create a vector with the city names and call the object city.

3. Use the names function and the objects defined in the previous exercises to associate the
temperature data with its corresponding city.

4. Use the [ and : operators to access the temperature of the first three cities on the list.
5. Use the [ operator to access the temperature of Paris and San Juan.

6. Use the : operator to create a sequence of numbers 12,13, 14,...,73.

7. Create a vector containing all the positive odd numbers smaller than 100.

8. Create a vector of numbers that starts at 6, does not pass 55, and adds numbers in
increments of 4/7: 6, 6 + 4/7, 6 + 8/7, and so on. How many numbers does the list have?
Hint: use seq and length.

9. What is the class of the following object a <- seq(1, 10, 0.5)7
10. What is the class of the following object a <- seq(1, 10)7

11. The class of class(a<-1) is numeric, not integer. R defaults to numeric and to force an
integer, you need to add the letter L. Confirm that the class of 1L is integer.

12. Define the following vector:
x <— C(”l”, ||3|1’ 1|5||)

and coerce it to get integers.
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2.9 Sorting

Now that we have mastered some basic R knowledge, let’s try to gain some insights into the
safety of different states in the context of gun murders.

2.9.1 sort

Say we want to rank the states from least to most gun murders. The function sort sorts
a vector in increasing order. We can therefore see the largest number of gun murders by

typing:

library(dslabs)

data(murders)

sort (murders$total)

#>  [1] 2 4 5 5 7 8 11 12 12 16 19 21 22
#> [14] 27 32 36 38 53 63 65 67 84 93 93 97 97
#> [27] 99 111 116 118 120 135 142 207 219 232 246 250 286
#> [40] 293 310 321 351 364 376 413 457 517 669 805 1257

However, this does not give us information about which states have which murder totals.
For example, we don’t know which state had 1257.

2.9.2 order

The function order is closer to what we want. It takes a vector as input and returns the
vector of indexes that sorts the input vector. This may sound confusing so let’s look at a
simple example. We can create a vector and sort it:

x <- c(31, 4, 15, 92, 65)
sort (x)
#> [1] 4 15 31 65 92

Rather than sort the input vector, the function order returns the index that sorts input
vector:

index <- order(x)
x[index]
#> [1] 4 15 31 65 92

This is the same output as that returned by sort (x). If we look at this index, we see why it
works:

X

#> [1] 31 4 15 92 65
order (x)

# [1] 2315 4
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The second entry of x is the smallest, so order (x) starts with 2. The next smallest is the
third entry, so the second entry is 3 and so on.

How does this help us order the states by murders? First, remember that the entries of
vectors you access with $ follow the same order as the rows in the table. For example, these
two vectors containing state names and abbreviations, respectively, are matched by their
order:

murders$state[1:6]

#> [1] "Alabama" "Alaska" "Arizona" "Arkansas"  "California”
#> [6] "Colorado"

murders$abb[1:6]

#> [1] HAL n HAKII NAZII NAR n NCA n NCD n

This means we can order the state names by their total murders. We first obtain the index
that orders the vectors according to murder totals and then index the state names vector:

ind <- order(murders$total)

murders$abb[ind]

#> [1] n VT n IIND n IINH n IIWY' n IIHI n IISD n IIME n IIID n IIMT n IIRI n IIAK' n IIIA n IIUT n
#> [14] IIWVII IINEII IIUR n IIDEII IIMNII IIKS n IICU n IINMII IINVII IIAR n IIWA n IICTII IIWI n
#> [27] IIDCII IIUK'II IIK'YII IIMA n IIMS n IIAL n IIINII IISCII IITNII IIAZII HNJN IIVA n IINCII
#> [40] IIMD n IIUHII IIMU n HLA n HIL n HGA n HMI n HPA n HNYH HFL n IITX n IICA n

According to the above, California had the most murders.

2.9.3 max and which.max
If we are only interested in the entry with the largest value, we can use max for the value:

max (murders$total)
#> [1] 1257

and which.max for the index of the largest value:

i_max <- which.max(murders$total)
murders$state[i_max]
#> [1] "California"

For the minimum, we can use min and which.min in the same way.

Does this mean California is the most dangerous state? In an upcoming section, we argue
that we should be considering rates instead of totals. Before doing that, we introduce one
last order-related function: rank.

2.9.4 rank

Although not as frequently used as order and sort, the function rank is also related to
order and can be useful. For any given vector it returns a vector with the rank of the first
entry, second entry, etc., of the input vector. Here is a simple example:
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x <- c(31, 4, 15, 92, 65)
rank(x)
# [1] 31254

To summarize, let’s look at the results of the three functions we have introduced:

original sort order rank

31 4 2 3

4 15 3 1
15 31 1 2
92 65 5 5
65 92 4 4

2.9.5 Beware of recycling

Another common source of unnoticed errors in R is the use of recycling. We saw that vectors
are added elementwise. So if the vectors don’t match in length, it is natural to assume that
we should get an error. But we don’t. Notice what happens:

x <- ¢(1,2,3)

y <- c(10, 20, 30, 40, 50, 60, 70)

x+y

#> Warning in © + y: longer object length is not a multiple of shorter
#> object length

#> [1] 11 22 33 41 52 63 71

We do get a warning, but no error. For the output, R has recycled the numbers in x. Notice
the last digit of numbers in the output.

2.10 Exercises

For these exercises we will use the US murders dataset. Make sure you load it prior to
starting.

library(dslabs)
data("murders")

1. Use the $ operator to access the population size data and store it as the object pop. Then
use the sort function to redefine pop so that it is sorted. Finally, use the [ operator to
report the smallest population size.

2. Now instead of the smallest population size, find the index of the entry with the smallest
population size. Hint: use order instead of sort.

3. We can actually perform the same operation as in the previous exercise using the function
which.min. Write one line of code that does this.

4. Now we know how small the smallest state is and we know which row represents it. Which
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state is it? Define a variable states to be the state names from the murders data frame.
Report the name of the state with the smallest population.

5. You can create a data frame using the data.frame function. Here is a quick example:

temp <- c(35, 88, 42, 84, 81, 30)

city <- c("Beijing", "Lagos", "Paris", "Rio de Janeiro",
"San Juan", "Toronto")

city_temps <- data.frame(name = city, temperature = temp)

Use the rank function to determine the population rank of each state from smallest population
size to biggest. Save these ranks in an object called ranks, then create a data frame with
the state name and its rank. Call the data frame my_df.

6. Repeat the previous exercise, but this time order my_df so that the states are ordered
from least populous to most populous. Hint: create an object ind that stores the indexes
needed to order the population values. Then use the bracket operator [ to re-order each
column in the data frame.

7. The na_example vector represents a series of counts. You can quickly examine the object

using:

data("na_example")
str(na_example)
#> int [1:1000] 2 1 32131432 ...

However, when we compute the average with the function mean, we obtain an NA:

mean (na_example)
#> [1] NA

The is.na function returns a logical vector that tells us which entries are NA. Assign this
logical vector to an object called ind and determine how many NAs does na_example have.

8. Now compute the average again, but only for the entries that are not NA. Hint: remember
the ! operator.

2.11 Vector arithmetics

California had the most murders, but does this mean it is the most dangerous state? What if
it just has many more people than any other state? We can quickly confirm that California
indeed has the largest population:

library(dslabs)

data("murders")

murders$state [which.max (murders$population)]
#> [1] "California"

with over 37 million inhabitants. It is therefore unfair to compare the totals if we are
interested in learning how safe the state is. What we really should be computing is the
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murders per capita. The reports we describe in the motivating section used murders per
100,000 as the unit. To compute this quantity, the powerful vector arithmetic capabilities of
R come in handy.

2.11.1 Rescaling a vector

In R, arithmetic operations on vectors occur element-wise. For a quick example, suppose we
have height in inches:

inches <- c(69, 62, 66, 70, 70, 73, 67, 73, 67, 70)
and want to convert to centimeters. Notice what happens when we multiply inches by 2.54:

inches * 2.54
#> [1] 175 157 168 178 178 185 170 185 170 178

In the line above, we multiplied each element by 2.54. Similarly, if for each entry we want to
compute how many inches taller or shorter than 69 inches, the average height for males, we
can subtract it from every entry like this:

inches - 69
#> [1] 0 -7-3 1 1 4 -2 4 -2 1
2.11.2 Two vectors

If we have two vectors of the same length, and we sum them in R, they will be added entry
by entry as follows:

a e a-+e
b fl b+ f
el gl T ety
d h d+h

The same holds for other mathematical operations, such as -, * and /.

This implies that to compute the murder rates we can simply type:
murder_rate <- murders$total / murders$population * 100000

Once we do this, we notice that California is no longer near the top of the list. In fact, we
can use what we have learned to order the states by murder rate:

murders$abb [order (murder_rate)]

#> [1] IIVTII I!NHII HHI n HND n HIA n HID n HUTH HMEH HWYH IIUR n IISD n IIMNN IIMTII
#> [14] IICO n IIWA n IIWVH IIRI n IIWI n IINEII HMA n HIN" HKS n IINY'H IIKY'H IIAK'H IIOHH
#> [27] IICT n IINJ n IIAL n IIIL n IIUK n IINC n IINV n n VA n IIAR n IITX n IINM n IICA n IIFL n
#> [4 0] n TN n IIPA n IIAZ n IIGA n IIMS n IIMI n IIDE n IISC n IIMD n IIMU n IILA n IIDC n
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2.12 Exercises
1. Previously we created this data frame:

temp <- c(35, 88, 42, 84, 81, 30)

city <- c("Beijing", "Lagos", "Paris", "Rio de Janeiro",
"San Juan", "Toronto")

city_temps <- data.frame(name = city, temperature = temp)

Remake the data frame using the code above, but add a line that converts the temperature
from Fahrenheit to Celsius. The conversion is C' = 2 x (F — 32).

2. What is the following sum 1+ 1/22 4+ 1/3% +...1/1002? Hint: thanks to Euler, we know
it should be close to 72 /6.

3. Compute the per 100,000 murder rate for each state and store it in the object murder_rate.
Then compute the average murder rate for the US using the function mean. What is the
average?

2.13 Indexing

R provides a powerful and convenient way of indexing vectors. We can, for example, subset
a vector based on properties of another vector. In this section, we continue working with our
US murders example, which we can load like this:

library(dslabs)
data("murders")

2.13.1 Subsetting with logicals

We have now calculated the murder rate using:

murder_rate <- murders$total / murders$population * 100000

Imagine you are moving from Italy where, according to an ABC news report, the murder
rate is only 0.71 per 100,000. You would prefer to move to a state with a similar murder rate.
Another powerful feature of R is that we can use logicals to index vectors. If we compare a
vector to a single number, it actually performs the test for each entry. The following is an
example related to the question above:

ind <- murder_rate < 0.71

If we instead want to know if a value is less or equal, we can use:
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ind <- murder_rate <= 0.71

Note that we get back a logical vector with TRUE for each entry smaller than or equal to
0.71. To see which states these are, we can leverage the fact that vectors can be indexed
with logicals.

murders$state[ind]
#> [1] "Hawait" "Towa" "New Hampshire" "North Dakota"
#> [5] "Vermont"

In order to count how many are TRUE, the function sum returns the sum of the entries of
a vector and logical vectors get coerced to numeric with TRUE coded as 1 and FALSE as 0.
Thus we can count the states using:

sum(ind)
#> [1] 5

2.13.2 Logical operators

Suppose we like the mountains and we want to move to a safe state in the western region of
the country. We want the murder rate to be at most 1. In this case, we want two different
things to be true. Here we can use the logical operator and, which in R is represented with
&. This operation results in TRUE only when both logicals are TRUE. To see this, consider
this example:

TRUE & TRUE
#> [1] TRUE
TRUE & FALSE
#> [1] FALSE
FALSE & FALSE
#> [1] FALSE

For our example, we can form two logicals:

west <- murders$region == "West"
safe <- murder_rate <= 1

and we can use the & to get a vector of logicals that tells us which states satisfy both
conditions:

ind <- safe & west

murders$state [ind]
#> [1] "Hawaii" "Idaho"  "Oregon" "Utah' "Wyoming"

2.13.3 which

Suppose we want to look up California’s murder rate. For this type of operation, it is
convenient to convert vectors of logicals into indexes instead of keeping long vectors of
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logicals. The function which tells us which entries of a logical vector are TRUE. So we can
type:

ind <- which(murders$state == "California")
murder_rate[ind]
#> [1] 3.37

2.13.4 match

If instead of just one state we want to find out the murder rates for several states, say
New York, Florida, and Texas, we can use the function match. This function tells us which
indexes of a second vector match each of the entries of a first vector:

ind <- match(c("New York", "Florida", "Texas"), murders$state)
ind
#> [1] 33 10 44

Now we can look at the murder rates:

murder_rate[ind]
#> [1] 2.67 3.40 3.20

2.13.5 ‘%in%

If rather than an index we want a logical that tells us whether or not each element of a first
vector is in a second, we can use the function %in%. Let’s imagine you are not sure if Boston,
Dakota, and Washington are states. You can find out like this:

c("Boston", "Dakota", "Washington") %inj, murders$state
#> [1] FALSE FALSE TRUE

Note that we will be using %in% often throughout the book.

Advanced: There is a connection between match and %in% through which. To see this,
notice that the following two lines produce the same index (although in different order):

match(c("New York", "Florida", "Texas"), murders$state)
#> [1] 33 10 44

which(murders$statelin¥%c("New York", "Florida", "Texas"))
#> [1] 10 33 44

2.14 Exercises

Start by loading the library and data.
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library(dslabs)
data(murders)

1. Compute the per 100,000 murder rate for each state and store it in an object called
murder_rate. Then use logical operators to create a logical vector named low that tells us
which entries of murder_rate are lower than 1.

2. Now use the results from the previous exercise and the function which to determine the
indices of murder_rate associated with values lower than 1.

3. Use the results from the previous exercise to report the names of the states with murder
rates lower than 1.

4. Now extend the code from exercises 2 and 3 to report the states in the Northeast with
murder rates lower than 1. Hint: use the previously defined logical vector 1low and the logical
operator &.

5. In a previous exercise we computed the murder rate for each state and the average of
these numbers. How many states are below the average?

6. Use the match function to identify the states with abbreviations AK, MI, and TA. Hint:
start by defining an index of the entries of murders$abb that match the three abbreviations,
then use the [ operator to extract the states.

7. Use the %in% operator to create a logical vector that answers the question: which of the
following are actual abbreviations: MA, ME, MI, MO, MU?

8. Extend the code you used in exercise 7 to report the one entry that is not an actual
abbreviation. Hint: use the ! operator, which turns FALSE into TRUE and vice versa, then
which to obtain an index.

2.15 Basic plots

In Chapter 7 we describe an add-on package that provides a powerful approach to producing
plots in R. We then have an entire part on Data Visualization in which we provide many
examples. Here we briefly describe some of the functions that are available in a basic R
installation.

2.15.1 plot

The plot function can be used to make scatterplots. Here is a plot of total murders versus
population.

x <- murders$population / 1076
y <- murders$total
plot(x, y)
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For a quick plot that avoids accessing variables twice, we can use the with function:
with(murders, plot(population, total))

The function with lets us use the murders column names in the plot function. It also works
with any data frames and any function.

2.15.2 hist

We will describe histograms as they relate to distributions in the Data Visualization part of
the book. Here we will simply note that histograms are a powerful graphical summary of a
list of numbers that gives you a general overview of the types of values you have. We can
make a histogram of our murder rates by simply typing:

x <- with(murders, total / population * 100000)
hist(x)

Histogram of x
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We can see that there is a wide range of values with most of them between 2 and 3 and one
very extreme case with a murder rate of more than 15:

murders$state [which.max(x)]
#> [1] "District of Columbia"



2.16 Basic plots 43

2.15.3 boxplot

Boxplots will also be described in the Data Visualization part of the book. They provide a
more terse summary than histograms, but they are easier to stack with other boxplots. For
example, here we can use them to compare the different regions:

murders$rate <- with(murders, total / population * 100000)
boxplot (rate~region, data = murders)
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We can see that the South has higher murder rates than the other three regions.

2.15.4 image
The image function displays the values in a matrix using color. Here is a quick example:

x <- matrix(1:120, 12, 10)
image (x)
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2.16 Exercises

1. We made a plot of total murders versus population and noted a strong relationship. Not
surprisingly, states with larger populations had more murders.

library(dslabs)

data(murders)

population_in_millions <- murders$population/1076
total_gun_murders <- murders$total
plot(population_in_millions, total_gun_murders)

Keep in mind that many states have populations below 5 million and are bunched up. We
may gain further insights from making this plot in the log scale. Transform the variables
using the logl0 transformation and then plot them.

2. Create a histogram of the state populations.

3. Generate boxplots of the state populations by region.



