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Preface
(With Important Information for the Reader)

This textbook reflects my personal views on how an “ideal” introductory course in ordinary differen-

tial equations should be taught, tempered by such practical constraints as the time available, and the

level and interests of the students. It also reflects my beliefs that a good text should both be a useful

resource beyond the course, and back up its claims with solid and clear proofs (even if some of those

proofs are ignored by most readers). Moreover, I hope, it reflects the fact that such a book should

be written to engage those normally taking such a course; namely, students who are reasonably

acquainted with the differentiation and integration of functions of one variable, but who might not

yet be experts and may, on occasion, need to return to their elementary calculus texts for review.

Most of these students are not mathematicians and probably have no desire to become professional

mathematicians. Still, most are interested in fields of study in which a fundamental understanding

of the mathematics and applications of differential equations is valuable.

Do note that this text only assumes the student reader is acquainted with single-variable calculus.

It is not assumed that the reader has had courses in multi-variable calculus or linear algebra. If you,

the reader, have had (or are taking) these and other more advanced courses, then great. You can

delve into a few more topics. In particular, if you’ve had a course in linear algebra or real analysis,

then you can (and should) be on the lookout for points where the theory from those more advanced

courses can be applied to simplify some of the discussion.

Of course, while I wrote this text for the students, the needs of the instructors were kept firmly

in mind. After all, this is the text my colleagues and I have been using for the last several years.

Whether you are a student, instructor or just a casual reader, there are a number of things you

should be aware of before starting the first chapter:

1. Extra material: There is more material in this text than can be reasonably covered in a

“standard” one-semester introductory course. In part, this is to provide the material for a

variety of “standard” courses which may or may not cover such topics as Laplace transforms,

series solutions, systems and numerical methods. Beyond that, though, there are expanded

discussions of topics normally covered, as well as topics rarely covered, but which are still

elementary enough and potentially useful enough to merit discussion. There are also proofs

that are not simple and illuminating enough to be included in the basic exposition, but should

still be there to keep the author honest and to serve as a reference for others. Because of this

extra material, there is an appendix, Author’s Guide to Using This Text, with advice on which

sections must be covered, which are optional, and which are best avoided by the first-time

reader. It also contains a few opinionated comments.

2. Computer math packages: At several points in the text, the use of a “computer math package”

is advised or, in exercises, required. By a “computer math package”, I mean one of those

powerful software packages such as Maple or Mathematica that can do symbolic calculations,

graphing and so forth. Unfortunately, software changes over time, new products emerge, and

companies providing this software can be bought and sold. In addition, you may be able to

find other computational resources on the Internet (but be aware that websites can be much

more fickle and untrustworthy than major software providers). For these reasons, details on

using such software are not included in this text. You will have to figure that out yourself (it’s

not that hard). I will tell you this: Extensive use of Maple was made in preparing this text.

In fact, most of the graphs were generated in Maple and then cleaned up using commercial

graphics software.

On the subject of computer math packages: Please become reasonably proficient in at

least one. If you are reading this, you are probably working in or will be working in a field

xiii
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in which this sort of knowledge is invaluable. But don’t think this software can replace a

basic understanding of the mathematics you are using. Even a simple calculator is useless to

someone who doesn’t understand just what + and × mean. Mindlessly using this software

can lead to serious and costly mistakes (as discussed in Section 10.3).

3. Additional chapters: By the way, I do not consider this text complete. Additional chapters

on systems of differential equations and boundary-value problems are being written for a

possible follow-up text. As these chapters become written (and rewritten), they will become

available at the website for this text (see below).

4. Text website: While this edition remains in publication, I intend to maintain a website for

this text containing at least the following:

• A lengthy solution manual

• The aforementioned chapters extending the material in this text

• A list of known errata discovered since the book’s publication

At the time I was writing this, the text’s website was at http://howellkb.uah.edu/DEtext/.

With luck, that will still be the website’s location when you need it. Unfortunately, I cannot

guarantee that my university will not change its website policies and conventions, forcing

you to search for the current location of the text’s website. If you must search for this site, I

would suggest starting with the website of the Department of Mathematical Sciences of the

University of Alabama in Huntsville.

Those acquainted with the first edition may wonder how this, the second edition, differs from

the first. The answer: Not much — known typos have been corrected, some of the discussion has

been cleaned up, and many more exercises have been added. In fact, two new “chapters” consist of

nothing more than review exercises for Parts II and III. Aside from that, two chapters on numerical

methods (extending the original discussion on the Euler method) have been added.

Finally, I must thank the many students and fellow faculty who have used earlier versions of

this text and have provided the feedback that I have found invaluable in preparing this edition. Those

comments are very much appreciated. And, if you, the reader, should find any errors or would like

to make any suggestions or comments regarding this text, please let me know. That, too, would be

very much appreciated.

Dr. Kenneth B. Howell

(howellkb@uah.edu)

mailto:howellkb@uah.edu
http://howellkb.uah.edu
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1

The Starting Point:
Basic Concepts and Terminology

Let us begin our study of “differential equations” with a few basic questions — questions that any

beginner should ask:

What are “differential equations”?

What can we do with them? Solve them? If so, what do we solve for? And how?

and, of course,

What good are they, anyway?

In this chapter, we will try to answer these questions (along with a few you would not yet think

to ask), at least well enough to begin our studies. With luck we will even raise a few questions

that cannot be answered now, but which will justify continuing our study. In the process, we will

also introduce and examine some of the basic concepts, terminology and notation that will be used

throughout this book.

1.1 Differential Equations: Basic Definitions and
Classifications

A differential equation is an equation involving some function of interest along with a few of its

derivatives. Typically, the function is unknown, and the challenge is to determine what that function

could possibly be.

Differential equations can be classified either as “ordinary” or as “partial”. An ordinary differ-

ential equation is a differential equation in which the function in question is a function of only one

variable. Hence, its derivatives are the “ordinary” derivatives encountered early in calculus. For the

most part, these will be the sort of equations we’ll be examining in this text. For example,

dy

dx
= 4x3

dy

dx
+ 4

x
y = x2

d2 y

dx2
− 2

dy

dx
− 3y = 65 cos(2x)

3



4 The Starting Point: Basic Concepts and Terminology

4x2 d2 y

dx2
+ 4x

dy

dx
+ [4x2 − 1]y = 0

and

d4 y

dx4
= 81y

are some differential equations that we will later deal with. In each, y denotes a function that is

given by some, yet unknown, formula of x . Of course, there is nothing sacred about our choice of

symbols. We will use whatever symbols are convenient for the variables and functions, especially if

the problem comes from an application and the symbols help remind us of what they denote (such

as when we use t for a measurement of time).1

A partial differential equation is a differential equation in which the function of interest depends

on two or more variables. Consequently, the derivatives of this function are the partial derivatives

developed in the later part of most calculus courses.2 Because the methods for studying partial

differential equations often involve solving ordinary differential equations, it is wise to first become

reasonably adept at dealing with ordinary differential equations before tackling partial differential

equations.

As already noted, this text is mainly concerned with ordinary differential equations. So let us

agree that, unless otherwise indicated, the phrase “differential equation” in this text means “ordinary

differential equation”. If you wish to further simplify the phrasing to “DE” or even to something like

“Diffy-Q”, go ahead. This author, however, will not be so informal.

Differential equations are also classified by their “order”. The order of a differential equation is

simply the order of the highest order derivative explicitly appearing in the equation. The equations

dy

dx
= 4x3 ,

dy

dx
+ 4

x
y = x2 and y

dy

dx
= −9.8x

are all first-order equations. So is

dy

dx
+ 3y2 = y

(
dy

dx

)4

,

despite the appearance of the higher powers — dy/dx is still the highest order derivative in this

equation, even if it is multiplied by itself a few times.

The equations

d2 y

dx2
− 2

dy

dx
− 3y = 65 cos(2x) and 4x2 d2 y

dx2
+ 4x

dy

dx
+ [4x2 − 1]y = 0

are second-order equations, while

d3 y

dx3
= e4x and

d3 y

dx3
− d2 y

dx2
+ dy

dx
− y = x2

are third-order equations.

?◮Exercise 1.1: What is the order of each of the following equations?

d2 y

dx2
+ 3

dy

dx
− 7y = sin(x)

1 On occasion, we may write “ y = y(x) ” to explicitly indicate that, in some expression, y denotes a function given by

some formula of x with y(x) denoting that “formula of x ”. More often, it will simply be understood that y is a function

given by some formula of whatever variable appears in our expressions.
2 A brief introduction to partial derivatives is given in Section 3.7 for those who are interested and haven’t yet seen partial

derivatives.
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d5 y

dx5
− cos(x)

d3 y

dx3
= y2

d5 y

dx5
− cos(x)

d3 y

dx3
= y6

d42 y

dx42
=
(

d3 y

dx3

)2

.

In practice, higher-order differential equations are usually more difficult to solve than lower-

order equations. This, of course, is not an absolute rule. There are some very difficult first-order

equations, as well as some very easily solved twenty-seventh-order equations.

Solutions: The Basic Notions
∗

Any function that satisfies a given differential equation is called a solution to that differential equation.

“Satisfies the equation”, means that, if you plug the function into the differential equation and compute

the derivatives, then the result is an equation that is true no matter what real value we replace the

variable with. And if that resulting equation is not true for some real values of the variable, then that

function is not a solution to that differential equation.

!◮Example 1.1: Consider the differential equation

dy

dx
− 3y = 0 .

If, in this differential equation, we let y(x) = e3x (i.e., if we replace y with e3x ), we get

d

dx

[
e3x
]

− 3e3x = 0

→֒ 3e3x − 3e3x = 0

→֒ 0 = 0 ,

which certainly is true for every real value of x . So y(x) = e3x is a solution to our differential

equation.

On the other hand, if we let y(x) = x3 in this differential equation, we get

d

dx

[
x3
]

− 3x3 = 0

→֒ 3x2 − 3x3 = 0

→֒ 3x2(1 − x) = 0 ,

which is true only if x = 0 or x = 1 . But our interest is not in finding values of x that make

the equation true; our interest is in finding functions of x (i.e., y(x) ) that make the equation true

for all values of x . So y(x) = x3 is not a solution to our differential equation. (And it makes

no sense, whatsoever, to refer to either x = 0 or x = 1 as solutions, here.)

∗ Warning: The discussion of “solutions” here is rather incomplete so that we can get to the basic, intuitive concepts quickly.

We will refine our notion of “solutions” in Section 1.3 starting on page 14.
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Typically, a differential equation will have many different solutions. Any formula (or set of

formulas) that describes all possible solutions is called a general solution to the equation.

!◮Example 1.2: Consider the differential equation

dy

dx
= 6x .

All possible solutions can be obtained by just taking the indefinite integral of both sides,

∫
dy

dx
dx =

∫
6x dx

→֒ y(x) + c1 = 3x2 + c2

→֒ y(x) = 3x2 + c2 − c1

where c1 and c2 are arbitrary constants. Since the difference of two arbitrary constants is just

another arbitrary constant, we can replace the above c2 − c1 with a single arbitrary constant c

and rewrite our last equation more succinctly as

y(x) = 3x2 + c .

This formula for y describes all possible solutions to our original differential equation — it is a

general solution to the differential equation in this example. To obtain an individual solution to

our differential equation, just replace c with any particular number. For example, respectively

letting c = 1 , c = −3 , and c = 827 yield the following three solutions to our differential

equation:

3x2 + 1 , 3x2 − 3 and 3x2 + 827 .

As just illustrated, general solutions typically involve arbitrary constants. In many applications,

we will find that the values of these constants are not truly arbitrary but are fixed by additional

conditions imposed on the possible solutions (so, in these applications at least, it would be more

accurate to refer to the “arbitrary” constants in the general solutions of the differential equations as

“yet undetermined” constants).

Normally, when given a differential equation and no additional conditions, we will want to

determine all possible solutions to the given differential equation. Hence, “solving a differential

equation” often means “finding a general solution” to that differential equation. That will be the

default meaning of the phrase “solving a differential equation” in this text. Notice, however, that the

resulting “solution” is not a single function that satisfies the differential equation (which is what we

originally defined “a solution” to be), but is a formula describing all possible functions satisfying the

differential equation (i.e., a “general solution”). Such ambiguity often arises in everyday language,

and we’ll just have to live with it. Simply remember that, in practice, the phrase “a solution to a

differential equation” can refer either to

any single function that satisfies the differential equation,

or

any formula describing all the possible solutions (more correctly called a general solution).

In practice, it is usually clear from the context just which meaning of the word “solution” is being

used. On occasions where it might not be clear, or when we wish to be very precise, it is standard
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to call any single function satisfying the given differential equation a particular solution. So, in the

last example, the formulas

3x2 + 1 , 3x2 − 3 and 3x2 + 827

describe particular solutions to
dy

dx
= 6x .

Initial-Value Problems

One set of auxiliary conditions that often arises in applications is a set of “initial values” for the desired

solution. This is a specification of the values of the desired solution and some of its derivatives at

a single point. To be precise, an N th-order set of initial values for a solution y consists of an

assignment of values to

y(x0) , y′(x0) , y′′(x0) , y′′′(x0) , . . . and y(N−1)(x0)

where x0 is some fixed number (in practice, x0 is often 0 ) and N is some nonnegative integer.3

Note that there are exactly N values being assigned and that the highest derivative in this set is of

order N − 1 .

We will find that N th-order sets of initial values are especially appropriate for Nth-order differ-

ential equations. Accordingly, the term N th-order initial-value problem will always mean a problem

consisting of

1. an N th-order differential equation, and

2. an N th-order set of initial values.

For example,
dy

dx
− 3y = 0 with y(0) = 4

is a first-order initial-value problem. “ dy/dx − 3y = 0 ” is the first-order differential equation, and

“ y(0) = 4 ” is the first-order set of initial values. On the other hand, the third-order differential

equation
d3 y

dx3
+ dy

dx
= 0

along with the third-order set of initial conditions

y(1) = 3 , y′(1) = −4 and y′′(1) = 10

makes up a third-order initial-value problem.

A solution to an initial-value problem is a solution to the differential equation that also satisfies

the given initial values. The usual approach to solving such a problem is to first find the general

solution to the differential equation (via any of the methods we’ll develop later), and then determine

the values of the ‘arbitrary’ constants in the general solution so that the resulting function also satisfies

each of the given initial values.

3 Remember, if y = y(x) , then

y′ = dy

dx
, y′′ = d2 y

dx2
, y′′′ = d3 y

dx3
, . . . and y(k) = dk y

dxk
.

We will use the ‘prime’ notation for derivatives when the d/dx notation becomes cumbersome.
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!◮Example 1.3: Consider the initial-value problem

dy

dx
= 6x with y(1) = 8 .

From Example 1.2, we know that the general solution to the above differential equation is

y(x) = 3x2 + c

where c is an arbitrary constant. Combining this formula for y with the requirement that

y(1) = 8 , we have

8 = y(1) = 3 · 12 + c = 3 + c ,

which, in turn, requires that

c = 8 − 3 = 5 .

So the solution to the initial-value problem is given by

y(x) = 3x2 + c with c = 5 ;

that is,

y(x) = 3x2 + 5 .

By the way, the terms “initial values”, “initial conditions”, and “initial data” are essentially

synonymous and, in practice, are used interchangeably.

1.2 Why Care About Differential Equations? Some
Illustrative Examples

Perhaps the main reason to study differential equations is that they naturally arise when we attempt

to mathematically describe “real-world” processes that vary with, say, time or position. Let us look

at one well-known process: the falling of some object towards the earth. To illustrate some of the

issues involved, we’ll develop two different sets of mathematical descriptions for this process.

By the way, any collection of equations and formulas describing some process is called a

(mathematical) model of the process, and the process of developing a mathematical model is called,

unsurprisingly, modeling.

The Situation to Be Modeled:

Let us concern ourselves with the vertical position and motion of an object dropped from a plane at a

height of 1,000 meters. Since it’s just being dropped, we may assume its initial downward velocity is

0 meters per second. The precise nature of the object — whether it’s a falling marble, a frozen duck

(live, unfrozen ducks don’t usually fall) or some other familiar falling object — is not important at

this time. Visualize it as you will.

The first two things one should do when developing a model is to sketch the process (if possible)

and to assign symbols to quantities that may be relevant. A crude sketch of the process is in Figure

1.1 (I’ve sketched the object as a ball since a ball is easy to sketch). Following ancient traditions,

let’s make the following symbolic assignments:

m = the mass (in grams) of the object

t = time (in seconds) since the object was dropped
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y(t)y(0) v(t) falling object of mass m

the ground (where y = 0)

initial height (1,000 meters)

Figure 1.1: Rough sketch of a falling object of mass m.

y(t) = vertical distance (in meters) between the object and the ground at time t

v(t) = vertical velocity (in meters/second) of the object at time t

a(t) = vertical acceleration (in meters/second2) of the object at time t

Where convenient, we will use y , v and a as shorthand for y(t) , v(t) and a(t) . Remember that,

by the definition of velocity and acceleration,

v = dy

dt
and a = dv

dt
= d2 y

dt2
.

From our assumptions regarding the object’s position and velocity at the instant it was dropped,

we have that

y(0) = 1,000 and
dy

dt

∣∣∣
t=0

= v(0) = 0 . (1.1)

These will be our initial values. (Notice how appropriate it is to call these the “initial values” —

y(0) and v(0) are, indeed, the initial position and velocity of the object.)

As time goes on, we expect the object to be falling faster and faster downwards, so we expect

both the position and velocity to vary with time. Precisely how these quantities vary with time might

be something we don’t yet know. However, from Newton’s laws, we do know

F = ma

where F is the sum of the (vertically acting) forces on the object. Replacing a with either the

corresponding derivative of velocity or position, this equation becomes

F = m
dv

dt
(1.2)

or, equivalently,

F = m
d2 y

dt2
. (1.2 ′)

If we can adequately describe the forces acting on the falling object (i.e., the F ), then the velocity,

v(t) , and vertical position, y(t) , can be found by solving the above differential equations, subject

to the initial conditions in line (1.1).
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The Simplest Falling Object Model

The Earth’s gravity is the most obvious force acting on our falling object. Checking a convenient

physics text, we find that the force of the Earth’s gravity acting on an object of mass m is given by

Fgrav = −gm where g = 9.8
(

meters/second2
)

.

Of course, the value for g is an approximation and assumes that the object is not too far above

the Earth’s surface. It also assumes that we’ve chosen “up” to be the positive direction (hence the

negative sign).

For this model, let us suppose the Earth’s gravity, Fgrav , is the only significant force involved.

Assuming this (and keeping in mind that we are measuring distance in meters and time in seconds),

we have

F = Fgrav = −9.8m

in the “ F = ma ” equation. In particular, equation (1.2 ′) becomes

−9.8m = m
d2 y

dt2
.

The mass conveniently divides out, leaving us with

d2 y

dt2
= −9.8 .

Taking the indefinite integral with respect to t of both sides of this equation yields

∫
d2 y

dt2
dt =

∫
−9.8 dt

→֒
∫

d

dt

(
dy

dt

)
dt =

∫
−9.8 dt

→֒ dy

dt
+ c1 = −9.8t + c2

→֒ dy

dt
= −9.8t + c

where c1 and c2 are the arbitrary constants of integration and c = c2 − c1 . This gives us our

formula for dy/dt up to an unknown constant c . But recall that the initial velocity is zero,

dy

dt

∣∣∣
t=0

= v(0) = 0 .

On the other hand, setting t equal to zero in the formula just derived for dy/dt yields

dy

dt

∣∣∣
t=0

= −9.8 · 0 + c .

Combining these two expressions for y′(0) yields

0 = dy

dt

∣∣∣
t=0

= −9.8 · 0 + c .

Thus, c = 0 and our formula for dy/dt reduces to

dy

dt
= −9.8t .
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Again, we have a differential equation that is easily solved by simple integration,

∫
dy

dt
dt =

∫
−9.8t dt

→֒ y(t) + C1 = −9.8
[

1

2
t2
]

+ C2

→֒ y(t) = −4.9t2 + C

where, again, C1 and C2 are the arbitrary constants of integration and C = C2 − C1 .4 Combining

this last equation with the initial condition for y(t) (from line (1.1)), we get

1,000 = y(0) = −4.9 · 02 + C .

Thus, C = 1,000 and the vertical position (in meters) at time t is given by

y(t) = −4.9t2 + 1,000 .

A Better Falling Object Model

The above model does not take into account the resistance of the air to the falling object — a very

important force if the object is relatively light or has a parachute. Let us add this force to our model.

That is, for our “ F = ma ” equation, we’ll use

F = Fgrav + Fair

where Fgrav is the force of gravity discussed above, and Fair is the force due to the air resistance

acting on this particular falling body.

Part of our problem now is to determine a good way of describing Fair in terms relevant to

our problem. To do that, let us list a few basic properties of air resistance that should be obvious to

anyone who has stuck their hand out of a car window:

1. The force of air resistance does not depend on the position of the object, only on the relative

velocity between it and the surrounding air. So, for us, Fair will just be a function of v ,

Fair = Fair(v) . (This assumes, of course, that the air is still — no up- or downdrafts — and

that the density of the air remains fairly constant throughout the distance this object falls.)

2. This force is zero when the object is not moving, and its magnitude increases as the speed

increases (remember, speed is the magnitude of the velocity). Hence, Fair(v) = 0 when

v = 0 , and |Fair(v)| gets bigger as |v| gets bigger.

3. Air resistance acts against the direction of motion. This means that the direction of the force

of air resistance is opposite to the direction of motion. Thus, the sign of Fair(v) will be

opposite that of v .

While there are many formulas for Fair(v) that would satisfy the above conditions, common sense

suggests that we first use the simplest. That would be

Fair(v) = −γ v

4 Note that slightly different symbols are being used to denote the different constants. This is highly recommended to

prevent confusion when (and if) we ever review our computations.



12 The Starting Point: Basic Concepts and Terminology

where γ is some positive value. The actual value of γ will depend on such parameters as the

object’s size, shape, and orientation, as well as the density of the air through which the object is

moving. For any given object, this value could be determined by experiment (with the aid of the

equations we will soon derive).

?◮Exercise 1.2: Convince yourself that

a: this formula for Fair(v) does satisfy the above three conditions, and

b: no simpler formula would work.

We are now ready to derive the appropriate differential equations for our improved model of a

falling object. The total force is given by

F = Fgrav + Fair = −9.8m − γ v .

Since this formula explicitly involves v instead of dy/dt , let us use the equation (1.2) version of

“ F = ma ” from page 9,

F = m
dv

dt
.

Combining the last two equations,

m
dv

dt
= F = −9.8m − γ v .

Cutting out the middle and dividing through by the mass gives the slightly simpler equation

dv

dt
= −9.8 − κv where κ = γ

m
. (1.3)

Remember that γ , m and, hence, κ are positive constants, while v = v(t) is a yet unknown

function that satisfies the initial condition v(0) = 0 . After solving this initial-value problem for

v(t) , we could then find the corresponding formula for height at time t , y(t) , by solving the simple

initial-value problem
dy

dt
= v(t) with y(0) = 1,000 .

Unfortunately, we cannot solve equation (1.3) by simply integrating both sides with respect to

t , ∫
dv

dt
dt =

∫
[−9.8 − κv] dt .

The first integral is not a problem. By the relation between derivatives and integrals, we still have

∫
dv

dt
dt = v(t) + c1

where c1 is an arbitrary constant. It’s the other side that is the problem. Since κ is a constant, but

v = v(t) is an unknown function of t , the best we can do with the right-hand side is

∫
[−9.8 − κv] dt = −

∫
9.8 dt − κ

∫
v(t) dt = −9.8t + c2 − κ

∫
v(t) dt .

Again, c2 is an arbitrary constant. However, since v(t) is an unknown function, its integral is

simply another unknown function of t . Thus, letting c = c2 − c1 and “integrating the equation”

simply gives us the rather unhelpful formula

v(t) = −9.8t + c − (κ · some unknown function of t ) .
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Fortunately, this is a text on differential equations, and methods for solving equations such as

equation (1.3) will be discussed in Chapters 4 and 5. But there’s no need to rush things. The main

goal here is just to see how differential equations arise in applications. Of course, now that we have

equation (1.3), we also have a good reason to continue on and learn how to solve it.

By the way, if we replace v in equation (1.3) with dy/dt , we get the second-order differential

equation
d2 y

dt2
= −9.8 − κ

dy

dt
.

This can be integrated, yielding

dy

dt
= −9.8t − κy + c

where c is an arbitrary constant. Again, this is a first-order differential equation that we cannot

solve until we delve more deeply into the various methods for solving these equations. And if, in

this last equation, we again use the fact that v = dy/dt , all we get is

v = −9.8t − κy + c (1.4)

which is another not-very-helpful equation relating the unknown functions v(t) and y(t) .5

Summary of Our Models and the Related Initial Value Problems

For the first model of a falling body, we had the second-order differential equation

d2 y

dt2
= −9.8 .

along with the initial conditions

y(0) = 1,000 and y′(0) = 0 .

In other words, we had a second-order initial-value problem. This problem, as we saw, was rather

easy to solve.

For the second model, we still had the initial conditions

y(0) = 1,000 and y′(0) = 0 ,

but we found it a little more convenient to write the differential equation as

dv

dt
= −9.8 − κv where

dy

dt
= v

and κ was some positive constant. There are a couple of ways we can view this collection of

equations. First of all, we could simply replace the v with dy/dt and say we have the second-order

initial problem
d2 y

dt2
= −9.8 − κ

dy

dt

with

y(0) = 1, 000 and y′(0) = 0 .

5 Well, not completely useless — see Exercise 1.10 b on page 20.
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Alternatively, we could (as was actually suggested) view the problem as two successive first-order

problems:
dv

dt
= −9.8 − κv with v(0) = 0 ,

followed by
dy

dt
= v(t) with y(0) = 1,000 .

The first of these two problems can be solved using methods we’ll develop later. And once we have

the solution, v(t) , to that, the second can easily be solved by integration.

Though, ultimately, the two ways of viewing our second model are equivalent, there are advan-

tages to the second. It is conceptually simple, and it makes it a little easier to use solution methods

that will be developed relatively early in this text. It also leads us to finding v(t) before even

considering y(t) . Moreover, it is probably the velocity of landing, not the height of landing, that

most concerns a falling person with (or without) a parachute. Indeed, if we are lucky, the solution

to the first, v(t) , may tell us everything we are interested in, and we won’t have to deal with the

initial-value problem for y at all.

Finally, it should be mentioned that, together, the two equations

dv

dt
= −9.8 − κv and

dy

dt
= v

form a “system of differential equations”. That is, they comprise a set of differential equations

involving unknown functions that are related to each other. This is an especially simple system

since it can be solved by successively solving the individual equations in the system. Much more

complicated systems can arise that are not so easily solved, especially when modeling physical

systems consisting of many components, each of which can be modeled by a differential equation

involving several different functions (as in, say, a complex electronic circuit). Dealing with these

sorts of systems will have to wait until we’ve become reasonably adept at dealing with individual

differential equations.

1.3 More on Solutions
Intervals of Interest

When discussing a differential equation and its solutions, we should include a specification of an

interval (of nonzero length) over which the solution(s) is (are) to be valid. The choice of this interval,

which we may call the interval of solution, the interval of the solution’s validity, or, simply, the

interval of interest, may be based on the problem leading to the differential equation, on mathematical

considerations, or, to a certain extent, on the whim of the person presenting the differential equation.

One thing we will insist on, in this text at least, is that solutions must be continuous over this

interval.

!◮Example 1.4: Consider the equation

dy

dx
= 1

(x − 1)2
.

Integrating this gives

y(x) = c − 1

x − 1
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where c is an arbitrary constant. No matter what value c is, however, this function cannot be

continuous over any interval containing x = 1 because (x − 1)−1 “blows up” at x = 1 . So

we will only claim that our solutions are valid over intervals that do not include x = 1 . In

particular, we have valid (continuous) solutions to this differential equation over the intervals

[0, 1) , (−∞, 1) , (1,∞) , and (2, 5) ; but not over (0, 2) or (0, 1] or (−∞,∞) .

Why should we make such an issue of continuity? Well consider, if a function is not continuous

at a point, then its derivatives do not exist at that point — and without the derivatives existing, how

can we claim that the function satisfies a particular differential equation?

Another reason for requiring continuity is that the differential equations most people are inter-

ested in are models for “real-world” phenomena, and real-world phenomena are normally continuous

processes while they occur — the temperature of an object does not instantaneously jump by fifty

degrees nor does the position of an object instantaneously change by three kilometers. If the solutions

do “blow up” at some point, then

1. some of the assumptions made in developing the model are probably not valid, or

2. a catastrophic event is occurring in our process at that point, or

3. both.

Whatever is the case, it would be foolish to use the solution derived to predict what is happening

beyond the point where “things blow up”. That should certainly be considered a point where the

validity of the solution ends.

Sometimes, it’s not the mathematics that restricts the interval of interest, but the problem leading

to the differential equation. Consider the simplest falling object model discussed earlier. There we

had an object start falling from an airplane at t = 0 from a height of 1,000 meters. Solving the

corresponding initial-value problem, we obtained

y(t) = −4.9t2 + 1,000

as the formula for the height above the earth at time t . Admittedly, this satisfies the differential

equation for all t , but, in fact, it only gives the height of the object from the time it starts falling,

t = 0 , to the time it hits the ground, Thit .6 So the above formula for y(t) is a valid description of

the position of the object only for 0 ≤ t ≤ Thit ; that is, [0, Thit] is the interval of interest for this

problem. Any use of this formula to predict the position of the object at a time outside the interval

[0, Thit] is just plain foolish.

In practice, the interval of interest is often not explicitly given. This may be because the interval

is implicitly described in the problem, or because determining this interval is part of the problem

(e.g., determining where the solutions must “blow up”). It may also be because the person giving

the differential equation is lazy or doesn’t care what interval is used because the issue at hand is to

find formulas that hold independently of the interval of interest.

In this text, if no interval of interest is given or hinted at, assume it to be any interval that makes

sense. Often, this will be the entire real line, (−∞,∞) .

Solutions Over Intervals

In introducing the concept of the “interval of interest”, we have implicitly refined our notion of “a

(particular) solution to a differential equation”. Let us make that refinement explicit: A solution to

a differential equation over an interval of interest is a function that is both continuous and satisfies

the differential equation over the given interval.

6 Thit is computed in Exercise 1.9 on page 19.
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Recall that the domain of a function is the set of all numbers that can be plugged into the

function. Naturally, if a function is a solution to a differential equation over some interval, then that

function’s domain must include that interval.7

Since we’ve refined our definition of particular solutions, we should make the corresponding

refinement to our definition of a general solution. A general solution to a differential equation over

an interval of interest is a formula or set of formulas describing all possible particular solutions over

that interval.

Describing Particular Solutions

Let us get somewhat technical for a moment. Suppose we have a solution y to some differential

equation over some interval of interest. Remember, we’ve defined y to be a “function”. If you look

up the basic definition of “function” in your calculus text, you’ll find that, strictly speaking, y is a

mapping of one set of numbers (the domain of y ) onto another set of numbers (the range of y ). This

means that, for each value x in the function’s domain, y assigns a corresponding number which

we usually denote y(x) and call “the value of y at x ”. If we are lucky, the function y is described

by some formula, say, x2 . That is, the value of y(x) can be determined for each x in the domain

by the equation

y(x) = x2 .

Strictly speaking, the function y , its value at x (i.e., y(x)), and any formula describing how to

compute y(x) are different things. In everyday usage, however, the fine distinctions between these

concepts are often ignored, and we say things like

consider the function x2 or consider y = x2

instead of the more correct statement

consider the function y where y(x) = x2 for each x in the domain of y .

For our purposes, “everyday usage” will usually suffice, and we won’t worry that much about

the differences between y , y(x) , and a formula describing y . This will save ink and paper, simplify

the English, and, frankly, make it easier to follow many of our computations.

In particular, when we seek a particular solution to a differential equation, we will usually be

quite happy to find a convenient formula describing the solution. We will then probably mildly abuse

terminology by referring to that formula as “the solution”. Please keep in mind that, in fact, any such

formula is just one description of the solution — a very useful description since it tells you how to

compute y(x) for every x in the interval of interest. But other formulas can also describe the same

function. For example, you can easily verify that

x2 , (x + 3)(x − 3)+ 9 and

∫ x

t=0
2t dt

are all formulas describing the same function on the real line.

There will also be differential equations for which we simply cannot find a convenient formula

describing the desired solution (or solutions). On those occasions we will have to find some alternative

way to describe our solutions. Some of these will involve using the differential equations to sketch

approximations to the graphs of their solutions. Other alternative descriptions will involve formulas

that approximate the solutions and allow us to generate lists of values approximating a solution at

different points. These alternative descriptions may not be as convenient or as accurate as explicit

formulas for the solutions, but they will provide usable information about the solutions.

7 In theory, it makes sense to restrict the domain of a solution to the interval of interest so that irrelevant questions regarding

the behavior of the function off the interval have no chance of arising. At this point of our studies, let us just be sure that a

function serving as a solution makes sense at least over whatever interval we have interest in.
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Additional Exercises

1.3. For each differential equation given below, three choices for a possible solution y = y(x)

are given. Determine whether each choice is or is not a solution to the given differential equa-

tion. (In each case, assume the interval of interest is the entire real line (−∞,∞) .)

a.
dy

dx
= 3y

i. y(x) = e3x ii. y(x) = x3 iii. y(x) = sin(3x)

b. x
dy

dx
= 3y

i. y(x) = e3x ii. y(x) = x3 iii. y(x) = sin(3x)

c.
d2 y

dx2
= 9y

i. y(x) = e3x ii. y(x) = x3 iii. y(x) = sin(3x)

d.
d2 y

dx2
= −9y

i. y(x) = e3x ii. y(x) = x3 iii. y(x) = sin(3x)

e. x
dy

dx
− 2y = 6x4

i. y(x) = x4 ii. y(x) = 3x4 iii. y(x) = 3x4 + 5x2

f.
d2 y

dx2
− 2x

dy

dx
− 2y = 0

i. y(x) = sin(x) ii. y(x) = x3 iii. y(x) = ex2

g.
d2 y

dx2
+ 4y = 12x

i. y(x) = sin(2x) ii. y(x) = 3x iii. y(x) = sin(2x)+ 3x

h.
d2 y

dx2
− 6

dy

dx
+ 9y = 0

i. y(x) = e3x ii. y(x) = xe3x iii. y(x) = 7e3x − 4xe3x

1.4. For each initial-value problem given below, three choices for a possible solution y = y(x)

are given. Determine whether each choice is or is not a solution to the given initial-value

problem.

a.
dy

dx
= 4y with y(0) = 5

i. y(x) = e4x ii. y(x) = 5e4x iii. y(x) = e4x + 1

b. x
dy

dx
= 2y with y(2) = 20

i. y(x) = x2 ii. y(x) = 10x iii. y(x) = 5x2
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c.
d2 y

dx2
− 9y = 0 with y(0) = 1 and y′(0) = 9

i. y(x) = 2e3x − e−3x ii. y(x) = e3x iii. y(x) = e3x + 1

d. x2 d2 y

dx2
− 4x

dy

dx
+ 6y = 36x6 with y(1) = 1 and y′(1) = 12

i. y(x) = 10x3 − 9x2 ii. y(x) = 3x6 − 2x2 iii. y(x) = 3x6 − 2x3

1.5. For the following, let

y(x) =
√

x2 + c

where c is an arbitrary constant.

a. Verify that this y is a solution to
dy

dx
= x

y

no matter what value c is.

b. What value should c be so that the above y satisfies the initial condition

i. y(0) = 3 ? ii. y(2) = 3 ?

c. Using your results for the above, give a solution to each of the following initial-value

problems:

i.
dy

dx
= x

y
with y(0) = 3

ii.
dy

dx
= x

y
with y(2) = 3

1.6. For the following, let

y(x) = Aex2 − 3

where A is an arbitrary constant.

a. Verify that this y is a solution to

dy

dx
− 2xy = 6x

no matter what value A is.

b. In fact, it can be verified (using methods that will be developed later) that the above

formula for y is a general solution to the above differential equation. Using this fact,

finish solving each of the following initial-value problems:

i.
dy

dx
− 2xy = 6x with y(0) = 1

ii.
dy

dx
− 2xy = 6x with y(1) = 0

1.7. For the following, let

y(x) = A cos(2x) + B sin(2x)

where A and B are arbitrary constants.

a. Verify that this y is a solution to

d2 y

dx2
+ 4y = 0

no matter what values A and B are.
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b. Again, it can be verified that the above formula for y is a general solution to the above

differential equation. Using this fact, finish solving each of the following initial-value

problems:

i.
d2 y

dx2
+ 4y = 0 with y(0) = 3 and y′(0) = 8

ii.
d2 y

dx2
+ 4y = 0 with y(0) = 0 and y′(0) = 1

1.8. It was stated (on page 7) that “ N th-order sets of initial values are especially appropriate for

N th-order differential equations.” The following problems illustrate one reason this is true.

In particular, they demonstrate that, if y satisfies some N th-order initial-value problem,

then it automatically satisfies particular higher-order sets of initial values. Because of this,

specifying the initial values for y(m) with m ≥ N is unnecessary and may even lead to

problems with no solutions.

a. Assume y satisfies the first-order initial-value problem

dy

dx
= 3xy + x2 with y(1) = 2 .

i. Using the differential equation along with the given value for y(1) , determine what

value y′(1) must be.

ii. Is it possible to have a solution to

dy

dx
= 3xy + x2

that also satisfies both y(1) = 2 and y′(1) = 4 ? (Give a reason.)

iii. Differentiate the given differential equation to obtain a second-order differential equa-

tion. Using the equation obtained along with the now known values for y(1) and y′(1) ,

find the value of y′′(1) .

iv. Can we continue and find y′′′(1) , y(4)(1) , …?

b. Assume y satisfies the second-order initial-value problem

d2 y

dx2
+ 4

dy

dx
− 8y = 0 with y(0) = 3 and y′(0) = 5 .

i. Find the value of y′′(0) and of y′′′(0)

ii. Is it possible to have a solution to

d2 y

dx2
+ 4

dy

dx
− 8y = 0

that also satisfies all of the following:

y(0) = 3 , y′(0) = 5 and y′′′(0) = 0 ?

1.9. Consider the simplest model we developed for a falling object (see page 10). In that, we

derived

y(t) = −4.9t2 + 1,000

as the formula for the height y above ground of some falling object at time t .

a. Find Thit , the time the object hits the ground.

b. What is the velocity of the object when it hits the ground?
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c. Suppose that, instead of being dropped at t = 0 , the object is tossed up with an initial

velocity of 2 meters per second. If this is the only change to our problem, then:

i. How does the corresponding initial-value problem change?

ii. What is the solution y(t) to this initial value problem?

iii. What is the velocity of the object when it hits the ground?

1.10. Consider the “better” falling object model (see page 11), in which we derived the differential

equation
dv

dt
= −9.8 − κv (1.5)

for the velocity. In this, κ is some positive constant used to describe the air resistance felt

by the falling object.

a. This differential equation was derived assuming the air was still. What differential equa-

tion would we have derived if, instead, we had assumed there was a steady updraft of 2

meters per second?

b. Recall that, from equation (1.5) we derived the equation

v = −9.8t − κy + c

relating the velocity v to the distance above ground y and the time t (see page 13). In the

following, you will show that it, along with experimental data, can be used to determine

the value of κ .

i. Determine the value of the constant of integration, c , in the above equation using the

given initial values (i.e., y(0) = 1,000 and v(0) = 0 ).

ii. Suppose that, in an experiment, the object was found to hit the ground at t = Thit with

a speed of v = vhit . Use this, along with the above equation, to find κ in terms of Thit

and vhit .

1.11. For the following, let

y(x) = Ax + Bx ln |x |
where A and B are arbitrary constants.

a. Verify that this y is a solution to

x2 d2 y

dx2
− x

dy

dx
+ y = 0 on the intervals (0,∞) and (−∞, 0) ,

no matter what values A and B are.

b. Again, we will later be able to show that the above formula for y is a general solution

for the above differential equation. Given this, find the solution to the above differential

equation satisfying y(1) = 3 and y′(1) = 8 .

c. Why should your answer to 1.11 b not be considered a valid solution to

x2 d2 y

dx2
− x

dy

dx
+ y = 0

over the entire real line, (−∞,∞) ?
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Integration and Differential Equations

Often, when attempting to solve a differential equation, we are naturally led to computing one or

more integrals — after all, integration is the inverse of differentiation. Indeed, we have already

solved one simple second-order differential equation by repeated integration (the one arising in the

simplest falling object model, starting on page 10). Let us now briefly consider the general case

where integration is immediately applicable, and also consider some practical aspects of using both

the indefinite integral and the definite integral.

2.1 Directly-Integrable Equations

We will say that a given first-order differential equation is directly integrable if (and only if) it can

be (re)written as
dy

dx
= f (x) (2.1)

where f (x) is some known function of just x (no y’s ). More generally, any N th-order differential

equation will be said to be directly integrable if and only if it can be (re)written as

d N y

dx N
= f (x) (2.1 ′)

where, again, f (x) is some known function of just x (no y’s or derivatives of y ).

!◮Example 2.1: Consider the equation

x2 dy

dx
− 4x = 6 . (2.2)

Solving this equation for the derivative:

x2 dy

dx
= 4x + 6

→֒ dy

dx
= 4x + 6

x2
.

Since the right-hand side of the last equation depends only on x , we do have

dy

dx
= f (x)

(
with f (x) = 4x + 6

x2

)
.

So equation (2.2) is directly integrable.

21
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!◮Example 2.2: Consider the equation

x2 dy

dx
− 4xy = 6 . (2.3)

Solving this equation for the derivative:

x2 dy

dx
= 4xy + 6

→֒ dy

dx
= 4xy + 6

x2
.

Here, the right-hand side of the last equation depends on both x and y , not just x . So equation

(2.3) is not directly integrable.

Solving a directly-integrable equation is easy. First solve for the derivative to get the equation

into form (2.1) or (2.1 ′), then integrate both sides as many times as needed to eliminate the derivatives,

and, finally, do whatever simplification seems appropriate.

!◮Example 2.3: Again, consider

x2 dy

dx
− 4x = 6 . (2.4)

In Example 2.1, we saw that it is directly integrable and can be rewritten as

dy

dx
= 4x + 6

x2
.

Integrating both sides of this equation with respect to x (and doing a little algebra):

∫
dy

dx
dx =

∫
4x + 6

x2
dx (2.5)

→֒ y(x)+ c1 =
∫ [

4

x
+ 6

x2

]
dx

= 4

∫
x−1 dx + 6

∫
x−2 dx

= 4 ln |x | + c2 − 6x−1 + c3

where c1 , c2 and c3 are arbitrary constants. Rearranging things slightly and letting c =
c2 + c3 − c1 , this last equation simplifies to

y(x) = 4 ln |x | − 6x−1 + c . (2.6)

This is our general solution to differential equation (2.4). Since both ln |x | and x−1 are discon-

tinuous just at x = 0 , the solution can be valid over any interval not containing x = 0 .

?◮Exercise 2.1: Consider the differential equation in Example 2.2 and explain why the y , which

is an unknown function of x , makes it impossible to completely integrate both sides of

dy

dx
= 4xy + 6

x2

with respect to x .
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2.2 On Using Indefinite Integrals

This is a good point to observe that, whenever we take the indefinite integrals of both sides of an

equation, we obtain a bunch of arbitrary constants — c1 , c2 , . . . (one constant for each integral)

— that can be combined into a single arbitrary constant c . In the future, rather than note all the

arbitrary constants that arise and how they combine into a single arbitrary constant c that is added to

the right-hand side in the end, let us agree to simply add that c at the end. Let’s not explicitly note

all the intermediate arbitrary constants. If, for example, we had agreed to this before doing the last

example, then we could have replaced all that material from equation (2.5) to equation (2.6) with
∫

dy

dx
dx =

∫
4x + 6

x2
dx

→֒ y(x) =
∫ [

4

x
+ 6

x2

]
dx

= 4

∫
x−1 dx + 6

∫
x−2 dx

= 4 ln |x | − 6x−1 + c .

This should simplify our computations a little.

This convention of “implicitly combining all the arbitrary constants” also allows us to write

y(x) =
∫

dy

dx
dx (2.7)

instead of

y(x) + some arbitrary constant =
∫

dy

dx
dx .

By our new convention, that “some arbitrary constant” is still in equation (2.7) — it’s just been moved

to the right-hand side of the equation and combined with the constants arising from the integral there.

Finally, like you, this author will get tired of repeatedly saying “where c is an arbitrary constant”

when it is obvious that the c (or the c1 or the A or …) that just appeared in the previous line is,

indeed, some arbitrary constant. So let us not feel compelled to constantly repeat the obvious, and

agree that, when a new symbol suddenly appears in the computation of an indefinite integral, then,

yes, that is an arbitrary constant. Remember, though, to use different symbols for the different

constants that arise when integrating a function already involving an arbitrary constant.

!◮Example 2.4: Consider solving
d2 y

dx2
= 18x2 . (2.8)

Clearly, this is directly integrable and will require two integrations. The first integration yields

dy

dx
=
∫

d2 y

dx2
dx =

∫
18x2 dx = 18

3
x3 + c1 .

Cutting out the middle leaves
dy

dx
= 6x3 + c1 .

Integrating this, we have

y(x) =
∫

dy

dx
dx =

∫ [
6x3 + c1

]
dx = 6

4
x4 + c1x + c2 .
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So the general solution to equation (2.8) is

y(x) = 3

2
x4 + c1x + c2 .

In practice, rather than use the same letter with different subscripts for different arbitrary con-

stants (as we did in the above example), you might just want to use different letters, say, writing

y(x) = 3

2
x4 + ax + b

instead of

y(x) = 3

2
x4 + c1x + c2 .

This sometimes prevents dumb mistakes due to bad handwriting.

2.3 On Using Definite Integrals
Basic Ideas

We have been using the indefinite integral to recover y(x) from dy/dx via the relation

∫
dy

dx
dx = y(x) + c .

Here, c is some constant (which we’ve agreed to automatically combine with other constants from

other integrals).

We could just about as easily have used the corresponding definite integral relation

∫ x

a

dy

ds
ds = y(x) − y(a) (2.9)

to recover y(x) from its derivative. Note that, here, we’ve used s instead of x to denote the variable

of integration. This prevents the confusion that can arise when using the same symbol for both the

variable of integration and the upper limit in the integral. The lower limit, a , can be chosen to be

any convenient value. In particular, if we are also dealing with initial values, then it makes sense to

set a equal to the point at which the initial values are given. That way (as we will soon see) we will

obtain a general solution in which the undetermined constant is simply the initial value.

Aside from getting it into the form

dy

dx
= f (x) ,

there are two simple steps that should be taken before using the definite integral to solve a first-order,

directly-integrable differential equation:

1. Pick a convenient value for the lower limit of integration a . In particular, if the value of

y(x0) is given for some point x0 , set a = x0 .

2. Rewrite the differential equation with s denoting the variable instead of x (i.e., replace x

with s ),
dy

ds
= f (s) . (2.10)
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After that, simply integrate both sides of equation (2.10) with respect to s from a to x :

∫ x

a

dy

ds
ds =

∫ x

a

f (s) ds

→֒ y(x) − y(a) =
∫ x

a

f (s) ds .

Then solve for y(x) by adding y(a) to both sides,

y(x) =
∫ x

a

f (s) ds + y(a) . (2.11)

This is a general solution to the given differential equation. It should be noted that the integral here

is a definite integral. Its evaluation does not lead to any arbitrary constants. However, the value of

y(a) , until specified, can be anything; so y(a) is the “arbitrary constant” in this general solution.

!◮Example 2.5: Consider solving the initial-value problem

dy

dx
= 3x2 with y(2) = 12 .

Since we know the value of y(2) , we will use 2 as the lower limit for our integrals. Rewriting

the differential equation with s replacing x gives

dy

ds
= 3s2 .

Integrating this with respect to s from 2 to x :

∫ x

2

dy

ds
ds =

∫ x

2
3s2 ds

→֒ y(x) − y(2) = s3
∣∣∣
x

2
= x3 − 23 .

Solving for y(x) (and computing 23 ) then gives us

y(x) = x3 − 8 + y(2) .

This is a general solution to our differential equation. To find the particular solution that also

satisfies y(2) = 12 , as desired, we simply replace the y(2) in the general solution with its given

value,

y(x) = x3 − 8 + y(2)

= x3 − 8 + 12 = x3 + 4 .

Of course, rather than go through the procedure just outlined to solve

dy

dx
= f (x) ,

we could, after determining a and f (s) , just plug these into equation (2.11),

y(x) =
∫ x

a

f (s) ds + y(a) ,

and compute the integral. That is, after all, what we derived for any choice of f .
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Advantages of Using Definite Integrals

By using definite integrals instead of indefinite integrals, we avoid dealing with arbitrary constants

and end up with expressions explicitly involving initial values. This is sometimes convenient.

A much more important advantage of using definite integrals is that they result in concrete,

computable formulas even when the corresponding indefinite integrals cannot be evaluated. Let us

look at a classic example.

!◮Example 2.6: Consider solving the initial-value problem

dy

dx
= e−x2

with y(0) = 0 .

In particular, determine the value of y(x) when x = 10 .

Using indefinite integrals yields

y(x) =
∫

dy

dx
dx =

∫
e−x2

dx .

Unfortunately, this integral was not one you learned to evaluate in calculus.1 And if you check

the tables, you will discover that no one else has discovered a usable formula for this integral.

Consequently, the above formula for y(x) is not very usable. Heck, we can’t even isolate an

arbitrary constant or see how the solution depends on the initial value.

On the other hand, using definite integrals, we get

∫ x

0

dy

ds
ds =

∫ x

0
e−s2

ds

→֒ y(x) − y(0) =
∫ x

0

e−s2
ds

→֒ y(x) =
∫ x

0
e−s2

ds + y(0) .

This last formula explicitly describes how y(x) depends on the initial value y(0) . Since we are

assuming y(0) = 0 , this reduces to

y(x) =
∫ x

0
e−s2

ds .

We still cannot find a computable formula for this integral, but, if we choose a specific value for

x , say, x = 10 , this expression becomes

y(10) =
∫ 10

0
e−s2

ds .

The value of this integral can be very accurately approximated using any of a number of numerical

integration methods such as the trapezoidal rule or Simpson’s rule. In practice, of course, we’ll

just use the numerical integration command in our favorite computer math package (Maple,

Mathematica, etc.). Using any such package, you will find that

y(10) =
∫ 10

0
e−s2

ds ≈ 0.886 .

1 Well, you could expand e−x2
in a Taylor series and integrate the series.
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In one sense,

y(x) =
∫

f (x) dx (2.12)

and

y(x) =
∫ x

a

f (s) ds + y(a) (2.13)

are completely equivalent mathematical expressions. In practice, either can be used just about as

easily, provided a reasonable formula for the indefinite integral in (2.12) can be found. If no such

formula can be found, however, then expression (2.13) is much more useful because it can still be

used, along with a numerical integration routine, to evaluate y(x) for specific values of x . Indeed,

one can compute y(x) for a large number of values of x , plot each of these values of y(x) against

x , and thereby construct a very accurate approximation of the graph of y .

There are other ways to approximate solutions to differential equations, and we will discuss

some of them. However, if you can express your solution in terms of definite integrals — even if the

integral must be computed approximately — then it is usually best to do so. The other approximation

methods for differential equations are typically more difficult to implement, and more likely to result

in poor approximations.

Important “Named” Definite Integrals with Variable Limits

You should be familiar with a number of “named” functions (such as the natural logarithm and the

arctangent) that can be given by definite integrals. For the two examples just cited,

ln(x) =
∫ x

1

1

s
ds for x > 0

and

arctan(x) =
∫ x

0

1

1 + s2
ds .

While ln(x) and arctan(x) can be defined independently of these integrals, their alternative defi-

nitions do not provide us with particularly useful ways to compute these functions by hand (unless

x is something special, such as 1 ). Indeed, if you need the value of ln(x) or arctan(x) for, say,

x = 18 , then you are most likely to “compute” these values by having your calculator or computer or

published tables2 tell you the (approximate) value of ln(18) or arctan(18) . Thus, for computational

purposes, we might as well just view ln(x) and arctan(x) as names for the above integrals, and be

glad that their values can easily be looked up electronically or in published tables.

It turns out that other integrals arise often enough in applications that workers dealing with

these applications have decided to “name” these integrals, and to have their values tabulated. Two

noteworthy “named integrals” are:

• The error function, denoted by erf and given by

erf(x) =
∫ x

0

2√
π

e−s2
ds .

• The sine-integral function, denoted by Si and given by3

Si(x) =
∫ x

0

sin(s)

s
ds .

2 if you are an old-timer
3 This integral is clearly mis-named since it is not the integral of the sine. In fact, the function being integrated, sin(x)/x , is

often called the “sinc” function (pronounced “sink”), so Si should really be called the “sinc-integral function”. But nobody

does.
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Both of these are considered to be well-known functions, at least among certain groups of mathe-

maticians, scientists and engineers. They (the functions, not the people) can be found in published

tables and standard mathematical software (such as Maple or Mathematica) alongside such better-

known functions as the natural logarithm and the trigonometric functions. Moreover, using tables or

software, the value of erf(x) and Si(x) for any real value of x can be accurately computed just as

easily as can the value of arctan(x) . For these reasons, and because “ erf(x) ” and “ Si(x) ” take

up less space than the integrals they represent, we will often follow the lead of others and use these

function names instead of writing out the integrals.

!◮Example 2.7: In Example 2.6, above, we saw that the solution to

dy

dx
= e−x2

with y(0) = 0

is

y(x) =
∫ x

0
e−s2

ds .

Since this integral is the same as the integral for the error function with 2/√π divided out, we can

also express our answer as

y(x) =
√
π

2
erf(x) .

2.4 Integrals of Piecewise-Defined Functions
Computing the Integrals

Be aware that the functions appearing in differential equations can be piecewise defined, as in

dy

dx
= f (x) where f (x) =

{
x2 if x < 2

1 if 2 ≤ x
.

Indeed, two such functions occur often enough that they have their own names: the step function,

given by

step(x) =
{

0 if x < 0

1 if 0 ≤ x
,

and the ramp function, given by

ramp(x) =
{

0 if x < 0

x if 0 ≤ x
.

The reasons for these names should be obvious from their graphs (see Figure 2.1)

Such functions regularly arise when we attempt to model things reacting to discontinuous

influences. For example, if y(t) is the amount of energy produced up to time t by some light-

sensitive device, and the rate at which this energy is produced depends proportionally on the intensity

of the light received by the device, then

dy

dt
= step(t)
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models the energy production of this device when it’s kept in the dark until a light bulb (of unit

intensity) is suddenly switched on at t = 0 .

Computing the integrals of such functions is simply a matter of computing the integrals of the

various “pieces”, and then putting the integrated pieces together appropriately. While this can be

done using indefinite integrals, each such integral introduces a new constant of integration which

must then be related to the others to ensure that the final result describes a continuous function with a

minimum number of arbitrary constants. On the other hand, the intelligent use of a definite integral

eliminates the extra bookkeeping arising from an excessive number of “arbitrary” constant, and also

ensures that the result is a continuous function (as required for solutions). Let’s illustrate this by

solving the differential equation given at the start of this section.

!◮Example 2.8 (using definite integrals): We seek a general solution to

dy

dx
= f (x) where f (x) =

{
x2 if x < 2

1 if 2 ≤ x
.

Taking the definite integral (starting, for no good reason, at 0 ), we have

y(x) =
∫ x

0
f (s) ds + y(0) where f (s) =

{
s2 if s < 2

1 if 2 ≤ s
.

Now, if x ≤ 2 , then f (s) = s2 for every value of s in the interval (0, x) . So, when

x ≤ 2 , ∫ x

0
f (s) ds =

∫ x

0
s2 ds = 1

3
s3
∣∣∣
x

s=0
= 1

3
x3 .

(Notice that this integral is valid for x = 2 even though the formula used for f (s) , s2 , was only

valid for s < 2 .)

On the other hand, if 2 < x , we must break the integral into two pieces, the one over (0, 2)

and the one over (2, x) :
∫ x

0
f (s) ds =

∫ 2

0
f (s) ds +

∫ x

2
f (s) ds

=
∫ 2

0
s2 ds +

∫ x

2
1 ds

= 1

3
s3
∣∣∣
2

s=0
+ s

∣∣x
s=2

=
[

1

3
· 23 − 0

]
+ [x − 2] = x + 2

3
.

(a) (b) (c)
XXX

YYY

11

1

11

000 2

4

Figure 2.1: Three piecewise defined functions: (a) the step function, (b) the ramp function, (c)

f (x) from Example 2.8.



30 Integration and Differential Equations

Thus, our general solution is

y(x) =
∫ x

0
f (s) ds + y(0) =





1

3
x3 + y(0) if x ≤ 2

x + 2

3
+ y(0) if 2 < x

.

Keep in mind that solutions to differential equations are required to be continuous. After

checking the above formulas, it should be obvious that the y(x) obtained in the last example is

continuous everywhere except, possibly, at x = 2 . With a little work we could also verify that, in

fact, we also have continuity at x = 2 . But we won’t bother because, in the next subsection, it will

be seen that solutions so obtained via definite integration are guaranteed to be continuous, provided

the discontinuities in the function being integrated are not too bad.

In practice, a given piecewise defined function may have more than two “pieces”, and the

differential equation may have order higher than one. For example, you may be called upon to solve

d2 y

dx2
= f (x) where f (x) =





0 if x < 1

1 if 1 ≤ x < 2

0 if 2 ≤ x

or even something involving infinitely many pieces, such as

d4 y

dx4
= stair(x) where stair(x) =





0 if x < 0

1 if 0 ≤ x < 1

2 if 2 ≤ x < 3

3 if 3 ≤ x < 4

...

. (2.14)

The method illustrated in the last example can still be applied; you just have more integrals to keep

track of.

Continuity of the Integrals

Theorem 2.1

Let f be a function on an interval (α, β) and let a be a point in that interval. Suppose, further,

that f is continuous at all but, at most, a finite number of points in (α, β) , and that, at each such

point x0 of discontinuity, the left- and right-hand limits

lim
x→x−

0

f (x) and lim
x→x+

0

f (x)

exist (and are finite).4 Then the function given by

g(x) =
∫ x

a

f (s) ds

is continuous on (α, β) .

4 Such discontinuities are said to be finite-jump discontinuities.
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PROOF: First of all, note that the two requirements placed on f ensure

g(x) =
∫ x

a

f (s) ds

is well defined for any x in (α, β) using any of the definitions for the integral found in most

calculus texts (check this out yourself, using the definition in your calculus text). They also prevent

f (x) from “blowing up” on any closed subinterval [α′, β ′] of (α, β) . Thus, for each such closed

subinterval [α′, β ′] , there is a corresponding finite constant M such that5

| f (s)| ≤ M whenever α′ ≤ s ≤ β ′ .

Now, to verify the claimed continuity of g , we must show that

lim
x→x0

g(x) = g(x0) (2.15)

for any x0 in (α, β) . But by the definition of g and well-known properties of integration,

lim
x→x0

g(x) = lim
x→x0

∫ x

a

f (s) ds

= lim
x→x0

[∫ x0

a

f (s) ds +
∫ x

x0

f (s) ds

]

= lim
x→x0

[
g(x0) +

∫ x

x0

f (s) ds

]
= g(x0) + lim

x→x0

∫ x

x0

f (s) ds .

So, to show equation (2.15) holds, it suffices to confirm that

lim
x→x0

∫ x

x0

f (s) ds = 0 ,

which, in turn, is equivalent to confirming that

lim
x→x0

+

∣∣∣∣
∫ x

x0

f (s) ds

∣∣∣∣ = 0 and lim
x→x0

−

∣∣∣∣
∫ x

x0

f (s) ds

∣∣∣∣ = 0 . (2.16)

To do this, pick any two finite values α′ and β ′ satisfying α < α′ < x0 < β ′ < β . As noted,

there is some finite constant M ≥ | f (s)| on [α′, β ′] . So, if x0 ≤ x ≤ β ′ ,

0 ≤
∣∣∣∣
∫ x

x0

f (s) ds

∣∣∣∣ ≤
∫ x

x0

| f (s)| ds ≤
∫ x

x0

M ds = M[x − x0] .

Similarly, if α′ < x < x0 , then

0 ≤
∣∣∣∣
∫ x

x0

f (s) ds

∣∣∣∣ =
∣∣∣∣−
∫ x0

x

f (s) ds

∣∣∣∣ =
∣∣∣∣
∫ x0

x

f (s) ds

∣∣∣∣

≤
∫ x0

x

| f (s)| ds ≤
∫ x0

x

M ds = M[x0 − x] .

Hence,

0 ≤ lim
x→x0

+

∣∣∣∣
∫ x

x0

f (s) ds

∣∣∣∣ ≤ lim
x→x0

+
M[x − x0] = M[x0 − x0] = 0

and

0 ≤ lim
x→x0

−

∣∣∣∣
∫ x

x0

f (s) ds

∣∣∣∣ ≤ lim
x→x0

−
M[x0 − x] = M[x0 − x0] = 0 ,

which, of course, means that equation set (2.16) holds.

5 The constant M can be the maximum value of | f (s)| on [α′, β′] , provided that maximum exists. It may change if either

endpoint α′ or β′ is changed.



32 Integration and Differential Equations

Additional Exercises

2.2. Determine whether each of the following differential equations is or is not directly inte-

grable:

a.
dy

dx
= 3 − sin(x) b.

dy

dx
= 3 − sin(y)

c.
dy

dx
+ 4y = e2x d. x

dy

dx
= arcsin(x2)

e. y
dy

dx
= 2x f.

d2 y

dx2
= x + 1

x − 1

g. x2 d2 y

dx2
= 1 h. y2 d2 y

dx2
= 8x2

i.
d2 y

dx2
+ 3

dy

dx
+ 8y = e−x2

j. x2 d2 y

dx2
+ 3x

dy

dx
= 0

2.3. Find a general solution for each of the following directly integrable equations. (Use indef-

inite integrals on these.)

a.
dy

dx
= 4x3 b.

dy

dx
= 20e−4x

c. x
dy

dx
+

√
x = 2 d.

√
x + 4

dy

dx
= 1

e.
dy

dx
= x cos

(
x2
)

f.
dy

dx
= x cos(x)

g. x =
(

x2 − 9
)

dy

dx
h. 1 =

(
x2 − 9

)
dy

dx

i. 1 = x2 − 9
dy

dx
j.

d2 y

dx2
= sin(2x)

k.
d2 y

dx2
− 3 = x l.

d4 y

dx4
= 1

2.4. Solve each of the following initial-value problems (using the indefinite integral). Also, state

the largest interval over which the solution is valid (i.e., the maximal possible interval of

interest).

a.
dy

dx
= 4x + 10e2x with y(0) = 4

b. 3
√

x + 6
dy

dx
= 1 with y(2) = 10

c.
dy

dx
= x − 1

x + 1
with y(0) = 8

d. x
dy

dx
+ 2 = √

x with y(1) = 6

e. cos(x)
dy

dx
− sin(x) = 0 with y(0) = 3

f.
(
x2 + 1

) dy

dx
= 1 with y(0) = 3
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g. x
d2 y

dx2
+ 2 = √

x with y(1) = 8 and y′(1) = 6

2.5 a. Using definite integrals (as in Example 2.5 on page 25), find the general solution to

dy

dx
= sin

(
x

2

)

with y(0) acting as the arbitrary constant.

b. Using the formula just found for y(x) :

i. Find y(π) when y(0) = 0 . ii. Find y(π) when y(0) = 3 .

iii. Find y(2π) when y(0) = 3 .

2.6 a. Using definite integrals (as in Example 2.5 on page 25), find the general solution to

dy

dx
= 3

√
x + 3

with y(1) acting as the arbitrary constant.

b. Using the formula just found for y(x) :

i. Find y(6) when y(1) = 16 . ii. Find y(6) when y(1) = 20 .

iii. Find y(−2) when y(1) = 0 .

2.7. Using definite integrals (as in Example 2.5 on page 25), find the solution to each of the

following initial-value problems. (In some cases, you may want to use the error function

or the sine-integral function.)

a.
dy

dx
= x e−x2

with y(0) = 3 b.
dy

dx
= x√

x2 + 5
with y(2) = 7

c.
dy

dx
= 1

x2 + 1
with y(1) = 0 d.

dy

dx
= e−9x2

with y(0) = 1

e. x
dy

dx
= sin(x) with y(0) = 4 f. x

dy

dx
= sin

(
x2
)

with y(0) = 0

2.8. Using an appropriate computer math package (such as Maple or Mathematica), graph each

of the following over the interval 0 ≤ x ≤ 10 :

a. the error function, erf(x) . b. the sine integral function, Si(x) .

c. the solution to

dy

dx
= ln

∣∣∣2 + x2 sin(x)
∣∣∣ with y(0) = 0 .

2.9. Each of the following differential equations involves a function that is (or can be) piecewise

defined. Sketch the graph of each of these piecewise defined functions, and find the general

solution of each differential equation. If an initial value is also given, then also solve the

given initial-value problem:

a.
dy

dx
= step(x) with y(0) = 0 and step(x) as defined on page 28

b.
dy

dx
= f (x) with y(0) = 2 and f (x) =

{
0 if x < 1

1 if 1 ≤ x
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c.
dy

dx
= f (x) with y(0) = 0 and f (x) =





0 if x < 1

1 if 1 ≤ x < 2

0 if 2 ≤ x

d.
dy

dx
= |x − 2|

e.
dy

dx
= stair(x) for x < 4 with y(0) = 0 and stair(x) as defined on page 30
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3

Some Basics about First-Order Equations

For the next few chapters, our attention will be focused on first-order differential equations. We will

discover that these equations can often be solved using methods developed directly from the tools

of elementary calculus. And even when these equations cannot be explicitly solved, we will still be

able to use fundamental concepts from elementary calculus to obtain good approximations to the

desired solutions.

But first, let us discuss a few basic ideas that will be relevant throughout our discussion of

first-order differential equations.

3.1 Algebraically Solving for the Derivative

Here are some of the first-order differential equations that we have seen or will see in the next few

chapters:

x2 dy

dx
− 4x = 6 ,

dy

dx
− x2 y2 = x2 ,

dy

dx
+ 4xy = 2xy2

and

x
dy

dx
+ 4y = x3 .

One thing we can do with each of these equations is to algebraically solve for the derivative. Doing

this with the first equation:

x2 dy

dx
− 4x = 6

→֒ x2 dy

dx
= 6 + 4x

→֒ dy

dx
= 4x + 6

x2
.

For the second equation:
dy

dx
− x2 y2 = x2

→֒ dy

dx
= x2 + x2 y2 .

37
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Solving for the derivative is often a good first step towards solving a first-order differential equation.

For example, the first equation above is directly integrable — solving for the derivative yielded

dy

dx
= 4x + 6

x2
,

and y(x) can now be found by simply integrating both sides with respect to x .

Even when the equation is not directly integrable and we get

dy

dx
= “a formula of both x and y ” ,

— as in our second equation above,
dy

dx
= x2 + x2 y2

— that formula on the right can still give us useful information about the possible solutions and

can help us determine which method is appropriate for obtaining the general solution. Observe, for

example, that the right-hand side of the last equation can be factored into a formula of x and a

formula of y ,
dy

dx
= x2

(
1 + y2

)
.

In the next chapter, we will find that this means the equation is “separable” and can be solved by a

procedure developed for just such equations.

For convenience, let us say that a first-order differential equation is in derivative formula form

if it is written as
dy

dx
= F(x, y) (3.1)

where F(x, y) is some (known) formula of x and/or y . Remember, to convert a given first-order

differential equation to derivative form, simply use a little algebra to solve the differential equation

for the derivative.

?◮Exercise 3.1: Verify that the derivative formula forms of

dy

dx
+ 4y = 3y3 and x

dy

dx
+ 4xy = 2y2

are
dy

dx
= 3y3 − 4y and

dy

dx
= 2y2 − 4xy

x
,

respectively.

Keep in mind that the right side of equation (3.1), F(x, y) , need not always be a formula of

both x and y . As we saw in an example above, the equation might be directly integrable. In this

case, the right side of the above derivative formula form reduces to some f (x) , a formula involving

only x ,
dy

dx
= f (x) .

Alternatively, the right side may end up being a formula involving only y , F(x, y) = g(y) . We

have a word for such differential equations; that word is “autonomous”. That is, an autonomous

first-order differential equation is a differential equation that can be written as

dy

dx
= g(y)
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where g(y) is some formula involving y but not x . The first equation in the last exercise is

an example of an autonomous differential equation. Autonomous equations arise fairly often in

applications, and the fact that dy/dx is given by a formula of just y will make an autonomous

equation easier to graphically analyze in Chapter 9. But, as we’ll see in the next chapter, they are just

special cases of “separable” equations, and can be solved using the methods that will be developed

there.

You should also be aware that the derivative formula form is not the only way we will attempt to

rewrite our first-order differential equations. Frankly, much of the theory for first-order differential

equations involves determining how a given differential equation can be rewritten so that we can

cleverly apply tricks from calculus to further reduce the equation to something that can be easily

integrated. We’ve already seen this with directly-integrable differential equations (for which the

“derivative formula” form is ideal). In the next few chapters, we will see this with other equations

for which other forms are useful.

By the way, there are first-order differential equations that cannot be put in derivative formula

form. Consider
dy

dx
+ sin

(
dy

dx

)
= x .

It can be safely said that solving this equation for dy/dx is beyond the algebraic skills of most mortals.

Fortunately, first-order differential equations that cannot be rewritten in the derivative formula form

rarely arise in real-world applications.

3.2 Constant (or Equilibrium) Solutions

There is one type of particular solution that is easily determined for many first-order differential

equations using elementary algebra: the “constant” solution.

A constant solution to a given differential equation is simply a constant function that satisfies

that differential equation. Remember, y is a constant function if its value, y(x) , is some fixed

constant for all x ; that is, for some single number y0 ,

y(x) = y0 for all x .

Such solutions are also sometimes called equilibrium solutions. In an application involving some

process that can vary with x , these solutions describe situations in which the process does not vary

with x . This often means that all the factors influencing the process are “balancing out”, leaving the

process in a “state of equilibrium”. As we will later see, this sometimes means that these solutions

— whether called constant or equilibrium — are the most important solutions to a given differential

equation.1

!◮Example 3.1: Consider the differential equation

dy

dx
= 2xy2 − 4xy

and the constant function

y(x) = 2 for all x .

1 According to mathematical tradition, one only refers to a constant solution as an “equilibrium solution” if the differential

equation is autonomous.
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Since the derivative of a constant function is zero, plugging in this function, y = 2 into

dy

dx
= 2xy2 − 4xy

gives

0 = 2x · 22 − 4x · 2 ,

which, after a little arithmetic and algebra, reduces further to

0 = 0 .

Hence, our constant function satisfies our differential equation, and, so, is a constant solution to

that differential equation.

On the other hand, plugging the constant function

y(x) = 3 for all x

into
dy

dx
= 2xy2 − 4xy

gives

0 = 2x · 32 − 4x · 3 .

This only reduces to

0 = 6x ,

which is not valid for all values of x on any nontrivial interval. Thus, y = 3 is not a constant

solution to our differential equation.

Admittedly, constant functions are not usually considered particularly exciting. The graph of a

constant function,

y(x) = y0 for all x

is just a horizontal line (at y = y0 ), and its derivative (as noted in the above example) is zero. But

the fact that its derivative is zero is what simplifies the task of finding all possible constant solutions

to a given differential equation, especially if the equation is in derivative formula form. After all, if

we plug a constant function

y(x) = y0 for all x

into an equation of the form
dy

dx
= F(x, y) ,

then, since the derivative of a constant is zero, this equation reduces to

0 = F(x, y0) .

We can then determine all values y0 that make y = y0 a constant solution for our differential

equation by simply determining every constant y0 that satisfies

F(x, y0) = 0 for all x .

!◮Example 3.2: Suppose we have a differential equation that, after a bit of algebra, can be written

as
dy

dx
= (y − 2x)

(
y2 − 9

)
.



Constant (or Equilibrium) Solutions 41

If it has a constant solution,

y(x) = y0 for all x ,

then, after plugging this simple formula for y into the differential equation (and remembering

that the derivative of a constant is zero), we get

0 = (y0 − 2x)
(
y0

2 − 9
)

, (3.2)

which is possible if and only if either

y0 − 2x = 0 or y0
2 − 9 = 0 .

Now,

y0 − 2x = 0 ⇐⇒ y0 = 2x .

This gives us a value for y0 that varies with x , contradicting the original assumption that y0

was a constant. So this does not lead to any constant solutions (or any other solutions, either!).

If there is such a solution, y = y0 , it must satisfy the other equation,

y0
2 − 9 = 0 .

But

y0
2 − 9 = 0 ⇐⇒ y0

2 = 9 ⇐⇒ y0 = ±
√

9 = ±3 .

So there are exactly two constant values for y0 , 3 and −3 , that satisfy equation (3.2). And thus,

our differential equation has exactly two constant (or equilibrium) solutions,

y(x) = 3 for all x

and

y(x) = −3 for all x .

Keep in mind that, while the constant solutions to a given differential equation may be important,

they rarely are the only solutions. And in practice, the solution to a given initial-value problem will

typically not be one of the constant solutions. However, as we will see later, one of the constant

solutions may tell us something about the long-term behavior of the solution to that particular initial-

value problem. That is one of the reasons constant solutions are so important.

You should also realize that many differential equations have no constant solutions. Consider,

for example, the directly-integrable differential equation

dy

dx
= 2x .

Integrating this, we get the general solution

y(x) = x2 + c .

No matter what value we pick for c , this function varies as x varies. It cannot be a constant.

In fact, it is not hard to see that no directly-integrable differential equation,

dy

dx
= f (x) ,

can have a constant solution (unless f ≡ 0 ). Just consider what you get when you integrate

the f (x) . (That’s why we did not mention such solutions when we discussed directly-integrable

equations.)
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3.3 On the Existence and Uniqueness of Solutions

Unfortunately, not all problems are solvable, and those that are solvable sometimes have several

solutions. This is true in mathematics just as it is true in real life.

Before attempting to solve a problem involving some given differential equation and auxiliary

condition (such as an initial value), it would certainly be nice to know that the given differential

equation actually has a solution satisfying the given auxiliary condition. This would be especially

true if the given differential equation looks difficult and we expect that considerable effort will be

required in solving it (effort which would be wasted if that solution did not exist). And even if we

can find a solution, we normally would like some assurance that it is the only solution.

The following theorem is the standard theorem quoted in most elementary differential equation

texts addressing these issues for fairly general first-order initial-value problems.

Theorem 3.1 (on existence and uniqueness)

Consider a first-order initial-value problem

dy

dx
= F(x, y) with y(x0) = y0

in which both F and ∂F/∂y are continuous functions on some open region of the XY –plane con-

taining the point (x0, y0) .2 The initial-value problem then has exactly one solution over some open

interval (α, β) containing x0 . Moreover, this solution and its derivative are continuous over that

interval.

This theorem assures us that, if we can write a first-order differential equation in the derivative

formula form,
dy

dx
= F(x, y) ,

and that F(x, y) is a ‘reasonably well-behaved’ formula on some region of interest, then our differ-

ential equation has solutions — with luck and skill, we will be able to find them. Moreover, if we

can find a solution to this equation that also satisfies some initial value y(x0) = y0 corresponding

to a point at which F is ‘reasonably well-behaved’, then that solution is unique (i.e., it is the only

solution) — there is no need to worry about alternative solutions — at least over some interval

(α, β) . Just what that interval (α, β) is, however, is not explicitly described in this theorem. It turns

out to depend in subtle ways on just how well behaved F(x, y) is. More will be said about this in

a few paragraphs.

!◮Example 3.3: Consider the initial-value problem

dy

dx
− x2 y2 = x2 with y(0) = 3 .

As derived earlier, the derivative formula form for this equation is

dy

dx
= x2 + x2 y2 .

So

F(x, y) = x2 + x2 y2

2 The ∂F/∂y is a “partial derivative”. If you are not acquainted with partial derivatives see the appendix on page 59.
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and
∂F

∂y
= ∂

∂y

[
x2 + x2 y2

]
= 0 + x22y = 2x2 y .

It should be clear that these two functions are continuous everywhere on the XY –plane. Hence,

we can take the entire plane to be that “open region” in the above theorem, which then assures

us that the above initial-value problem has one (and only one) solution valid over some interval

(a, b) with a < 0 < b . Unfortunately, the theorem doesn’t tell us what that solution is nor what

that interval (a, b) might be. We will have to wait until we develop a method for solving this

differential equation.

The proof of the above theorem is nontrivial and can be safely skipped by most beginning

readers. In fact, despite the importance of the above theorem, we will rarely explicitly refer to it in

the chapters that follow. The main explicit references will be a “graphical” discussion of the theorem

in Chapter 9 using methods developed there,3 and to note that analogous theorems can be proven for

higher-order differential equations. Nonetheless, it is an important theorem whose proof should be

included in this text if only to assure you that the author is not making it up. Besides, the basic core

of the proof is fairly accessible to most readers and contains some clever and interesting ideas. We

will go over that basic core in the next section (Section 3.4), leaving the more challenging details for

the section after that (Section 3.5).

Part of the proof will be to identify the interval (α, β) mentioned in the above theorem. In fact,

the interval (α, β) can be easily determined if F and ∂F/∂y are sufficiently well behaved. That is

what the next theorem gives us. Its proof requires just a few modifications of the proof of the above,

and will be briefly discussed after that proof.

Theorem 3.2

Consider a first-order initial-value problem

dy

dx
= F(x, y) with y(x0) = y0

over an interval (α, β) containing x0 , and with F = F(x, y) being a continuous function on the

infinite strip

R = { (x, y) : α < x < β and − ∞ < y < ∞ } .

Further suppose that, on R , the partial derivative ∂F/∂y is continuous and is a function of x only.4

Then the initial-value problem has exactly one solution over (α, β) . Moreover, this solution and its

derivative are continuous on that interval.

In practice, many of our first-order differential equations will not satisfy the conditions described

in the last theorem. So this theorem is of relatively limited value for now. However, it leads to higher-

order analogs that will be used in developing the theory needed for important classes of higher-order

differential equations. That is why Theorem 3.2 is mentioned here.

3 which you may find more illuminating than the proof given here
4 More generally, the theorem remains true if we replace the phrase “a function of x only” with “a bounded function on

R ”. Our future interest, however, will be with the theorem as stated.
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3.4 Confirming the Existence of Solutions (Core Ideas)

So let us consider the first-order initial-value problem

dy

dx
= F(x, y) with y(x0) = y0 ,

assuming that both F and ∂F/∂y are continuous on some open region in the XY –plane containing

the point (x0, y0) . Our goal is to verify that a solution y exists over some interval. (This is the

existence claim of Theorem 3.1. The uniqueness claim of that theorem will be left as an exercise

using material developed in the next section — see Exercise 3.2 on page 56.)

The gist of our proof consists of three steps:

1. Observe that the initial-value problem is equivalent to a corresponding integral equation.

2. Derive a sequence of functions — ψ0 , ψ1 , ψ2 , ψ3 , . . . — using a formula inspired by

that integral equation.

3. Show that this sequence of functions converges on some interval to a solution y of the

original initial-value problem.

The “hard” part of the proof is in the details of the last step. We can skip over these details initially,

returning to them in the next section.

Two comments should be made here:

1. The ψk’s end up being approximations to the solution y , and, in theory at least, the method

we are about to describe can be used to find approximate solutions to an initial-value problem.

Other methods, however, are often more practical.

2. This method was developed by the French mathematician Emile Picard and is often referred

to as the (Picard’s) method of successive approximations or as Picard’s iterative method

(because of the way the ψk’s are generated).

To simplify discussion let us assume x0 = 0 , so that our initial-value problem is

dy

dx
= F(x, y) with y(0) = y0 . (3.3)

There is no loss of generality here. After all, if x0 6= 0 , we can apply the change of variable

s = x − x0 and convert our original problem into problem (3.3) (with x replaced by s ).

Converting to an Integral Equation

Suppose y = y(x) is a solution to initial-value problem (3.3) on some interval (α, β) with α <

0 < β . Renaming x as s , our differential equation becomes

dy

ds
= F(s, y(s)) for each s in (α, β) .

Integrating this from 0 to any x in (α, β) and remembering that y(0) = y0 , we get
∫ x

0

dy

ds
ds =

∫ x

0
F(s, y(s)) ds

→֒ y(x) − y(0) =
∫ x

0
F(s, y(s)) ds

→֒ y(x) − y0 =
∫ x

0
F(s, y(s)) ds .
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That is, y satisfies the integral equation

y(x) = y0 +
∫ x

0
F(s, y(s)) ds whenever α < x < β .

On the other hand, if y is any continuous function on (α, β) satisfying this integral equation, then

basic calculus tells us that, on this interval, y is differentiable with

dy

dx
= d

dx

[
y0 +

∫ x

0
F(s, y(s)) ds

]
= 0 + d

dx

∫ x

0
F(s, y(s)) ds = F(x, y(x)) .

and

y(0) = y0 +
∫ 0

0
F(s, y(s)) ds

︸ ︷︷ ︸
0

= y0 .

Thus, y also satisfies our original initial-value problem.

We should note that, in the above, we implicitly assumed F(x, y) was a reasonably behaved

function at each point (x, y) where α < x < β and y = y(x) . In particular, if F is continuous at

each of these points, then this continuity, the continuity of y , and the fact that y′ = F(x, y) ensures

that y is not only differentiable on (α, β) but that y′ is continuous on (α, β) .

In summary, we have the following theorem:

Theorem 3.3

Let y be any continuous function on some interval (α, β) containing 0 , and assume F is a

function of two variables continuous at every (x, y) with α < x < β and y = y(x) . Then y has

a continuous derivative on (α, β) and satisfies the initial-value problem

dy

dx
= F(x, y) with y(0) = y0 on (α, β)

if and only if y satisfies the integral equation

y(x) = y0 +
∫ x

0
F(s, y(s)) ds whenever α < x < β .

Generating a Sequence of “Approximate Solutions”

Begin with any continuous function ψ0 . For example, we could simply choose ψ0 to be the constant

function

ψ0(x) = y0 for all x .

(Later, we will place some additional restrictions on ψ0 , but the above constant function will still

be a valid choice for ψ0 .)

Next, let ψ1 be the function constructed from ψ0 by

ψ1(x) = y0 +
∫ x

0

F(s, ψ0(s)) ds .

Then construct ψ2 from ψ1 via

ψ2(x) = y0 +
∫ x

0
F(s, ψ1(s)) ds .
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Continue the process, defining ψ3 , ψ4 , ψ5 , . . . by

ψ3(x) = y0 +
∫ x

0
F(s, ψ2(s)) ds ,

ψ4(x) = y0 +
∫ x

0
F(s, ψ3(s)) ds ,

...

In general, once ψk is defined, we define ψk+1 by

ψk+1(x) = y0 +
∫ x

0

F(s, ψk(s)) ds . (3.4)

Since we apparently can continue this iterative process forever, we have an infinite sequence of

functions

ψ0 , ψ1 , ψ2 , ψ3 , ψ4 , . . . .

In the future, we may refer to this sequence as the Picard sequence (based on ψ0 and F ). Note

that, for k = 1, 2, 3, . . . ,

ψk(0) = y0 +
∫ 0

0

F(s, ψk−1(s)) ds

︸ ︷︷ ︸
0

= y0 .

So each of these ψk’s satisfies the initial condition in our initial-value problem. Moreover, since

each of these ψk’s is a constant added to an integral from 0 to x , each of these ψk’s should be

continuous at least over the interval of x’s on which the integral is finite.

(Naively) Taking the Limit

Now suppose there is an interval (α, β) containing 0 on which this sequence of ψk’s converges to

some continuous function. Let y denote this function,

y(x) = lim
k→∞

ψk(x) for α < x < β .

Now let x be any point in (a, b) . Blithely (and naively) taking the limit of both sides of equation

(3.4), we get

y(x) = lim
k→∞

ψk(x) = lim
k→∞

ψk+1(x)

= lim
k→∞

[
y0 +

∫ x

0
F(s, ψk(s)) ds

]

= y0 + lim
k→∞

∫ x

0
F(s, ψk(s)) ds

= y0 +
∫ x

0
lim

k→∞
F(s, ψk(s)) ds

= y0 +
∫ x

0
F(s, y(s)) ds .

Thus (assuming the above limits are valid) we see that y satisfies the integral equation

y(x) = y0 +
∫ x

0
F(s, y(s)) ds for a < x < b .
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As noted in Theorem 3.3, this means the function y is a solution to our original initial-value problem,

thus verifying the claimed existence of such a solution.

That was the essence of Picard’s method of successive approximations.

3.5 Details in the Proof of Theorem 3.1
Confirming the Existence of Solutions
What Are the Remaining Details?

Before proclaiming that we have rigorously verified the existence of a solution to our initial-value

problem via the Picard method, we need to rigorously verify the assumptions made in the last section.

If you check carefully, you will see that we still need to rigorously confirm the following three

statements concerning the functions ψ1 , ψ2 , . . . generated by the Picard iteration method:

1. There is an interval (α, β) containing 0 such that

lim
k→∞

ψk(x)

exists for each x in (α, β) .

2. The function given by

y(x) = lim
k→∞

ψk(x)

is continuous on the interval (α, β) .

3. The above defined function y satisfies

y(x) = y0 +
∫ x

0
F(s, y(s)) ds whenever α < x < β .

Confirming these claims under the assumptions in Theorem 3.1 on page 42 will be the main goal of

this section.5

Some Preliminary Bounds

In carrying out our analysis, we will make use of a number of facts normally discussed in standard

introductory calculus courses. For example, we will use without comment that fact that, for any

summation, ∣∣∣∣
∑

k

ck

∣∣∣∣ ≤
∑

k

|ck | .

This is the triangle inequality. Recall, also, that “the absolute value of an integral is less than or

equal to the integral of the absolute value”. We will need to be a little careful about this because the

lower limits on our integrals will not always be less than our upper limits. If σ < τ , then we do

have ∣∣∣∣
∫ τ

σ

g(s) ds

∣∣∣∣ ≤
∫ τ

σ

|g(s)| ds .

5 Some of the analysis in this section can be shortened considerably using tools from advanced real analysis. Since the

typical reader is not expected to have yet had a such a course, we will not use those tools. However, if you have had such

a course and are acquainted with such terms as “uniform convergence” and “Cauchy sequences”, then you should look to

see how your more advanced mathematics can shorten the analysis given here.
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On the other hand, if τ < σ , then
∣∣∣∣
∫ τ

σ

g(s) ds

∣∣∣∣ =
∣∣∣∣−
∫ σ

τ

g(s) ds

∣∣∣∣ =
∣∣∣∣
∫ σ

τ

g(s) ds

∣∣∣∣ ≤
∫ σ

τ

|g(s)| ds .

Suppose that, in addition, |g(s)| ≤ M for all s in some interval containing σ and τ . Then, if

σ < τ , ∣∣∣∣
∫ τ

σ

g(s) ds

∣∣∣∣ ≤
∫ τ

σ

|g(s)| ds ≤
∫ τ

σ

M ds = M[τ − σ ] = M |τ − σ | ,

while, if τ < σ ,
∣∣∣∣
∫ τ

σ

g(s) ds

∣∣∣∣ ≤
∫ σ

τ

|g(s)| ds ≤
∫ σ

τ

M ds = M[−(τ − σ)] = M |τ − σ | .

So, in general, we have the following little lemma:

Lemma 3.4

If |g(s)| ≤ M for all s in some interval containing σ and τ , then
∣∣∣∣
∫ τ

σ

g(s) ds

∣∣∣∣ = M |τ − σ | .

Other facts from calculus will be used and slightly expanded as needed. These facts will include

material on the absolute convergence of summations and the Taylor series for the exponentials.

The next lemma establishes the interval (α, β) mentioned in the existence theorem (Theorem

3.1) along with some function bounds that will be useful in our analysis.

Lemma 3.5

Assume both F(x, y) and ∂F/∂y are continuous on some open region R in the XY –plane containing

the point (0, y0) . Then there are positive constants M and B , a closed interval [α, β] and a finite

distance 1Y such that all the following hold:

1. α < 0 < β .

2. The open region R contains the closed rectangular region

R1 = { (x, y) : α ≤ x ≤ β and |y − y0| ≤ 1Y } .

3. For each (x, y) in R1 ,

|F(x, y)| ≤ M and

∣∣∣∣
∂F

∂y

∣∣∣
(x,y)

∣∣∣∣ ≤ B .

4. 0 < −αM ≤ 1Y and 0 < βM ≤ 1Y .

5. If φ is a continuous function on (α, β) satisfying

|φ(x)− y0| ≤ 1Y for α ≤ x ≤ β ,

then

ψ(x) = y0 +
∫ x

0
F(s, φ(s)) ds

defines the function ψ on the interval [α, β] . Moreover, ψ is continuous on [α, β] and

satisfies
|ψ(x)− y0| ≤ 1Y for α ≤ x ≤ β .
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Y

y0

X0

R

R1
R0

1X 1X

1Y

1Y

α0 β0β

Figure 3.1: Rectangles contained in region R for the proof of Lemma 3.5 (with |α0| < 1X and

1X < β0 ).

PROOF: The goal is to find a rectangle R1 on which the above holds. We start by noting that,

because R is an open region containing the point (0, y0) , that point is not on the boundary of

R , and we can pick a negative value α0 and two positive values β0 and 1Y so that the closed

rectangular region

R0 = { (x, y) : α0 ≤ x ≤ β0 and |y − y0| ≤ 1Y }

is contained in R , as in Figure 3.1.

Since F and ∂F/∂y are continuous on R , they (and their absolute values) must be continuous

on that portion of R which is R0 . But recall that a continuous function of one variable on a closed

finite interval will always have a maximum value on that interval. Likewise, a continuous function

of two variables will always have a maximum value over a closed finite rectangle. Let M and B

be, respectively, the maximum values of |F | and
∣∣∂F/∂y

∣∣ on R0 . Then, of course,

|F(x, y)| ≤ M and

∣∣∣∣
∂F

∂y

∣∣∣
(x,y)

∣∣∣∣ ≤ B for each (x, y) in R0 .

Now let us further restrict the possible values of x by first setting

1X = 1Y

M

(
so M = 1Y

1X

)
,

and then defining the endpoints of the interval (α, β) by

α =
{
α0 if −1X < α0

−1X if α0 ≤ −1X

}
and β =

{
1X if 1X < β0

β0 if β0 ≤ 1X

}

(again, see Figure 3.1).

By these choices,

α0 ≤ α < 0 < β ≤ β0 ,

|x | ≤ 1X whenever α ≤ x ≤ β ,

0 < −αM ≤ 1X M = 1Y ,

0 < βM ≤ 1X M = 1Y ,
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and the closed rectangle

R1 = { (x, y) : α ≤ x ≤ β and |y − y0| ≤ 1Y }

is contained in the closed rectangle R0 , ensuring that

|F(x, y)| ≤ M and

∣∣∣∣
∂F

∂y

∣∣∣∣
(x,y)

∣∣∣∣ ≤ B for each (x, y) in R1 .

This takes care of the first four claims of the lemma.

To confirm the lemma’s final claim, let φ be a continuous function on (α, β) satisfying

|φ(x)− y0| ≤ 1Y for α ≤ x ≤ β .

Then, (s, φ(s)) is a point in R1 for each s in the interval [α, β] . This, in turn, means that

F(s, φ(s)) exists and is bounded by M over the interval [α, β] . Moreover, it is easily verified

that the continuity of both F over R and φ over (α, β) ensures that F(s, φ(s)) is a bounded

continuous function of s over [α, β] . Consequently, the integral in

ψ(x) = y0 +
∫ x

0

F(s, φ(s)) ds

exists (and is finite) for each x in [α, β] .

To help confirm the claimed continuity of ψ , take any two points x and x1 in (α, β) . Using

Lemma 3.4 and the fact that F is bounded by M on R1 , we have that

|ψ(x1)− ψ(x)| =
∣∣∣∣y0 +

∫ x1

0

F(s, φ(s)) ds − y0 −
∫ x

0

F(s, φ(s)) ds

∣∣∣∣

=
∣∣∣∣
∫ x1

x

F(s, φ(s)) ds

∣∣∣∣

≤ M |x1 − x | .

Hence,

lim
x→x1

|ψ(x1)− ψ(x)| ≤ lim
x→x1

M |x1 − x | = M · 0 = 0 ,

which, in turn, means that

lim
x→x1

ψ(x) = ψ(x1) ,

confirming that ψ is continuous at each x1 in (α, β) . By almost identical arguments, we also have

lim
x→α+

ψ(x) = ψ(α) and lim
x→β−

ψ(x) = ψ(β) .

Altogether, these limits tell us that ψ is continuous on the closed interval [α, β] .

Finally, let α ≤ x ≤ β . Again using Lemma 3.4 and the boundedness of F , along with the

definition of 1X , we see that

|ψ(x)− y0| =
∣∣∣∣
∫ x

0

F(s, φ(s)) ds

∣∣∣∣ ≤ M |x | ≤ M1X = M · 1Y

M
= 1Y .
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Convergence of the Picard Sequence

Let us now look more closely at the Picard sequence of functions,

ψ0 , ψ1 , ψ2 , ψ3 , . . .

with ψ0 being “some continuous function” and

ψk+1(x) = y0 +
∫ x

0
F(s, ψk(s)) ds for k = 0, 1, 2, 3, . . . .

Remember, F and ∂F/∂y are continuous on some open region containing the point (0, y0) . This

means Lemma 3.5 applies. Let [α, β] , M , B and 1Y be the interval and constants from that

lemma. Let us also now impose an additional restriction on the choice for ψ0 : Let us insist that ψ0

be any continuous function on [α, β] such that

|ψ0(x)− y0| ≤ 1Y for α < x < β .

In particular, we could let ψ0 be the constant function ψ0(x) = y0 for all x .

We now want to show that the sequence of ψk’s converges to a function y on [α, β] . Our first

step in this direction is to observe that, thanks to the additional requirement on ψ0 , Lemma 3.5 can

be applied repeatedly to show that ψ1 , ψ2 , ψ3 , . . . are all well-defined, continuous functions on

the interval [α, β] with each satisfying

|ψk(x)− y0| ≤ 1Y for α ≤ x ≤ β .

Next, we need to establish useful bounds on the sequence

|ψ1(x)− ψ0(x)| , |ψ2(x)− ψ1(x)| , |ψ3(x)− ψ2(x)| , . . .

when α ≤ x ≤ β . The first is easy:

|ψ1(x)− ψ0(x)| = |ψ1(x)− y0 − ψ0(x)+ y0|
= |[ψ1(x)− y0] + (−[ψ0(x)− y0])|
≤ |ψ1(x)− y0| + |ψ0(x)− y0| ≤ 21Y .

To simplify the derivation of useful bounds on the others, let us observe that, if k ≥ 1 ,

|ψk+1(x)− ψk(x)| =
∣∣∣∣
[

y0 +
∫ x

0
F(s, ψk(s)) ds

]
−
[

y0 +
∫ x

0
F(s, ψk−1(s)) ds

]∣∣∣∣

=
∣∣∣∣
∫ x

0
[F(s, ψk(s))− F(s, ψk−1(s))] ds

∣∣∣∣

≤
∫ x

0

|F(s, ψk(s))− F(s, ψk−1(s))| ds .

Now recall that, if f is any continuous and differentiable function on an interval I , and t1 and t2
are two points in I , then there is a point τ between t1 and t2 such that

f (t2) − f (t1) = f ′(τ ) [t2 − t1] .

This was the mean value theorem for derivatives. Consequently, if

∣∣ f ′(t)
∣∣ ≤ B for each t in I ,



52 Some Basics about First-Order Equations

then

| f (t2)− f (t1)| =
∣∣ f ′(τ ) [t2 − t1]

∣∣ =
∣∣ f ′(τ )

∣∣ |t2 − t1| ≤ B |t2 − t1| .

The same holds for partial derivatives. In particular, for each pair of points (x, y1) and (x, y2) in

the closed rectangle

R1 = { (x, y) : α ≤ x ≤ β and |y − y0| ≤ 1Y } ,

we have a γ between y1 and y2 such that

|F(x, y2)− F(x, y1)| =
∣∣∣∣
∂F

∂y

∣∣∣
(x,γ )

· [y2 − y1]

∣∣∣∣ ≤ B |y2 − y1| .

Thus, for 0 ≤ x ≤ β and k = 1, 2, 3, . . . ,

|ψk+1(x)− ψk(x)| ≤
∫ x

0

|F(s, ψk(s))− F(s, ψk−1(s))| ds

≤
∫ x

0
B |ψk(s)− ψk−1(s)| ds .

Repeatedly using this (with 0 ≤ x ≤ β ), we get

|ψ2(x)− ψ1(x)| ≤
∫ x

0
B |ψ1(s)− ψ0(s)| ds

≤
∫ x

0
B · 21Y ds = 21Y Bx ,

|ψ3(x)− ψ2(x)| ≤
∫ x

0

B |ψ2(s)− ψ1(s)| ds

≤
∫ x

0
B · 21Y B s ds = 21Y

(Bx)2

2
,

|ψ4(x)− ψ3(x)| ≤
∫ x

0

|ψ3(s)− ψ2(s)| ds

≤
∫ x

0
B · 21Y B2 s2

2
ds ≤ 21Y

(Bx)3

3 · 2
,

|ψ5(x)− ψ4(x)| ≤
∫ x

0

|ψ4(s)− ψ3(s)| ds

≤
∫ x

0
B · 21Y B3 s3

3 · 2
ds ≤ 21Y

(Bx)4

4! ,

...

Continuing, we get

|ψk+1(x)− ψk(x)| ≤ 21Y
(Bx)k

k! for 0 ≤ x ≤ β and k = 1, 2, 3, . . . .

Virtually the same arguments give us

|ψk+1(x)− ψk(x)| ≤ 21Y
(−Bx)k

k! for α ≤ x ≤ 0 and k = 1, 2, 3, . . . .
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More concisely, for α ≤ x ≤ β and k = 1, 2, 3, . . . ,

|ψk+1(x)− ψk(x)| ≤ 21Y
(B |x |)k

k! . (3.5)

At this point it is worth recalling that the Taylor series for eX is

∞∑

k=0

Xk

k!

and that this series converges for each real value X . In particular, for any x ,

21Y eB|x | =
∞∑

k=0

21Y
(B |x |)k

k! .

Now consider the infinite series

S(x) =
∞∑

k=0

[
ψk+1(x)− ψk(x)

]
.

According to inequality (3.5), the absolute value of each term in this series is bounded by the

corresponding term in the Taylor series for 21Y eB|x | . The comparison test then tells us that S(x)

converges absolutely for each x in [α, β] . And this means that the limit

S(x) = lim
N→∞

N∑

k=0

[
ψk+1(x)− ψk(x)

]

exists for each x in the interval [α, β] . But

N∑

k=0

[
ψk+1(x)− ψk(x)

]
= [ψ1(x)− ψ0(x)] + [ψ2(x)− ψ1(x)] + [ψ3(x)− ψ2(x)]

+ · · · + [ψN (x)− ψN−1(x)] + [ψN+1(x)− ψN (x)]

= −ψ0(x) + ψ1(x) − ψ1(x) + ψ2(x) − ψ2(x) + ψ3(x)

+ · · · − ψN−1(x) + ψN (x) − ψN (x) + ψN+1(x) .

Most of the terms cancel out, leaving us with

N∑

k=0

[
ψk+1(x)− ψk(x)

]
= ψN+1(x) − ψ0(x) . (3.6)

So

lim
k→∞

ψk(x) = lim
k→∞

[
ψ0(x) +

k−1∑

k=0

[
ψk+1(x)− ψk(x)

]
]

= ψ0(x) + S(x) .

This shows that the limit

y(x) = lim
N→∞

ψN (x)

exists for each x in [α, β] , confirming the first statement we wished to confirm at the beginning of

this section (see page 47).
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At this point, let us observe that, for α ≤ x ≤ β , we have the formulas

ψN (x) = ψ0(x) + S(x) = ψ0(x) +
N−1∑

k=0

[
ψk+1(x)− ψk(x)

]
(3.7a)

and

y(x) = ψ0(x) + S(x) = ψ0(x) +
∞∑

k=0

[
ψk+1(x)− ψk(x)

]
. (3.7b)

Let us also observe what we get when we combine the above formula for ψN with inequality (3.5)

and the observations regarding the Taylor series of the exponential:

|ψN (x)| ≤ |ψ0(x)| +
N−1∑

k=0

|ψk+1(x)− ψk(x)|

≤ |ψ0(x)| +
N∑

k=0

21Y
(B |x |)k

k! = |ψ0(x)| + 1Y eB|x | .

(3.8a)

Likewise

|y(x)| ≤ |ψ0(x)| + 1Y eB|x | . (3.8b)

These observations may later prove useful.

Continuity of the Limit

Now to confirm the continuity of y claimed by the second statement from the beginning of this

section. We start by picking any two points x1 and x in [α, β] , and any positive integer N , and

then observe that, because F is bounded by M ,

|ψN (x1) − ψN (x)| =
∣∣∣∣
[

y0 +
∫ x1

0
F(s, ψN−1(s)) ds

]
−
[

y0 +
∫ x

0
F(s, ψN−1(s) ds

]∣∣∣∣

=
∣∣∣∣
∫ x1

x

F(s, ψN−1(s)) ds

∣∣∣∣

≤ M |x1 − x | .

Combined with the definition of y and some basic facts about limits, this gives us

|y(x1) − y(x)| = lim
N→∞

|ψN (x1) − ψN (x)| ≤ M |x1 − x | .

As demonstrated at the end of the proof of Lemma 3.5, this immediately tells us that y is continuous

on [α, β] .

The Limit as a Solution

Finally, let us verify the third statement made at the beginning of this section, namely that the above

defined y satisfies

y(x) = y0 +
∫ x

0
F(s, y(s)) ds whenever α < x < β .

This, according to Theorem 3.3 on page 45, is equivalent to showing that y satisfies the differential

equation in our initial-value problem over the interval (α, β) .6

6 Yes, we’ve already shown that y is defined and continuous on [α, β] , not just (α, β) . However, the derivative of a

function is ill-defined at the endpoints of the interval over which it is defined, and that is why we are now limiting x to

being in (α, β) .
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We start by assuming α ≤ x ≤ β . Using equation set (3.7) and inequality (3.5), we see that

|y(x)− ψN (x)| = |[y(x)− ψ0(x)] − [ψN (x)− ψ0(x)]|

=
∣∣∣∣∣

∞∑

k=0

[
ψk+1(x)− ψk(x)

]
−

N−1∑

k=0

[
ψk+1(x)− ψk(x)

]
∣∣∣∣∣

=
∣∣∣∣∣

∞∑

k=N

[
ψk+1(x)− ψk(x)

]
∣∣∣∣∣

≤
∞∑

k=N

|ψk+1(x)− ψk(x)|

≤
∞∑

k=N

21Y
(B |x |)k

k! .

Under the change of index k = N + n , this becomes

|y(x)− ψN (x)| ≤ 21Y

∞∑

n=0

(B |x |)N+n

(N + n)! . (3.9)

But

(N + n)! = (N + n)︸ ︷︷ ︸
≥N

(N + n − 1)︸ ︷︷ ︸
≥N−1

(N + n − 2)︸ ︷︷ ︸
≥N−2

· · · (N + n − [N − 1])︸ ︷︷ ︸
≥1

n(n − 1) · · · 2 · 1︸ ︷︷ ︸
=n!

≥ N ! n! .

Thus,
1

(N + n)! ≤ 1

N ! n!
and

∞∑

n=0

(B |x |)N+n

(N + n)! ≤
∞∑

n=0

(B |x |)N+n

N ! n! ≤ (B |x |)N
N !

∞∑

n=0

(B |x |)n
n! = (B |x |)N

N ! eB|x | .

Combining this with inequality (3.9) yields

|y(x)− ψN (x)| ≤ 21Y
(B |x |)N

N ! eB|x | .

Consequently,

∣∣∣∣ψN+1(x) − y0 −
∫ x

0
F(s, y(s)) ds

∣∣∣∣

=
∣∣∣∣
[

y0 +
∫ x

0
F(s, ψN (s)) ds

]
− y0 −

∫ x

0
F(s, y(s)) ds

∣∣∣∣

≤
∫ x

0

|F(s, ψN (s))− F(s, y(s))| ds

≤
∫ x

0
B |ψN−1(s)− y(s)| ds
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≤
∫ x

0

B · 21Y
(B |s|)N−1

(N − 1)! eB|s| ds

= 21Y
B N eB|x |

(N − 1)!

∫ x

0

|s|N−1 ds .

Computing the last integral leaves us with

∣∣∣∣ψN+1(x) − y0 −
∫ x

0

F(s, y(s)) ds

∣∣∣∣ ≤ 21Y
(B |x |)N

N ! eB|x | .

But, as is well known,
(B |x |)N

N ! → 0 as N → ∞

for any finite value B |x | . Hence

∣∣∣∣ψN (x) − y0 −
∫ x

0
F(s, y(s)) ds

∣∣∣∣ → 0 as N → ∞ .

That is

0 = lim
N→∞

[
ψN (x) − y0 −

∫ x

0
F(s, y(s)) ds

]

= lim
N→∞

ψN (x) − y0 −
∫ x

0

F(s, y(s)) ds

= y(x) − y0 −
∫ x

0
F(s, y(s)) ds ,

verifying that

y(x) = y0 +
∫ x

0
F(s, y(s)) ds whenever α < x < β ,

as desired.

Where Are We?

Let’s stop for a moment and review what we have done. We have just spent several pages rigorously

verifying the three statements made at the beginning of this section under the assumptions made in

Theorem 3.1 on page 42. By verifying these statements, we’ve rigorously justified the computations

made in the previous section showing that the limit of a Picard sequence is a solution to the initial-

value problem in Theorem 3.1. Consequently, we have now rigorously verified the claim in Theorem

3.1 that a solution to the given initial-value problem exists on at least some interval (α, β) .

We now need to show that this y is the only solution on that interval.

The Uniqueness Claim in Theorem 3.1

If you’ve made it through this section up to this point, then you should have little difficulty in finishing

the proof of Theorem 3.1 by doing the following exercises. Do make use of the work we’ve done in

the previous several pages.

?◮Exercise 3.2: Consider a first-order initial-value problem

dy

dx
= F(x, y) with y(0) = y0 ,
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and with both F and ∂F/∂y being continuous functions on some open region containing the point

(0, y0) . Since Lemma 3.5 applies, we can let [α, β] be the interval, and M , B and 1Y the

positive constants from that lemma. Using this interval and these constants:

a i: Verify that

0 ≤ M |x | ≤ 1Y for α ≤ x ≤ β .

ii: Also verify that any solution y to the above initial-value problem satisfies

|y(x)− y0| ≤ M |x | for a < x < b .

Now observe that the last two inequalities yield

|y(x)− y0| ≤ M |x | ≤ 1Y for α ≤ x ≤ β

whenever y is a solution to the above initial-value problem.

b: For the following, let y1 and y2 be any two solutions to the above initial-value problem on

(α, β) , and let

ψ0 , ψ1 , ψ2 , ψ3 , . . . and φ0 , φ1 , φ2 , φ3 , . . .

be the two Picard sequences of functions on (α, β) generated by setting

ψk+1(x) = y0 +
∫ x

0
F(s, ψk(s)) ds

and

φk+1(x) = y0 +
∫ x

0
F(s, φk(s)) ds

with

ψ0(x) = y1(x) and φ0(x) = y2(x) .

i: Using ideas similar to those used above to prove the convergence of the Picard sequence,

show that, for each x in (α, β) and each positive integer k ,

|ψk+1(x)− φk+1(x)| ≤
∫ x

0
B |ψk(s)− φk(s)| ds .

ii: Then verify that, for each x in (α, β) ,

|ψ0(x)− φ0(x)| ≤ 21Y ,

and

lim
k→∞

|ψk+1(x)− φk+1(x)| = 0 .

(Hint: This is very similar to our showing that |ψk+1(x)− ψk+1(x)| → 0 as k → ∞ .)

iii: Verify that, for each x in (α, β) and positive integer k ,

ψk(x) = y1(x) and φk(x) = y2(x) .

iv: Combine the results of the last two parts to show that

y1(x) = y2(x) for α < x < β .

The end result of the above set of exercises is that there cannot be two different solutions on the

interval (α, β) to the initial-value problem. That was the uniqueness claim of Theorem 3.1.
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3.6 On Proving Theorem 3.2

We could spend several more enjoyable pages redoing the work in the previous section, but under

the assumptions made in Theorem 3.2 on page 43 instead of those in Theorem 3.1. To avoid that,

let us briefly discuss how you can modify that work, and, thereby, prove Theorem 3.2.

First of all, recall that much of the initial effort in proving the convergence of the Picard sequence,

ψ0 , ψ1 , ψ2 , ψ3 , . . .

with

ψk+1(x) = y0 +
∫ x

0
F(s, ψk(s)) ds for k = 0, 1, 2, 3, . . . ,

was in showing that there is an interval (α, β) such that, as long as α ≤ s ≤ β , then ψk(s) is never

so large or so small that (s, ψk(s)) is outside a rectangular region on which F is “well-behaved”

(this was the main result of Lemma 3.5 on page 48). However, if (as in Theorem 3.2) F = F(x, y)

is a continuous function on the infinite strip

R = { (x, y) : α < x < β and − ∞ < y < ∞ } ,

then, for any continuous function φ on (α, β) , F(s, φ(s)) is a well-defined, continuous function

of s over (α, β) , and the integral in

ψ(x) = y0 +
∫ x

0
F(s, φ(s)) ds

exists (and is finite) whenever α < x < β . Verifying that ψ is continuous requires a little more

thought than was needed in the proof of Lemma 3.5, but is still pretty easy — simply appeal to the

continuity of F(s, φ(s)) as a function of s along with the fact that

ψ(x1)− ψ(x) =
∫ x1

x

F(s, φ(s)) ds

to show that

lim
x→x1

ψ(x) = ψ(x1) for each x1 in (α, β) .

Consequently, all the functions in the Picard sequence ψ0 , ψ1 , ψ2 , . . . are continuous on (α, β)

(provided, of course, that we started with ψ0 being continuous).

Now choose finite values α1 and β1 so that α < α1 < 0 < β1 < β ; let 1Y be the maximum

value of
1

2
|ψ1(x)− ψ0(x)| for α1 ≤ x ≤ β1 ,

and let R0 be the infinite strip

R0 = { (x, y) : α1 < x < β1 and − ∞ < y < ∞ } .

By the assumptions in the theorem, we know that, on R , the continuous function ∂F/∂y depends

only on x . So we can treat it as a continuous function on the closed interval [α1, β1] . But such

functions are bounded. Thus, for some positive constant B and every point in R0 ,
∣∣∣∣
∂F

∂y

∣∣∣∣ ≤ B .

Using this, the bounds on

|ψk+1(x)− ψk(x)| for α1 ≤ x ≤ β1 and k = 1, 2, 3, . . .
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can now be rederived exactly as in the previous section (leading to inequality (3.5) on page 53 and

inequality set (3.8) on page 54), and we can then use arguments almost identical to those used in

the previous section to show that the Picard sequence converges on (α1, β1) to a solution y of the

given initial-value problem. The only notable modification is that the bound M used to show the

continuity of y must be rederived. For this proof, let M be the maximum value of F(x, y) on the

closed rectangle

{ (x, y) : α1 ≤ x ≤ β1 and |y| ≤ H }
where H is the maximum value of

|ψ0(x)| + 1Y eB|x | for α1 ≤ x ≤ β1 .

Inequality set (3.8) then tells us that

|ψk(s)| ≤ H for α1 ≤ s ≤ β1 and k = 0, 1, 2, 3, . . . .

This, in turn, assures us that

|F(s, ψk(s))| ≤ M for α1 ≤ s ≤ β1 and k = 0, 1, 2, 3, . . . ,

which is what we used in the previous section to prove the continuity of y .

Finally, since every point x in the interval (α, β) is also in some such subinterval (α1, β1) , we

must have that the Picard sequence converges at every point x in (α, β) , and what it converges to,

y(x) , is a solution to the given initial-value problem. Straightforward modifications to the arguments

outlined in Exercise 3.2 then show that this solution is the only solution.

3.7 Appendix: A Little Multivariable Calculus

There are a few places in our discussions where some knowledge of the calculus of functions of two

or more variables (i.e., “multivariable” calculus) is needed. These include the commentary about

existence and uniqueness in this chapter (Theorems 3.1 and 3.2), and the use of the multivariable

version of the chain rule in Chapter 7. This appendix is a brief introduction to those elements of

multivariable calculus that are needed for these discussions. It is for those who have not yet been

formally introduced to calculus of several variables, and contains just barely enough to get by.

Functions of Two Variables

At least while we are only concerned with first-order differential equations, the only multivariable

calculus we will need involves functions of just two variables, such as

f (x, y) = x2 + x2 y2 , g(x, y) = x3 + 4y

x
and h(x, y) =

√
x3 + y2 .

These functions will be defined on “regions” of the XY –plane.

Open and Closed Regions

Functions of one variable are typically defined on intervals of the X–axis. For functions of two

variables, we must replace the concept of an interval with that of a “region”. For our purposes, a

region (in the XY –plane) refers to the collection of all points enclosed by some curve or set of
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curves on the plane (with the understanding that this curve or set of curves actually does enclose

some collection of points in the plane). If we include the curves with the enclosed points, then we

say the region is closed; if the curves are all excluded, then we refer to the region as open. This

corresponds to the distinction between a closed interval [a, b] (which does contain the endpoints),

and an open interval (a, b) (which does not contain the endpoints).

!◮Example 3.4: Consider the rectangular region R whose sides form the rectangle generated

from the vertical lines x = 1 and x = 4 along with the horizontal lines y = 2 and y = 6 . If

R is to be a closed region, then it must include this rectangle; that is,

R = { (x, y) : 1 ≤ x ≤ 4 and 2 ≤ y ≤ 6 } .

If R is to be an open region, then it must exclude this rectangle; that is,

R = { (x, y) : 1 < x < 4 and 2 < y < 6 } .

On the other hand, if R just includes one of its sides, say, its right side,

R = { (x, y) : 1 < x ≤ 4 and 2 < y < 6 } ,

then it is considered to be neither open or closed.

Limits

The concept of limits for functions of two variables is a natural extension of the concept of limits

for functions of one variable.

Given a function f (x, y) of two variables, a point (x0, y0) in the plane, and a finite value A ,

we say that

A is the limit of f (x, y) as (x, y) approaches (x0, y0) ,

equivalently,

lim
(x,y)→(x0,y0)

f (x, y) = A or f (x, y) → A as (x, y) → (x0, y0) ,

if and only if we can make the value of f (x, y) as close (but not necessarily equal) to A as we desire

by requiring (x, y) be sufficiently close (but not necessarily equal) to (x0, y0) . More formally,

lim
(x,y)→(x0,y0)

f (x, y) = A

if and only if, for every positive value ǫ there is a corresponding positive distance δǫ such that

f (x, y) is within ǫ of A whenever (x, y) is within δǫ of (x0, y0) . That is, (in mathematical

shorthand), for each ǫ > 0 there is a δǫ > 0 such that

distance from (x, y) to (x0, y0) < δǫ H⇒ | f (x, y)− A| < ǫ .

The rules for the existence and computation of these limits are straightforward extensions of

those for functions of one variable, and need not be discussed in detail here.

!◮Example 3.5: “Obviously”, if

f (x, y) = x2 + x2 y2 ,
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then

lim
(x,y)→(2,3)

f (x, y) = lim
(x,y)→(2,3)

[
x2 + x2 y2

]
= 22 + (22)(32) = 40 .

On the other hand

lim
(x,y)→(0,3)

g(x, y)

does not exist if

g(x, y) = x3 + 4y

x

because (x, y) → (0, 3) leads to 12/0 .

Continuity

The only difference between “continuity for a function of one variable” and “continuity for a function

of two variables” is the number of variables involved.

Basically, a function f (x, y) is continuous at a point (x0, y0) if and only if we can legitimately

write

lim
(x,y)→(x0,y0)

f (x, y) = f (x0, y0) .

That function is then continuous on a region R if and only if it is continuous at every point in R .

Note that this does require f (x, y) to be defined at every point in the region.

Partial Derivatives

Recall that the derivative of a function of one variable f = f (t) is given by the limit formula

d f

dt
= lim

1t→0

f (t +1t)− f (t)

1t

provided the limit exists. The simplest extension of this for a function of two variables f = f (x, y)

is the “partial” derivatives with respect to each variable:

1. The (first) partial derivative with respect to x is denoted and defined by

∂ f

∂x
= lim

1x→0

f (x +1x, y)− f (x, y)

1x

provided the limit exists.

2. The (first) partial derivative with respect to y is denoted and defined by

∂ f

∂y
= lim

1y→0

f (x, y +1y)− f (x, y)

1y

provided the limit exists.

Note the notation, ∂ f/∂x and ∂ f/∂y , in which we use ∂ instead of d .7

An important thing to observe about the limit formula for ∂ f/∂x is that, in essence, x replaces the

variable t in the previous formula for d f/dt while y does not vary. Consequently, to compute ∂ f/∂x ,

simply take the derivative of f (x, y) using x as the variable while pretending y is a constant.

Likewise, to compute ∂ f/∂y simply take the derivative of f (x, y) using y as the variable while

pretending x is a constant. As a result, everything already learned about computing ordinary

derivatives applies to computing partial derivatives, provided we keep straight which variable is

being treated (temporarily) as a constant.

7 Some authors prefer using such notation as Dx f and fx instead of ∂ f/∂x , and Dy f and fy instead of ∂ f/∂y .
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!◮Example 3.6: Let

f (x, y) = x2 + x2 y2 .

Then

∂ f

∂x
= ∂

∂x

[
x2 + x2 y2

]
= ∂

∂x

[
x2
]

+ ∂

∂x

[
x2 y2

]
= 2x + 2xy2 ,

while
∂ f

∂y
= ∂

∂y

[
x2 + x2 y2

]
= ∂

∂y

[
x2
]

+ ∂

∂y

[
x2 y2

]
= 0 + x22y .

?◮Exercise 3.3: Let

g(x, y) = x2 y3 and h(x, y) = sin
(

x2 + y2
)

.

Verify that
∂g

∂x
= 2xy3 and

∂g

∂y
= 3x2 y2 ,

while
∂h

∂x
= 2x cos

(
x2 + y2

)
and

∂h

∂y
= 2y cos

(
x2 + y2

)
.

Functions of More than Two Variables

The notation can become a bit more cumbersome, and the pictures even harder to draw, but every-

thing discussed above for functions of two variables naturally extends to functions of three or more

variables. For example, we may have a function of three variables f = f (x, y, z) defined on, say,

an open box-like region

R = { (x, y, z) : xmin < x < xmax , ymin < y < ymax and zmin < z < zmax }

where xmin , xmax , ymin , ymax , zmin and zmax are finite numbers. We will then say that, for any

given point (x0, y0, z0) and value A ,

lim
(x,y,)→(x0,y0,z0)

f (x, y, z) = A

if and only if there is a corresponding positive distance δǫ for every positive value ǫ such that

f (x, y, z) is within ǫ of A whenever (x, y, z) is within δǫ of (x0, y0, z0) . We will also say that

this function is continuous on R if and only if we can legitimately write

lim
(x,y,)→(x0,y0,z0)

f (x, y, z) = f (x0, y0, z0)

for every point (x0, y0, z0) in R . Finally, the three (first) partial derivatives of this function are

given by
∂ f

∂x
= lim

1x→0

f (x +1x, y, z)− f (x, y, z)

1x
,

∂ f

∂y
= lim

1y→0

f (x, y +1y, z)− f (x, y, z)

1y

and
∂ f

∂z
= lim

1y→0

f (x, y, z +1z)− f (x, y, z)

1z
,

provided the limits exist. Again, in practice, the partial derivative with respect to any one of the three

variables is the derivative obtained by pretending the other variables are constants.
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Additional Exercises

3.4. Rewrite each of the following in derivative formula form, and then find all constant so-

lutions. (In some cases, you may have to use the quadratic formula to find any constant

solutions.)

a.
dy

dx
+ 3xy = 6x b. sin(x + y)− y

dy

dx
= 0

c.
dy

dx
− y3 = 8 d. x2 dy

dx
+ xy2 = x

e.
dy

dx
− y2 = x f. y3 − 25y + dy

dx
= 0

g. (x − 2)
dy

dx
= y + 3 h. (y − 2)

dy

dx
= x − 3

i.
dy

dx
+ 2y − y2 = −2 j.

dy

dx
+ (8 − x)y − y2 = −8x

3.5. Which of the equations in the above exercise set are autonomous?

3.6. Consider the first-order initial-value problem

dy

dx
= 2

√
y with y(1) = 0 .

a. Verify that each of the following is a solution on the interval (−∞,∞) , and graph that

solution:

i. y(x) = 0 for − ∞ < x < ∞ .

ii. y(x) =
{

0 if x < 1

(x − 1)2 if 1 ≤ x
.

iii. y(x) =
{

0 if x < 3

(x − 3)2 if 3 ≤ x
.

b. You’ve just verified three different functions as being solutions to the above initial-value

problem. Why does this not violate Theorem 3.1?

3.7. Let ψ0 , ψ1 , ψ2 , ψ3 , . . . be the sequence of functions generated by the Picard iterative

method (as described in Section 3.4) using the initial-value problem

dy

dx
= xy with y(0) = 2

along with

ψ0(x) = 2 for all x .

Using the formula for Picard’s method (formula (3.4) on page 46), compute the follow-

ing:

a. ψ1(x) b. ψ2(x) c. ψ3(x)
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3.8. Let ψ0 , ψ1 , ψ2 , ψ3 , . . . be the sequence of functions generated by the Picard iterative

method (as described in Section 3.4) using the initial-value problem

dy

dx
= 2x + y2 with y(0) = 3

along with

ψ0(x) = 3 for all x .

Compute the following:

a. ψ1(x) b. ψ2(x)
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Separable First-Order Equations

As we will see below, the notion of a differential equation being “separable” is a natural generalization

of the notion of a first-order differential equation being directly integrable. What’s more, a fairly

natural modification of the method for solving directly integrable first-order equations gives us the

basic approach to solving “separable” differential equations. However, it cannot be said that the

theory of separable equations is just a trivial extension of the theory of directly integrable equations.

Certain issues can arise that do not arise in solving directly integrable equations. Some of these

issues are pertinent to even more general classes of first-order differential equations than those that

are just separable, and may play a role later on in this text.

In this chapter we will, of course, learn how to identify and solve separable first-order differential

equations. We will also see what sort of issues can arise, examine those issues, and discuss some

ways to deal with them. Since many of these issues involve graphing, we will also draw a bunch of

pictures.

4.1 Basic Notions
Separability

A first-order differential equation is said to be separable if, after solving it for the derivative,

dy

dx
= F(x, y) ,

the right-hand side can then be factored as “a formula of just x ” times “a formula of just y ”,

F(x, y) = f (x)g(y) .

If this factoring is not possible, the equation is not separable.

More concisely, a first-order differential equation is separable if and only if it can be written as

dy

dx
= f (x)g(y) (4.1)

where f and g are known functions.

!◮Example 4.1: Consider the differential equation

dy

dx
− x2 y2 = x2 . (4.2)

65
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Solving for the derivative (by adding x2 y2 to both sides),

dy

dx
= x2 + x2 y2 ,

and then factoring out the x2 on the right-hand side gives

dy

dx
= x2

(
1 + y2

)
,

which is in form
dy

dx
= f (x)g(y)

with

f (x) = x2
︸︷︷︸
no y’s

and g(y) =
(

1 + y2
)

︸ ︷︷ ︸
no x’s

.

So equation (4.2) is a separable differential equation.

!◮Example 4.2: On the other hand, consider

dy

dx
− x2 y2 = 4 . (4.3)

Solving for the derivative here yields

dy

dx
= x2 y2 + 4 .

The right-hand side of this clearly cannot be factored into a function of just x times a function

of just y . Thus, equation (4.3) is not separable.

We should (briefly) note that any directly integrable first-order differential equation

dy

dx
= f (x)

can be viewed as also being the separable equation

dy

dx
= f (x)g(y)

with g(y) being the constant 1 . Likewise, a first-order autonomous differential equation

dy

dx
= g(y)

can also be viewed as being separable, this time with f (x) being 1 . Thus, both directly integrable

and autonomous differential equations are all special cases of separable differential equations.

Integrating Separable Equations

As just noted, a directly-integrable equation

dy

dx
= f (x)
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can be viewed as the separable equation

dy

dx
= f (x)g(y) with g(y) = 1 .

We point this out again because the method used to solve directly-integrable equations (integrating

both sides with respect to x ) is rather easily adapted to solving separable equations. Let us try to

figure out this adaptation using the differential equation from the first example. Then, if we are

successful, we can discuss its use more generally.

!◮Example 4.3: Consider the differential equation

dy

dx
− x2 y2 = x2 .

In Example 4.1, we saw that this is a separable equation, and can be written as

dy

dx
= x2

(
1 + y2

)
.

If we simply try to integrate both sides with respect to x , the right-hand side would become

∫
x2
(

1 + y2
)

dx .

Unfortunately, the y here is really y(x) , some unknown formula of x ; so the above is just

the integral of some unknown function of x — something we cannot effectively evaluate. To

eliminate the y’s on the right-hand side, we could, before attempting the integration, divide

through by 1 + y2 , obtaining
1

1 + y2

dy

dx
= x2 . (4.4)

The right-hand side can now be integrated with respect to x . What about the left-hand side? The

integral of that with respect to x is ∫
1

1 + y2

dy

dx
dx .

Tempting as it is to simply “cancel out the dx’s ”, let’s not (at least, not yet). After all, dy/dx is not

a fraction; it denotes the derivative y′(x) where y(x) is some unknown formula of x . But y is

also shorthand for that same unknown formula y(x) . So this integral is more precisely written

as ∫
1

1 + [y(x)]2
y′(x) dx .

Fortunately, this is just the right form for applying the generic substitution y = y(x) to convert

the integral with respect to x to an integral with respect to y . No matter what y(x) might be

(so long as it is differentiable), we know

∫
1

1 + [y(x)]2︸ ︷︷ ︸
1

1 + y2

y′(x) dx︸ ︷︷ ︸
dy

=
∫

1

1 + y2
dy .

Combining all this, we get

∫
1

1 + y2

dy

dx
dx =

∫
1

1 + [y(x)]2
y′(x) dx =

∫
1

1 + y2
dy ,
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which, after cutting out the middle, reduces to
∫

1

1 + y2

dy

dx
dx =

∫
1

1 + y2
dy ,

the very equation we would have obtained if we had yielded to temptation and naively “cancelled

out the dx’s ”.

Consequently, the equation obtained by integrating both sides of equation (4.4) with respect

to x , ∫
1

1 + y2

dy

dx
dx =

∫
x2 dx ,

is the same as ∫
1

1 + y2
dy =

∫
x2 dx .

Doing the indicated integration on both sides then yields

arctan(y) = 1

3
x3 + c ,

which, in turn, tells us that

y = tan
(

1

3
x3 + c

)
.

This is the general solution to our differential equation.

Two generally useful ideas were illustrated in the last example. One is that, whenever we have

an integral of the form ∫
H(y)

dy

dx
dx

where y denotes some (differentiable) function of x , then this integral is more properly written as
∫

H(y(x)) y′(x) dx ,

which reduces to ∫
H(y) dy

via the substitution y = y(x) (even though we don’t yet know what y(x) is). Thus, in general,
∫

H(y)
dy

dx
dx =

∫
H(y) dy . (4.5)

This equation is true whether you derive it rigorously, as we have, or obtain it naively by mechanically

canceling out the dx’s.1

The other idea seen in the example was that, if we divide an equation of the form

dy

dx
= f (x)g(y)

by g(y) , then (with the help of equation (4.5)) we can compute the integral with respect to x of

each side of the resulting equation,
1

g(y)

dy

dx
= f (x) .

This leads us to a basic procedure for solving separable first-order differential equations:

1 One of the reasons our notation is so useful is that naive manipulations of the differentials often do lead to valid equations.

Just don’t be too naive and cancel out the d’s in dy/dx .
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1. Get the differential equation into the form

dy

dx
= f (x)g(y) .

2. Divide through by g(y) to get
1

g(y)

dy

dx
= f (x) .

(Note: At this point we’ve “separated the variables”, getting all the y’s and derivatives of y

on one side, and all the x’s on the other.)

3. Integrate both sides with respect to x , making use of the fact that
∫

1

g(y)

dy

dx
dx =

∫
1

g(y)
dy .

4. Solve the resulting equation for y .

There are a few issues that can arise in some of these steps, and we will have to slightly refine this

procedure to address those issues. Before doing that, though, let us practice with another differential

equation for which the above approach can be applied without any difficulty.

!◮Example 4.4: Consider solving the initial-value problem

dy

dx
= − x

y − 3
with y(0) = 1 .

Here,
dy

dx
= f (x)g(y) with f (x) = −x and g(y) = 1

y − 3
,

and “dividing through by g(y) ” is the same as multiplying through by y − 3 . Doing so, and

then integrating both sides with respect to x , we get the following:

[y − 3] dy

dx
= −x

→֒
∫

[y − 3] dy

dx
dx = −

∫
x dx

→֒
∫

[y − 3] dy = −
∫

x dx

→֒ 1

2
y2 − 3y = − 1

2
x2 + c .

Though hardly necessary, we can multiply through by 2 , obtaining the slightly simpler expression

y2 − 6y = −x2 + 2c .

We are now faced with the less-than-trivial task of solving the last equation for y in terms of x .

Since the left-hand side looks something like a quadratic for y , let us rewrite this equation as

y2 − 6y +
[
x2 − 2c

]
= 0

so that we can apply the quadratic formula to solve for y . Applying that venerable formula, we

get

y =
−(−6) ±

√
(−6)2 − 4

[
x2 − 2c

]

2
= 3 ±

√
9 − x2 + 2c ,



70 Separable First-Order Equations

which, since 9 + 2c is just another unknown constant, can be written a little more simply as

y = 3 ±
√

a − x2 . (4.6)

This is the general solution to our differential equation.

Now for the initial-value problem. Combining the general solution just derived with the

given initial value at x = 0 yields

1 = y(0) = 3 ±
√

a − 02 = 3 ±
√

a .

So

±
√

a = −2 .

This means that a = 4 , and that we must use the negative root in formula (4.6) for y . Thus, the

solution to our initial-value problem is

y = 3 −
√

4 − x2 .

4.2 Constant Solutions
Avoiding Division by Zero

In the above procedure for solving

dy

dx
= f (x)g(y) ,

we divided both sides by g(y) . This requires, of course, that g(y) not be zero — which is often

not the case.

!◮Example 4.5: Consider solving
dy

dx
= 2x(y − 5) .

As long as y 6= 5 , we can divide through by y − 5 and follow our basic procedure:

1

y − 5

dy

dx
= 2x

→֒
∫

1

y − 5

dy

dx
dx =

∫
2x dx

→֒
∫

1

y − 5
dy =

∫
2x dx

→֒ ln |y − 5| = x2 + c

→֒ |y − 5| = ex2+c = ex2
ec

→֒ y − 5 = ±ex2
ec .
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So, assuming y 6= 5 , we get

y = 5 ± ecex2
.

Notice that, because ec 6= 0 for every real value c , this formula for y never gives us y = 5 for

any real choice of c and x .

But what about the case where y = 5 ?

Well, suppose y = 5 . To be more specific, let y be the constant function

y(x) = 5 for every x ,

and plug this constant function into our differential equation

dy

dx
= 2x(y − 5) .

Recalling (again) that derivatives of constants are zero, we get

0 = 2x(5 − 5) ,

which is certainly a true equation. So y = 5 is a solution. In fact, it is one of those “constant”

solutions we discussed in the previous chapter.

Combining all the above, we see that the “general solution” to the given differential equation

is actually the set consisting of the solutions

y(x) = 5 and y(x) = 5 ± ecex2
.

Now consider the general case, where we seek all possible solutions to

dy

dx
= f (x)g(y) .

If y0 is any single value for which

g(y0) = 0 ,

then plugging the corresponding constant function

y(x) = y0 for all x

into the differential equation gives, after a trivial bit of computation,

0 = 0 ,

showing that

y(x) = y0 is a constant solution to
dy

dx
= f (x)g(y) ,

just as we saw (in the above example) that

y(x) = 5 is a constant solution to
dy

dx
= 2x(y − 5) .

Conversely, suppose y = y0 is a constant solution to

dy

dx
= f (x)g(y)

(and f is not the zero function). Then the equation is valid with y replaced by the constant y0 ,

giving us

0 = f (x)g(y0) ,
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which, in turn, means that y0 must be a constant such that

g(y0) = 0 .

What all this shows is that our basic method for solving separable equations may miss the

constant solutions because those solutions correspond to a division by zero in our basic method.2

Because constant solutions are often important in understanding the physical process the dif-

ferential equation might be modeling, let us be careful to find them. Accordingly, we will insert the

following step into our procedure on page 68 for solving separable equations:

• Identify all constant solutions by finding all values y0 , y1 , y2 , … such that

g(yk) = 0 ,

and then write down

y(x) = y0 , y(x) = y1 , y(x) = y2 , . . . .

(These are the constant solutions.)

(And we will renumber the other steps as appropriate.)

Sometimes, the formula obtained by our basic procedure for solving can be ‘tweaked’ to also

account for the constant solutions. A standard ‘tweak’ can be seen by reconsidering the general

solution obtained in our last example.

!◮Example 4.6: The general solution obtained in the previous example was the set containing

y(x) = 5 and y(x) = 5 ± ecex2
.

If we let A = ±ec , the second equation reduces to

y(x) = 5 + Aex2
.

Remember, though, A = ±ec can be any positive or negative number, but cannot be zero (because

of the nature of the exponential function). So, by our definition of A , our general solution is

y(x) = 5 (4.7a)

and

y(x) = 5 + Aex2
where A can be any nonzero real number . (4.7b)

However, if we allow A to be zero, then equation (4.7b) reduces to equation (4.7a),

y(x) = 5 + 0 · ex2 = 5 ,

which means the entire set of possible solutions can be expressed more simply as

y(x) = 5 + Aex2

where A is an arbitrary constant with no restrictions on its possible values.

2 Because g(y0) = 0 is a ‘singular’ value for division, many authors refer to constant solutions of separable equations as

singular solutions.
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In the future, we will usually express our general solutions as simply as practical, with the trick

of letting

A = ±ec or 0

often being used without comment. Keep in mind, though, that the sort of tweaking just described

is not always possible.

?◮Exercise 4.1: Verify that the general solution to

dy

dx
= −y2

is given by the set consisting of

y(x) = 0 and y(x) = 1

x + c
.

Is there any way to rewrite these two formulas for y(x) as a single formula using just one arbitrary

constant?

The Importance of Constant Solutions

Even if we can use the same general formula to describe all the solutions (constant and otherwise),

it is often worthwhile to explicitly identify any constant solutions. To see this, let us now solve

the differential equation from Chapter 1 describing a falling object when we take into account air

resistance.

!◮Example 4.7: Let v = v(t) be the velocity (in meters per second) at time t of some object

of mass m plummeting towards the ground. In Chapter 1, we decided that Fair , the force of air

resistance acting on the falling body, could be described by

Fair = −γ v

where γ was some positive constant dependent on the size and shape of the object (and probably

determined by experiment). Using this, we obtained the differential equation

dv

dt
= −9.8 − κv where κ = γ

m
.

This is a relatively simple separable equation. Assuming v equals a constant v0 yields

0 = −9.8 − κv0 H⇒ v0 = −9.8

κ
= −9.8m

γ
.

So, we have one constant solution,

v(t) = v0 for all t

where

v0 = −9.8

κ
= −9.8m

γ
.

For reasons that will soon become clear, v0 is called the terminal velocity of the object that is

falling.
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To find the other possible solutions, we assume v 6= v0 and proceed:

dv

dt
= −9.8 − κv

→֒ 1

9.8 + κv

dv

dt
= −1

→֒
∫

1

9.8 + κv

dv

dt
dt = −

∫
1 dt

→֒
∫

1

9.8 + κv
dv = −

∫
dt

→֒ 1

κ
ln |9.8 + κv| = −t + c

→֒ ln |9.8 + κv| = −κt + κc

→֒ 9.8 + κv = ±e−κt+κc

→֒ v(t) = 1

κ

[
−9.8 ± eκce−κt

]
.

Since v0 = −9.8κ−1 , the last equation reduces to

v(t) = v0 + Ae−κt where A = ± 1

κ
eκc .

This formula for v(t) yields the constant solution, v = v0 , if we allow A = 0 . Thus, letting A

be a completely arbitrary constant, we have that

v(t) = v0 + Ae−κt (4.8a)

where

v0 = −9.8m

γ
and κ = γ

m
(4.8b)

describes all possible solutions to the differential equation of interest here. The graphs of some

possible solutions (assuming a terminal velocity of -10 meters/second) are sketched in Figure 4.1.

Notice how the constant in the constant solution, v0 , appears in the general solution (equation

(4.8a)). More importantly, notice that the exponential term in this solution rapidly goes to zero

as t increases, so

v(t) = v0 + Ae−κt → v(t) = v0 as t → ∞ .

This is graphically obvious in Figure 4.1. Consequently, no matter what the initial velocity and

initial height were, eventually the velocity of this falling object will be very close to v0 (provided

it doesn’t hit the ground first). That is why v0 is called the terminal velocity. That is also why that

constant solution is so important here (and is appropriately also called the equilibrium solution).

It accurately predicts the final velocity of any object falling from a sufficiently high height. And

if you are that falling object, then that velocity3 is probably a major concern.

3 between 120 and 150 miles per hour for a typical human body



Explicit Versus Implicit Solutions 75

T

V

2 4 6 8

5

0

−5

−10

−15

−20

Figure 4.1: Graphs of the velocity of a falling object during the first 8 seconds of its fall assuming

a terminal velocity of −10 meters per second. Each graph corresponds to a different

initial velocity.

4.3 Explicit Versus Implicit Solutions

Thus far, we have been able to find explicit formulas for all of our solutions; that is, we have been

able to carry out the last step in our basic procedure — that of solving the resulting (integrated)

equation for y in terms of x — obtaining

y = y(x) where y(x) is some formula of x (with no y’s ).

For example, as the general solution to

dy

dx
− x2 y2 = x2 ,

we obtained (in Example 4.3)

y = tan
(

1

3
x3 + c

)

︸ ︷︷ ︸
y(x)

.

Unfortunately, this is not always possible.

!◮Example 4.8: Consider
dy

dx
= x + 1

8 + 2π sin(πy)
.

In this case,

g(y) = 1

8 + 2π sin(πy)
,

which can never be zero. So there are no constant solutions, and we can blithely proceed with

our procedure. Doing so:
dy

dx
= x + 1

8 + 2π sin(πy)

→֒ [8 + 2π sin(πy)] dy

dx
= x + 1
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→֒
∫

[8 + 2π sin(πy)] dy

dx
dx =

∫
x + 1 dx

→֒
∫

[8 + 2π sin(πy)] dy =
∫

x + 1 dx

→֒ 8y − 2 cos(πy) = 1

2
x2 + x + c .

The next step would be to solve the last equation for y in terms of x . But look at that last

equation. Can you solve it for y as a formula of x ? Neither can anyone else. So we are not able

to obtain an explicit formula for y . At best, we can say that y = y(x) satisfies the equation

8y − 2 cos(πy) = 1

2
x2 + x + c .

Still, this equation is not without value. It does implicitly describe the possible relations between

x and y . In particular, the graphs of this equation can be sketched for different values of c (we’ll

do this later on in this chapter). These graphs, in turn, give you the graphs you would obtain for

y(x) if you could actually find the formula for y(x) .

In practice, we must deal with both “explicit” and “implicit” solutions to differential equations.

When we have an explicit formula for the solution in terms of the variable, that is, we have something

of the form

y = y(x) where y(x) is some formula of x (with no y’s ) , (4.9)

then we say that we have an explicit solution to our differential equation. Technically, it is that

“formula of x ” in equation (4.9) which is the explicit solution. In practice, though, it is common to

refer to the entire equation as “an explicit solution”. For example, we found that the solution to

dy

dx
− x2 y2 = x2

is explicitly given by

y = tan
(

1

3
x3 + c

)
.

Strictly speaking, the explicit solution here is the formula

tan
(

1

3
x3 + c

)
.

That, of course, is what is really meant when someone answers the question

What is the explicit solution to
dy

dx
− x2 y2 = x2 ?

with the equation

y = tan
(

1

3
x3 + c

)
.

If, on the other hand, we have an equation (other than something like (4.9)) involving the solution

and the variable, then that equation is called an implicit solution. In trying to solve the differential

equation in Example 4.8,
dy

dx
= x + 1

8 + 2π sin(πy)
,

we derived the equation

8y − 2 cos(πy) = 1

2
x2 + x + c .

This equation is an implicit solution for the given differential equation.4


