FORTRAN 2018 WITH

PARALLEL PROGRAMMING

Subrata Ray

Fortran 2018 with
Parallel Programming

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Fortran 2018 with
Parallel Programming

Subrata Ray

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-0-367-21843-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:/www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have
been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Control Number: 2019946209

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com/
http://www.copyright.com/
http://www.copyright.com

This work is dedicated to the memory of
Professor Chanchal Kumar Majumdar
and

Professor Suprokash Mukherjee

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Contents

PrOEACE. ... ettt ettt et ettt ettt ettt e st e s e e Rt Rees e et e seeseesesesensensennens xxiii
AcCKNOWIEAGMENLS ..o XXV
AUENOT <.ttt ettt ettt e e se s e e b e s e e be e b e bebessessensentesbesaeneeneeseeseeseesens Xxvii
L. Preliminari€sccoccieeiieriiieieieieeteeete ettt sttt sttt e st e s e s s e e se s e eseeseeseeseeseeseesesenns 1
1 B G F= = Vol 1Y <1 U TP 2
1.2 TAENEIETS eeovievieviiieiesieieee ettt ettt ettt st b et e b e s e e eseesaeseeseeseesasseesennan 3
1.3 Intrinsic Data TYPes......ccooeiiiiiiiiiiiiiiciccc e 4
1.4 Constants and Variables.........ccccevieieieieieinieeieieee et ese e sse s nas 4
1.5 Integer CONStANESccoveveiiieieicieeee s 4
1.6 Real CONSLANES ...ioviiiiiieieieieetee ettt sttt et s e seesaeseeseeseesesseesennas 5
1.7 Double PreciSion CONSTANES.c.ccveieieieieieieieeiesiestesteiesieeeseseeeseeeeeeeseeseesessessenses 6
1.8 Complex CONSLANTS.........c.oveurieriicieieiicce s 6
1.9 Double Precision Complex CONStants............cccccevueueueirieiriiiiiiicininiiicsseeeeeeeenes 7
1.10 Quadruple (Quad) Precision Constants............cccceeeuiurirririiiiiiinrininiicreeeeeeeeaes 7
1.11 Logical CONSEANTS.......coevevieerieiiicieieiicce s 7
1.12 Character CONSTANESocveveieieieieieeeeeitetee ettt ettt se s saesaesaeseeseeseesessessensas 7
1,13 Literal CONSEANES ..ocvevviieieieieieietetetet ettt ettt ettt e s sa e s esaeseeseeseesesseesensas 8
114 VaTIADIES «..veviiieiiieieeteeee ettt ettt ettt st b e e st e s e s e st e s s esaeseeseeseeseeseesennan 8
1.15 Variable Declarations.........ccceeveeieieieieieieieesieetesie ettt tesese e seesse e eseeseesessessensas 8
1.16 Meaning of @ Declaration............ccocoeeiriiiniiinicinieece s 9
1.17 Assignment OPeratorc.coeueueiiieieiiieieieieeeee s 10
1.18 NAmMEA CONSTANES. ...eviveieieieieieieieteterteteete e etestessessessessessessessesseseessessaseeseesessensens 10
119 KEYWOTAS .o e 11
1.20 LexXiCal TOKENS ...ocveveiiiieieieieietetetet ettt sttt sttt e et eseesaesaeseeseesaeneeseas 12
T.21 DIEIIMIEETS .cviveeviiieiieteteieietee ettt ettt te st etesbassesse b essessessessesseseesseseaseeseesesseasens 12
1,22 SOUTCE FOTIMN ...ttt ettt e ae e e sae s 13
1,23 FIe@ FOTIMN ..ottt ettt et ese e saeeneas 13
1.24 Continuation of Character Strings..........cccceeveevriiiiiiiiiccceccceeecees 15
1.25 Structure of a PrOZrami.......ccccccciiiiiiiiiiiiiiiiiiiccccc s 16
1.26 IMPLICIT NONE........ocoioietiietiietiietetetete ettt ettt s s sens 16
1.27 IMPLICIT ..ottt a e bbbttt sese s se s sesens 17
1.28 Rules Of IMPLICIT ..c.ooieieieieeeteteeet ettt ettt ettt sa e se s enesseeneas 18
129 Type Declarationsccccociiiiieieiniiiciiecciee s 18
1.30 Comments on IMPLICIT Statementccceeveerieieniieiienieieeieeeeee e 19
1.31 PROGRAM Stat@meNtcoveeeieiieiieiieierie ettt ettt ettt e e e s eneesaeenees 19
1.32 END SEatemMeNt ...cccvecuieiieiieieeiieieeeit ettt sttt sttt ettt et esaeeneesaeenees 19
1.33 TNGtIAliZAtION.c..ectieteeiieteieeteeee ettt ettt ettt ettt saeseeneeseeneeneeneas 20
1.34 NUumber Systemi........cccoovoiiiiiiiiciee e 20
1.35 Binary NUMDETS.......cooiiiiiiiiiiiccec e 21
1.36 OCtal NUIMDETIS ..c.viiiiiieieieeetetetetet ettt ettt sttt s e saesaeseeseeseesesseas 21
1.37 Hexadecimal NUMDETScc.ccveiieieieieieieiee ettt a e ese e ese s 21
1.38 Initialization Using DATA Statementcccooevvvrmiininicniicceecee e 21
1.39 BOZ NUIMDETS. ...c.uiitiiiieieieieieieietetee ettt etessestestessessessessessessessesseseessessaseeseesessessens 22

viii Contents
1.40 Integer Variables and BOZ NUmbers...........cccoooouoiiiiiiiiiiiiiiiccc 22
1.41 Executable and Non-Executable Statementsccocooovoiiiiiiniie 23
142 INCLUDE DiTeCtiVe.......ccceuiuriiiriiieiiieiiicisicisscici st 23
1.43 Statement Ordering ... 24
1.44 Processor Dependencies ...t 24
1.45 Compilation and Execution of Fortran Programs.............ccccoooveiiiniiiiicicicincne. 24

2. Arithmetic, Relational and Logical Operators and Expressionsccccccccueuenne. 25
2.1 Arithmetic OPeratorsccccooiiiioiiiiiieicce 25
2.2 Arithmetic EXPIeSSIONS......ccocouiiiuiiiiiicieiciccie e 26
2.3 ASSIGNMENT SIZN ..ooviiiiiiiiiiiiititetcttct s 26
2.4 Rules for Arithmetic EXPIessions..........cccccciuiiiiiiiiiiiiiiiiccccccccccces 27
2.5 Precedence of the Arithmetic Operatorsc.cccocooeeieioiiiiiiiicece, 28
2.6 Multiple Statementscccoviiiiiiiicc e 29
2.7 Mixed-Mode Operations...........cccoeueurioiiieieiiiiicie e 30
2.8 Integer DiVISION.......ccccoiiiiiiiiiiiiiiicecc s 32
2.9 List-Directed Input/Output Statementcooiiiiiiiii, 33
2.10 Variable Assignment—Comparative Studyccoooeveieiiiiiiii, 35
211 Library FUNCHONS.coooiiiieiii e 35
2.12 Memory Requirement of Intrinsic Data Typesc.cccooeriiiiiiiiiiiiciiie, 36
2.13 Programming EXamplesccccooiiiiiiiiiiiecc e 36
2.14 BLOCK CONSEIUCE c..vucvviieiiiiicieiciei s 37
215 Assignment of BOZ NUMDETS.........ccccoiiiiiiiiiiiiiiiiiccccccccinas 38
2.16 Initialization and Library FUNCHONS...........ccoooviiiiiiiiii, 39
2.17 Relational Operators..........coooueiiueieiiiiicieiciccie 39
2.18 Precedence Rule of Relational Operatorsccocooeieiiiniiiiiicnecccece, 40
2.19 Relational Operators and Complex Numbers............cccooeriiiiiiiiiiiie, 40
220 Logical Operators.........ccoocrueiiiiiiicieiiicie e 40
2.21 Precedence Rule of Logical Operators.........cccccovoviieieiiiiieiniiccceeccece, 42
2.22 Precedence of the Operators Discussed So Far ..o, 42

3. Branch and Loop Statements................cccccoiiiiiiiiiiiiiiiccca 43
3.1 GO TO Statementcceviueiiieiiieiiei e 43
3.2 BIOCKIF oo 44
3.3 IF-THEN-ELSE.....cccocoiiiiiiiiiicc s 44
34 ELSE-TF oo 46
3.5 INEStEA IF ..o 48
3.6 Nested IF without ELSE ... 49
3.7 Rules of BIOCK IF......cccoiiiiiiiiiiiiiiic e 49
3.8 CASE Statement........ccevruiiiueiiieiiiciiicic s 51
3.9 CASE DEFAULT ..ottt 53
3.10 CASE and LOGICALccoooeiiiinininnsccs s 54
311 Nested CASE........ooiiiiicce s 54
3.12 EXIT Statement and CASE...........ccccooiniiiniinicccc e 54
3.13 Rules of CASE ..o 55
3.14 Programming EXample...........cccooeiiiiiiiiiiiii 56
3.15 DO Statement........covcuiuiuiiiieiiieiicieic s 57
3.16 Negative INCrement..........coooiiiiiiiiii 59
3.17 INfINite LOOP wveviiciiciicieici s 59

Contents ix
3.18 EXIT Statementcooviiuriiiiiciciec e 60
3.19 CYCLE Statementc.coovurueiiiiiieieiecie e 60
3.20 DO WHILE.......oiiiiii s 61
3.21 Nested DO ... 63
3.22 CYCLE, EXIT and the Nested LOOPcccceiuiiiiiiiiiiiiiiccicicccccccccicas 65
3.23 Termination of DO LOOP....cccouiiiiiiiiiciicci e 66
3.24 Rules of DO Statementccccceuiiiiiiiiiiiiiiicccces 66
3.25 Remark about Loop Statements............cccovoeiieiiiiiiiiniice e, 70

4. Handling of Characters ..o 71
4.1 ASSIZNMENT ..ot 71
4.2 ConCateNatioNcueviicieii s 71
43 Collating SEQUENCEceviiieiiiiice s 72
4.4 Character COMPATISONcooiuiiiiiiicieieiecccie e 73
45 Comparison of Character Strings...........cccocoeeeiiiieiiiiiccecc e 73
4.6 Lexical Comparison FUNCHONSccccovoiiiiiiiiic 74
4.7 Length of @ StriNg ... 75
4.8 Trimming and Adjusting a Stringcccoooiiiiiii 75
4.9 REPEAT ..ottt 76
410 Character—Integer CONVErSIONcccceviiiuiueieiiicicieieicciee e 77
411 Character SUDSTIINGcouoiiiiiiiic 77
412 Programming EXamplescccoooiiiiiiiiiiieiiiiccc 79
413 Library Functions INDEX, SCAN and VERIFY ..o 81
414 CASE and CHARACTER ..o 84
415 NEW LINE ..o s 85

5. Precision and Range.............ccccccoiiiiiiiiiiii 87
51 SELECTED_INT_KIND.....cocecoiiiiiiiiiic 88
5.2 Precision and Range of Real Numbersccccooooriiiiiiiiice, 90
5.3 SELECTED_REAL_KIND.......cccoooiiiiiiiiiiicie e 90
54 SELECTED_CHAR_KIND.......cccoooiiiiiiiice e 92
5.5 KIND INtIINSIC...cvoviiieiiiiiiicieicce e 92
5.6 KIND and COMPLEX CONStants..........cccceuiirmueiniiiiieieieiecie e 94
5.7 KIND and Character Handling Intrinsics............ccocoeeueioiimiiiiiciiiccece, 94
5.8 Quadruple (Quad) PreciSion ... 95
5.9 DOUBLE COMPLEX ..ottt 95
5.10 IMPLICIT and SELECTED KINDcccoooiiiiiiiiiiiccc e, 96
511 Type Parameter INQUITYcooeviuiiiiiiiiiiiic s 97
512 Named Kind Constants.............ccoeeuriiireioiiiiiecee e, 97

6. Array and Array-Handling Intrinsics ..., 99
6.1 Array Declaration ... 99
6.2 Multidimensional ATTayccccoeeiriiiiieiiiiic e 101
6.3 Storage Arrangement of Two dimensional Arrayccccooooveeiceininiiciiiinicnnne, 101
6.4 Characteristics Of AITaycccooiriiiiiiiiiice e 102
6.5 Array Constants ... 104
6.6 InitialiZation.........ooooiiiiiii e 105
6.7 Initialization with DATA Statement............cccoooooiiiiiiiiiiie, 105
6.8 Repeat Factor and Initialization...........cccooooioiiiiiiiii, 106

Contents

6.9 DATA Statement and Implied DO LOOP......ccccoeeiiiiiniiiiieicceeccee 107
6.10 Named Array COnstant...........ococoeueieioiiiiiiiiiice e 108
6.11 Character Variable and Array Constructorsccocoeeveereieiiiiccieeiccceeeee, 108
6.12 Array Elements...........c.cooooiiiiiiiiiic e 109
6.13 Array Assignment and Array Arithmetic.........cocoooiiiiii, 109
6.14 ATTay SECHON ..vovvitititctctcictct ettt 111
6.15 ATray INPUt ..o 114
6.16 Array OUtPUL ..o 114
6.17 Programming EXamplesccooouiimiiiiiiiiiieieceec e 115
6.18 Array BOUNAScooouiiiiiii e 119
6.19 LBOUND ..ottt 120
6.20 UBOUND ..ottt 120
6.21 RESHAPEcoooiiriiiiice s 121
6.22 VectOor SUDSCIIPES.....c.oviviiiiiiiiiiiiiiiiciciic s 124
6.23 WHERE Statement ..o 126
6.24 DO CONCURRENT ...t 129
6.25 FORALL Statementccccoueiiiiiiiiicciccie et 132
6.26 Rules for FORALL..........coooiiiiiiie et 133
6.27 EQUIVALENCE Statementc.cooiiiioiiiiiieieceeecie e 134
6.28 EQUIVALENCE and Character Variablesccccoveiuieieniiecieeeeieeeeie e 136
6.29 Programming EXamplescccoooiiiiiiiiiiiiieececc e 138
6.30 Array-Handling INtrinsics........ccooeuoiiiioiiiiiiieccc e, 141
6.31 Maximum, Minimum and Finding Location ..., 141
6.32 SUM and PRODUCT ..ot 146
6.33 Handling of Arrays of More than Two Dimensions............ccccocoeeeieiininininnnne, 147
6.34 DOT_PRODUCT ..ottt 149
6.35 Matrix Multiplicationccccciiiiiiiiiiiiiie 149
6.36 TRANSPOSE 0f @ MatriX ...c.cevoicieieiiiicieiiccice 150
6.37 ATTAY SHift...cooiiiiiiiiicicc s 151
6.38 Euclidian NOIIMN.......coiiiiiiiiei e 155
6.39 Parity of Logical Array ..o 156
6.40 Locating and Counting Array Elements.............cccooooioiiiiiiinie, 156
6.41 Packing and Unpackingcccooeurioiriioiiiiiieecce e 158
642 MERGEooiiiiii e 161
643 REDUCE ..ot 162
. User Defined Data TYPeccccooiiiiiiiiiiiiiiiiiiiccscss s 163
7.1 Derived TYPE .o 163
7.2 ASSIGNIMENL ...oiiiiiiiiii e 164
7.3 Initialization.......ccoooiiiii s 165
74 Named Constant and Derived Typecccocovoimiiiiiiiiniiiiccce 165
7.5 Keywords and Derived TyPes........cccccovviiiiiiiininininiiiiiinicses 166
7.6 IMPLICIT and Derived TyPes.......ccccoviiiiiiiiiiiiiiiiiiiiiccccccccceeas 166
7.7 Input and OUEPUL ..., 166
7.8 SUDSIIINGS....cooiiiiiiiiiii s 167
7.9 Array and Derived TyPes ... 168
7.10 Nested Derived TYPescccouviiiiiiiiiiiiiiiiiiiic s 169
7.11 Arrays as Elementary Itemsccooooiiiiiiiiiiiiicc e, 170
712 SEQUENCEocoiiiiieiicic s 171

Contents xi

7.13 Derived Types and EQUIVALENCE Statement..............cccoooovorniiiniiiiciiieiicnnn, 171
7.14 Parameterized Derived Types.........cccoooiiiiiiiiiiiiicc e, 172
8. Format Statement.................coooooiiii 175
8.1 Edit DeSCIIPLOrS.cuoviiiiiiiiiiiiiiicici 175
8.2 Input/Output Lists......ccccoimiiiiiiiiiiiiiiiiiicic 176
8.3 General Form of Format Statementcccoooiiiiiiiie, 177
8.4 Carriage CONEIOL......cooiiiuiieiiicie e 178
8.5 Summary of Edit Descriptors..........cocooiiiiiiiiiiicc e, 178
8.6 Descriptor for INteZeToovoviiieiiiicc e 178
8.7 Descriptors for Real NUMDeTcccoooiiiiiiiiiic e 180
8.8 Insufficient Width ..o 183
8.9 Format and List Elementscccccoovoiiiiiiiiiiiicc e 184
8.10 Descriptors for Complex NUMDbeTccovovoiiiiiiiiiicc e 185
8.11 Descriptors for BOZ NUMDETSc.coovuriiiiiiiiiieiicciec e 185
8.12 Descriptor for Logical..........ccooiiiiiiiiiiic e 186
8.13 Descriptor for Character ..o 186
8.14 General Edit DeSCIiptoroooviuiiiiiiiic e 187
8.15 Unlimited Repeat FaCtOrcooiuiiiiiii 189
8.16 Scale FaCtOT.......c.c.cviiiiiiiiicicic 189
8.17 Leading SIZNScccceviiiiiiiiiiiiciiiiiiiiiic 190
8.18 Tab DeSCIIPLOTS......cvvviiiiiiciciciieci 191
819 X DESCIIPLOT ..ttt 192
8.20 Slash DeSCIIPLOrcuiuiiiiiieieiiccie e 192
8.21 Embedded Blanks ..o 193
8.22 Apostrophe and Quote DeScriptorscoovueueiiicieieicicciecce e 194
8.23 COloN DESCIIPOLcuviiiicici e 195
8.24 Decimal Editingcoovoioiiiiiiiiiic 195
8.25 Rounding MOES........cccceuiiiiiiiiiiiiiiiiiiiiiic 195
8.26 Variable FOrmatccooooiiiiiiiiicic 196
8.27 Memory to Memory Input/Outputcc.oooeiiiiiiiiiice 197
8.28 NAMELIST ..ot 197
8.29 NAMELIST COMMENLtoomiiiiiiiieiiiiicie e 201
8.30 Rules for NAMELIST ..o 201
8.31 Processor Dependencycoocceuiiiucieiiiicie e 202
9. Auxiliary StOrage...........cccccoviviiiiiiiiiiiiiiiii 203
9.1 ReCOT ..ot 203
9.2 FAle i 203
9.3 Formatted RecOrd........ccccciuiiiiiiiiiiiiiiiiiiiiiiiicc 203
9.4 Unformatted Record.........ccoooiiiiiiiiiii 204
9.5 Endfile ReCOTdccciviiiiiiiiiiiiiiiiiiici 204
9.6 Sequential Filecccccoiiiiiiiiiiiiiii 204
9.7 DAreCt FAle ... 204
9.8 Stream File.......cooiiiii 204
9.9 Unit NUMDET ..o 204
9.10 Scratch and Saved Fles............ccoiiiiiiii e 205
9.11 OPEN, CLOSE and INQUIRE Statementscccccceuoieimniniiiiicieecciecaes 205

9.12 Optional SPECIfIeTS.......c.cvoiuiueieiiiicie i 205

xii

10.

11.

Contents
9.13 Kind Type Parameters of Integer Specifiers...........c.cccocooorriiirniiiiiiinnen, 215
9.14 ENDFILE Statement.........cccoevuriiiriiiniiieiieiieisseissese s 215
9.15 REWIND Statement.........cccooveuimiiieiniieiiciieisicisseescssscsscss e 215
9.16 BACKSPACE Statement...........c..cccovuiueiiiieiiieinieinieisieiscisscssscss s 215
9.17 Data Transfer Statement..........ccccouoiiriiiiiiiiiieicc e, 216
9.18 READ/WRITE Statementcccoovuriruriiniiieiiciiess s 216
9.19 Asynchronous Input/Output..........ccoeieiiiiiiiiiiii e, 219
9.20 FLUSH Statement...........cccovuiueiiieiiieinieiieiceiescisscss s 221
9.21 Rules for Input/Output Control List........ccoeeiiiiiiiiiie, 221
9.22 IS_IOSTAT _END ..ot 222
9.23 IS_IOSTAT_EOR......coooiiiiiriiiniiieicie et 222
9.24 Examples of File Operationscccocoeeviiiimieioiiiicieicceecce e 222
9.25 Stream INput/OUtPutc.cuoviiiiiiii e, 224
9.26 Storage Unit of Stream Input/Output ..o, 224
9.27 Stream Input/Output Type......oovoviiiiiiii e 225
9.28 Stream File Opening..........cccoovoiiiiiiiiiiiiiiiicceec e 225
9.29 Unformatted Stream Fileccocooiiiiiii e, 225
9.30 Formatted Stream I/Oottt 226
9.31 Rule of Thumb......cccocoiiiiiiiiiiii 227
9.32 Recursive INput/OutPputcccoeveiiiiiiiii e, 228
9.33 Processor Dependenciesccccevuiiiiiiiiiiiiiiiiiiiiiinii 228
Numerical Model ..o 229
10.1 Numerical Model for Integers............cccooueiiiiiiiiiiiic 229
10.2 BASE .o 229
10.3 Largest INteger.......ccooucuiieiiieiiicieieecc s 230
10.4 DIGITS for INteZETS.......cvcvviviiiiiiiiiiiciiii s 230
10.5 RANGE for INteEETSc.cooviviiiiiiiiiiciici s 230
10.6 Real NUMDETS.......cciiiiiiiiiiciiciii s 231
10.7 FRACTION and EXPONENTcccccoiiiiiiiiiiiccc e 231
10.8 MAXEXPONENT and MINEXPONENTccccooiiiiiicce 231
10.9 Largest and Smallest Real NUmMbers..........c.ccooooiiiiiiiiiiiiicce, 232
10.10 DIGITS for Real NUMDETS.........cccooeiiiiiiiiriiciicicc e 232
10.11 RANGE for Real NUMDETSc.cooeviiriiiiiiciiciicc e 232
10.12 PRECISION ..ottt 233
1013 SCALE......iiiiicc s 233
10.14 SET_EXPONENTcoooiiiiiiiiciccccc e 233
10.15 EPSILON ..ottt 233
10.16 NEAREST ..ot 234
1017 SPACING ..ottt 234
10.18 RRSPACING......cocoiiiriiiinicieicie e 234
10.19 Programming EXample.........cccoooiiiiiiiiiiiicec e, 235
Library FUNCHONScccooiiiiiiiiiiiiiiii s 237
11,1 Generic NamMEScccoviiiiiiiiiii s 237
11.2 Intrinsic Procedures ... 237
11.3 Pure Procedures.........cooiiiiiiiiiiiiiiiiiiiiiicccccc s 237
11.4 Elemental Procedures............cccooiiiiiiiiiiiiiiiiiiiiiiiiiii s 237
11,5 Enquiry FUNCHONS ..o, 238

Contents

12.

xiii
11.6 Transformational FUNCHONSc.ccoooiiiiiiiiiic 238
11.7 Non-elemental Procedures...........c.coooriiiioiiiiiiiiiccec s 238
11.8 Argument KeyWords........ccccceeuiiiiiiiiiiiiniiiiiiiicicicices 238
11.9 Variable Number of Arguments.........cccccooooeiiiiiiiiicieiiiceeece s 239
11.10 Optional ATgUMENLSooviiiiiciiice e 239
11.11 Types of Available INtrinsicsc.coooeueieiiioiiiiiiccc 239
1112 Intrinsic Statement............ccoooiiiiiiii e 240
11.13 Processor Dependenciesccccciueiriiiiiiiiiiiiiiiiiiiiciiicies 240
1114 FINal WOT ..o 240
SUDPIOGIAIMNS ... 241
121 FUNCTION SUDPIOZIamccoviueiiiiiieieiiiicieie et 242
12.2 SUBROUTINE SUbPIogramcccoooceiiieiiiieieieccieeece i 245
12.3 CALL Statementccooooiruiioiiccie e 246
12,4 INTENT (oot e 249
12.5 Internal Procedure............coooiiiiiiiiiiiiiiiicccc e 249
12.6 Character Type Argument........ccccooviiiiioiiiiiicc e 252
12.7 Argument TYPeSccovioviiiiiiiiccc s 255
12.8 Call by Reference ... 255
129 Call by ValUe......cccooiiiiiiiiiiiiiiiiii s 255
12.10 RETURN Statementcooovimiieioiicicieccecci e 256
1211 INTERFACE BIOCK ..ottt e 257
12,12 Array as ATgUMENtS........ccoeuiiiiiiiiiiiicieieeeeee e 258
12.13 User Defined Type as Argumentccoooerueiniiiicieiniicceeece e 260
12,14 MODULE.......ooiiiii s 261
12.15 MODULE PROCEDUREcocooiiiiiiiiiiccie e 263
12.16 PUBLIC and PRIVATE Attributescccccooiiii 265
12.17 PROTECTED Attributecoooviiiiiiiceicc 270
12,18 SCOPE RUIES ... 272
12.19 Generic SUDPIOZIamS........cooviiuiieiiicieie e 274
1220 ABSTRACT INterface.......cccooovoimrieioiiicieieeiccccec e 276
12.21 Keyword ArgUmMENtS.........cooviiuiieiiiicieie et 278
1222 Operator Overloadingcoeueioiiiiiiiiiiic e 279
12.23 Overloading of Assignment Operatorccoooeeieiiiiiiieieiiiciceeccee 283
12.24 Overloading of Standard Library Functionsccccoooeiiiioiiiiicen 284
12.25 User Defined Operatorsccoceioiiiiciiiiiiiiciccec e 285
12.26 Use Statement and Renaming Operators............ccccoeueieveireieinicccieeccccee 287
12.27 Precedence of Overloaded Operatorscccouovreieiiiiicieiciccceecc 288
12.28 Precedence of User Defined Operators.............cccoooeeueiniiceieiiiiiceecccee 288
12.29 OPTIONAL ArguUmeNts........cccoovuiueieiiiiieieieicicieie et 289
12.30 PRESENT INEIiNSIC...ucvoviiicieiiicicie ettt e 290
12.31 Assumed Rank of Dummy Argumentscccoooveioiiniiiiicceecccece, 291
12.32 Array-Valued FUNCHONS.........c.cooiiiiiici 292
12.33 SAVE Variables.........cccooiiiiiiiic e 292
12.34 COMMON Statementccouovrueieieiiicieieiecce e 294
12.35 BLOCK DATA.......oii e 295
12.36 COMMON and DIMENSIONccccooiiiiiiiiiiiiiccie e 297
12.37 COMMON and User Defined Type........cccocoerueiniiirnieiiiiceeccec 297
12.38 COMMON and EQUIVALENCEccccooiiiiiiiiic s 297

xiv Contents
12.39 EXTERNAL Statementccccccciuiuiiiiiiiiiiiiiiiiccccccccecccceeecennes 298
1240 RECUISION....c.oiuiiiiiiiiiiiiicice e e s 301
1241 RECURSIVE FUNCTIONccocoiiiiiiiiiiiiiiiiiiieeit s 301
12.42 RECURSIVE SUBROUTINE.........cccceiiiiiiiiiiiiiiiicces 303
12,43 PURE Procedureccocociuiiiiiiiiiiiiciciicccce e 305
12.44 Rules for PURE Procedure...........ccococuiiiiiiiiiiiniiiiiiiccieececeeeeceeeeneeas 305
12.45 ELEMENTAL Procedure.........ccccccciiiiiiiiiiiiiiiiciiiiicicicciccceiceecceneeeeennes 306
12.46 IMPURE ELEMENTAL Procedure...........ccccceoeviniiiiiiiiiiiiiiiiciciiccceeeceens 307
12,47 SUBMODULEc.ccociiiiiiiiiiiicc e 308
12.48 EQUIVALENCE and MODULEcccccooiiiiiiiiiiccs 311
12.49 Function Calls and Side Effectsc.ccccoviniiiiiniiiiiii, 311
12.50 Mechanism of a Subprogram Call..........ccccocooiiiiiii, 312
12.51 Recursive INput/Outputccccovviviiiiiiiiiiiiiiiiii s 312
12.52 Programming EXamples............ccooiiiiiiiioiiiiece 313

13. String with Variable Lengthcccooiiiii 319
131 ASSIZNIMENT.....oiiiiiiiiiiicic s 319
13.2 Concatenation.........cccocoviiiiiiiiiiiiiii s 321
13.3 COMPATISOI ..ottt 321
134 Extended Meaning of INtrinsicscoooomrieiiiiiiiiiiiiiccce e, 322
13.5 PUT oo 322
13.6 PUT _LINE ..o 322
13.7 GET s 323
13.8 EXTRACT ..ot 324
13.9 REMOVE ..o 324
13.10 REPLACEoiiiiiiiiiii s 324
1311 SPLIT o 325

14. IEEE Floating Point Arithmetic and Exceptions............cccccooviiiiiiinninnne, 327
14.1 Representation of Floating Point Numbers (IEEE Standard)c.ccccoeeucc. 327
14.2 Single Precision 32-Bit Floating Point Numbers (IEEE Standard) 327
14.3 Denormal (Subnormal) NUMDETS.......cccoeoeriiiniiiniiiriencrcreeee e 330
144 Representation Of ZeTO ...t 330
14.5 Representation of Infinity........c.cocooooiiiii, 331
14.6 Representation of NaN (Not a Number)ccccovviviiiiiniiiniiie, 332
14.7 Summary of IEEE “NUMDEIS”cccccoiiiiiiiiiiiiiiiiiiiinics 332
14.8 Divide DY ZETO....coiiiiiiiiiiiiiici s 334
149 OVEITIOW ...oiiiiiiiic e 334
1410 UNAETOW ..o 334
14.11 Inexact ComPUtAtioNcccooiiiiiiiiiiii 334
14.12 Invalid Arithmetic Operation ..o, 334
14.13 TEEE MOAUIESc.ooiiiiiiiiiiiiici s 334
14.14 IEEE Features.......ccccoviiiiiiiiiiiiiiiiiiccci s 335
14.15 TEEE FLAGScoiiiiiiiiiiiiiiti s 335
14.16 Derived Types and Constants Defined in the Modules.............ccccceviiiininnnee. 336
14.17 TEEE OPEIatorsccoviiiiiiiiiiiiiicis s 336
14.18 Inquiry Functions (Arithmetic Module)...........ccoovoiiiiiiiiie, 337
14.19 IEEE_CLASSooiiiiiiiiiiiit s 338
14.20 IEEE_COPY_SIGNccccooiiiiiiiiiiiiiiiiiiiiiiecci s 339

Contents XV
1421 TEEE_VALUE......c.ooiiii e 339
1422 TEEE_IS_FINITE......cccoiiioiiiiii e 340
1423 TEEE_IS_NANcoooiii e 340
1424 IEEE_IS_NEGATIVEc.coooiiiiiii e 340
14.25 IEEE_IS_NORMAL......cccooiiiiiiiteteieccie e 340
1426 TEEE_INT ...oooiiiiii st 340
14.27 TEEE_REAL....coiiiiiiiiiiiiee s 341
14.28 TEEE_SIGNBITcooiiiiiiiicc e 341
1429 IEEE_MAX_NUM and IEEE_MIN_NUM.......c.cccccooiiiniiiceecce 341
14.30 IEEE_MAX_NUM_MAG and IEEE_MIN_NUM_MAG.........ccccoceivvirrrrnnnne. 341
14.31 IEEE_FMA ..ot 341
14.32 IEEE_LOGB.......oiiiiiii e 342
14.33 IEEE_NEXT_AFTER, IEEE_NEXT_DOWN and IEEE_NEXT_UP.................. 342
14.34 TEEE_REM.....ocooiiiiiiiiic e 343
14.35 ITEEE_SCALB.......cioiiiiii e 343
14.36 IEEE_GET_ROUNDING_MODE..........cccccocoiiiriiiiiiicee e 343
14.37 IEEE_SET_ROUNDING_MODE...........ccccceiiiiiiiiiiinieeicee e 344
14.38 TEEE_RINTcooiiiiiiii e 344
14.39 IEEE_UNORDERED.........cocooiiiiiiiiiicce e 345
14.40 IEEE_GET_HALTING_MODE..........ccccoooiiiiiiiiiiicciece e 345
14.41 IEEE_SET_HALTING_MODE.........cccceoiiiiiiiiiiiiccie e 345
14.42 IEEE_GET_MODES and IEEE_SET_MODES..........ccccocooiiiiiiiincciee. 346
14.43 IEEE_GET_STATUS and IEEE_SET_STATUS.........cccoooiiiiiiiic, 346
14.44 1EEE_GET_FLAG and IEEE_SET_FLAGccccooiiiiiiiiiccecc 347
14.45 IEEE_GET_UNDERFLOW_MODAE........cccccocoiiiiiiiiiiiiicee e 347
14.46 IEEE_SET_UNDERFLOW_MODE.........cccccocooiiiiiiiiiiiiccee e 348
14.47 1EEE_SELECTED_REAL_KIND.......ccccooiiiiiiiiiiiciece e 348
14.48 Arithmetic IF and IEEE_VALUE...........ccccooiiiiiiiiccce 349
14.49 1EEE_QUIET Compare ROUtINeScccouoiiimiieiiiccieicc 349
14.50 IEEE_SIGNALING Compare ROUtines.........ccccoeoviircieiniiicieieiicceeccc 349
14.51 NaN, Infinity and Format..........cccoooovoiiiiiic 349
14.52 Relational Operators, Infinity and NaN..........c.ccccooiii 350
14.53 Exception within a Procedure.............coooooiiiiiiiiice 351
14.54 Exception Outside a Procedure..............ccccoooiiiiiiiiiiic, 352
14.55 Programming EXamples...........cccooioiiiiiiiiiiiiicci 353
14.56 Out Of RANGE.....cuoviiiiiiiiiiiiiicicc e 355
14.57 Processor Dependenciesccococeueiiricieiniicicieiicce e 355

15. Dynamic Memory Management ... 357
15.1 ALLOCATABLE ATTaAYSooiiiiiiiiiieieiicieie et 357
152 DEALLOCATE Statement...........cccoeueiiimiiioiiicieeccie e 360
15.3 ALLOCATED INrinsiC.....ccoeueiiuruiieieiicicie e 361
154 Derived Type and ALLOCATEcccoooiiiiiiiec e 361
15.5 Allocated Array and Subprogram..........c.cccooooreieiiiiiniciniiiiceeccce 362
15.6 ALLOCATE and Dummy Parameter............cccooouiioimieiiiiicciecceeccie 365
15.7 Allocatable Character Length ... 366
15.8 Character and Allocatable Arrays.........cccocooeieieiiiiinicniicecce e 367
15.9 Allocatable Scalar...........oooiiiiiiiiiiiic e 367
15.10 Allocatable FUNCHON.ooiiiiiiiic e 368

xvi

16.

17.

Contents
1511 Allocation Transfer ... 369
15.12 Restriction on Allocatable ATTaysccocooiiiiiiicieiiiicecce 370
15.13 Programming Example...........ccccooooiiiiiiiiiiiiiiccc 370
POINEEIS ... 373
16.1 POINTER Declaration...........ccoceueieiiiiiiioiiicieicicicce e 373
16.2 TARGET ... 373
16.3 POINTER Status......coooiueieiiiicieieiicicie it 374
164 POINTER InitialiZation........ccocoeueioiiiiiiiiicieieicceecc e 374
16.5 POINTER ASSIgNMENtcoooiiiiiiiiieiiiccieiece e 374
16.6 NULLIFY coooii e 376
16.7 POINTER and ATTaYcccooomiieiiiiieieiiccie e 376
16.8 POINTER @8 ALL@S......cocoueiiiiirieieiicicieiecccte e 377
16.9 ALLOCATE and POINTERccccoooiiiiiiiic 378
16.10 POINTER and ALLOCATABLE Ar1aycccooviiiiiiiieieicccieecce e 379
16.11 DEALLOCATEoooiiii e 381
16.12 Unreferenced StOragecocoeeiriiurieiniicicieiecee e 382
16.13 ASSOCIATED INtrinSic......ccocosueiriicinieiiicicieieieccie e 382
16.14 Dangling POINerccoovoiiiiiiiicccc e 382
16.15 POINTER within Subprogram ..o, 383
16.16 POINTER and Derived TyPe.......ccoceiiiiriieiiiicieeecie e 383
16.17 Self-Referencing POinter...........c.cocoociiiiiiiiiiiceccc 384
16.18 FUNCTION and POINTERcccoooiiiiiiiicc 384
16.19 POINTER and Subprogrami..........ccccoovereieiiiiiieiiiccie e 385
16.20 POINTER INTENTccoooiiiii e 386
16.21 PROCEDURE and POINTERc.cccocoooiiiiiiiicc 386
16.22 ALLOCATE with SOURCEcocoiiiiiiieiic 389
16.23 ALLOCATE With MOLDccoooiiiiiiiii 390
16.24 CONTIGUOUS. ..ot 390
16.25 IS_CONTIGUQOUS.......cooviiiiiiieccee e 391
16.26 Programming EXample............cocoooiiiiiiiiiiiiiicc 391
Bit Handling ..o 397
171 BIT_SIZE...ooie s 397
172 BTEST ..o 397
173 IBSET ... 399
174 IBCLR ..o 400
175 IBITS o 401
176 LEADZ and TRAILZccooiiiiiice e 403
17.7 POPCNT ..o 404
17.8 POPPAR ... 404
17.9 MASKL ..ot 404
17.100 MASKR ..ot 405
1701 TAND Lo 405
1712 TOR ce e 407
1713 TEOR ..o 408
1704 NOT oo 410
17.15 Bit Sequence COMPATISON......ciuiuiuiuimiiriiitiiiic s 410
17.16 Programming Example............cccoooiiiiiiiiiiiiiiiccc 411

Contents

18.

19.

20.

xvii
1717 ISHET e 412
1718 SHIFTL ..ot 413
1719 SHIFTR ..ot 413
1720 SHIFTA ..ot 413
1721 MERGE_BITS......cocioiiiiiiiiiiiccr it 413
1722 ISHETC ..o 414
1723 DSHIFTL ...t 416
1724 DSHIFTR ..ot 416
17.25 Logical Operations with Array Elements............ccccoooiiiiiiiii 416
1726 MVBITS ..o 418
1727 TRANSEFERcciiiiiiiiiiiercce s 420
C-Fortran Interoperabilityccococoiiiiiiiiiiiiiireeeae 423
18.1 Interoperability of Intrinsic TYPes.......cccccoeeuiuiuiiiiiiiiiiiiiiccccccceeeceeeenens 423
18.2 CProcedure and Interface BIOCKccccoovviiiiiiiiiiiiiccec 425
18.3 Function, Subroutine and C Procedurec..coovvevveiieeeceeceeeeeeeeeeeeeeeeeeens 425
184 Interoperability with a C Pointer...........cccccociuiiiiiiiiiiiiccccccccccceennens 425
18.5 Procedures in the Module ISO_C_BINDINGooovoiiteeieeeeeeeeeeeeeeeeeeeeeveeeeenns 425
18.6 Compilation and LinKing ... 427
18.7 IMPORT Statementcceeuevevereiiiiiiieieiciciccceeece s 427
18.8 Fortran and C Interoperability—Examplesc.cccccccoeeeiiiiiiiiiccecnnen 427
18.9 Interoperation with Global Variables...........ccccccccociiiiiiniiiiiiiiccccccee 436
18.10 C—Fortran Interoperation............ccccoceueiiiiiiniiiiiiiniiiiiiccc e 439
18.11 ENUMERATORoooiiiiiiiiiiiicicieetci s 440
Object-Oriented Programmingccocoovviviiiiiiiiininii s 443
19.1 Object and Its Properties..........cccccoviiiiiiiiiiiiniiicccccceecces 443
19.2 INheritance ... 444
19.3 ASSOCIATE......c.coiiiiiiiiici e 445
19.4 Rules of ASSOCIATEcccooviiiiiiiiiiicii e 447
19.5 Polymorphic Variables ... 448
19.6 SELECT TYPE CONSLIUCE ...oviviviiiiiiiiiiiiicicicieictct s 450
19.7 Allocation and Polymorphic Variables...........ccccccooiiiiiiiiniiniic 456
19.8 Type Bound Procedure ..o 457
19.9 Generic BINAINGoouoiiiiiii s 462
19.10 Overriding Type Bound Procedures............cccoovoviiiniiiiiiiciicc 464
19.11 Deferred Bindingcccooeeiiiiiiiiiiciiciicc e 466
19.12 FINAliZationccooiiiiiiiiiiiiiiiicicc s 467
19.13 SAME_TYPE_AS....ccoooiiiiiiiiiinciii s 470
19.14 EXTENDS_TYPE_OF......cccociiiiiiiiiiiiiiiiiiiicss s 471
19.15 Derived Type Input and Output.........cccceveieiiiiiiiiiiiiccces 472
Parallel Programming Using Coarray...........ccccocovvnniiniiiniiiiinninininseins 481
20.1 Parallel COMPUEING........coormiiiiiiiiieiicc e 481
20.2 COAITAY ceovoviiiieciiiececte ettt 482
20.3 Compilation of Fortran Program with Coarraycccccooeeiiiiiiciinne, 482
204 Declaration........cccccueiiiiiiiiiiiiiiiiiii 483
20.5 INitIaliZAtION c..ooviieiiiiiiicci e 484
20.6 Input and Output with COArraycccocoveeomeieiiiiiicccc e, 484
20.7 THIS_IMAGEcocooiiiiiiiiiiic e 484

xviii

20.8

209

20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19
20.20
20.21
20.22
20.23
20.24
20.25
20.26
20.27
20.28
20.29
20.30
20.31
20.32
20.33
20.34
20.35
20.36
20.37
20.38
20.39
20.40
2041
20.42
20.43
20.44
20.45
20.46
20.47
20.48
20.49
20.50
20.51
20.52
20.53
20.54
20.55
20.56

Contents
NUM_IMAGES ...t 486
SYNC ALL...ooiiiiieiiei s 486
ATray Of COAITAY ...t s 487
Multidimensional COAITAYccoeeieiiricieiiiiciee e 487
Upper Bound of the Last CODIMENSIONccccoooiiiiiimiiiicecccias 488
Properties of COAITAYcoceieiiierieieicceie s 489
LCOBOUNDooiiiiiiicisci s 489
UCOBOUND ..ottt 490
COSHAPE ..ottt 490
THIS_IMAGE with Argument...........cccoocvieiniiniinicniece e, 491
IMAGE_INDEX......ciiiiiiiiiiciicsics i 491
SYNChIONIZAtioN ...t 492
CRITICAL SECHON ..ot 494
ALLOCATABLE COITAYocvruriiiriiieiiicisici i 496
CO ROULINES ...t s 496
CO_MAX ot 497
CO_MIN ..ot 498
COLSUM .o 498
CO_REDUCE ..ottt 499
CO_BROADCAST ..ottt 500
Coarray and SUbProgramcccceeiiiieiiiiiiiecce s 501
Coarray and FUNCHON ..o 504
Coarray and Floating Point Status ..o 505
User Defined Type and Coarrayccoeeeeereieiniicieieicccee e 505
COARRAY and POINTERcccccoeimiiimiiniciicnicecs s 509
Operator Overloading and Coarrayccoceueveiercieieiiicee s 510
Atomic Variables and Subroutines.............ccoooooiiiiii 511
ATOMIC_DEFINEcooiiiiiiiiiniice e 512
ATOMIC_REF.......oooiiiiiiiiniicncs s 512
ATOMIC_ADD.......oootiriieiiniie s 512
ATOMIC_FETCH_ADDccoiiiiiriiiinicinici e 512
ATOMIC_AND ..ottt 513
ATOMIC_FETCH_ANDcooiiiiiiiiinicnc e 513
ATOMIC_OR ..ot 513
ATOMIC_FETCH_OR......cocoiiiiirininieinicinci s 513
ATOMIC_XOR......ouriiiriiiiiiniiieiee s 514
ATOMIC_FETCH_XORoeiiiiiiinininicinici e 514
ATOMIC_CAS ... 514
LOCK and UNLOCK ...t s 515
Status SPECifiers ... 516
ERROR STOP ..ottt 516
Coarray and Interoperability ..o 516
COMMON, EQUIVALENCE and Coarraycccocoeueieieimieieiniiccieiecceieiaes 516
VOLATILE Variable.........cccccooiiiiiiiiiiicccicc e 516
EVENT ..o 517
EVENT POST ..ot 517
EVENT WAIT ..o 518
EVENT_QUERYoooviiiiiieicnce s 519

Programming Examples Using COarrayccccocooeeeeueieieccieieiniiccieeccieie e 519

Contents xix
21. Parallel Programming Using OpenMP..............ccccooiiiiiiiiiiiiiicccccas 523
211 TRIEAd wocviiiiic 523
21.2 Structured BlOCK ..o 523
21.3 ParalleliSm ... 524
21.4 Memory Management...........cccooueieiiieiiieieieieieeee e 524
21.5 Application Program Interface (API)ccccooooiiiiiniiiiiiccce, 524
21.6 Compiler SUPPOItc.cviieiiiiicieie e 524
21.7 Compilation of Program Containing Openmp Directives............ccccccccoueuce.. 525
21.8 Structure of Compiler Directivescooiiiiioiiiiiiicccece, 525
21.9 Parallel ReGIONc.coviiiiiiiiciei e 526
21.10 Parallelization Directives..........cccccceviriiiiiiiiiiiiiiiiiiiiiicccccs 526
21.11 Clauses Associated with the Directivesccocoeiiiiiiiiiiiiicicns 527
21.12 Parallel DIreCtive........ccociioiiiiiciiiiicicirecc s 528
21.13 Lexical and Dynamic Regioncccoooviiiiioiiiiiiiccee, 529
21.14 Three Runtime ROUINES.........ccccooiviiiiiiiiiiiiiiicccccece e 529
21.15 Nested Parallelccocoiiiiiiiiiiiiiccc s 530
21.16 Clauses Associated with Parallel Construct ..o 531
2117 TF CLAUSE. ..ottt 531
21.18 NUM_THREADS.......cccoiiiiiiiiiiiiiicie e 532
2119 PRIVATE ..ot 532
21.20 SHARED......oiiiiiiiiciicee e 533
21.21 DEFAULT NONEc.cooioiiiiiiiiiiiceee e 533
21.22 DEFAULT PRIVATEcocoiiiiiiiiiicceee e 533
21.23 DEFAULT SHARED.......ccceciiiiiiiiiiiieisiicieire e 533
21.24 FIRSTPRIVATEcccooiiiiiiiiiiiieiriiceee e 534
21.25 Rules for OMP PARALLEL Directivecccccoceiuiiiiiiiiiiccccccccccnns 534
21.26 Workshare CONSLIUCEccccouiuiuiiiiiiiiiiiiiiciiccccc e 536
21.27 OMP DO/OMP END DO.......cociuiiiiiiiiiiiicieieiniiciesice e 536
21.28 Rules of OMP DO/OMP END DOccccoiiiiiiiiiiiiicicccccicccciciinns 537
21.29 OMP SECTIONS/OMP END SECTIONScccccoiiiiiiiiiiicccicccciciines 537
21.30 OMP WORKSHARE........ccceoiiiiiiiiiiiiniieeie e 539
21.31 OMP SINGLE/OMP END SINGLEcccccceciiiiiiiiiiiccccccccciciines 541
21.32 OMP MASTER/OMP END MASTER........ccccoceiiiiiiiiiiiicccccicciciieas 542
21.33 REDUCTION ...ttt 543
21.34 CRITICAL/END CRITICALcccoiiiiiiiiiiiiccesce e 546
21.35 LASTPRIVATE ..ottt 547
21.36 ATOMIC ...ttt 549
21.37 OMP BARRIER.......cccooiiiiiiiiiiiiinic s 550
21.38 THREADPRIVATE.........coceiiiiiiiiiiiciiciee e 551
21.39 Rules for THREADPRIVATE.........ccccccoiiiiiiiiiiiiiicccccccinas 553
2140 COPYIN ..ottt 553
2141 ORDERED ..ottt 555
21,42 COPYPRIVATE.......ccoiiiiiiiiicrcee e 555
2143 NOWAIT ..o 556
2144 FLASH ..ot 557
21.45 Openmp LOCK ..o 557
2146 SCHEDULE ...ttt 560
2147 STATIC SCHEDULEcccoooiiiiiiiiiiicieiecsse s 561
2148 DYNAMIC SCHEDULE.........cccocoiiiiiiiiiiiiiiccccisesinas 562

XX

22.

Contents
2149 GUIDED SCHEDULE.......ccocoiiiiiiiiiiciecceee e 563
21.50 RUNTIME SCHEDULE.......c.ccccoiiiiiiiiiiiiiiinnecee et 564
21.51 AUTO SCHEDULEccoioiiiiiiiiiitrrcctee et 564
21.52 Openmp Runtime Library Routines..........ccccocooviiiiiiiiiiiiiicce, 564
21.53 Runtime Time ROUINEScccccciriiiiiiiiiiiiiiciiicccc e 566
21.54 Environment Control ... 567
21.55 Environment Variables............cccoiiiiiiiiiniic s 567
21.56 Programming EXamples..........cccccoooiiiiiiiiiiiiiiicccec e 568
21.57 FINAl WOTId ..o 570
Parallel Programming Using Message Passing Interface (MPI)c........... 571
221 MPIMOAUIE ...t 571
222 CompPilationc.coiuiiiiiicicie e 571
22.3 Error Parameter of MPI ROUINEScoccouiuiiiiiiiiiiiiiiiiiiicccccceee 572
224 MPI VEISION ..ottt s 572
225 MPILINIT .ot 573
22.6 MPI_INITIALIZED......c.ccciiiiiiiiiiiiinccte et 573
22.7 MPI_FINALIZE ..ottt 573
22.8 MPIHANALES ..ot 574
229 About This Chapter ... 574
2210 Structure of @ MPI Programcocoiioiiiiiieiniiicciecceecce e 574
2211 MPI_COMM_RANK ..ottt 575
2212 MPI_COMM_SIZE.......cccoiiiiiiiiicitere ettt 575
2213 Use of Rank in Controlling the Flow of the MPI Program...........ccccccccoceuc... 576
2214 MPI_BARRIERcooiiiiiiic s 576
2215 Basic MPI Datatype in FOrtran.........ccooeeeiiiiiiiiccccccccc 577
2216 Point-to-Point CommuUNICatiONcccvviiiiiiiiiniiiiiiccecce 577
2217 Communication MOdes........ccccuiiiiiiiiiiiiiiciiiicc s 577
2218 Message Sent and Received...........cccciiiiiiiiiiiiiiiicccccca 578
2219 MPI_SEND and MPI_RECVccccociiiiiiiiiiiiieccreeceeeeeee s 578
2220 MPI_SSEND.....ccoiiiiiiiiiiiiiicte et 581
2221 MPI_BSEND ..ot s 581
2222 MPI_RSEND ..ot s 582
22.23 DeadlOock ... s 582
22.24 Non-blocking Send and Receive............cccoeruiiiiiiininiiiicce, 583
22.25 Send Function-Naming Conventions in Blocking and Non-blocking
FOTINS .o 585
2226 MPI_ANY_TAG and MPI_ANY _SOURCEccccciiiiiiiiiiiniccicccnes 585
22.27 REDUCTION ...ccooiiiiiiiiiiiiiiiere et 586
22.28 MPI_SCAN ... s 592
2229 MPI_ALLREDUCEc.cciiiiiiiiiiiiinccs et 593
22.30 MPI_REDUCE_SCATTER_BLOCKccocccoeuiiiiiiiiininiiiinncceesceeceeees 595
22.31 MPI_REDUCE_SCATTERcccciciiiiiiiiiiiiiciiiicictieecee s 596
22.32 MPI_BROADCAST ..ottt s 597
22.33 MPI_GATHERcoiiiiiiic et 598
22.34 MPI_ALLGATHERcooiiiiiiiiccette s 599
22.35 MPI_SCATTER.......cciiiiiiicce ettt 600
2236 MPI_SCATTERV ..ottt 601
22.37 MPI_ALLTOALLcoeiiiiiiicccc ettt 603

Contents xxi

22.38 Derived Data TYPeScccceuiviiriiiiiiiiiciciiiiiicicici 604
22.39 MPI_TYPE_CONTIGUQOUS........coitietieeeeeetee et e e eeaee e eee e e eneen 604
2240 MPILTYPE VECTOR ...ttt ettt st saae s e e senaaeas 606
2241 MPIL_ TYPE_CREATE_HVECTORoooioiiiiiiieeeee et 607
2242 MPIL TYPE _INDEXEDooiiiiiiiiieeeie ettt ean s s 608
2243 MPI_ TYPE_CREATE_HINDEXEDcouiiiiiiiiiie et 609
2244 MPI_ TYPE_CREATE_INDEXED _BLOCKccooiiiiiiiiieeeeee e, 609
2245 MPI_TYPE_CREATE_HINDEXED_BLOCK.......ccooeoiiiiieieeeeeeereeeee e 610
2246 MPI_ TYPE _CREATE_STRUCToootiiieie ettt 610
2247 MPI_PACK and MPI_UNPACKoooeieeeeeeeeeeeeeeeeee et eneea 612
2248 MPI_COMM _SPLIT....viiiieeeeeeee ettt e e v e eereeeaeeeneeas 613
2249 Timing ROULINES........ccviiiiiiiiiiiiiccc e 615
22.50 Programming EXamples..........ccccoooioiiiiiiiiiiieieiiice e 615
2251 FINALWOTA oottt et e et s st e e s enae e e enaaens 620
APPENAIX A oo 621
APPENdiX B ..o 623
APPENdiX € ..o 625
APPENdiX Do 633
APPendiX E......ccoviiiii 635
APPENdix Fo.oooi e 637
APPENdiX ..o 639
APPendix He....ooooooiii e 641
APPendix L ..o 643
REEEICIICOS ...ttt e e e e et e e ettt e st e e saaateeeateeeenateesaaeesanteessnnneesnnes 645

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Preface

Since the early days of machine computing, there has been a constant demand for larger
and faster machines. The two terms essentially mean machines with larger memory and
more speed than that of the existing available machines. During the past 70 years, there
have been dramatic changes in the fields of computer hardware and software—from
vacuum tubes to VLSI (very large scale integration) and from no operating system to very
sophisticated, time-sharing operating systems. There are three obstacles that computer
designers face while aiming to increase the speed of the computer. First, the density of the
active components within a chip cannot be increased arbitrarily. Second, with the increase
of the density of the active components within VLSI chips, heat dissipation becomes a
severe problem. Third, the speed of a signal cannot exceed the speed of light according
to the special theory of relativity proposed by Einstein. Thus, a different approach to the
problem has been thought of.

Instead of having a single processor, if several processors (each may not be very fast and
can be inexpensive) participate in parallel for computation, the speed of calculation can
be increased considerably, and in fact, using inexpensive processors controlled by special
software and hardware, the speed of a supercomputer can be achieved if hundreds of
processors work together in parallel.

This book contains an introduction to parallel computing using Fortran. Fortran supports
three types of parallel modes of computation: Coarray, OpenMP and Message Passing
Interface (MPI). All three modes of parallel computation have been discussed in this book.
In addition, the first part of the book contains a discussion on the current standard of
Fortran, namely, Fortran 2018.

The first part of the book can be used to learn the modern Fortran language even if
the reader has not yet been exposed to the earlier versions of Fortran. The book should
be read sequentially from the beginning. However, a reader who is conversant with the
earlier versions of Fortran may skip the introduction to Fortran and go directly to the new
features of the language.

As Fortran is mainly used to solve problems related to science and engineering, standard
numerical methods have been used as a vehicle to illustrate the application of the language.
However, knowledge beyond the level of elementary calculus is not required to understand
the numerical examples given in the book. The emphasis of the book is on programming
language, not on sophisticated numerical methods. The programming examples given in
the book are simple, and to keep the code readable, the codes are not always optimized. It is
expected that a reader, after proper understanding of the language, would be able to write
much more efficient codes than the codes given in the book.

Programming tips and style have been introduced at appropriate places. They serve
simply as guidelines. It is well known that every experienced programmer has his or her
own programming style.

To keep the size of the book reasonable, all available features of Fortran 2018 have
not been discussed. Moreover, only the essential components of Coarray, OpenMP and
MPI, which are required to write reasonably useful programs, have been discussed. It is
hoped that readers, after going through this book, will refer to relevant manuals and be
able to write parallel programs in Fortran to solve their numerical problems.

xxiii

xxiv Preface

The book is full of examples. Most of the examples have been tested with Intel Cor-
poration’s Fortran compiler, ifort, version 19.3, GCC gfortran version 7.3.0 and the Fortran
compiler version 6.2 of Numerical Algorithm Group (NAG). The Fortran part is based on
the draft Fortran 2018 report published on July 6, 2017. At the time of writing, these com-
pilers do not support all the proposed features of Fortran 2018, but Intel, Free Software
Foundation, Inc., and NAG will add further support for these features over time.

Subrata Ray

Acknowledgments

The author wishes to record his deep sense of gratitude to his colleagues, friends and asso-
ciates who helped him to prepare this manuscript during the various phases of this work.

Abhijit Kumar Das
Ananda Deb Mukherjee
Ankush Bhattacharjee
Ashish Dutta

Biplab Sarkar

Debasis Sengupta
Gayatri Pal

Indrajit Basu

Indrani Bose

Koushik Ray

Minakshi Ghosh
Prasanta Kumar Mukherjee
Pushan Majumdar
Ramaprasad Dey

Ranjit Roy Chowdhury
Robert Dyson

Sandip Ghosh

Sankar Chakravorti
Santosh Kumar Samaddar
Sarbani Saha

Satrajit Adhikari
Satyabrata Roy
Siddhartha Chaudhuri
Souvik Mondal

Swapan Bhattacharjee
Utpal Chattopadhyay

The Numerical Algorithms Group Ltd., Oxford, UK, provided the author with a free
license to use their Fortran compiler. Intel Corporation allowed the author to use the trial
version of their Fortran compiler ifort. The free GCC gfortran compiler was also used.
National Council of Education, Bengal, and Institute of Business Management, NCE,
Bengal, allowed the use of their computer laboratory during the preparation of this book.

Finally, the author wishes to thank his family for their encouragement during the prepa-
ration of this manuscript.

XX0

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Author

Dr. Subrata Ray is a retired senior professor of the Indian
Association for the Cultivation of Science, Kolkata. In his
career spanning over 40 years, he has taught computer
software in universities, research institutes, colleges and
professional bodies across the country. As a person in
charge, he has set up several computer centers, in many
universities and research institutes, almost from scratch.
Though his field of specialization is scientific computing,
he has participated in developing many systems and
commercial software.

He has an MSc, a Post MSc (Saha Institute of Nuclear
Physics) and PhD from Calcutta University and has
served several renowned institutes like Tata Institute of
Fundamental Research, Indian Institute of Technology,

Kharagpur, Regional Computer Centre, Calcutta, University of Burdwan and Indian
Association for the Cultivation of Science.

He is associated with the voluntary blood donation movement of the country and is
an active member of Association of Voluntary Blood Donors, West Bengal. He offers his
voluntary services to Eye Care & Research Centre and National Council of Education,

Bengal.

He is also an amateur photographer.
He is married to Sanghamitra, and they have a daughter, Sumitra. He lives in Kolkata
with his brother Debabrata and sister Uma.

xXxXUii

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

1

Preliminaries

A computer is a machine that can perform basic arithmetic operations at a very high speed.
It can take logical decisions and select alternative paths depending upon the program
logic. It can communicate with the external world via its input/output devices. To get a
job done, the computer needs to be instructed through a computer program. A computer
program is a set of instructions through which one instructs a computer to perform a
specific job. The computer’s processor understands only one language, called the machine
language. The machine language is machine dependent and is difficult for humans to
learn. To circumvent this difficulty, several artificial languages (sometimes called high-
level languages) have been developed. These artificial languages are very easy to learn and
are practically machine independent. However, this requires translation to the machine
language of the particular machine. The translation is done by the computer itself through
a system program called a compiler. The compiler, while translating, checks the grammar
of the language; if the source program is free from grammatical errors, it generates the
machine language version of the source program, called the object program for the machine,
which is subsequently linked (using a system program called the linker) to various libraries
of the system. The resultant code, called the executable code, is executed by the machine. As
different machines use different machine languages, the compilers are naturally machine
dependent. Therefore, that a particular machine can execute a program written in a high-
level language implies that the compiler for that high-level language is available to the
computer system.

Fortran—one such programming language—is the abbreviation of Formula transla-
tion. It is widely used in solving scientific and engineering problems that require a lot of
numerical computation. In this book, Fortran stands for Fortran 2018, the current version
of Fortran.

It must be mentioned at this point that no computer can directly execute any program
written in Fortran or any other, so-called high-level, language like Fortran. The compiler
for the corresponding language must be available to the computer so that the translated
version of the program written in a high-level language may be executed by the computer.
As this translation—Fortran to machine language of a particular machine—is transparent
to the programmer, one may assume that the computer is executing the Fortran program.

The compiler generates an object program only when the source is free from
grammatical errors. In case of any grammatical error being flagged by the compiler,
the programmer has to go back to the source, make the necessary correction(s) to the

2 Fortran 2018 with Parallel Programming

source and recompile the source to get the object program. The object program will
not be generated until all grammatical errors are removed from the source program.

A program, free from grammatical errors, may not give a correct result. The program
must be free from logical errors. A logical error is an error in the program logic at the
source level. For example, a particular program requires addition of two numbers,
but the programmer, by mistake, has performed multiplication instead of addition.
A runtime error may occur during the execution of the program. Suppose a program
has to divide two numbers. The division process is valid so long as the second
number (denominator) is not zero. Division by zero is not a valid arithmetic operation.
This error will show up during the execution of the program should the denominator
become zero. The program behaves normally so long as the denominator remains
nonzero.

Therefore, to obtain a correct result from a program, the following three conditions must
be satisfied:

¢ The program must be free from grammatical errors.
e The program must be free from logical errors.

® There should not be any runtime error.

In this book, we frequently use the term processor. According to the Fortran report, a
processor is a combined object, consisting of software (compiler, operating system, etc.)
and hardware, that converts a Fortran program into its machine language equivalent and
executes the same.

1.1 Character Set

The programming language and its syntax are described by a set of characters.
The character set that is available to a Fortran programmer consists of (a) all letters
of the English alphabet, both uppercase (A-Z) and lowercase (a—z); (b) underscore
character (_); (c) all digits (0-9); (d) several special characters, such as brackets, colon
and full stop; and (e) several unprintable characters, such as tab, linefeed and newline
characters.

Some characters may appear only within comments, character constants, input/output
records and edit descriptors. The English letters, numerals and the underscore character
are collectively called alphanumeric characters.

Normally, Fortran is case insensitive; that is, it does not distinguish between the upper-
case and lowercase letters. There are, however, exceptions (character strings and input/
output). In addition, specifiers like file names in open and inquire statements (Chapter 9)
may make it necessary to distinguish between lowercase and uppercase letters. This is
processor dependent and will be discussed at appropriate places in the text. Table 1.1
shows the list of special characters.

In this book, we consider only ASCII set of characters. ASCII, abbreviation of American
Standard Code for Information Interchange, is an industry standard for electronic
communication. The processor may also support other types of character sets.

Preliminaries

TABLE 1.1

Lists of Special Characters

Character Name Character Name
Blank ; Semicolon

= Assignment (equal) ! Exclamation sign

+ Plus n Quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ~ Tilde

\ Back slash < Less than

(Left parenthesis > Greater than

) Right parenthesis ? Question mark

[Left square bracket ! Apostrophe

] Right square bracket - Grave accent

{ Left curly bracket ~ Circumflex accent

} Right curly bracket | Vertical line

, Comma S Currency sign
Decimal point # Number sign
Colon @ Commercial at

|

1.2 Identifiers

Identifiers are used to specify various objects permitted by the language. An identifier (a)
must start with a letter of the English alphabet, (b) may contain other digits and letters or
the underscore character, (c) must not contain any special characters or blanks and (d) must
have a length not exceeding 63 characters. It is obvious that the identifier must comprise
at least one character, and in that case, it must be a letter of the English alphabet only.
The first character cannot be an underscore character. However, the last character can be
an underscore.
The following are valid identifiers:

xmax, counter, basic pay, 1, volt, name of a person

(Note two successive underscore characters after name.)
The following are invalid identifiers:

1xy (starts with a digit)
x)y (contains a special character)
x min (contains a blank character)

The identifiers ABC, Abc, aBC and abC, or any combination of uppercase and lowercase
A, Band C, are equivalent, as Fortran normally does not distinguish between the upper-
case and the lowercase letters.

Usually, identifiers are so chosen that they have some relation with the actual objects
they refer to. For example, the identifier volt is a natural choice for denoting the volt-
age of an electrical circuit. One can as well choose z43p8 to represent voltage; however,

4 Fortran 2018 with Parallel Programming

it appears to be a poor choice because the readability of the program is diminished once
such a choice is made. Needless to say, the length of the identifier must be of reasonable
size. Though the language permits 63 characters to represent an identifier, rarely more
than 8 or 10 characters are used to represent an identifier. Unnecessarily long identifiers
will invite typing errors and perhaps reduce the readability of the program.

Several characters like (2 and z), (1 and I) and (O and 0) look similar. Therefore, care
should be taken while using similar characters within the same identifier. For example, iden-
tifiers like 00 (oh zero) should be avoided. One may invite further trouble if one chooses
another identifier 0O (oh oh) in the same program unit. It must be understood that, for the
Fortran compiler, both 00 (oh zero) and 00 (oh oh) are valid but different identifiers—it is the
human programmer who may mix up these two similar-looking identifiers.

1.3 Intrinsic Data Types

There are five types of intrinsic data in Fortran. They are integer, real, complex,

logical and character. The integer, real and complex types are used for numeric
computation; logical and character are nonnumeric data types. In addition, there
are extended precision real data types, known as double precision and quadruple
precision (not a standard Fortran—Intel’s extension) and double precision complex.
All intrinsic data types are associated with a kind parameter. The kind parameter may be
explicit, or if the kind parameter is not present, the intrinsic data assume the default kind
parameter. The intrinsic type character is usually associated with a 1en parameter, which
determines the length of the character string. The kind parameter is discussed in Chapter 5.

1.4 Constants and Variables

In any programming language, we normally use two types of objects—constants and variables.

A quantity whose value remains fixed during the execution of a program is called a
constant. The compiler identifies the constant—its type and value—from its appearance.
Constants do not have any name associated with them. In other words, a constant conveys
both its type and its value to the compiler. On the other hand, a variable may change its
value during the lifetime of a program. A variable must have a name attached to it. It may
also remain undefined during the lifetime of a program.

As there are five types of intrinsic data (plus two extended types) in Fortran, there are
five types (plus two extended types) of intrinsic constants and variables in Fortran.

1.5 Integer Constants

An integer constant is a whole number; that is, it does not contain any decimal point. It con-
tains only digits and a leading sign, if necessary. An integer constant may be positive,
negative or zero. Zero is neither a positive nor a negative number. In addition, the numeri-
cal values of 0, +0 and -0 are same. Negative constants are prefixed by a minus sign, and
positive constants may optionally be prefixed by a plus sign. Unsigned integer constants

Preliminaries 5

are assumed to be positive. For instance, constants 10 and +10 are equivalent. Normally,
a leading positive sign is not used, as it is optional. The integer constant, say, 127, tells
the compiler its type; in this case it is an integer, and its magnitude is 127. The maximum
and minimum values that an integer constant may assume are processor dependent. The
typical values are 2147483647 (maximum: 2 to the power 31 minus 1) and -2147483648
(minimum: minus 2 to the power 31). By default, integer constants are treated as decimal
numbers (base 10). Valid integer constants are 2, 35, -7432, 12345, 0 and -4321.
Invalid integer constants are as follows:

2.0 (contains decimal point)

37- (negative sign is not prefixed)

12345678901234 (most probably exceeds the capacity of the processor but
might not at some point in future)

2a3 (contains a non-digit character)

Leading zeros of an integer constant are ignored. For example, 01, 001, 00001 and 1 are
all equivalent.

1.6 Real Constants

A real constant is a real number containing one and only one decimal point. The decimal
point may be explicit or implicit (possible in scientific notation—to be discussed shortly). A real
constant may be positive, negative or zero. A real negative constant is prefixed by a negative
sign. An unsigned real constant is assumed to be positive. The numerical values of +0. 0 and
-0. 0 are same even if the processor can make distinction between +0. 0 and -0 . 0. Like for an
integer constant, a leading plus sign for a positive real constant is optional. A real constant, in
the standard form, contains digits, one decimal point and is prefixed by a plus or minus sign,
if necessary. Valid real constants are 3.1415926, -25.3456, 12345.678and 0.0.
Invalid real constants are as follows:

36 (contains no decimal point)

35.3.2 (contains more than one decimal point)
3a3563.25 (contains a letter ‘a’)

45.2(2) (contains special characters)

5 6.0 (contains a blank)

If there is no digit before or after the decimal point, zero is assumed. For example, 2. is
treated as 2. 0. Similarly, . 25 is a valid real constant, which is same as 0.25. The use of
real constants like 2. and . 25 is strongly discouraged. This reduces the readability of the
program. These numbers should be written as 2.0 and 0. 25, respectively. It is needless
to mention that just a decimal point does not represent any real constant, that is, not 0. 0.
The maximum and minimum values and the precision of the real number are processor
dependent. A real number may be written with more digits after the decimal point than
the number of digits the processor can support. The excess digits are not considered by the
system. Real constants may also be represented by powers of 10, known as scientific form.
This makes it very convenient to express very small or very large numbers. In this form,
a real constant consists of two parts: an integer or real number followed by an exponent.
The exponent is denoted by letter *E’ or ‘*e’. Thenumber 1.24e4 isactually 1.24 x 104,

6 Fortran 2018 with Parallel Programming

as ‘e4’ stands for 10 to the power 4. There is no space between ‘e’ and the real or the
integer part (also called fractional part). The exponent must be an integer and may be
signed. The sign is placed after the exponent symbol. Unsigned exponents are assumed
to be positive. Valid real constants in scientific notation are 1.24e4, -111.90el0,
77.345e-3 and -123.345e-5. The values of the above real constants are, respec-
tively, 1.24x10%, -111.90 x 10*®, 77.345 x 102> and -123.345 x 10°°.

Invalid real constants are as follows:

1.24e4- (wrong position of the minus sign)

3.25 e5 (space between the fraction and the exponent symbol)
777.24e2.5 (exponent must be an integer)

6.935e500 (probably exceeds the capacity of the processor)

As mentioned earlier, the decimal point in a real constant may be implicit. For example,
123e4 is a real constant, though it does not contain any decimal point. The default
decimal point is assumed between ‘3’ and ‘e’. It is, thus, equivalent to 123.0 x 10%
Leading zeros of the fractions are ignored. For example, 0123 .24e4, 00123.24e4 and
123.24e4 are all equivalent. Similarly, leading zeros in the exponent are also ignored.
The real constants 2.345e+2, 2.345e+02, 2.345e02 and 2.345e2 are equivalent.

1.7 Double Precision Constants

Double precision quantities are real numbers but are more precise than their single
precision counterparts. Itis well known that the computer internally uses binary numbers,
and all decimal numbers do not have an exact binary representation. For example, when
0.1 is converted to binary, the binary number may not be exactly 0.1—it is probably
0.09999.... A computer is a finite bit (binary digit) machine, and the number of bits
used determines how close the binary number is to the decimal counterpart. For infinite
precision arithmetic, the two numbers would have been identical. By increasing the
number of bits to store a real number, the binary counterpart can be made closer to
the decimal value. Double precision numbers take more memory than do the single
precision numbers and consume more central processing unit (CPU) time to perform
any arithmetic operations compared with the corresponding single precision numbers.

Double precision constants are more precise than the corresponding single precision
values. Such a constant is expressed in scientific notation. To indicate ten to the power
for double precision constants, *D’ or ‘d’ is used; m, correct up to 15 decimal places, is
written as 3.141592653589793d0.

The rules discussed in connection with the single precision real numbers (in scientific
notation) are equally valid for the double precision quantities.

1.8 Complex Constants

Complex numbers are widely used in science and engineering. A complex number consists
of two parts—real and imaginary. The Fortran compiler can handle complex numbers
according to the rules of the complex algebra. The real and the imaginary parts may
separately be positive, negative or zero.

Preliminaries 7

Both the real and the imaginary parts are integers or real numbers. The real and the
imaginary pair are enclosed in brackets.
Valid complex constants are as follows:

(2.0, 5.0), (-3.373, 5.397), (-4467.23, 891.45)
(3.124E2, -4.935E-7), (33, 25), (-15.72, -21)

Since the real and the imaginary parts are either integers or real numbers, the discussions
regarding real and integer numbers are equally valid for the real and the imaginary parts,
respectively.

1.9 Double Precision Complex Constants

Double precision complex constants have double precision quantities as the real and the
imaginary parts. Valid double precision complex constants are as follows:

(1.23456789d0, 9.87654321d0), (-3.14159265d0, 1.987665432d0)

1.10 Quadruple (Quad) Precision Constants

Intel’s Fortran compiler, ifort, supports quadruple precision real numbers. These numbers
are more precise than the corresponding double precision numbers. This is not a standard
Fortran feature. Quadruple precision constants have a precision of 33 places after the
decimal. To indicate quadruple precision, ‘q’ (or ‘Q’) is used in scientific notation in
place of ‘e’ or *d’. Valid quadruple precision constants are as follows:

3.14159265358979323846264338327950290,-7.98765432198765432198765432112345qg1

1.11 Logical Constants

Integer and real constants can assume innumerable values. There are only two logical
constants: .true. and .false.. These constants are bound by two periods (uppercase
letters may be used).

1.12 Character Constants

Character constants are zero or more characters enclosed in quotes or apostrophes.
Examples of character constants are 'A', 'ABC' and 'West Bengal'.

8 Fortran 2018 with Parallel Programming

The delimiters (apostrophe or quote) are not part of the string. Note that a blank is
also a character (blank between West and Bengal). The characters ‘A’ and ‘a’ are
not same. It is case sensitive. In addition, character ‘1’ and number 1 are different, and
they are stored in different ways inside the machine. Conventional arithmetic operations
are not permitted with character constants like *1’. To represent the apostrophe as a
character constant, either two successive apostrophes are used or it is enclosed in quotes:
‘don’'t’, “don’t”.Similarly, to represent the quote as a character constant, either two
successive quotes are used or it is enclosed in apostrophes: “““*, * **. Null is represented
as two successive apostrophes (or quotes) with nothing in between. Any graphic character
supported by the processor can also be part of a character constant.

Although Fortran supports other types of character sets, in this book only the ASCII
character set is considered. All these character sets have one thing in common: all of them
have one blank character.

1.13 Literal Constants

The constants mentioned earlier are also known as literal constants. Literal constants do
not have names attached to them.

1.14 Variables

An object whose value may vary during the execution of a program is called a variable.
A variable can store only one value at a time, which may change during the execution of the
program. A variable must have a name attached to it. A variable is identified by its name,
type and value. If no value is assigned to it, it remains unassigned or undefined. Note the
word may in the definition. The variable may or may not change its value during the execu-
tion of the program and may even remain undefined during the lifetime of the program.

By default, if the variablenamestartswith i, j, k, 1, morn (or uppercase letters), itis an
integer variable. All other variables that start with letters other than i-n are real variables.
An integer variable can store only an integer quantity, and similarly, a real variable can
store only a real quantity. In spite of the preceding default rule, it is a good programming
practice to define each variable explicitly. The modern programming practice is to switch
off this default feature, that is, i-n rule, by appropriate declaration, and in that case, it is
mandatory to declare each variable.

1.15 Variable Declarations

An integer variable can store only an integer quantity. It is declared as follows:

integer :: a
integer :: Db
integer :: ¢, d

Preliminaries 9

In the preceding declarations, a, b, ¢ and d are declared as integer variables, and there-
fore, these variables can store only integer quantities. It is apparent from these declara-
tions that more than one variable may be declared by a single declaration—in that case,
the variables are separated by a comma. The first two declarations may be combined as
follows:

integer :: a, b

Blanks between integer and ‘::’ and between ‘::’ and the variable name can be
introduced to increase the readability.

An identifier (variable name) may be treated like a box. The name of the box is the name
of the variable. The content of the box is undefined. When a value is assigned to a variable,
the content of the box is the value of the variable.

In an identical manner, other intrinsic types are defined.

real :: x

real :: p, g

double precision :: dl
double precision :: d3, d4
complex :: c

complex :: z, y

double complex :: dcl
double complex :: dc2, dc3
character :: ch

character :: e, £

logical :: 13, 14

By default, the number of characters that a character variable can store is 1; that is, the
length is 1. A character variable may store more than one character if it is declared in an
appropriate manner.

character (len=10) :: ch

The variable ch can store 10 characters. The length can also be specified as
character *10 ch. Also, character (4) :: ch and character (len=4) :: ch are
equivalent. In this case, just an integer without 1en= is assumed to be the length of the string.

1.16 Meaning of a Declaration

A declaration is a placeholder for a variable; it merely reserves location(s) for a variable and
defines the type of the variable. No value is assigned to the variable. A suitable Fortran
statement must be used to assign a value to a variable. A variable can store only one
value at a time. The same variable cannot be declared more than once in a program unit.
For example, the declarations

integer :: x
real :: X

10 Fortran 2018 with Parallel Programming

within the same program unit will give rise to Fortran error because the variable *x’ can-
not be an integer and a real variable at the same time. Unassigned variables should not be
used, as the result of such computation is unpredictable.

1.17 Assignment Operator

The assignment operator (=) is used to assign a value to a variable. For example, if a vari-
able f£irst is declared as integer, the variable £irst is assigned to a value in the follow-
ing manner:

integer :: first
first = 10

Subsequently, if 20 is assigned to £irst, the old value 10 will be lost and now first
will contain 20. The instruction £irst = 20 assigns 20 to first; the old value 10 is lost.
We will discuss this assignment operator in detail in Chapter 2.

1.18 Named Constants

A symbolic name may be attached to a constant. The symbolic name becomes an alias
for the constant. The alias behaves just like a literal constant, and it cannot be modified
during the execution of the program. A true constant, say, ©, may thus be used in this
manner.

real, parameter :: pi=3.1415926

In the preceding declaration, pi is the symbolic name of 3.1415926 because of the
presence of the attribute ‘parameter’ with the real declaration; a comma separates real
and parameter. In the preceding declaration, pi is not a real variable—it is just another
name of 3.1415926. During compilation, 3. 1415926 will replace each occurrence of pi.
Since pi is alias of 3.1415926, pi cannot be assigned to a different value; pi=4.25 is
not allowed as named constants by definition cannot be modified. The reason is not diffi-
cult to guess. During compilation, 3.1415926 will replace pi, so the statement pi=4.25
will become

3.1415926 = 4.25

which is clearly not a valid Fortran statement.
Moreover, the program unit cannot have any variable named pi as pi has already been
declared as an alias for 3.1415926. The following will generate compilation error:

real, parameter :: pi = 3.1415926
integer :: pi

Preliminaries 11

It is a good programming practice to assign a symbolic name to a true constant like &
so that even by mistake the constant cannot be modified during the execution of the
program. An alternative way to represent a named constant is through the parameter
statement:

parameter (named constant=value,...)

Example: parameter (pi=3.1415926)

Either the type of the named constant, declared by the parameter statement, is declared
or it follows the default i-n rule. For example, in the case of parameter (ip=2.3),
each occurrence of ip is substituted by 2 and not 2. 3 since, without any declaration,
ip, being an integer can store only an integer quantity. Therefore, truncation will
take place. A single parameter statement may define more than one named constant:
parameter (pi=3.1415926, e=2.303, 1lpt=6).

Named constants are assigned values at the time of compilation. Therefore, it cannot
contain anything whose value is not known during compilation. In an identical manner,
other intrinsic type constants can be attached to a symbolic name.

integer, parameter :: 1limit=100

double precision, parameter :: dpi=3.1415926589793d0
complex, parameter :: zpar=(10.0,30.0)

logical, parameter :: 13=.true.

character, parameter :: start= 'a'

For a character named constant, an asterisk may be used as the length of the named
constant; the compiler from the declaration can find out the length of the named constant
(allocates locations to store the constant):

character (len=*), parameter :: city= 'kolkata'

From the declaration, the compiler can ascertain that the named constant city should
have a length 7 to accommodate the string 'kolkata' and allocates locations accordingly.

The preceding declaration is same as character (len=7), parameter :: city=
'kolkata'.

1.19 Keywords

Fortran contains several keywords like integer and real. However, the keywords
are not reserved words and may be used as identifiers. This is strongly discouraged.
For example, ‘do’ is a Fortran statement and also a Fortran keyword. It is permitted
to have an identifier named do. The compiler will identify the do statement from
its appearance; it will also correctly treat the do identifier. However, for the sake of
readability, this should be avoided. These types of keywords are called statement
keywords. Normally, a keyword cannot have embedded space in free form. The keyword,
say, ‘read’ cannot be written as ‘re ad’.However, this is allowed in fixed form (not
discussed in this book). If a name follows a keyword, the keyword and the name must
be separated by a blank. Blank is optional for some single keywords that consist of two

12 Fortran 2018 with Parallel Programming

TABLE 1.2
Adjacent Keywords
Blanks Are Optional

block data end file end team
double complex end forall end type
double precision end function end where
else if end if error stop
else where end interface go to
end associate end module inout
end block end procedure select case
end block data end program select rank
end critical end select select type
end do end submodule
end enum end subroutine

Blanks Are Mandatory
case default interface assignment recursive subroutine
dowhile interface operator recursive type-spec
implicit type-spec module procedure type-spec function
implicit none recursive function type-spec recursive

keywords, such as ‘end do’. In this case, enddo and end do are the same. However,
blank is mandatory for keywords like do while and implicit none. Table 1.2 lists
such adjacent keywords where blanks are optional and mandatory.

Argument keywords are discussed along with subprograms. Keywords are also used to
identify an item within a list. They are used as keyword=value so that the position of the
keyword within the list is not important.

1.20 Lexical Tokens

If a Fortran statement is broken into basic language elements, the smallest meaningful objects
are called lexical tokens. The lexical tokens consist of names, operators, literals, keywords, labels,
assignment signs, commas, etc. In other words, a Fortran statement is a combination of lexical
tokens. Names, constants and labels are usually separated from adjacent lexical tokens by one
or more blanks or an end of line. For example, a+b consists of three lexical tokens: a, b and +.

1.21 Delimiters

A delimiter consists of a pair of symbols, which determines a part of a Fortran statement.
Examples of delimiters are

These are discussed at appropriate places in the text.

Preliminaries 13

1.22 Source Form

A Fortran source program consists of one or more lines. A line may contain zero or more
characters. Fortran statements may be written in two different forms: (a) fixed form and
(b) free form. The current trend is to write programs in free form; therefore, fixed form is
not discussed in this book.

1.23 Free Form

In free form, a Fortran statement can be extended to 132 characters per line if characters of
default kind are used. However, if the line contains characters other than the default kind,
the number of characters that a line can accommodate is processor dependent. The state-
ment may start anywhere within this field. A line is usually divided into several fields: (a)
statement number field, (b) statement field, (c) comment field and (d) continuation field.
A line may not contain all fields; even a line may be totally empty. If the last non-blank
character of a particular line is * &', the next line (if it is not a comment line) is considered
as the continuation of the previous line. A total number of 255 continuation lines are
allowed (per statement). Note that * &’ character is not a part of the statement when used
as a continuation character.

Figure 1.1 is equivalent to X=Y+Z. No line can contain a single &’ as the only non-
blank character. In addition, no line can contain one ‘&’ character followed by * !’
character. A statement number, if any, should be placed at the beginning of the line.
There must be a blank or a tab character after the statement number. There may be any
number of blanks before the statement num-
ber. A statement may have a statementnum- [1[2[3[4[5[6 789 [10]11]12
ber between 1 and 99999. Leading zeros of X =Y |+ &
the statement numbers are ignored. No two
statements in a program unit can have the
same statement number (one exception is [1[2[3[4[5[6[7[8[9]10]11[12
discussed in Chapter 12). It is not required
to assign a statement number to every state- 11417 Xl=1Y[+ [2
ment. However, there are statements that
must have a statement number. The statement [1 7234 [5[6[7[8[9 [10]11]12
number is used when a statement is required
to be referred by other statement(s). If a line is
continued, only the first line can have a state-
ment number. There cannot be any blank [1]2]3[4 [5[6[7[8]9 [10]11]12
within the statement number (Figures 1.2
through 1.4). L 215 X|=v|llefr|r

If the character ‘!’ is typed anywhere
in a line, the rest of the line, except within [1[2 |3][4 [5]|6[7 |8 |9 [10]11]12
a character string, is treated as a comment
(Figure 1.5). Comments are used for docu-
mentation. The compiler does not try to pGure1.a through 1.5
translate the comment. Comments can be (see text).

5 Al=1]2]! |c|m]|t

14 Fortran 2018 with Parallel Programming

placed anywhere within the program unit; it may be placed before the first statement.
It may also be placed after the last statement. It may be placed between two continuation
lines. Comments placed between continuation lines do not contribute to the calculation
of continuation lines.

A comment line cannot have a statement number (gfortran gives a warning):

100 ! This is a comment

This is not a valid statement. Furthermore, a comment line cannot be continued.

A blank line is treated as a comment. In fact, judicious use of blank lines increases
the readability of the program. If the continuation symbol ‘&’ is typed after the
comment character ‘!, the character ‘&’ becomes a part of the comment and is
not considered a continuation character

(Figure 1.6). This will generate compilation [1[2[3[4[5[6 7 [8]9 [16]11]12
error; ‘&’ is not considered as the continua- X|=]Y |+ |! |&
tion character in this case, so the next line is z
not treated as continuation of the previous
line. A comment may appear after the line [1[2[3[4[5[6[7[8[9 [10]11]12
continuation character: _ X|=]Y |+ |&

a=b+ & ! This is a comment

c 1(2[3]4a[5[6|7[8]9 10]11]12

X|=|Y |+ | &
& |z

Normally, continuation starts from the first
character of the next non-commented line. FIGURE 1.6 through 1.8
However, if it is necessary to start the con- (see text).
tinuation from a particular position of the next line, then the ‘&’ character must be
typed just before the desired character of the next line.

The statement where the continuation line starts with a blank (Figure 1.7) will be treated
as follows:

X=Y+ Z (one blank between ‘+’ and Z)

On the other hand, where the continuation line starts with ‘&’, the statement will be
treated as follows (Figure 1.8):

X=Y+Z (no blank between ‘+’ and ‘Z’)

In these situations, both mean the same, as normally Fortran ignores blanks. This effect
will be felt when character strings are used where the presence or absence of a blank
within a character string may result in a different meaning.

In free form, there cannot be any imbedded blanks within a lexical token. Blanks are
used to separate various items, such as names, constants and labels, from the keywords;
read 20, a, b, c cannotbe written as read20, a, b, c.

Preliminaries 15

However, multiple blanks may be used between tokens. This may improve the readability
of the source code. Most of the times, multiple blanks between tokens are treated as a
single blank.

In free form, a normal statement (a statement without continuation) terminates when
either * !’ character or the end of line is reached. Each compiler has a mechanism to
identify the free and the fixed form. This is done in two ways. The first method is to use
an appropriate compiler directive, say, -free or -fixed. The second method is to use the
file extension. A file having extension . £ (say, a . f) is considered in fixed form, and a file
having extension . £90 (say, a. £90) is considered in free form.

1.24 Continuation of Character Strings

Normally, Fortran ignores blanks. A blank is considered as a character within a character
string. Therefore, special consideration is needed for continuing a character string to the
next line. For this purpose, an ampersand character (‘&’) must be the last non-blank
character of the first line of the character string, and each continuation line must have an
ampersand character. Continuation begins from the character following the ampersand of
the continuation line. Consider the following (Figure 1.9).

clhlja|rjajc|t]|e|r|(|l]e|n|=]|8|0]) c|lh|=]&
"IA|S|S|O|C|I|A|T|I|O|N O |F VI O|L|U|IN|T|A|R|Y|&
& B|L|O|O|D D|{O|N|O|R|S|"

FIGURE 1.9

Continuation of Character String.

The variable ch is initialized along with its declaration. Lines 2 and 3 are continuation
of line 1. We now consider lines 2 and 3. As the continuation starts from the first character
of a line (in this case line 3), six blanks will be added before the string *BLOOD DONORS’ .
The character variable ch will be initialized to

“ASSOCIATION OF VOLUNTARY BLOOD DONORS” (6 blank characters), and
the system will add the required number of trailing blanks. However, if the intention of
the programmer is to initialize the variable to “ASSOCIATION OF VOLUNTARY BLOOD
DONORS”, that is, only one blank between 'VOLUNTARY’ and ‘BLOOD’, the third line
should have an ampersand character as shown next (Figure 1.10).

clhja|r|ajc|t|e|r|(|l]e|n|=|8|0]) clh|=]&
clhlja|r|alc|t|e|r|(|l]e|n|=|8|0]) clh|=]&
"|A|S|S|O|C|I|A|T|I|O|N O|F V|{O|L|U[N|T|A|R|Y|&
& B|L|O|O]|D D|{O|N|O|R '
FIGURE 1.10

Continuation of Character String.

The ampersand in the third line ensures that continuation starts from the character
following the ampersand, which is just a blank in this case.

16 Fortran 2018 with Parallel Programming

If a keyword or other attributes of the language (technically called token) are split
across the line for which no embedded blank is allowed, there should not be any space
between the ampersand and the rest of the token in the continued line as shown in the
following:

re&
&ad *, x

The preceding code is treated as read *, x. Note that the position of the ampersand in
this case ensures that there is no space between ‘re’ and ‘ad’. A character constant may
contain an ampersand. The last one is considered the continuation character, as shown
next. If it contains more than one ampersand, the other ampersands become the part of the
character string. For

print *, 'M/s Roy & Chatterjee & &
&Gupta'
end

the output is M/s Roy & Chatterjee & Gupta. The ampersand shown in bold is
considered as the continuation character. The ampersand before the continuation
character is a part of the character string.

1.25 Structure of a Program

A program unit contains one or more lines, which comprises the Fortran declaration,
statement, comment and included line. A line may contain zero or more characters.
The end statement terminates a program unit. A program may contain more than one
program unit. An executable unit must have one and only one program unit called the main
program. Execution always begins from the first executable statement of the main program.
In addition to the main program, an executable unit may have external subprograms,
internal subprograms, modules, submodules and block data (now declared as obsolete).
These topics are discussed at appropriate places. For the time being, we shall consider only
one program unit; that is, the executable unit would contain only the main program.

1.26 IMPLICIT NONE

It was mentioned earlier that if the variables are not declared explicitly, Fortran applies
certain default rule (i-n rule) in selecting the variable type. This default rule can be
switched off by placing implicit none at the beginning of the program unit. In this case,
all variables are to be declared explicitly. If implicit none is present in a program unit,
the unit cannot have any other implicit statement. For example, if a variable 11 (i and 1)
is declared as an integer and if it is typed as ii (i and i) in the body of the program

Preliminaries 17

(typing error), implicit none will force the compiler to generate a Fortran error (unde-
fined variable). If implicit none is absent, it will be treated as another integer variable
following the default i-n rule, and since it is undefined (no value is possibly assigned),
the result is unpredictable. The modern trend of programming is to use implicit none
in every program unit so the programmer is forced to declare all variables explicitly. Any
typing error, similar to that shown above, will be flagged as an error at the compilation
stage.

1.27 IMPLICIT

This statement can be used to treat variables that start with certain letter to be of a
particular type.

implicit integer (a)
implicit integer (b, c)
implicit integer (d-f)
implicit integer (g-i, x-z)

Statement (1) directs the compiler to treat all variables that start with *a’ as integers. That
is, the compiler will treat am, ax1, ap, etc, as integers. Statement (2) tells the compiler
to assume the variables that start with ‘b’ or ‘c’ to be integers. Statement (3) contains
d-£f, which is equivalent to implicit integer (d, e, f). Statement (4) states that all
variables that start with g, h, i, x, y and z are integers. The dash sign (minus sign)
indicates a set of contiguous letters; the first and the last letter in the set are placed on the
left and the right of the dash sign. The discussion of this section is equally applicable to
other types of variables. So it will not be repeated again.

implicit real (a)

implicit real (x-z)

implicit real (a-h, o-z)
implicit double precision (d)
implicit double precision (e, £f)
implicit complex (p-q)

implicit logical (m-n)

implicit double complex (x-2z)
implicit character (r, s)

For a character variable, if the length parameter is not present along with the implicit
declaration, the length is assumed to be equal to 1. The length parameter can be specified
along with the implicit declaration:

implicit character (len=4) (u-v)

This declaration needs some explanation. It states that variables that start with u or v are
character variables of length 4; that is, they can store four characters.

18 Fortran 2018 with Parallel Programming

1.28 Rules of IMPLICIT
1. Ifa program unit contains implicit none, it mustnot contain any other implicit
statement.
2. A program unit cannot contain two implicit statements with the same letter:
implicit integer (c)
implicit real (c)
or

implicit integer (c-f) ! this includes d
implicit real (d)

are not valid.

3. An explicit declaration overrides an implicit declaration.

implicit integer (i)
real :: i

Here, ‘i’ will be treated as a real variable because of the explicit real declaration.

1.29 Type Declarations

Fortran allows declaring intrinsic variables through t ype declarations.

integer :: a
and type (integer) :: a

are equivalent.
Similarly, real, complex, double precision, double complex, logical and character vari-
ables may be declared through type declarations as shown in the following:

type(real) :: b

type (double precision) :: c

type (complex) :: d

type (double complex) :: e ! allowed in ifort, not allowed in NAG
type (logical) :: 1

type (character) :: ch

implicit type(integer) (a-h, o-z)! allowed in NAG, not in ifort

and implicit integer (a-h, o-z)
are equivalent.

Preliminaries 19

1.30 Comments on IMPLICIT Statement

Readers must have noticed that the discussion related to implicit none goes against
the declaration implicit integer / real / double precision / complex /
character / logical / double complex. A guideline may be formulated. Implicit
none is certainly very safe; it isolates all undefined variables and helps to eliminate most
of the typing errors related to variable names. On the other hand, implicit integer
saves a lot of typing, especially if the program unit contains many integer variables. Some
programmers use the first letter of variables to indicate the type of variables. For example,
one may choose ‘c’ as the first letter for all complex variables and *d’ as the first letter
for all double precision variables. In such a situation, implicit double precision (d)
and implicit complex (c) are convenient. Therefore, it is a matter of choice. The
present author prefers implicit none, and he feels that if more time is spent during
the development phase of the program (that is, coding and typing), then debugging time
is substantially reduced and the problems mentioned related to the undefined variables
never crop up.

1.31 PROGRAM Statement

The optional program statement is the first statement of a program. It supplies the name
of the program:

program my first program

where my_first_programis the name of the program.

1.32 END Statement

The end statement signifies the end of a program unit. It may contain a program and the
name of the program. However, this is optional.
A typical Fortran program is of the following form:

program my first program
end program my first program

Once the ‘end’ statement is reached, the compiler starts compiling that particular
unit. The end statement terminates a program unit. If the end statement contains the
program name, the corresponding program name must be present with the program
statement. In fact, it is always better to use the name of the subroutine, module and

20 Fortran 2018 with Parallel Programming

function along with the end statement. Each program unit, module subprogram and
internal subprogram can have only one end statement. Such end statements are exe-
cutable statement, and it is possible to jump to the statement by suitable statements
(goto, if—Chapter 3). The execution of the end statement in the main program ter-
minates the job. The execution of the end statement within a function or subprogram
or subroutine subprogram or separate module subprogram is equivalent to a return
statement (Chapter 12). The end statement of a module, submodule and block data is a
non-executable statement.

1.33 Initialization

A variable may be initialized to a value along with its declaration. In this case, when the
execution begins, the corresponding variable is not undefined; it has an initial value.

integer :: a=10
real :: x=1.34
integer :: b=10, c=20

In the first case, not only 'a' is declared as an integer but it is also initialized to 10.
Similarly, x, b and c are also initialized to 1.34, 10 and 20, respectively. In case more
than one variable is declared by a single declaration, all variables are to be initialized indi-
vidually. For example,

integer :: d, e=200

will initialize e to 200, but d will remain uninitialized. If it is necessary to initialize both
variables, it is to be done separately:

integer :: d=200, e=200

1.34 Number System

Strictly speaking, the digits are just symbols; the positions of a digit within a number deter-
mine its value. For example, when the base of the number system is 10, the number 123 is
actually 1x10%2+ 2x10!+ 3x10° Therefore, if a digit, say, 3, appears at the unit position, its
value is 3. On the other hand, if the same digit appears at the position of 10, its value is 30.
A number may be represented in terms of a base other than 10. The most popular bases
are binary (base of 2), octal (base of 8) and hexadecimal or hex (base of 16). However, the
numerical value of a particular number is independent of the number system (base)—the
value of a particular number is same in all systems. In the next few sections, we indicate
a base other than base 10 by means of a subscript—(1110) , stands for a binary number.

Preliminaries 21

1.35 Binary Numbers

A bit is the abbreviation of binary digit. In the binary system, that is, when the base is 2,
the available digits are 0 and 1. For example, a number (1101),is equal to 13 in the deci-
mal system: 1x2%+ 1x22+ 0x2!+ 1x2°

1.36 Octal Numbers

Octal numbers have a base of 8. The available digits are 0 through 7. Three binary digits
constitute one octal digit (the highest value is 7, thatis, (111),). An octal number (101),
is equal to 65 in the decimal system: 1x82 + 0x8! + 1x8°.

1.37 Hexadecimal Numbers

Hexadecimal numbers—popularly known as hex numbers—have a base of 16. The avail-
able digits are 0 through 9 and a, b, ¢, d, e and £ (capital letters may also be used).
The last six symbols are equivalent to decimal 10, 11, 12, 13, 14 and 15, respectively.
Four binary digits constitute one hex digit. The highest value of a hex digitis £, that is,
15 in the decimal system. The hex number (101) ,; is equal to 257 in the decimal system:
1x162 + 0x16! + 1x16°.

1.38 Initialization Using DATA Statement

Data statements are used to initialize variables. They are usually placed at the beginning
of the program unit along with other specification statements. It is normally placed after
the declaration of the variables. However, it can be placed anywhere within the program
unit, but this should not be done. Two integer variables i and j may be initialized to 10
and 20, respectively, by a data statement as follows:

data 1 /10/

data j /20/
or

data i /10/, j /20/
or

data i, j /10, 20/

22 Fortran 2018 with Parallel Programming

The last two declarations are equivalent. Note that either the variables are declared by
appropriate declaration or the default 1-n rule is followed. The following are the data
statements to initialize variables 1, d and c:

logical :: 1
double precision :: d
complex :: c

data 1 /.true./
data d /3.1415926589d0/
data ¢ /(2.0, 3.0)/

For the complex variable c, the first constant corresponds to the real part, and the second
constant corresponds to the imaginary part of the variable. In the case of a complex vari-
able, the real and the imaginary parts are enclosed in parentheses.

Character variables are also initialized in a similar manner:

character (len=4) :: ch
data ch / 'iacs'/

If the number of characters is less than the size of the variable, blanks are added at the end.
If the number of characters is more than the size of the variable, the constant is truncated
from the right:

character (len=8) :: ch
data ch / 'iacs calcutta'/

The variable ch is initialized to 'iacs cal' as it can store a maximum of 8 characters.

1.39 BOZ Numbers

The binary, octal or hex numbers (also known as boz numbers) are represented by the
respective digits enclosed in apostrophes or quotes and prefixed by b, o or z, respectively.
The following are binary, octal and hex numbers:

b'1001' (decimal 9)
0'127" (decimal 87)
z'1lb7' (decimal 439)

The uppercase letters B, 0 and z may be substituted for their corresponding lowercase
counterparts —b, o and z, respectively.

1.40 Integer Variables and BOZ Numbers

An integer variable may be initialized by a binary, octal or hex number:

integer :: a=b'111'
integer :: b=0'171"
integer :: c=z'la'

Preliminaries 23

A BOZ constant can be used to initialize an integer variable by a data statement:

integer :: p, q,r
data p/b'1111'/
data g/o'247'/
data r/z'12a'/

1.41 Executable and Non-Executable Statements

Fortran statements are basically of two types: executable and non-executable statements.
The first one means some action. For example, x=10 is an executable statement, where the
variable x is assigned to a value 10. The statement integer :: y is a non-executable state-
ment. Itis a declaration and merely passes information to the compiler to reserve locations
for an integer variable y. The non-executable statements configure the programming envi-
ronment where executions of executable statements are performed. Non-executable state-
ments cannot be the targets of any branch statement (Chapter 3).

1.42 INCLUDE Directive

Strictly speaking include is not a Fortran statement; it is a directive to the compiler.
The syntax of include is

include 'char-constant'

where the character-constant is usually the name of a file. The compiler replaces the
include statement by the content of the file. The include statement cannot be labeled;
it may be nested; that is, it may contain another include statement (nested include).
The maximum number of nested include is processor dependent. The include cannot
‘include’ itself directly or indirectly—include ‘a’ may contain include ‘b’ , but
then the file ‘b’ cannot contain include ‘a’ (arecursive “call”). The include statement
must be typed on a separate line, and it may have a trailing comment:

include 'myfile.f90'

The content of 'myfile.f£90"' is included at the point of inclusion. The include
statement cannot be continued. The first included line should not be a continuation
line; the last included line cannot be continued. The following program segment is
unacceptable:

a=b+ &
include 'myfile.f90'
The file myfile. £90 cannot have its first line as

&c

24 Fortran 2018 with Parallel Programming

Similarly,

include 'myfile.f90'
&c

with the last line of the file 'myfile.f90"' as
a=b+&

is also not acceptable.

1.43 Statement Ordering

In a program unit, statements are ordered as shown in Appendix B. Usually, the declara-
tions come at the beginning of the program unit.

1.44 Processor Dependencies

If the source line is created with characters other than the default type, the number of
characters that a source line can have is processor dependent. There is no guideline how
the compiler will identify the free-form and fixed-form sources. Though, normally, ASCII
is the default character set, there is no specific guideline in the Fortran report in this matter.
The interpretation of the char-literal-constant used with the include compiler directive
is processor dependent. Also, the maximum number of include directives that may be
nested is not specified in the Fortran report.
The maximum and minimum values (numeric) are processor dependent.

1.45 Compilation and Execution of Fortran Programs

The programs in this book have been tested with three compilers: ifort, nagfor and gfortran.
To compile a Fortran program using the i fort compiler, the instruction is (name of the
source file—x . £90)

ifort x.£90

This will create an executable x.exe, which can be executed.
A Fortran program using Numerical Algorithm Group’s nagfor can be compiled as
follows:

nagfor -o x.exe x.f90 [x.exe is the executable file]
A Fortran program using the GCC gfortran compiler can be compiled as follows:

gfortran -o x.exe x.f90 [x.exe is the executable file]

2

Arithmetic, Relational and Logical
Operators and Expressions

As the computer is a machine that can perform basic arithmetic operations at a high speed,
naturally Fortran is provided with arithmetic operators to perform these operations on
arithmetic expressions. Alongside, relational operators can test a relation. They return
either a true or false value. For example, if a question is asked, “Is x greater than y?”
The answer is either yes (true) or no (false). In addition to this, five logical operators
are also available that return either a true or false value. We first consider arithmetic
operators.

2.1 Arithmetic Operators

Two types of arithmetic operators are available to a Fortran programmer — binary and
unary operators. Binary operators require two operands. The binary arithmetic operators
are shown in Table 2.1.

Examples of binary operators are as follows: TABLE 2.1
Arithmetic Operators (Binary)
a + b (add a to b)
a * b (multiply a by b) Symbol Meaning
a - b (subtract b from a) > Exponentiation (to the power)
a / b (divide a by b) / Divisi
** b (a to the power of b) tision
a * Multiplication
. . Addition
Unary operators require a single operand. Subtraction
Table 2.2 shows the unary arithmetic operators.
As unsigned integers, real constants or variables
TABLE 2.2

are treated as positive numbers, unary plus is
rarely used; +5 is same as 5. The unary minus Unary Operators
changes the sign of a variable or a constant. An
example of the unary minus is -5, where the
sign of 5 is changed. Similarly, the magnitude
of -x is the value of x with its sign reversed.

Symbol Meaning

+ Unary plus
Unary minus

25

26 Fortran 2018 with Parallel Programming

It may be noted that the same symbols '+’ and ‘-’ are used to indicate both the unary
and binary operations. The compiler can determine from the context the meaning of the
operators—whether it is a binary or a unary operator.

2.2 Arithmetic Expressions

Arithmetic expressions are formed using constants, variables and other objects as
permitted by the language and arithmetic operators discussed in the previous section.
Examples of arithmetic expressions are as follows:

* +

+ z
+ k
- ¢c**3 / £ + 27.35

T X
+

Y
]
q

2.3 Assignment Sign

The symbol ‘=’ is used to assign a value to a variable. The general form of an assignment
statement is as follows:

variable = expression

The expression on the right-hand side of the assignment sign is evaluated, and the value
thus obtained is stored in the variable. As a variable can store only one value at a time,
the current value of the variable is lost, and a new value is stored in its place. Examples of
assignments are as follows:

? 2 3
i=2
area = length * width c a b
S =u*t+ 0.5 % f % tx*x2 5 2 3

Consider the following expression: FIGURE 2.1
Arithmetic operation.

c=a+b

Let us assume that the values of a and b are 2 and 3, respectively. The value of c is not our
concern at this moment. Before the expression is evaluated, the contents of a, b and c are
as shown in the upper panel of Figure 2.1.

When a is added to b, the result is 5, and it is stored in location c. However, a and b will
retain their old values. Therefore, at the end of the operation, the values are as shown in
the lower panel of Figure 2.1.

The symbol for the assignment sign, that is, ‘=", must not be confused with the equal
sign used in algebra.

Forexample, 1 = 1 + 1 isavalid Fortran statement, which is not an algebraic equation. Had
it been so, canceling i from both sides would give us, 0 = 1, which is clearly not acceptable.
The proper meaning of this statement is to increment i by 1. To be more specific, in this

Arithmetic, Relational and Logical Operators and Expressions 27

case the current value of 1 is taken, 1 is added to it and the result is stored in the same loca-
tion, i. If, for example, the value of 1 is 10 before the execution of the statement, itis 11 at
the end of the operation, and the result is stored in location i.

One can write similar statements:

i=4-1
i=d %]

In an assignment operation, unless the same variable appears on both sides of the assign-
ment sign, the variables appearing on the right-hand side of the assignment sign are
not modified — they retain their old values, and the variable on the left-hand side of the
assignment sign gets a new value.

2.4 Rules for Arithmetic Expressions

The following rules must be followed while writing arithmetic expressions:

Rule 1: Arithmetic operations are not allowed on the left-hand side of the assign-
ment sign. For example, a + b = ¢ is not a valid arithmetic expression. The left-
hand side of the assignment sign must be a variable. Arithmetic operation
on the left-hand side of the assignment sign is allowed only to calculate the
address of a variable and the like. This is discussed in Chapter 6, when we
discuss array.

Rule 2: No arithmetic operation is assumed like algebra: (a+b) (a-b) is not taken
as (a+b)* (a-b). The multiplication operator in this case must be specified
explicitly.

Rule 3: No two arithmetic operators may appear side by side: ¢ = a * -b is not a valid
Fortran statement. Should such situation arise, it must be enclosed in parentheses:
¢ = a * (-b). However, some compilers do not flag this as error. This rule appears
to have been violated in case of exponentiation operator ***’. However, it must
be remembered that the exponentiation operator is a single entry — it is not two
successive multiplication operators.

Rule 4: Arithmetic expressions may contain parentheses and also nested parentheses
(i.e., parentheses within parentheses). In case of nested parentheses, the nearest
left and right parentheses form a pair. If an expression contains parentheses, the
number of left parentheses must be equal to the number of right parentheses.
In case of nested parentheses, computation proceeds from the inner to the outer
parentheses.

The Fortran statement £ =a + (b + ¢ * (d + e) will be rejected by the compiler
because of unmatched parenthesis. It should have been, £ =a + (b + ¢ * (d +
e)).

Rule 5: If a and b are real numbers, a ** b can be evaluated only if a is a positive
quantity. This is because when both a and b are real numbers, a ** b is calculated
as e*1n@ where 1nis logarithm to the base e. If a is negative, 1n (a) is not defined.

28 Fortran 2018 with Parallel Programming

2.5 Precedence of the Arithmetic Operators

An arithmetic expression may contain different kinds of operators. Therefore, it is
necessary to specify a rule regarding how the expressions like d = a / b * c are going
to be evaluated. If the division is performed before the multiplication, the expression
becomes algebraically d = (a / b) x c. However, if the multiplication is performed before
the division, the expression becomes d = a / (b x c¢). Needless to say, the results of the
two sets of calculations are different. This may be verified by assuming the values of a, b
and c as 6, 3 and 2, respectively. In the first case, d = (6 / 3) x 2 = 4, and in the second
case,d=6/ (3 x2) =1.

Arithmetic operators are assigned different priorities. The priority of the exponentiation
operator is the highest and that of the assignment operator is the lowest. The priority of
the multiplication and the division operators is same and less than that of the exponentia-
tion operator. The priority of the addition and the subtraction operators is same and lower
than that of the multiplication and the division operators. The priority of unary plus and
minus operators is in between the multiplication/division and the addition/subtraction
operators. In any arithmetic expression, the high-priority operators are evaluated before the
low-priority operators. For example, in case of the expression e = a + b * d, multiplication,
b * d, is performed first and then a is added to get the result. If an arithmetic expression
contains operators having same priority, computation proceeds from left to right. In case of
d =a +Db - ¢, the addition will be performed before the subtraction (Table 2.3).

There is one exception to the preceding rule. For exponentiation, the evaluation pro-
ceeds from right to left; for a ** b ** ¢, b ** ¢ is performed first and then the result is used
as the power of a. If brackets are used to indicate the order of evaluation, then (a ** b) **
cand a ** (b ** c) are not equivalent. This may be verified by assuming a = 2,b = 3 and
¢ = 4. Substituting these values, (a ** b) ** cbecomes 2?and a ** (b ** c¢) = 28 When
a complex number c1 is raised to the power of another complex number c2, the result is
the principle value of c1

TABLE 2.3

Precedence of Arithmetic Operators

High Exponentiation >
Multiplication and division /,*

l Unary minus and plus -+
Addition and subtraction +, -

Low Assignment =

The parentheses have the highest priority. Inside the parentheses, the preceding rules
are followed. It may be noted that -2**2 is -4 but (-2)**2 is 4. Also, a/ (b*c) and
a/b*c are not the same. In the first case, b*c is evaluated first and then a is divided by
the result. In the second case, without the parentheses, computation proceeds according to
the default priority rules. The priority of the division and the multiplication being equal,
computation proceeds from the left to the right and the division is performed before the
multiplication. The result is multiplied by c.

In the case of nested parentheses, computation starts from the innermost one.

Arithmetic, Relational and Logical Operators and Expressions 29

Consider the expressiona + (b * (c* (d+e/£))). a+(b* (c* (d +e /)
The innermost parentheses containing expressions
involving the division and the addition are evaluated
first, the default priority rules being used (division before
addition). The result is then multiplied by ¢, which is then
multiplied by b and the result is added to a. In Figure 2.2,
the numbers indicate the order of evaluation. The first is
indicated by 1 and the second by 2 and so on. The rule of
thumb is that in case of any doubt, parentheses may be
used to indicate the intention. Extra balanced parentheses
do not cause any harm. The expressiond =a / b * ¢ is
sameasd= (a/b) *c.

Sometimes compilers are smart enough to change the order of the evaluation of the
arithmetic expressions to make it more efficient. In Table 2.4, expressions and allowable
alternative forms used by the compiler are shown. In these expressions, x, y and z are any
type of numeric operands and a, b and c represent any arbitrary real or complex variables.
Table 2.5 shows expressions that the compiler will never convert to the alternative forms.
In this case, 1 and j are integers.

FIGURE 2.2
Evaluation of arithmetic expression.

TABLE 2.4 TABLE 2.5

Allowable Alternative Non-allowable Alternative

Expression Alternative Form Expression Non-allowable Alternative Form
X+Y Y+ x i/2 i*0.5
X*y Y *x x*1i/7 x* (1/73)
-X+Yy y-x i/j/a i/(3*a)
X+y+2z x+ (y+2) (x+y) +2z x+ (y+2)
X-Y+2 x- (y-2z) (x*y) - (x*z) x* (y-z)
x*a/z x* (a/z) x* (y-2z) x*y-x*z
X*y-X*z x* (y-2)

a/b/c a* (b*c)

a/5.0 0.2 *a

|

2.6 Multiple Statements

Two or more Fortran statements, separated by a semicolon, may be placed in a line:

This is same as follows:

c=a+b
d = 10

In this case, only the first statement may have a statement number. The semicolon is not a
part of the Fortran statement. Two or more successive semicolons separated by zero or more
blanks constitute a single semicolon; a=2; ; b=3 is same as a=2; b=3. If a line containing

30 Fortran 2018 with Parallel Programming

a complete Fortran statement is terminated by a semicolon, it is ignored. It is treated as a
statement separator; a=10; is the same as a=10. Some compilers give compilation error
if the first non-blank character in a line is a semicolon.

As multiple statements decrease the program readability, this is not recommended.
However, in this book we use this semicolon to save some spaces in the book.

2.7 Mixed-Mode Operations

For a numeric expression involving variables or constants of different types, conversion
takes place before the expression is evaluated. First, we consider expressions involving reals
and integers.

In an expression involving a real and an integer constant or variable on the two sides of
a binary arithmetic operator, the integer is converted into a real number before the calcu-
lation takes place. For example, the expression a+2 will be calculated as (a is a real vari-
able): integer 2 will be converted to real 2. 0 by the processor and 2. 0 will be added to a.
The result of (a+2) will be real.

Similarly, during the assignment operation, if the type of the variable (or the result)
on the right-hand side of the assignment is different from the type of the variable on the
left-hand side, an automatic type conversion takes place. An integer is converted into a
real number, keeping the magnitude same — integer 2 is converted to real 2. 0. However,
a real number is converted into an integer by truncating the fractional part—real 4.56 is
converted to integer 4.

One important point should be noted, the operands determine the type of the operation
and accordingly type conversion takes place. Consider the expression 1 = j + a * 2, where
i and j are integers and a is a real number (Figure 2.3). The steps required to perform this
computation are as follows: (a) integer 2 is converted to a real number and stored in a tem-
porary location, (b) priority of multiplication operator is more than that of addition, (c) 2. 0
is multiplied by a—the result of the computation is real and is stored in a temporary loca-
tion within the system, (d) j is converted to a real number because the result of the compu-
tation a * 2 is real and is stored in a temporary location, (e) the addition is performed in the

Temporary j
location
v
i —
real j
2.0 a ~ Temporary
v location
o a*2.0 —» + [¢
/ ¥
Temporary real j +a*2.@ |4 lemporary
. location
location +

result of truncation [*— Temporary
3 location

stored in location i

FIGURE 2.3
Mixed-mode arithmetic. 1 = +a * 2

Arithmetic, Relational and Logical Operators and Expressions 31

real mode—the result of addition is stored in a temporary location and (f) as the left-hand
side of the assignment operator is an integer, the result of the computation is converted to
an integer and is stored in location i.

Operations involving an integer or a real quantity with a double precision variable or
constant are performed by first converting the integer or real quantity into double preci-
sion. However, it must be noted that the real number, thus converted, does not become
more precise. The digits after the normal precision are meaningless. If single precision
m (3.1415927) is converted to a double precision number, then the digits after the last
digit on the right (say, 6) are not correct. Similarly, when a single precision expression
is equated to a double precision variable, the single precision number is converted into
a double precision number before it is stored. Again, extra digits so added to make it a double
precision number do not have any significance. Thus, by equating a single precision number
to a double precision variable, the resulting double precision number does not become
more precise compared to the single precision number. The precision may be illustrated
by considering the following program:

program testdbl

implicit none

double precision:: dil,d2
dli = 2.0/3.0

d2 = 2.0d0/3.0d0

print *, di,d2

end program testdbl

It is known that the result of the arithmetic operation is 0.666666666666. . .. The out-
puts of the program (using NAG Fortran compiler) are 0.6666666865348816 and
0.66666666666666, respectively. Note that the displayed value of d1 is correct up to 7
significant figures. Consider the following program:

program testdbl2

implicit none

double precision:: dil,d2
dl = 3.1415926535897932
d2 = 3.1415926535897932d0
print *, di,d2

end program testdbl2

In absence of *d0’, 3.1415926535897932 is treated as a single precision constant and
additional digits after, say, 6 significant digits are removed to make it a single precision
constant. Again, this single precision constant, when equated to a double precision vari-
able d1, is converted into a double precision constant, but the digits so added do not have
any significance. The outputs of the program are, respectively, 3.1415927410125732
and 3.1415926535897931.

We further illustrate mixed-mode arithmetic with double precision quantities in the
following example:

double precision:: dl, d2, d3, d4

dl =1.1/3.1; d2 = 1.140/3.1; d3 = 1.1/3.1d0; d4 = 1.1d40/3.1d0

print *,"dl=",dl; print *,"d2=",d2; print *,"d3=",d3; print *,"d4=",d4
end

32 Fortran 2018 with Parallel Programming

The results are as follows (shown in the same line):

di 0.3548387289047241, d2 0.35483872059356609,
d3 = 0.3548387173683413, d4 = 0.3548387096774194

The results need explanation. The right-hand side of the expression involving d1 is in
single precision. Therefore, the calculation is performed in single precision mode, and
subsequently, the result is converted into double precision. The result is correct up to 7
places of decimal. One of the quantities on the right-hand side of the expression involving
d2 is double precision. Therefore, the other single precision number 3 . 1 is converted into a
double precision number. However, 3 . 1 when converted into a double precision number is
less accurate than 3 .1d0. Similar logic holds for d3, where 3. 1 is a double precision num-
ber but 1.1 is not. Thus, in the case of d4, where both 1.1 and 3.1 are double precision
numbers, the result is the most accurate and it is correct up to, say, 14 places of decimal.

In mixed-mode operations involving an integer or a real number with a complex quan-
tity, the integer or the real number is converted into a complex number with the imaginary
part set to 0. Thus, c*2. 0, where c is a complex variable calculated as ¢ * cmplx (2.0,
0.0).Inasimilar way, when a real number or an integer is equated to a complex variable,
the real number or the integer becomes the real part of the complex variable with 0 as the
imaginary part.

In arithmetic operations involving a double precision real and a complex variable, the
double precision variables are first converted into a double complex number (both the real
and the imaginary parts are double precision quantities). Subsequently, the complex vari-
able is converted into a double precision complex number. The result is a double complex
number.

This may be verified with the help of the following program:

double precision:: d=2.1234567891234d0
complex:: c=(2.0, 3.0)

print *, d+c

end

2.8 Integer Division

Integer division deserves special attention. Improper use of integer division may invite
serious problems. If i and j are integers, i divided by j is calculated in the integer mode
and the result of the computation is an integer (whole number). Following this logic, 3 / 2
is 1 and 2 / 3 is 0. Even if a is a real variable, the expression a = 5 / 2 is calculated in
the integer mode. The result is 2 and because a is real, the result of the computation is
converted to 2.0 and 2.0 is stored in a. The computer itself does the conversion. Now,
consider the expressions i =5.0 /2.0and j =5 / 2. In the first case, 5.0 / 2.0 is a real
number and itis 2. 5. As i is an integer, 2. 5 is truncated to 2 before it is stored in 1. In the
second case, 2 is stored in j and no type conversion takes place as all the operands and the
variable on the left-hand side of the assignment sign are of the same type. It may be noted
that the result of the computation in the preceding two cases are same; however, the way
they are evaluated is different.

Arithmetic, Relational and Logical Operators and Expressions 33

Consider the expression x =y * 10 ** (-2).The value of x is 0, irrespective of the value
of y. This is because 10 ** (-2) is evaluated as 1 / 100. As both 1 and 100 are integers,
computation is performed in the integer mode and the result is 0. One should be extremely
careful while translating algebraic expressions like

4
S = u

into Fortran; 4 / 3is 1 and 1 / 2 is 0. It is necessary to write at least one integer constant
as a real number or better both as real numbers:

1415926 * r ** 3

a = * 3.
.0/ 2.0* £ * t * 2 1 1.0/ 2.0 may be written as 0.5

4.0 / 3.0
s =u*t+1
Often the result of computation unexpectedly turns out to be 0. In such a situation, one
should look for an integer division similar to that shown earlier. It is advised to avoid
mixed-mode operations as far as practicable.

2.9 List-Directed Input/Output Statement

We now introduce the free-formatted input/output statements. These are also called list-
directed input/output statements.

An input statement reads a value of a variable from an external device, namely, the
keyboard. Similarly, an output statement displays the value of a variable, the result of a
computation or some message on an output device, namely, screen.

Various kinds of input/output devices are available. Some devices are used only for
input and some devices are used only for output, while some devices are used for both
input and output. Free-formatted input/output statements are

read *, list
print *, list

respectively, where list is a list of items to be read or written. If the list contains more than
one element, the elements are separated by comma:

read *, a, b, c
print *, a, b, c

Therefore, read *, x will read data from the keyboard and store in location x erasing the
existing value of x. Similarly, print *, y will display the current value of y on the screen.
When a read * statement is encountered, the computer waits until the required input is
supplied through the keyboard.

Normally, for numbers, one or more blanks are used as delimiters; read *, i, j, k will
have the corresponding data from the keyboard as 10 20 30 so that 10, 20 and 30 will be
stored in locations i, j and k, respectively. Usually, while supplying inputs, list items are
separated by one or more blanks. However, characters like comma, tab or carriage return

34 Fortran 2018 with Parallel Programming

may also be used as delimiters. For example, in the earlier case, data may be entered in the
following manner also:

10, 20, 30 <enter>
or, 10 <enter>

20 <enters>

30 <enters>
or, 10, 20 <enter>

30 <enters>

or various such combinations where <enter> indicates the enter key of the keyboard.

For real numbers, normally the decimal point is typed. If the decimal point is absent,
it is assumed just before the delimiter. If x, y and z are declared as real, and the data
corresponding to the read statement is entered as 10 20 30, itis takenas 10.0, 20.0 and
30.0 for x, y and z, respectively.

Real numbers may be entered as input in scientific notation also for the earlier case:
1.4e2 1.245e-4 3.25.Inthiscase x, yand z are assigned to 1.4 x 10%,1.245 x 1074
and 3. 25, respectively. To display a message on the screen, it needs to be enclosed in apos-
trophes (or quotes).

print *, 'The result is = ', ¢

If the value of r is, say, 2. 5, this print statement will display The result is = 2.5 on the
screen. Within apostrophes, a blank is also treated as a character and the number of blanks
between '="' and 2.5 on the screen depends on the number of blanks between '="' and
the closing apostrophe within the print statement. There must be a comma between the
message and the list element.

The read and print statements are equally valid for double precision variables.

double precision:: dl
read *, dl; print *, dl

The read and print statements can be used for complex variables also. As the complex
number consists of two parts, two numbers are to be supplied during the input operation
for each complex variable. Similarly, two numbers are displayed during the output opera-
tion. The first and the second numbers correspond to the real and the imaginary parts,
respectively. The data, in response to the read statement, is supplied as (r, i), where r
is the real part and i is the imaginary part.

complex:: cl
read *, cl

If the data supplied from the terminalis (2.0, 3.0), 2.0+i 3.0 will be assigned to c1.
Similarly, print *, c1 will display the real and the imaginary parts within brackets.
To read a logical variable from the keyboard,

read *, 1 ! 1 is a logical variable

is to be used. The data must be of the following type: . TRUE. or TRUE for the true value
and .FALSE. or FALSE (lowercase letters are also allowed) for the false value. In addi-
tion, if the first non-blank character is T or F (uppercase or lowercase) or a period followed

Arithmetic, Relational and Logical Operators and Expressions 35

by T or F (uppercase or lowercase), true or false value is, respectively, read in. Note that
if TREU (intentional spelling mistake) is typed in place of TRUE, true value is assumed
because the first non-blank character is T.

To print a logical variable, print *, 1isused, where 1 is a logical quantity or expression.
The print statement displays either T or F depending on whether 1 is true or false.

For characters, it is necessary to enclose the data in apostrophes (or quotes) when the
data contains leading or trailing or embedded blanks. If the data does not contain leading,
trailing or embedded blanks, apostrophes are optional. It is always better to enclose the
character data in apostrophes (or quotes):

character (len=20):: ch
read *, ch; print *, ch

If the datais Indian Association, 'Indian'’ is stored in ch because the blank between
'Indian' and 'Association' prevents reading the data beyond 'Indian'. Here, the
blank acts as a separator. Therefore, the print statement will print ' Indian' (without the
apostrophe). If the data is enclosed in apostrophes, ch becomes ' Indian Association'.
If the data corresponding to read statement is bbbIndian (b stands for a blank; 3 blanks
in front), the variable ch will be assigned to blank as the second blank acts a separator.
However, if it is desired that ch should be assigned exactly like the data, the data must be
enclosed in apostrophes.

If the list item is a pointer (Chapter 16) or an allocatable variable (Chapter 15), the pointer
should point to a target and the allocatable variable must have its status allocated.

List-directed input/output statements are very convenient. However, the programmer
has practically no control over its appearance on the screen. For example, while using the
print statement, the programmer has little control where the value will appear on the
screen and how many digits will be displayed after the decimal point for a real number.

2.10 Variable Assignment—Comparative Study

We have just seen that a variable may be assigned in three different ways—through ini-
tialization, through assignment and through the read statement. A guideline may be
prescribed as follows:

e True constantslikenn (3.1415926) and e (2.303) should be declared as named
constants.

e If the initial value is required for a variable, then it should be initialized along with
the declaration.

e Ifthesame program is to be executed for different sets of values, then the corresponding
variables should be read from outside; read statements should be used.

2.11 Library Functions

Several commonly used functions are available in the system as library functions to
calculate square root, absolute value, trigonometric functions, etc. A library function is
called (invoked) by its name and correct number and type of arguments are supplied

36 Fortran 2018 with Parallel Programming

within parentheses. For example, the library function sqrt calculates square root of
a real (double precision, complex, etc.) quantity and takes one argument. The function
nint takes one real number as its argument and returns an integer nearest to its argu-
ment; nint (3.7) returns 4 and nint (2.3) returns 2. The function £1oor takes one
real number as its argument and returns the greatest integer less than or equal to its
argument; £1loor (9. 8) returns 9.

2.12 Memory Requirement of Intrinsic Data Types

Memory requirements of intrinsic data types (in binary digits, Chapter 10) can be obtained
using the library function storage size. This function takes one intrinsic data type as
its argument. It returns the size of the data type in memory (binary digits).

integer:: a

real::b

double precision::c
complex: :d
character::e

double complex:: £

print *, 'Integer, Size = ',storage size(a)
print *, 'Real, Size = ',storage size (b)
print *, 'Double Precision, Size = ', storage size(c)
print *, 'Complex, Size = ',storage size (d)
print *, 'Character, Size = ',storage size (e)
print *, 'Double Complex, Size = ',storage size (f)
end

The outputs are as follows:

Integer, Size = 32
Real, Size = 32
Double Precision, Size = 64
Complex, Size = 64
Character, Size = 8
Double Complex, Size = 128
I

2.13 Programming Examples

The following example converts miles to kilometers:

program miletokm

implicit none

real, parameter:: factor=1.609 ! mile to km conversion factor
integer:: mile, yard

Arithmetic, Relational and Logical Operators and Expressions 37

real:: km ! Marathon distance - 26 miles 385 yards=42.185 km
mile=26; yard=385

km=factor* (mile+yard/1760.0) ! 1 mile=1760 yards

print *, mile, 'Mile and ', Yard, 'yards = ', km, 'Kilometers'
end program miletokm

In this program, yard/1760. 0 is very crucial; yard is an integer and if 1760 is written
in place of 1760. 0, then the result of the division would be 0.

The next program calculates the escape velocity from the earth. The escape velocity
is defined as the minimum velocity that a projectile requires to escape from the earth.
It is dependent on the mass (m), radius (r) of the earth and the universal gravitational
constant G. It is given by sqrt (2.0*G*m/r).

program escape
implicit none

real::rearth = 6378.0e3, earthm = 5.98e24 ! radius in meter, mass in kg
real::ev, G=6.67300e-11 ! gravitational constant

ev=sqgrt (2.0*G*earthm/rearth)

print *,'Escape Velocity - Earth: ', ev/1000.0, 'km/sec'

end program escape

Output:
Escape Velocity - Earth: 11.18623 km/sec

If the argument is an expression, then the expression is evaluated and the square root of
the result is calculated. The final program converts seconds to hours, minutes and seconds.
It uses the property of integer division—an integer divided by another integer is an integer
(whole number). The library function mod (1, j) returns the reminder of i /3.

program convt

implicit none

integer:: hh, mm, ss, t, second=7540
t=second/60

ss=mod (second, 60) ! reminder of second/60. mod is a library function
hh=t/60; mm=mod(t,60)
print *, second, 'seconds = ', hh, 'hour ', mm,' minute ', ss, 'second'

end program convt

The output is:

7540 seconds = 2 hour 5 minute 40 second

2.14 BLOCK Construct

A block construct usually contains both declarations and statements. The construct is
terminated by end block.

block

end block

38 Fortran 2018 with Parallel Programming

The block construct may have a label. If end block has a label, it should be same as the
label used with block construct.

thisblock: block
end block thisblock

Certain statements like common, equivalence, implicit, intent, namelist,
optional, statement function and value cannotbe used within a block construct.
We have not yet introduced these statements. Some of these statements will be introduced
later. Consider the following block construct:

block
integer:: i

do 1=1,10
enddo
end block

The variables declared within a block construct are lost when the block is exited. In case
the variable declared above the bl ock construct (as shown later—known as global variable)
has the same name as the variable declared within the block, called local variable for the
block, the local variable always prevails (visible) over the global variable having the same
name within the block. The global variable is not available within the block when there is
a name conflict. The global variable reappears when the block is exited.

program block demo

integer:: 1 ! global to the block

i=27

block
integer:: 1 ! local to the block
i=77; print *, 1

end block

print *, i

end program block demo

Inside the block, the value of i is 77. The global i is not available within the block.
When the block is exited, the global i with its value as 27 reappears.

2.15 Assignment of BOZ Numbers

Normally, boz numbers cannot be used directly to assign a value to a variable. Integer,
real, double precision and complex variables may be assigned to binary, octal and hex
constants through the library functions int, real, dble and cmplx, respectively.

Arithmetic, Relational and Logical Operators and Expressions 39

This is illustrated through the program shown next. The decimal value corresponding to
the binary constants are indicated through in-line comments.

program num_sys
implicit none
integer:: i, j,k
real:: a, b,c
complex:: d

i=int(b'11") 1 i=3
j=int (o'16") 1 =14
k=int(z'al"') I k=161
a=real (int(b'111"')) I a=7.0
b=real (int (0'73"')) ! ©b=59.0
c=real (int(z'ab')) I ¢=171.0

d=cmplx(real (int (b'11')), real(int(o'1l6'))) ! (3.0, 14.0)
end program num_sys

If a real variable x is equated to real (z'123456789"') (total 9 hex digits), both the
gfortran and nagfor compilers give compilation error. However, ifort compiler takes the
rightmost 8 hex digits. This is true for other boz numbers. The number of binary, octal, or
hex digits should be such that it should not exceed the capacity of the processor (32 bits or
64 bits as the case may be).

2.16 Initialization and Library Functions

A variable may be initialized with standard library functions, which can be evaluated at
the compilation time.

real:: a=sqgrt(3.0)

In this case, a is initialized to the square root of 3.0, thatis, 1.7320508.

2.17 Relational Operators

A relational operator tests a relation. It returns either true or false. For example, if a
question is asked, “Is x greater than y?” The answer is either yes (t rue) or no (false).
The relational operators are 1t, le, gt, ge, eqg and ne. These operators are bound
by periods. There should not be any space between the periods and the operator. The
operators are, respectively, less than, less than or equal to, greater than, greater than or
equal to, equal to and not equal to. Either the symbolic notations (in both uppercase and
lowercase letters) or the equivalent mathematical notations may be used. The symbol and
alternative symbols may be mixed freely within an expression (Table 2.6).

40 Fortran 2018 with Parallel Programming

TABLE 2.6 b ** 2 - 4 * a * ¢ .gt 0
Relational Operators 1 5
Symbol Math Symbol Meaning
.1t < Less than
4 3
.le. <= Less than or equal to
.gt. > Greater than
.ge. >= Greater than or equal to | 5
.eq. == Equal to
.ne. /= Not equal to FIGURE 2.4
Precedence rules of relational operators. (1) b**2,
(2) 4*a, (3) 4*a*c, (4) b**2-4%axc, (5) bx*2-4*a*c
.gt. 0.0
I

2.18 Precedence Rule of Relational Operators

The priority of all the relational operators are same, and it is lower than the priority of
arithmetic operators. In an expression involving arithmetic and relational operators, the
arithmetic operators are evaluated first and then the relations are tested (Figure 2.4).
Forb*+*2 - 4.0 * a * c.gt. 0, the order of evaluation is shown using serial numbers 1,
2,3, 4and 5.

2.19 Relational Operators and Complex Numbers

The relational operators .1t., .le., .gt. and .ge. cannot be used for comparison
between two complex numbers or variables. Only .eq. (equal) and .ne. (not equal) may
be used to compare two complex numbers or variables. Two complex numbers are con-
sidered to be equal if both the real and the imaginary parts are separately equal. If z1 and
z2 are complex variables with z1=cmplx(2.0,3.0) and z2=cmplx(2.0,3.0), then
z1 and z2 are equal but the complex variables c1 and c¢2, where cl=cmplx(3.0,4.0)
and c2=cmplx (4.0, 3.0), are not equal, as their real and imaginary parts are separately
not equal.

Although the arithmetic if has been declared as obsolete feature, it may be men-
tioned that the arithmetic expression involving a complex number cannot be used with
arithmetic if.

2.20 Logical Operators

There are five logical operators. All logical operators are bound by periods (Table 2.7).
There should not be any space between the periods and the logical operators.

NOT: The logical operator .not. is a logical negation. It changes true to false
and vice versa; .not. (a>b) is true if a is not greater than b, that is, a>b is
false.ltis false if a greater than b is true. For 1 =.not. (a>b), true value
is assigned to 1 if a is not greater thanb.

