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Preface

Context and scope

Modern high-throughput technologies generate information about thousands of biological
molecules at different cellular levels in a biological system, leading to several types of
omics studies (e.g. transcriptomics as the study of messenger RNA molecules expressed
from the genes of an organism, or proteomics as the study of proteins expressed by a
cell, tissue, or organism). However, a reductionist approach that considers each of these
molecules individually does not fully describe an organism in its environment. Rather, we
use multivariate analysis to investigate the simultaneous and complex relationships that
occur in molecular pathways. In addition, to obtain a holistic picture of a complete biological
system, we propose to integrate multiple layers of information using recent computational
tools we have developed through the mixOmics project.

mixOmics is an international endeavour that encompasses methodological developments,
software implementation, and applications to biological and biomedical problems to address
some of the challenges of omics data integration. We have trained students and researchers in
essential statistical and data analysis skills via our numerous multi-day workshops to build
capacity in best practice statistical analysis and advance the field of computational statistics
for biology. The goal of this book is to provide guidance in applying multivariate dimension
reduction techniques for the integration of high-throughput biological data, allowing readers
to obtain new and deeper insights into biological mechanisms and biomedical problems.

Who is this book for?

This book is suitable for biologists, computational biologists, and bioinformaticians who
generate and work with high-throughput omics data. Such data include — but are not
restricted to — transcriptomics, epigenomics, proteomics, metabolomics, the microbiome,
and clinical data. Our book is dedicated to research postgraduate students and scientists at
any career stage, and can be used for teaching specialised multi-disciplinary undergraduate
and Masters’s courses. Data analysts with a basic level of R programming will benefit most
from this resource. The book is organised into three distinct parts, where each part can be
skimmed according to the level and interest of the reader. Each chapter contains different
levels of information, and the most technical chapters can be skipped during a first read.

Overview of methods in mixOmics
The mixOmics package focuses on multivariate analysis which examines more than two
variables simultaneously to integrate different types of variables (e.g. genes, proteins, metabo-

lites). We use dimension reduction techniques applicable to a wide range of data analysis
types. Our analyses can be descriptive, exploratory, or focus on modeling or prediction. Our
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FIGURE 1: Overview of the methods implemented in the mizOmics package for the explo-
ration and integration of multiple data sets. This book aims to guide the data analyst in
constructing the research question, applying the appropriate multivariate techniques, and
interpreting the resulting graphics.

aim is to summarise these large biological data sets to elucidate similarities between sam-
ples, between variables, and the relationship between samples and variables. The mixOmics
package provides a range of methods to answer different kinds of biological questions, for
example to:

« Highlight patterns pertaining to the major sources of variation in the data (e.g. Principal
Component Analysis),

e Segregate samples according to their known group and predict group membership of new
samples (e.g. Partial Least Squares Discriminant Analysis),

o Identify agreement between multiple data sets (e.g. Canonical Correlation Analysis,
Partial Least Squares regression, and other variants),

e Identify molecular signatures across multiple data sets with sparse methods that achieve
variable selection.

Key methodological concepts in mixOmics

Methods in mixOmics are based on matriz factorisation techniques, which offer great
flexibility in analysing and integrating multiple data sets in a holistic manner. We use
dimension reduction combined with feature selection to summarise the main characteristics
of the data and posit novel biological hypotheses.
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Dimension reduction is achieved by combining all original variables into a smaller number of
artificial components that summarise patterns in the original data.

The mixOmics package is unique in providing novel multivariate techniques that enable
feature selection to identify molecular signatures. Feature selection refers to identifying
variables that best explain, or predict, the outcome variable (e.g. group membership, or
disease status) of interest. Variables deemed irrelevant according to the specific statistical
criterion we use in the methods are not taken into account when calculating the components.

Data integration methods use data projection techniques to maximise the covariance, or the
correlation between, omics data sets. We propose two types of data integration, whether on
the same N samples, or on the same P variables (Figure 1).

Finally, our methods can provide either unsupervised or supervised analyses. Unsupervised
analyses are exploratory: any information about sample group membership, or outcome,
is disregarded, and data are explored based on their variance or correlation structure.
Supervised analyses aim to segregate sample groups known a priori (e.g. disease status,
treatments) and identify variables (i.e. biomarker candidates, or molecular signatures) that
either explain or separate sample groups.

These concepts will be explained further in Part I.

To aid in interpreting analysis results, mixOmics provides insightful graphical plots designed
to highlight patterns in both the sample and variable dimensions uncovered by each method
(Figure 1).

Concepts not covered

Each mix0Omics method corresponds to an underlying statistical model. However, the methods
we present radically differ from univariate formulations as they do not test one variable at a
time, or produce p-values. In that sense, multivariate methods can be considered exploratory
as they do not enable statistical inference. Our wide range of methods come in many different
flavours and can be applied also for predictive purposes, as we detail in this book. ‘Classical’
univariate statistical inference methods can still be used in our analysis framework after
the identification of molecular signatures, as our methods aim to generate novel biological
hypotheses.

Who is ‘mixOmics’?

The mixOmics project has been developed between France, Australia and Canada since 2009,
when the first version of the package was submitted to the CRAN'. Our team is composed of
core members from the University of Melbourne, Australia, and the Université de Toulouse,
France. The team also includes several key contributors and collaborators.

The package implements more than nineteen multivariate and sparse methodologies for
omics data exploration, integration, and biomarker discovery for different biological settings,
amongst which thirteen were developed by our team (see our list of publications in Section
14.8). Originally, all methods were designed for omics data, however, their application is
not limited to biological data only. Other applications where integration is required can be
considered, but mostly for cases where the predictor variables are continuous.

!The Comprehensive R Architecture Network https://www.cran.r-project.org
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The package is currently available from Bioconductor?, with a development version available
on GitHub?®. We continue to maintain and improve the package via new methods, code
optimisation and efficient memory storage of R objects.

About this book

Part I: Modern biology and multivariate analysis introduces fundamental concepts
in multivariate analysis. Multi-omics and biological systems (Chapter 1) compares and
contrasts multivariate and univariate analysis, and outlines the advantages and challenges
of multivariate analyses. The Cycle of Analysis (Chapter 2) details the necessary steps
in planning, designing and conducting multivariate analyses. Key multivariate concepts
and dimension reduction in mizOmics (Chapter 3) describes measures of dispersion and
association, and introduces key methods in mixOmics to manage large data, such as dimension
reduction using matrix factorisation and feature selection. Choose the right method for the
right question in mizOmics (Chapter 4) provides an overview of the methods available in
mixOmics and the types of biological questions these methods can answer.

Part II: mixOmics under the hood provides a deeper understanding of the statistical
concepts underlying the methods presented in Part III. Projection to Latent Structures
(PLS) (Chapter 5) illustrates the different types of algorithms used to solve Principal
Component Analysis. We detail in particular the iterative PLS algorithm that projects data
onto latent structures (components) for matrix decomposition and dimension reduction, as
this algorithm forms the basis of most of our methods. Visualisation for data integration
(Chapter 6) showcases the variety of graphical outputs offered in mixOmics to complement
each method. Performance assessment in supervised analyses (Chapter 7) describes the
techniques employed to evaluate the results of the analyses.

Part III: mixOmics in action provides detailed case studies that apply each method
in mixOmics to answer pertinent biological questions, complete with example R code and
insightful plots. We begin with mizOmics: get started (Chapter 8) to guide the novice analyst
in using the R platform for data analysis. Each subsequent chapter is dedicated to one method
implemented in mixOmics. In Principal Component Analysis (PCA) (Chapter 9) and PLS -
Discriminant Analysis (PLS-DA) (Chapter 12), we introduce different multivariate methods
for single omics analysis. The N-integration framework is introduced in PLS (Chapter 10)
and Canonical Correlation Analysis (Chapter 11) for two omics, and N—data integration
(DIABLO, Chapter 13) for multi-omics integration. P—data integration (MINT, Chapter 14)
introduces our latest developments for P-integration to combine independent omics studies.
Each of these chapters is organised as follows:

e Aim of the method,

e Research question framed biologically and statistically,
e Principles of the method,

e Input arguments and key outputs,

e Introduction of the case study,

e Quick start R command lines,

e Further options to go deeper into the analysis,

e Frequently Asked Questions,

e Technical methodological details in each Appendix.

2https://www.bioconductor.org/packages/release/bioc/html/mixOmics.html
Shttps://github.com/mix0micsTeam/


https://www.bioconductor.org
https://github.com

Preface Xix

Additional resources related to this book

In addition to the R package, the mixOmics project includes a website with extensive
tutorials in http://www.mixOmics.org. The R code of each chapter is also available on
the website. Our readers can also register for our newsletter mailing list, and be part of
the mixOmics community on GitHub and via our discussion forum https://mixomics-
users.discourse.group/.
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Multi-omics and biological systems

Technological advances such as next-generation sequencing and mass spectrometry generate a
wealth of diverse biological information, allowing for the monitoring of thousands of variables,
or dimensions, that describe a given sample or individual, hence the term ‘high dimensional
data’ Multi-omics variables represent molecules from different functional levels: for example,
transcriptomics for the study of transcripts, proteomics for proteins, and metabolomics
for metabolites. However, their complex nature requires an integrative, multidisciplinary
approach to analysis that is not yet fully established.

Historically, the scientific community has adopted a reductionist approach to data analysis by
characterising a very small number of genes or proteins in one experiment to assess specific
hypotheses. A holistic approach allows for a deeper understanding of biological systems by
adding two new facets to analysis (Figure 1.1): Firstly, by integrating data from different omic
functional levels, we move from clarifying a linear process (e.g. the dysregulation of one or
two genes) towards understanding the development, health, and disease of an ever-changing,
dynamic, hierarchical system. Secondly, by adopting a hypotheses-free, data-driven approach,
we can build integrated and coherent models to address novel, systems-level hypotheses that
can be further validated through more traditional hypotheses.

1.1 Statistical approaches for reductionist or holistic analyses

Compared to a traditional reductionist analysis, multivariate multi-omics analysis drastically
differs in its viewpoint and aims. We briefly introduce three types of analysis to illustrate
this point:

A univariate analysis is a fundamentally reductionist, hypothesis-driven approach that is
related to inferential statistics (introduced in Section 2.4). A hypothesis test is conducted
on one variable (e.g. gene expression or protein abundance) independently from the other
variables. Univariate methods make inferences about the population and measure the certainty
of this inference through test statistics and p-values. Linear models, t-tests, F-tests, or
non-parametric tests fit into a univariate analysis framework. Although interactions between
variables are not considered in univariate analyses, when one variable is manipulated in a
controlled experiment, we can often attribute the result to that particular variable. In omics
studies, where multiple variables are monitored simultaneously, it is difficult to determine
which variables influence the biology of interest.

A bivariate analysis considers two variables simultaneously, for example, to assess the
association between the expression levels of two genes via correlation or linear regression.
Such an analysis is often supported by visualisation through scatterplots but can quickly
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FIGURE 1.1: From reductionism to holism. Until recently, only a few molecules of a
given omics type were analysed and related to other omics. The advent of high-throughput
biology has ushered in an era of hypothesis-free approaches within a single type of omics
data, and across multiple omics from the same set of samples. A holistic approach is now
required to understand the different omic functional layers in a biological system and posit
novel hypotheses that can be further validated with a traditional reductionist approach.
We have omitted DNA as this data type needs to be handled differently in mixOmics, see
Section 4.2.3.

become cumbersome when dealing with thousands of variables that are considered in a
pairwise manner.

A multivariate analysis examines more than two variables simultaneously and potentially
thousands at a time. In omics studies, this approach can lead to computational issues and
inaccurate results, especially when the number of samples is much smaller than the number of
variables. Several computational and statistical techniques have been revisited or developed
for high-dimensional data. This book focuses on multivariate analyses and extends this to
include the integration of multi-omics data sets.

1.2 Multi-omics and multivariate analyses

The aim of omics data integration is to identify associations and patterns amongst different
variables and across different omics collected from a sample. Provided appropriate data
analysis is conducted, the integration of multiple data sources may also consolidate our
confidence in the results when consensus is observed from different experiments.
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1.2.1 More than a ‘scale up’ of univariate analyses

The fundamental difference between multivariate and univariate analysis lies in the scope of
the results obtained. Multivariate analysis can unravel groups of variables that share similar
patterns in expression across different phenotypes, thus complementing each other to describe
an outcome. A univariate analysis may declare the same variables as non-significant, as a
variable’s ability to explain the phenotype may be subtle and can be masked by individual
variation, or confounders (Saccenti et al., 2014). However, with sufficiently powered data,
univariate and multivariate methods are complementary and can help make sense of the
data. For example, several multivariate and exploratory methods presented in this book can
suggest promising candidate variables that can be further validated through experiments,
reductionist approaches, and inferential statistics.

1.2.2 More than a fishing expedition

Multivariate analyses, which examine up to thousands of variables simultaneously, are
often considered to be ‘fishing expeditions’ This somewhat pejorative term refers to either
conducting analyses without first specifying a testable hypothesis based on prior research,
or, conducting several different analyses on the same data to ‘fish’ for a significant result
regardless of its domain relevance. Indeed, examining a large number of variables can lead
to statistically significant results purely by chance.

However, the integration of multi-omics data, with an appropriate experimental design set
in an exploratory, rather than predictive approach, offers a tremendous opportunity for
discovering associations between omics molecules (whether genes, transcripts, proteins, or
metabolites), in normal, temporal or spatial changes, or in disease states. For example,
one of our studies identified pathways that were never previously identified as relevant to
ontogeny during the first week of human life (Lee et al., 2019). Multi-omics data integration
has deepened our understanding of gene regulatory networks by including information
from related molecules prior to validation of gene associations with a functional approach
(Gligorijevi¢ and Przulj, 2015) and has also efficiently improved functional annotations to
proteins instead of using expensive and time-consuming experimental techniques (Ma et al.,
2013). Multi-omics can also more easily characterise the relatively small number of genes
associated with a particular disease by integrating multiple sources of information (Zitnik
et al., 2013). Finally, it has further developed precision medicine by integrating patient-
and disease-specific information with the aim to improve prognosis and clinical outcomes
(Ritchie et al., 2015).

1.3 Shifting the analysis paradigm

Despite the potential advantages of high-dimensional data, we should keep in mind that
quantity does not equal quality. Multivariate data integration is not straightforward: the
analyses cannot be reduced to a mere concatenation of variables of different types, or by
overlapping information between single data sets, as we illustrate in Figure 1.2. As such, we
must shift our traditional view of analysing data.

Biological experimentation often employs univariate statistics to answer clear hypotheses
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FIGURE 1.2: Types of methods for data integration. Methods for multi-omics data
integration are still in active development, and can be broadly categorised into matrix
factorisation techniques (the focus of this book), Bayesian, network-based, and multiple-
step approaches. The latter deviates from data integration as it considers each data set
individually before combining the results.

about the potential causal effect of a given molecule of interest. In high-dimensional data
sets, this reductionist approach may not hold due to the sheer amount of molecules that are
monitored, and their interactions that might be of biological interest. Therefore, exploratory,
data-driven approaches are needed to extract information from noise and generate new
hypotheses and knowledge. However, the lack of a clear, causal-driven hypothesis presents a
challenging new paradigm in statistical analyses.

In univariate hypothesis testing, we report p-values to determine the significance of a
statistical test conducted on a single variable. In a multivariate setting, however, a p-
value assesses the statistical significance of a result while taking into account all variables
simultaneously. In such analyses, permutation-based tests are common to assess how far
from random a result is when the data are reshuffled, but other inference-based methods
are currently being developed in the field of multivariate analysis (Wang and Xu, 2021). In
mixOmics we do not offer such tests, but related methods propose permutation approaches
to choose the parameters in the method (see Section 10.7.5).

1.4 Challenges with high-throughput data

There are multiple challenges associated with managing large amounts of biological data,
pertaining to specific types of data as well as statistical analysis. To make reliable, valid,
and meaningful interpretations, these challenges must be considered, ideally before data
collection.
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1.4.1 Overfitting

Multivariate omics analysis assesses many molecules that individually, or in combination, can
explain the biological outcome of interest. However, these associations may be spurious, as the
large number of features can often be combined in different ways to explain the outcome well,
despite having no biological relevance. Overfitting occurs when a statistical model captures
the noise along with the underlying pattern in the data: if we apply the same statistical
model fitted on a high-dimensional data set to a similar but external study, we might obtain
different results.! The problem of overfitting is a well-known issue in high-throughput biology
(Hawkins, 2004). We can assess the amount of overfit using cross-validation or subsampling
of the data, as described in Chapter 7.

1.4.2 Multi-collinearity and ill-posed problems

As the number of variables increase, the number of pairwise correlations also increases. Multi-
collinearity poses a problem in most statistical analyses as these variables bring redundant
and noisy information that decreases the precision of the statistical model. Correlations
in high-throughput data sets are often spurious, especially when the number of biological
samples, or individuals N, is small compared to the number of variables P?. The ‘small N
large P’ problem is defined as ill-posed, as standard statistical inference methods assume N
is much greater than P to generalise the results to the population the sample was drawn
from. Ill-posed problems also lead to inaccurate computations.

1.4.3 Zero values and missing values

Data sets may contain a large number of zeros, depending on the type of omics studied
and the platform that is used. This is particularly the case for microbiome, proteomics, and
metabolomics data: a large number of zeros results in zero-inflated (skewed) data, which
can impair methods that assume a normal distribution of the data. Structural zeros, or true
zeros, reflect a true absence of the variable in the biological environment while sampling
zeros, or false zeros, may not reflect reality due to experimental error, technological reasons,
or an insufficient sample size (Blasco-Moreno et al., 2019). The challenge is whether to
consider these zeros as a true zero or missing (coded as NA in R).

Methods that can handle missing values often assume they are ‘missing at random’, i.e. miss-
ingness is not related to a specific sample, individual, molecule, or type of omics platform.
Some methods can estimate missing values, as we present in Appendix 9.A.

IStatistical models that overfit have low bias and high variance, meaning that they tend to be complex to
fit the training data well, but do not predict well on test data (more details about the bias-variance tradeoff
can be found in Friedman et al. (2001) Chapter 2).

2In our context, N can also refer to the number of cells in single cell assays, as we briefly mention in
Section 14.6.
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1.5 Challenges with multi-omics integration

Examining data holistically may lead to better biological understanding, but integrating
multiple omics data sets is not a trivial task and raises another series of challenges.

1.5.1 Data heterogeneity

Different omics rely on different laboratory techniques and data extraction platforms, resulting
in data sets of different formats, complexity, dimensionalities, information content, and scale,
and may be processed using different bioinformatics tools. Therefore, data heterogeneity
arises from biological and technical reasons and is the main analytical challenge to overcome.

1.5.2 Data size

Integrating multiple omics results in a drastic increase in the number of variables. A filtering
step is often applied to remove irrelevant and noisy variables (see Section 8.1). However, the
number of variables P still remains extremely large compared to the number of samples N,
which raises computational as well as analytical issues.

1.5.3 Platforms

The data integration field is constantly evolving due to ever-advancing technologies with new
platforms and protocols, each containing inherent technical biases and analytical challenges.
It is crucial that data analysts swiftly adapt their analysis framework to keep apace with
these omics-era demands. For example, single cell techniques are rapidly advancing, as are
new protocols for their multi-omics analysis.

1.5.4 Expectations for analysis

The field of data integration has no set definition. Data integration can be managed
biologically, bioinformatically, statistically, or at the interpretation steps (i.e. by overlapping
biological interpretation once the statistical results are obtained). Therefore, the expectations
for data integration are diverse; from exploration, and from a low to high-level understanding
of the different omics data types. Despite recent advances in single cell sequencing, current
technologies are still limited in their ability to parse omics interactions at precise functional
levels. Thus, our expectations for data integration are limited, not only by the statistical
methods but also by the technologies available to us.
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1.5.5 Variety of analytical frameworks

Integrative techniques fully suited to multi-omics biological data are still in development and
continue to expand?®. Different types of techniques can be considered and broadly categorised
into (Huang et al. (2017), Figure 1.2):

e Matrix factorisation techniques, where large data sets are decomposed into smaller
sub-matrices to summarise information. These techniques use algebra and analysis to
optimise specific statistical criteria and integrate different levels of information. Methods
in mixOmics fit into this category and will be detailed in Chapter 3 and subsequent
chapters,

e Bayesian methods, which use assumptions of prior distributions for each omics type to
find correlations between data layers and infer posterior distributions,

o Network-based approaches, which use visual and symbolic representations of biological
systems, with nodes representing molecules and edges as correlations between molecules,
if they exist. Network-based methods are mostly applied for detecting significant genes
within pathways, discovering sub-clusters, or finding co-expression network modules,

e Multiple-step approaches that first analyse each single omics data set individually
before combining the results based on their overlap (e.g. at the gene level of a molecular
signature) or correlation. This type of approach technically deviates from data integration
but is commonly used.

1.6 Summary

Modern biological data are high dimensional; they include up to thousands of molecular
entities (e.g. genes, proteins, or epigenetic markers) per sample. Integrating these rich
data sets can potentially uncover the hierarchical and holistic mechanisms that govern
biological pathways. While classical, reductionist, univariate methods ignore these molecular
interactions, multivariate, integrative methods offer a promising alternative to obtain a
more complete picture of a biological system. Thus, univariate and multivariate methods
are different approaches with very little overlap in results but have the advantage of
complementarity.

The advent of high-throughput technology has revealed a complex world of multi-omics
molecular systems that can be unraveled with appropriate integration methods. However,
multivariate methods able to manage high-dimensional and multi-omics data are yet to
be fully developed. The methods presented in this book mitigate some of these challenges
and will help to reveal patterns in omics data, thus forging new insights and directions for
understanding biological systems as a whole.

3 A comprehensive list of multi-omics methods and software is available at https://github.com/mikelove/
awesome-multi-omics.
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2

The cycle of analysis

The Problem, Plan, Data, Analysis, Conclusion (PPDAC) cycle is a useful framework for
answering an experimental question effectively (Figure 2.1). The mixOmics project emphasises
crafting a well-defined biological question (Chapter 4), as this guides data acquisition
and preparation (Chapter 8), as well as choosing appropriate multivariate techniques for
analysis (Chapter 4). Although this book is focused on analysis and interpretation, careful
consideration of each step will maximise a successful analytical outcome.

ANALYSIS

DATA

FIGURE 2.1: PPDAC. The Problem, Plan, Data, Analysis, Conclusion cycle proposed
by MacKay and Oldford (2000) will guide our multivariate analysis process.

2.1 The Problem guides the analysis

Multivariate analysis is appropriate for large data sets where the biological question en-
compasses a broad domain, rather than parsing the action of a single or small number of
variables. Thus, we often require a hypothesis-free investigation based on a data-driven
approach. However, this does not imply that multivariate analysis is a fishing expedition
with no underlying biological question. The experimental design, driven by a well-formulated
biological question and the choice of statistical method, will ensure a successful analysis
(Shmueli, 2010). Chapter 4 lists several types of biological questions that can be answered
with multivariate and integrative methods.
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