

 Supervised Machine
Learning for Text

Analysis in R

http://www.taylorandfrancis.com

 Supervised Machine
Learning for Text

Analysis in R

Emil Hvitfeldt
Julia Silge

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-0-367-55418-7 (hbk)
ISBN: 978-0-367-55419-4 (pbk)
ISBN: 978-1-003-09345-9 (ebk)

DOI: 10.1201/9781003093459

Typeset in LMR10 font
by KnowledgeWorks Global Ltd.

http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003093459

In loving memory of my mother-in-law Lisa, who was the first soul to hear
about and fully encourage the idea that eventually became this book —E.H.

For Grace, Violet, and Lewis, who (thanks to the pandemic and remote
school) had a front row seat to most of my work on this book —J.S.

http://www.taylorandfrancis.com

Contents

Preface xiii

I Natural Language Features 1

1 Language and modeling 3
1.1 Linguistics for text analysis 3
1.2 A glimpse into one area: morphology 5
1.3 Different languages . 6
1.4 Other ways text can vary . 7
1.5 Summary . 8

1.5.1 In this chapter, you learned: 8

2 Tokenization 9
2.1 What is a token? . 9
2.2 Types of tokens . 13

2.2.1 Character tokens . 16
2.2.2 Word tokens . 18
2.2.3 Tokenizing by n-grams 19
2.2.4 Lines, sentence, and paragraph tokens 22

2.3 Where does tokenization break down? 25
2.4 Building your own tokenizer 26

2.4.1 Tokenize to characters, only keeping letters 27
2.4.2 Allow for hyphenated words 29
2.4.3 Wrapping it in a function 32

2.5 Tokenization for non-Latin alphabets 33
2.6 Tokenization benchmark . 34
2.7 Summary . 35

2.7.1 In this chapter, you learned: 35

3 Stop words 37
3.1 Using premade stop word lists 38

3.1.1 Stop word removal in R 41
3.2 Creating your own stop words list 43
3.3 All stop word lists are context-specific 48
3.4 What happens when you remove stop words 49
3.5 Stop words in languages other than English 50
3.6 Summary . 52

vii

viii Contents

3.6.1 In this chapter, you learned: 52

4 Stemming 53
4.1 How to stem text in R . 54
4.2 Should you use stemming at all? 58
4.3 Understand a stemming algorithm 61
4.4 Handling punctuation when stemming 63
4.5 Compare some stemming options 65
4.6 Lemmatization and stemming 68
4.7 Stemming and stop words . 70
4.8 Summary . 71

4.8.1 In this chapter, you learned: 72

5 Word Embeddings 73
5.1 Motivating embeddings for sparse, high-dimensional data . . 73
5.2 Understand word embeddings by finding them yourself . . . 77
5.3 Exploring CFPB word embeddings 81
5.4 Use pre-trained word embeddings 88
5.5 Fairness and word embeddings 93
5.6 Using word embeddings in the real world 95
5.7 Summary . 96

5.7.1 In this chapter, you learned: 97

II Machine Learning Methods 99

Overview 101

6 Regression 105
6.1 A first regression model . 106

6.1.1 Building our first regression model 107
6.1.2 Evaluation . 112

6.2 Compare to the null model 117
6.3 Compare to a random forest model 119
6.4 Case study: removing stop words 122
6.5 Case study: varying n-grams 126
6.6 Case study: lemmatization 129
6.7 Case study: feature hashing 133

6.7.1 Text normalization . 137
6.8 What evaluation metrics are appropriate? 139
6.9 The full game: regression . 142

6.9.1 Preprocess the data 142
6.9.2 Specify the model . 143
6.9.3 Tune the model . 144
6.9.4 Evaluate the modeling 146

6.10 Summary . 153
6.10.1 In this chapter, you learned: 153

Contents ix

7 Classification 155
7.1 A first classification model 156

7.1.1 Building our first classification model 158
7.1.2 Evaluation . 161

7.2 Compare to the null model 166
7.3 Compare to a lasso classification model 167
7.4 Tuning lasso hyperparameters 170
7.5 Case study: sparse encoding 179
7.6 Two-class or multiclass? . 183
7.7 Case study: including non-text data 191
7.8 Case study: data censoring 195
7.9 Case study: custom features 201

7.9.1 Detect credit cards . 202
7.9.2 Calculate percentage censoring 204
7.9.3 Detect monetary amounts 205

7.10 What evaluation metrics are appropriate? 206
7.11 The full game: classification 208

7.11.1 Feature selection . 209
7.11.2 Specify the model . 210
7.11.3 Evaluate the modeling 212

7.12 Summary . 220
7.12.1 In this chapter, you learned: 221

III Deep Learning Methods 223

Overview 225

8 Dense neural networks 231
8.1 Kickstarter data . 232
8.2 A first deep learning model 237

8.2.1 Preprocessing for deep learning 237
8.2.2 One-hot sequence embedding of text 240
8.2.3 Simple flattened dense network 244
8.2.4 Evaluation . 248

8.3 Using bag-of-words features 253
8.4 Using pre-trained word embeddings 257
8.5 Cross-validation for deep learning models 263
8.6 Compare and evaluate DNN models 267
8.7 Limitations of deep learning 271
8.8 Summary . 272

8.8.1 In this chapter, you learned: 272

9 Long short-term memory (LSTM) networks 273
9.1 A first LSTM model . 273

9.1.1 Building an LSTM . 275
9.1.2 Evaluation . 279

x Contents

9.2 Compare to a recurrent neural network 283
9.3 Case study: bidirectional LSTM 286
9.4 Case study: stacking LSTM layers 288
9.5 Case study: padding . 289
9.6 Case study: training a regression model 292
9.7 Case study: vocabulary size 295
9.8 The full game: LSTM . 297

9.8.1 Preprocess the data 297
9.8.2 Specify the model . 298

9.9 Summary . 301
9.9.1 In this chapter, you learned: 302

10 Convolutional neural networks 303
10.1 What are CNNs? . 303

10.1.1 Kernel . 304
10.1.2 Kernel size . 304

10.2 A first CNN model . 305
10.3 Case study: adding more layers 309
10.4 Case study: byte pair encoding 317
10.5 Case study: explainability with LIME 324
10.6 Case study: hyperparameter search 330
10.7 Cross-validation for evaluation 334
10.8 The full game: CNN . 337

10.8.1 Preprocess the data 337
10.8.2 Specify the model . 338

10.9 Summary . 341
10.9.1 In this chapter, you learned: 342

IV Conclusion 343

Text models in the real world 345

Appendix 347

A Regular expressions 347
A.1 Literal characters . 347

A.1.1 Meta characters . 349
A.2 Full stop, the wildcard . 349
A.3 Character classes . 350

A.3.1 Shorthand character classes 352
A.4 Quantifiers . 353
A.5 Anchors . 355
A.6 Additional resources . 355

B Data 357
B.1 Hans Christian Andersen fairy tales 357

Contents xi

B.2 Opinions of the Supreme Court of the United States 358
B.3 Consumer Financial Protection Bureau (CFPB) complaints . 359
B.4 Kickstarter campaign blurbs 359

C Baseline linear classifier 361
C.1 Read in the data . 361
C.2 Split into test/train and create resampling folds 362
C.3 Recipe for data preprocessing 363
C.4 Lasso regularized classification model 363
C.5 A model workflow . 364
C.6 Tune the workflow . 366

References 369

Index 379

http://www.taylorandfrancis.com

Preface

Modeling as a statistical practice can encompass a wide variety of activities.
This book focuses on supervised or predictive modeling for text, using text
data to make predictions about the world around us. We use the tidymodels1

framework for modeling, a consistent and flexible collection of R packages
developed to encourage good statistical practice.

Supervised machine learning using text data involves building a statistical
model to estimate some output from input that includes language. The two
types of models we train in this book are regression and classification. Think
of regression models as predicting numeric or continuous outputs, such as
predicting the year of a United States Supreme Court opinion from the text
of that opinion. Think of classification models as predicting outputs that are
discrete quantities or class labels, such as predicting whether a GitHub issue
is about documentation or not from the text of the issue. Models like these
can be used to make predictions for new observations, to understand what
features or characteristics contribute to differences in the output, and more.
We can evaluate our models using performance metrics to determine which
are best, which are acceptable for our specific context, and even which are
fair.

Text data is important for many domains, from healthcare to marketing to
the digital humanities, but specialized approaches are necessary to create
features (predictors) for machine learning from language.

Natural language that we as speakers and/or writers use must be dramatically
transformed to a machine-readable, numeric representation to be ready for
computation. In this book, we explore typical text preprocessing steps from
the ground up and consider the effects of these steps. We also show how to
fluently use the textrecipes R package (Hvitfeldt 2020a) to prepare text data
within a modeling pipeline.

1https://www.tidymodels.org/

xiii

https://www.tidymodels.org/
https://www.tidymodels.org/

xiv Preface

Silge and Robinson (2017) provides a practical introduction to text mining
with R using tidy data principles, based on the tidytext package. If you have
already started on the path of gaining insight from your text data, a next step
is using that text directly in predictive modeling. Text data contains within
it latent information that can be used for insight, understanding, and better
decision-making, and predictive modeling with text can bring that information
and insight to light. If you have already explored how to analyze text as
demonstrated in Silge and Robinson (2017), this book will move one step
further to show you how to learn and make predictions from that text data
with supervised models. If you are unfamiliar with this previous work, this
book will still provide a robust introduction to how text can be represented in
useful ways for modeling and a diverse set of supervised modeling approaches
for text.

Outline

The book is divided into three sections. We make a (perhaps arbitrary) dis-
tinction between machine learning methods and deep learning methods by
defining deep learning as any kind of multilayer neural network (LSTM, bi-
LSTM, CNN) and machine learning as anything else (regularized regression,
naive Bayes, SVM, random forest). We make this distinction both because
these different methods use separate software packages and modeling infras-
tructure, and from a pragmatic point of view, it is helpful to split up the
chapters this way.

• Natural language features: How do we transform text data into a rep-
resentation useful for modeling? In these chapters, we explore the most
common preprocessing steps for text, when they are helpful, and when
they are not.

• Machine learning methods: We investigate the power of some of the
simpler and more lightweight models in our toolbox.

• Deep learning methods: Given more time and resources, we see what
is possible once we turn to neural networks.

Some of the topics in the second and third sections overlap as they provide
different approaches to the same tasks.

Throughout the book, we will demonstrate with examples and build models
using a selection of text data sets. A description of these data sets can be
found in Appendix B.

Preface xv

We use three kinds of info boxes throughout the book to invite attention
to notes and other ideas.

Some boxes call out warnings or possible problems to watch out for.

Boxes marked with hexagons highlight information about specific R pack-
ages and how they are used. We use bold for the names of R packages.

Topics this book will not cover

This book serves as a thorough introduction to prediction and modeling with
text, along with detailed practical examples, but there are many areas of nat-
ural language processing we do not cover. The CRAN Task View on Natural
Language Processing2 provides details on other ways to use R for computa-
tional linguistics. Specific topics we do not cover include:

• Reading text data into memory: Text data may come to a data prac-
titioner in any of a long list of heterogeneous formats. Text data exists in
PDFs, databases, plain text files (single or multiple for a given project),
websites, APIs, literal paper, and more. The skills needed to access and
sometimes wrangle text data sets so that they are in memory and ready
for analysis are so varied and extensive that we cannot hope to cover them
in this book. We point readers to R packages such as readr (Wickham and
Hester 2020), pdftools (Ooms 2020a), and httr (Wickham 2020), which
we have found helpful in these tasks.

2https://cran.r-project.org/web/views/NaturalLanguageProcessing.html

https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
https://cran.r-project.org/web/views/NaturalLanguageProcessing.html

xvi Preface

• Unsupervised machine learning for text: Silge and Robinson (2017)
provide an introduction to one method of unsupervised text modeling,
and Chapter 5 does dive deep into word embeddings, which learn from the
latent structure in text data. However, many more unsupervised machine
learning algorithms can be used for the goal of learning about the structure
or distribution of text data when there are no outcome or output variables
to predict.

• Text generation: The deep learning model architectures we discuss in
Chapters 8, 9, and 10 can be used to generate new text, as well as to
model existing text. Chollet and Allaire (2018) provide details on how to
use neural network architectures and training data for text generation.

• Speech processing: Models that detect words in audio recordings of
speech are typically based on many of the principles outlined in this book,
but the training data is audio rather than written text. R users can ac-
cess pre-trained speech-to-text models via large cloud providers, such as
Google Cloud’s Speech-to-Text API accessible in R through the google-
LanguageR package (Edmondson 2020).

• Machine translation: Machine translation of text between languages,
based on either older statistical methods or newer neural network meth-
ods, is a complex, involved topic. Today, the most successful and well-
known implementations of machine translation are proprietary, because
large tech companies have access to both the right expertise and enough
data in multiple languages to train successful models for general machine
translation. Google is one such example, and Google Cloud’s Translation
API is again available in R through the googleLanguageR package.

Who is this book for?

This book is designed to provide practical guidance and directly applicable
knowledge for data scientists and analysts who want to integrate text into
their modeling pipelines.

We assume that the reader is somewhat familiar with R, predictive modeling
concepts for non-text data, and the tidyverse3 family of packages (Wickham
et al. 2019). For users who don’t have this background with tidyverse code,
we recommend R for Data Science4 (Wickham and Grolemund 2017). Helpful

3https://www.tidyverse.org/
4http://r4ds.had.co.nz/

https://www.tidyverse.org/
https://www.tidyverse.org/
http://r4ds.had.co.nz/
http://r4ds.had.co.nz/

Preface xvii

resources for getting started with modeling and machine learning include a
free interactive course5 developed by one of the authors (JS) and Hands-On
Machine Learning with R6 (Boehmke and Greenwell 2019), as well as An
Introduction to Statistical Learning7 (James et al. 2013).

We don’t assume an extensive background in text analysis, but Text Mining
with R8 (Silge and Robinson 2017), by one of the authors (JS) and David
Robinson, provides helpful skills in exploratory data analysis for text that
will promote successful text modeling. This book is more advanced than Text
Mining with R and will help practitioners use their text data in ways not
covered in that book.

Acknowledgments

We are so thankful for the contributions, help, and perspectives of people who
have supported us in this project. There are several we would like to thank in
particular.

We would like to thank Max Kuhn and Davis Vaughan for their investment
in the tidymodels packages, David Robinson for his collaboration on the
tidytext package, and Yihui Xie for his work on knitr, bookdown, and the
R Markdown ecosystem. Thank you to Desirée De Leon for the site design
of the online work and to Sarah Lin for the expert creation of the published
work’s index. We would also like to thank Carol Haney, Kasia Kulma, David
Mimno, Kanishka Misra, and an additional anonymous technical reviewer for
their detailed, insightful feedback that substantively improved this book, as
well as our editor John Kimmel for his perspective and guidance during the
process of writing and publishing.

This book was written in the open, and multiple people contributed via pull
requests or issues. Special thanks goes to the four people who contributed via
GitHub pull requests (in alphabetical order by username): @fellennert, Riva
Quiroga (@rivaquiroga), Darrin Speegle (@speegled), Tanner Stauss (@tm-
stauss).

Note box icons by Smashicons from flaticon.com.

5https://supervised-ml-course.netlify.com/
6https://bradleyboehmke.github.io/HOML/
7http://faculty.marshall.usc.edu/gareth-james/ISL/
8https://www.tidytextmining.com/

https://supervised-ml-course.netlify.com/
https://supervised-ml-course.netlify.com/
https://bradleyboehmke.github.io/HOML/
https://bradleyboehmke.github.io/HOML/
http://faculty.marshall.usc.edu/gareth-james/ISL/
http://faculty.marshall.usc.edu/gareth-james/ISL/
https://www.tidytextmining.com/
https://www.tidytextmining.com/

xviii Preface

Colophon

This book was written in RStudio9 using bookdown10. The website11 is
hosted via GitHub Pages12, and the complete source is available on GitHub13.
We generated all plots in this book using ggplot214 and its light theme
(theme_light()). The autoplot() method for conf_mat()15 has been modified
slightly to allow colors; modified code can be found online16.

This version of the book was built with R version 4.1.0 (2021-05-18) and the
following packages:

package version source
bench 1.1.1 CRAN (R 4.1.0)
bookdown 0.23 CRAN (R 4.1.0)
broom 0.7.9 CRAN (R 4.1.0)
corpus 0.10.2 CRAN (R 4.1.0)
dials 0.0.9 CRAN (R 4.1.0)
discrim 0.1.1 CRAN (R 4.1.0)
doParallel 1.0.16 CRAN (R 4.1.0)
glmnet 4.1-1 CRAN (R 4.1.0)
gt 0.3.1 CRAN (R 4.1.0)
hcandersenr 0.2.0 CRAN (R 4.1.0)
htmltools 0.5.1.1 CRAN (R 4.1.0)
htmlwidgets 1.5.3 CRAN (R 4.1.0)
hunspell 3.0.1 CRAN (R 4.1.0)
irlba 2.3.3 CRAN (R 4.1.0)
jiebaR 0.11 CRAN (R 4.1.0)
jsonlite 1.7.2 CRAN (R 4.1.0)
kableExtra 1.3.4 CRAN (R 4.1.0)
keras 2.4.0 CRAN (R 4.1.0)
klaR 0.6-15 CRAN (R 4.1.0)
LiblineaR 2.10-12 CRAN (R 4.1.0)
lime 0.5.2 CRAN (R 4.1.0)
lobstr 1.1.1 CRAN (R 4.1.0)
naivebayes 0.9.7 CRAN (R 4.1.0)

9https://www.rstudio.com/ide/
10https://bookdown.org
11https://smltar.com
12https://pages.github.com
13https://github.com/EmilHvitfeldt/smltar
14https://ggplot2.tidyverse.org
15https://yardstick.tidymodels.org/reference/conf_mat.html
16https://github.com/EmilHvitfeldt/smltar/blob/master/_common.R

https://www.rstudio.com/ide/
https://www.rstudio.com/ide/
https://bookdown.org
https://bookdown.org
https://smltar.com
https://smltar.com
https://pages.github.com
https://pages.github.com
https://github.com/EmilHvitfeldt/smltar
https://github.com/EmilHvitfeldt/smltar
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://yardstick.tidymodels.org/reference/conf_mat.html
https://yardstick.tidymodels.org/reference/conf_mat.html

Preface xix

package version source
parsnip 0.1.6 CRAN (R 4.1.0)
prismatic 1.0.0 CRAN (R 4.1.0)
quanteda 3.1.0 CRAN (R 4.1.0)
ranger 0.13.1 CRAN (R 4.1.0)
recipes 0.1.16 CRAN (R 4.1.0)
remotes 2.4.0 CRAN (R 4.1.0)
reticulate 1.20 CRAN (R 4.1.0)
rsample 0.1.0 CRAN (R 4.1.0)
rsparse 0.4.0 CRAN (R 4.1.0)
scico 1.2.0 CRAN (R 4.1.0)
scotus 1.0.0 Github (EmilHvitfeldt/scotus)
servr 0.23 CRAN (R 4.1.0)
sessioninfo 1.1.1 CRAN (R 4.1.0)
slider 0.2.2 CRAN (R 4.1.0)
SnowballC 0.7.0 CRAN (R 4.1.0)
spacyr 1.2.1 CRAN (R 4.1.0)
stopwords 2.2 CRAN (R 4.1.0)
styler 1.5.1 CRAN (R 4.1.0)
text2vec 0.6 CRAN (R 4.1.0)
textdata 0.4.1 CRAN (R 4.1.0)
textfeatures 0.3.3 CRAN (R 4.1.0)
textrecipes 0.4.1 CRAN (R 4.1.0)
tfruns 1.5.0 CRAN (R 4.1.0)
themis 0.1.4 CRAN (R 4.1.0)
tidymodels 0.1.3 CRAN (R 4.1.0)
tidytext 0.3.1 CRAN (R 4.1.0)
tidyverse 1.3.1 CRAN (R 4.1.0)
tokenizers 0.2.1 CRAN (R 4.1.0)
tokenizers.bpe 0.1.0 CRAN (R 4.1.0)
tufte 0.10 CRAN (R 4.1.0)
tune 0.1.5 CRAN (R 4.1.0)
UpSetR 1.4.0 CRAN (R 4.1.0)
vip 0.3.2 CRAN (R 4.1.0)
widyr 0.1.4 CRAN (R 4.1.0)
workflows 0.2.3 CRAN (R 4.1.0)
yardstick 0.0.8 CRAN (R 4.1.0)

http://www.taylorandfrancis.com

Part I

Natural Language Features

http://www.taylorandfrancis.com

1
Language and modeling

Machine learning and deep learning models for text are executed by com-
puters, but they are designed and created by human beings using language
generated by human beings. As natural language processing (NLP) practi-
tioners, we bring our assumptions about what language is and how language
works into the task of creating modeling features from natural language and
using those features as inputs to statistical models. This is true even when we
don’t think about how language works very deeply or when our understand-
ing is unsophisticated or inaccurate; speaking a language is not the same as
having an explicit knowledge of how that language works. We can improve
our machine learning models for text by heightening that knowledge.

Throughout the course of this book, we will discuss creating predictors or
features from text data, fitting statistical models to those features, and how
these tasks are related to language. Data scientists involved in the everyday
work of text analysis and text modeling typically don’t have formal training
in how language works, but there is an entire field focused on exactly that,
linguistics.

1.1 Linguistics for text analysis

Briscoe (2013) provides helpful introductions to what linguistics is and how
it intersects with the practical computational field of natural language pro-
cessing. The broad field of linguistics includes subfields focusing on different
aspects of language, which are somewhat hierarchical, as shown in Table 1.1.

These fields each study a different level at which language exhibits organiza-
tion. When we build supervised machine learning models for text data, we use
these levels of organization to create natural language features, i.e., predictors
or inputs for our models. These features often depend on the morphological
characteristics of language, such as when text is broken into sequences of char-
acters for a recurrent neural network deep learning model. Sometimes these
features depend on the syntactic characteristics of language, such as when
models use part-of-speech information. These roughly hierarchical levels of

DOI: 10.1201/9781003093459-1 3

https://doi.org/10.1201/9781003093459-1

4 1 Language and modeling

TABLE 1.1: Some subfields of linguistics, moving from smaller structures to
broader structures

Linguistics subfield What does it focus on?
Phonetics Sounds that people use in language
Phonology Systems of sounds in particular languages
Morphology How words are formed
Syntax How sentences are formed from words
Semantics What sentences mean
Pragmatics How language is used in context

organization are key to the process of transforming unstructured language to
a mathematical representation that can be used in modeling.

At the same time, this organization and the rules of language can be ambigu-
ous; our ability to create text features for machine learning is constrained by
the very nature of language. Beatrice Santorini, a linguist at the University of
Pennsylvania, compiles examples of linguistic ambiguity from news headlines1:

• Include Your Children When Baking Cookies

• March Planned For Next August

• Enraged Cow Injures Farmer with Ax

• Wives Kill Most Spouses In Chicago

If you don’t have knowledge about what linguists study and what they know
about language, these news headlines are just hilarious. To linguists, these are
hilarious because they exhibit certain kinds of semantic ambiguity.

Notice also that the first two subfields on this list are about sounds, i.e.,
speech. Most linguists view speech as primary, and writing down language as
text as a technological step.

Remember that some language is signed, not spoken, so the description
laid out here is itself limited.

1https://www.ling.upenn.edu/~beatrice/humor/headlines.html

https://www.ling.upenn.edu/~beatrice/humor/headlines.html
https://www.ling.upenn.edu/~beatrice/humor/headlines.html

1.2 A glimpse into one area: morphology 5

Written text is typically less creative and further from the primary language
than we would wish. This points out how fundamentally limited modeling from
written text is. Imagine that the abstract language data we want exists in some
high-dimensional latent space; we would like to extract that information using
the text somehow, but it just isn’t completely possible. Any features we create
or model we build are inherently limited.

1.2 A glimpse into one area: morphology

How can a deeper knowledge of how language works inform text modeling?
Let’s focus on morphology, the study of words’ internal structures and how
they are formed, to illustrate this. Words are medium to small in length in
English; English has a moderately low ratio of morphemes (the smallest unit
of language with meaning) to words while other languages like Turkish and
Russian have a higher ratio of morphemes to words (Bender 2013). Related to
this, languages can be either more analytic (like Mandarin or modern English,
breaking up concepts into separate words) or synthetic (like Hungarian or
Swahili, combining concepts into one word).

Morphology focuses on how morphemes such as prefixes, suffixes, and root
words come together to form words. Some languages, like Danish, use many
compound words. Danish words such as “brandbil” (fire truck), “politibil” (po-
lice car), and “lastbil” (truck) all contain the morpheme “bil” (car) and start
with prefixes denoting the type of car. Because of these compound words,
some nouns seem more descriptive than their English counterpart; “vaske-
bjørn” (raccoon) splits into the morphemes “vaske” and “bjørn,” literally
meaning “washing bear”2. When working with Danish and other languages
with compound words, such as German, compound splitting to extract more
information can be beneficial (Sugisaki and Tuggener 2018). However, even
the very question of what a word is turns out to be difficult, and not only for
languages other than English. Compound words in English like “real estate”
and “dining room” represent one concept but contain whitespace.

The morphological characteristics of a text data set are deeply connected
to preprocessing steps like tokenization (Chapter 2), removing stop words
(Chapter 3), and even stemming (Chapter 4). These preprocessing steps for
creating natural language features, in turn, can have significant effects on
model predictions or interpretation.

2The English word “raccoon” derives from an Algonquin word meaning, “scratches with
his hands!”

6 1 Language and modeling

1.3 Different languages

We believe that most of the readers of this book are probably native English
speakers, and certainly most of the text used in training machine learning
models is English. However, English is by no means a dominant language
globally, especially as a native or first language. As an example close to home
for us, of the two authors of this book, one is a native English speaker and
one is not. According to the comprehensive and detailed Ethnologue project3,
less than 20% of the world’s population speaks English at all.

Bender (2011) provides guidance to computational linguists building models
for text, for any language. One specific point she makes is to name the language
being studied.

Do state the name of the language that is being studied, even if
it’s English. Acknowledging that we are working on a particular
language foregrounds the possibility that the techniques may in
fact be language-specific. Conversely, neglecting to state that the
particular data used were in, say, English, gives [a] false veneer
of language-independence to the work.

This idea is simple (acknowledge that the models we build are typically
language-specific) but the #BenderRule4 has led to increased awareness of
the limitations of the current state of this field. Our book is not geared to-
ward academic NLP researchers developing new methods, but toward data
scientists and analysts working with everyday data sets; this issue is relevant
even for us. Name the languages used in training models (Bender 2019), and
think through what that means for their generalizability. We will practice
what we preach and tell you that most of the text used for modeling in this
book is English, with some text in Danish and a few other languages.

3https://www.ethnologue.com/language/eng
4https://twitter.com/search?q=%23BenderRule

https://www.ethnologue.com/language/eng
https://www.ethnologue.com/language/eng
https://twitter.com/search?q=%23BenderRule
https://twitter.com/search?q=%23BenderRule

1.4 Other ways text can vary 7

1.4 Other ways text can vary

The concept of differences in language is relevant for modeling beyond only the
broadest language level (for example, English vs. Danish vs. German vs. Farsi).
Language from a specific dialect often cannot be handled well with a model
trained on data from the same language but not inclusive of that dialect.
One dialect used in the United States is African American Vernacular English
(AAVE). Models trained to detect toxic or hate speech are more likely to falsely
identify AAVE as hate speech (Sap et al. 2019); this is deeply troubling not
only because the model is less accurate than it should be, but because it
amplifies harm against an already marginalized group.

Language is also changing over time. This is a known characteristic of lan-
guage; if you notice the evolution of your own language, don’t be depressed
or angry, because it means that people are using it! Teenage girls are espe-
cially effective at language innovation and have been for centuries (McCulloch
2015); innovations spread from groups such as young women to other parts of
society. This is another difference that impacts modeling.

Differences in language relevant for models also include the use of slang,
and even the context or medium of that text.

Consider two bodies of text, both mostly standard written English, but one
made up of tweets and one made up of medical documents. If an NLP practi-
tioner trains a model on the data set of tweets to predict some characteristics
of the text, it is very possible (in fact, likely, in our experience) that the
model will perform poorly if applied to the data set of medical documents5.
Like machine learning in general, text modeling is exquisitely sensitive to the
data used for training. This is why we are somewhat skeptical of AI products
such as sentiment analysis APIs, not because they never work well, but be-
cause they work well only when the text you need to predict from is a good
match to the text such a product was trained on.

5Practitioners have built specialized computational resources for medical text (Johnson
1999).

8 1 Language and modeling

1.5 Summary

Linguistics is the study of how language works, and while we don’t believe
real-world NLP practitioners must be experts in linguistics, learning from such
domain experts can improve both the accuracy of our models and our under-
standing of why they do (or don’t!) perform well. Predictive models for text
reflect the characteristics of their training data, so differences in language over
time, between dialects, and in various cultural contexts can prevent a model
trained on one data set from being appropriate for application in another. A
large amount of the text modeling literature focuses on English, but English
is not a dominant language around the world.

1.5.1 In this chapter, you learned:

• that areas of linguistics focus on topics from sounds to how language is
used

• how a topic like morphology is connected to text modeling steps

• to identify the language you are modeling, even if it is English

• about many ways language can vary and how this can impact model results

2
Tokenization

To build features for supervised machine learning from natural language, we
need some way of representing raw text as numbers so we can perform com-
putation on them. Typically, one of the first steps in this transformation from
natural language to feature, or any of kind of text analysis, is tokenization.
Knowing what tokenization and tokens are, along with the related concept of
an n-gram, is important for almost any natural language processing task.

2.1 What is a token?

In R, text is typically represented with the character data type, similar to
strings in other languages. Let’s explore text from fairy tales written by Hans
Christian Andersen, available in the hcandersenr package (Hvitfeldt 2019a).
This package stores text as lines such as those you would read in a book; this is
just one way that you may find text data in the wild and does allow us to more
easily read the text when doing analysis. If we look at the first paragraph of
one story titled “The Fir-Tree,” we find the text of the story is in a character
vector: a series of letters, spaces, and punctuation stored as a vector.

The tidyverse is a collection of packages for data manipulation, explo-
ration, and visualization.

library(tokenizers)
library(tidyverse)
library(tidytext)
library(hcandersenr)

DOI: 10.1201/9781003093459-2 9

https://doi.org/10.1201/9781003093459-2

10 2 Tokenization

the_fir_tree <- hcandersen_en %>%
filter(book == "The fir tree") %>%
pull(text)

head(the_fir_tree, 9)

#> [1] "Far down in the forest, where the warm sun and the fresh air made a
sweet"
#> [2] "resting-place, grew a pretty little fir-tree; and yet it was not happy,
it"
#> [3] "wished so much to be tall like its companions– the pines and firs which
grew"
#> [4] "around it. The sun shone, and the soft air fluttered its leaves, and
the"
#> [5] "little peasant children passed by, prattling merrily, but the fir-tree
heeded"
#> [6] "them not. Sometimes the children would bring a large basket of
raspberries or"
#> [7] "strawberries, wreathed on a straw, and seat themselves near the
fir-tree, and"
#> [8] "say, \"Is it not a pretty little tree?\" which made it feel more
unhappy than"
#> [9] "before."

The first nine lines stores the first paragraph of the story, each line consisting
of a series of character symbols. These elements don’t contain any metadata or
information to tell us which characters are words and which aren’t. Identifying
these kinds of boundaries between words is where the process of tokenization
comes in.

In tokenization, we take an input (a string) and a token type (a meaningful
unit of text, such as a word) and split the input into pieces (tokens) that
correspond to the type (Manning, Raghavan, and Schütze 2008). Figure 2.1
outlines this process.

Most commonly, the meaningful unit or type of token that we want to split
text into units of is a word. However, it is difficult to clearly define what a
word is, for many or even most languages. Many languages, such as Chinese,
do not use white space between words at all. Even languages that do use white
space, including English, often have particular examples that are ambiguous
(Bender 2013). Romance languages like Italian and French use pronouns and
negation words that may better be considered prefixes with a space, and En-
glish contractions like “didn’t” may more accurately be considered two words
with no space.

2.1 What is a token? 11

"Rejoice with us," said the air and the sunlight. Enjoy

The sun shone, and the soft air fluttered its leaves

grew a pretty little fir-tree; and yet it was not happy

rejoice with air andsaid theus sunlightthe

sun shone flutteredtheand soft itsthe air

a yetfirlittle tree itgrew and

leaves

not happywaspretty

Tokenization

enjoy

FIGURE 2.1: A black box representation of a tokenizer. The text of these
three example text fragments has been converted to lowercase and punctuation
has been removed before the text is split.

To understand the process of tokenization, let’s start with a overly simple
definition for a word: any selection of alphanumeric (letters and numbers)
symbols. Let’s use some regular expressions (or regex for short, see Appendix
A) with strsplit() to split the first two lines of “The Fir-Tree” by any charac-
ters that are not alphanumeric.

strsplit(the_fir_tree[1:2], "[^a-zA-Z0-9]+")

#> [[1]]
#> [1] "Far" "down" "in" "the" "forest" "where" "the" "warm"
#> [9] "sun" "and" "the" "fresh" "air" "made" "a" "sweet"
#>
#> [[2]]
#> [1] "resting" "place" "grew" "a" "pretty" "little" "fir"
#> [8] "tree" "and" "yet" "it" "was" "not" "happy"
#> [15] "it"

12 2 Tokenization

At first sight, this result looks pretty decent. However, we have lost all punc-
tuation, which may or may not be helpful for our modeling goal, and the hero
of this story ("fir-tree") was split in half. Already it is clear that tokeniza-
tion is going to be quite complicated. Luckily for us, a lot of work has been
invested in this process, and typically it is best to use these existing tools. For
example, tokenizers (Mullen et al. 2018) and spaCy (Honnibal et al. 2020)
implement fast, consistent tokenizers we can use. Let’s demonstrate with the
tokenizers package.

library(tokenizers)
tokenize_words(the_fir_tree[1:2])

#> [[1]]
#> [1] "far" "down" "in" "the" "forest" "where" "the" "warm"
#> [9] "sun" "and" "the" "fresh" "air" "made" "a" "sweet"
#>
#> [[2]]
#> [1] "resting" "place" "grew" "a" "pretty" "little" "fir"
#> [8] "tree" "and" "yet" "it" "was" "not" "happy"
#> [15] "it"

We see sensible single-word results here; the tokenize_words() function uses the
stringi package (Gagolewski 2020) and C++ under the hood, making it very
fast. Word-level tokenization is done by finding word boundaries according to
the specification from the International Components for Unicode (ICU). How
does this word boundary algorithm1 work? It can be outlined as follows:

• Break at the start and end of text, unless the text is empty.

• Do not break within CRLF (new line characters).

• Otherwise, break before and after new lines (including CR and LF).

• Do not break within emoji zwj sequences.

• Keep horizontal whitespace together.

• Ignore Format and Extend characters, except after sot, CR, LF, and new
lines.

• Do not break between most letters.
1https://www.unicode.org/reports/tr29/tr29-35.html#Default_Word_Boundaries

https://www.unicode.org/reports/tr29/tr29-35.html#Default_Word_Boundaries
https://www.unicode.org/reports/tr29/tr29-35.html#Default_Word_Boundaries

2.2 Types of tokens 13

• Do not break letters across certain punctuation.

• Do not break within sequences of digits, or digits adjacent to letters (“3a,”
or “A3”).

• Do not break within sequences, such as “3.2” or “3,456.789.”

• Do not break between Katakana.

• Do not break from extenders.

• Do not break within emoji flag sequences.

• Otherwise, break everywhere (including around ideographs).

While we might not understand what each and every step in this algorithm
is doing, we can appreciate that it is many times more sophisticated than
our initial approach of splitting on non-alphanumeric characters. In most of
this book, we will use the tokenizers package as a baseline tokenizer for
reference. Your choice of tokenizer will influence your results, so don’t be
afraid to experiment with different tokenizers or, if necessary, to write your
own to fit your problem.

2.2 Types of tokens

Thinking of a token as a word is a useful way to start understanding tokeniza-
tion, even if it is hard to implement concretely in software. We can generalize
the idea of a token beyond only a single word to other units of text. We can
tokenize text at a variety of units including:

14 2 Tokenization

• characters,

• words,

• sentences,

• lines,

• paragraphs, and

• n-grams

In the following sections, we will explore how to tokenize text using the to-
kenizers package. These functions take a character vector as the input and
return lists of character vectors as output. This same tokenization can also
be done using the tidytext (Silge and Robinson 2016) package, for workflows
using tidy data principles where the input and output are both in a dataframe.

sample_vector <- c("Far down in the forest",
"grew a pretty little fir-tree")

sample_tibble <- tibble(text = sample_vector)

The tokenizers package offers fast, consistent tokenization in R for to-
kens such as words, letters, n-grams, lines, paragraphs, and more.

The tokenization achieved by using tokenize_words() on sample_vector:

tokenize_words(sample_vector)

#> [[1]]
#> [1] "far" "down" "in" "the" "forest"
#>
#> [[2]]
#> [1] "grew" "a" "pretty" "little" "fir" "tree"

will yield the same results as using unnest_tokens() on sample_tibble; the only
difference is the data structure, and thus how we might use the result moving
forward in our analysis.

2.2 Types of tokens 15

sample_tibble %>%
unnest_tokens(word, text, token = "words")

#> # A tibble: 11 x 1
#> word
#> <chr>
#> 1 far
#> 2 down
#> 3 in
#> 4 the
#> 5 forest
#> 6 grew
#> 7 a
#> 8 pretty
#> 9 little
#> 10 fir
#> 11 tree

The tidytext package provides functions to transform text to and from
tidy formats, allowing us to work seamlessly with other tidyverse tools.

Arguments used in tokenize_words() can be passed through unnest_tokens() us-
ing the “the dots”2,

sample_tibble %>%
unnest_tokens(word, text, token = "words", strip_punct = FALSE)

#> # A tibble: 12 x 1
#> word
#> <chr>
#> 1 far
#> 2 down
#> 3 in
#> 4 the
#> 5 forest
#> 6 grew

2https://adv-r.hadley.nz/functions.html#fun-dot-dot-dot

https://adv-r.hadley.nz/functions.html#fun-dot-dot-dot
https://adv-r.hadley.nz/functions.html#fun-dot-dot-dot

16 2 Tokenization

#> 7 a
#> 8 pretty
#> 9 little
#> 10 fir
#> 11 -
#> 12 tree

2.2.1 Character tokens

Perhaps the simplest tokenization is character tokenization, which splits texts
into characters. Let’s use tokenize_characters() with its default parameters;
this function has arguments to convert to lowercase and to strip all non-
alphanumeric characters. These defaults will reduce the number of different
tokens that are returned. The tokenize_*() functions by default return a list
of character vectors, one character vector for each string in the input.

tft_token_characters <- tokenize_characters(x = the_fir_tree,
lowercase = TRUE,
strip_non_alphanum = TRUE,
simplify = FALSE)

What do we see if we take a look?

head(tft_token_characters) %>%
glimpse()

#> List of 6
#> $: chr [1:57] "f" "a" "r" "d" ...
#> $: chr [1:57] "r" "e" "s" "t" ...
#> $: chr [1:61] "w" "i" "s" "h" ...
#> $: chr [1:56] "a" "r" "o" "u" ...
#> $: chr [1:64] "l" "i" "t" "t" ...
#> $: chr [1:64] "t" "h" "e" "m" ...

We don’t have to stick with the defaults. We can keep the punctuation and
spaces by setting strip_non_alphanum = FALSE, and now we see that spaces and
punctuation are included in the results too.

2.2 Types of tokens 17

tokenize_characters(x = the_fir_tree,
strip_non_alphanum = FALSE) %>%

head() %>%
glimpse()

#> List of 6
#> $: chr [1:73] "f" "a" "r" " " ...
#> $: chr [1:74] "r" "e" "s" "t" ...
#> $: chr [1:76] "w" "i" "s" "h" ...
#> $: chr [1:72] "a" "r" "o" "u" ...
#> $: chr [1:77] "l" "i" "t" "t" ...
#> $: chr [1:77] "t" "h" "e" "m" ...

The results have more elements because the spaces and punctuation have not
been removed.

Depending on the format you have your text data in, it might contain ligatures.
Ligatures are when multiple graphemes or letters are combined as a single
character The graphemes “f” and “l” are combined into “fl,” or “f” and “f”
into “ff.” When we apply normal tokenization rules the ligatures will not be
split up.

tokenize_characters("flowers")

#> [[1]]
#> [1] "fl" "o" "w" "e" "r" "s"

We might want to have these ligatures separated back into separate characters,
but first, we need to consider a couple of things. First, we need to consider
if the presence of ligatures is a meaningful feature to the question we are
trying to answer. Second, there are two main types of ligatures: stylistic and
functional. Stylistic ligatures are when two characters are combined because
the spacing between the characters has been deemed unpleasant. Functional
ligatures like the German Eszett (also called the scharfes S, meaning sharp s)
ß, is an official letter of the German alphabet. It is described as a long S and
Z and historically has never gotten an uppercase character. This has led the
typesetters to use SZ or SS as a replacement when writing a word in uppercase.
Additionally, ß is omitted entirely in German writing in Switzerland and is
replaced with ss. Other examples include the “W” in the Latin alphabet (two
“v” or two “u” joined together), and æ, ø, and å in the Nordic languages.
Some place names for historical reasons use the old spelling “aa” instead of
å. In Section 6.7.1 we will discuss text normalization approaches to deal with
ligatures.

18 2 Tokenization

2.2.2 Word tokens

Tokenizing at the word level is perhaps the most common and widely used
tokenization. We started our discussion in this chapter with this kind of tok-
enization, and as we described before, this is the procedure of splitting text
into words. To do this, let’s use the tokenize_words() function.

tft_token_words <- tokenize_words(x = the_fir_tree,
lowercase = TRUE,
stopwords = NULL,
strip_punct = TRUE,
strip_numeric = FALSE)

The results show us the input text split into individual words.

head(tft_token_words) %>%
glimpse()

#> List of 6
#> $: chr [1:16] "far" "down" "in" "the" ...
#> $: chr [1:15] "resting" "place" "grew" "a" ...
#> $: chr [1:15] "wished" "so" "much" "to" ...
#> $: chr [1:14] "around" "it" "the" "sun" ...
#> $: chr [1:12] "little" "peasant" "children" "passed" ...
#> $: chr [1:13] "them" "not" "sometimes" "the" ...

We have already seen lowercase = TRUE, and strip_punct = TRUE and strip_numeric
= FALSE control whether we remove punctuation and numeric characters, re-
spectively. We also have stopwords = NULL, which we will talk about in more
depth in Chapter 3.

Let’s create a tibble with two fairy tales, “The Fir-Tree” and “The Little
Mermaid.” Then we can use unnest_tokens() together with some dplyr verbs
to find the most commonly used words in each.

hcandersen_en %>%
filter(book %in% c("The fir tree", "The little mermaid")) %>%
unnest_tokens(word, text) %>%
count(book, word) %>%
group_by(book) %>%
arrange(desc(n)) %>%
slice(1:5)

2.2 Types of tokens 19

#> # A tibble: 10 x 3
#> # Groups: book [2]
#> book word n
#> <chr> <chr> <int>
#> 1 The fir tree the 278
#> 2 The fir tree and 161
#> 3 The fir tree tree 76
#> 4 The fir tree it 66
#> 5 The fir tree a 56
#> 6 The little mermaid the 817
#> 7 The little mermaid and 398
#> 8 The little mermaid of 252
#> 9 The little mermaid she 240
#> 10 The little mermaid to 199

The five most common words in each fairy tale are fairly uninformative, with
the exception being "tree" in the “The Fir-Tree.”

These uninformative words are called stop words and will be explored
in-depth in Chapter 3.

2.2.3 Tokenizing by n-grams

An n-gram (sometimes written “ngram”) is a term in linguistics for a contigu-
ous sequence of 𝑛 items from a given sequence of text or speech. The item can
be phonemes, syllables, letters, or words depending on the application, but
when most people talk about n-grams, they mean a group of 𝑛 words. In this
book, we will use n-gram to denote word n-grams unless otherwise stated.

We use Latin prefixes so that a 1-gram is called a unigram, a 2-gram is
called a bigram, a 3-gram called a trigram, and so on.

20 2 Tokenization

Some example n-grams are:

• unigram: “Hello,” “day,” “my,” “little”

• bigram: “fir tree,” “fresh air,” “to be,” “Robin Hood”

• trigram: “You and I,” “please let go,” “no time like,” “the little mermaid”

The benefit of using n-grams compared to words is that n-grams capture word
order that would otherwise be lost. Similarly, when we use character n-grams,
we can model the beginning and end of words, because a space will be located
at the end of an n-gram for the end of a word and at the beginning of an
n-gram of the beginning of a word.

To split text into word n-grams, we can use the function tokenize_ngrams(). It
has a few more arguments, so let’s go over them one by one.

tft_token_ngram <- tokenize_ngrams(x = the_fir_tree,
lowercase = TRUE,
n = 3L,
n_min = 3L,
stopwords = character(),
ngram_delim = " ",
simplify = FALSE)

We have seen the arguments lowercase, stopwords, and simplify before; they
work the same as for the other tokenizers. We also have n, the argument to
determine which degree of n-gram to return. Using n = 1 returns unigrams, n =
2 bigrams, n = 3 gives trigrams, and so on. Related to n is the n_min argument,
which specifies the minimum number of n-grams to include. By default both
n and n_min are set to 3 making tokenize_ngrams() return only trigrams. By
setting n = 3 and n_min = 1, we will get all unigrams, bigrams, and trigrams of
a text. Lastly, we have the ngram_delim argument, which specifies the separator
between words in the n-grams; notice that this defaults to a space.

Let’s look at the result of n-gram tokenization for the first line of “The Fir-
Tree.”

tft_token_ngram[[1]]

#> [1] "far down in" "down in the" "in the forest" "the forest where"
#> [5] "forest where the" "where the warm" "the warm sun" "warm sun and"
#> [9] "sun and the" "and the fresh" "the fresh air" "fresh air made"
#> [13] "air made a" "made a sweet"

