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Logic Works

Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they 
are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical 
logical doctrines.

The book covers classical first-​order logic and alternatives, including intuitionistic, free, and many-​valued logic. 
It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and 
scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a refer-
ence work and handbook for further, independent study as a course text, it covers more material than is typically 
covered in an introductory course. It also covers this material at greater length and in more depth with the purpose 
of making it accessible to those with no prior training in logic or formal systems.

Online support material includes a detailed student solutions manual with a running commentary on all starred 
exercises, and a set of editable slide presentations for course lectures.

Key Features

•	 Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various 
objectives

•	 Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philo-
sophical questions about logic

•	 Carefully considers the ways natural language both resists and lends itself to formalization
•	 Makes objectual semantics for quantified logic easy, with an incremental, rule-​governed approach assisted by 

numerous simple exercises
•	 Makes important metatheoretical results accessible to introductory students through a discursive presentation of 

those results and by using simple case studies
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“Logic Works is a thorough treatment of core topics in elementary logic, and of several topics in intermediate logic. Its 
precision and rigor is a step above typical presentations of this material. It will be an invaluable resource for teachers, 
as well as for students of logic who want to go beyond the basics.”

Fabrizio Cariani, University of Maryland
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Preface

Logic Works takes what might be called a philosophical approach to logic. It does not cover philosophy of logic as 
currently conceived, but it does ask questions about why systems of logic are as they are, how they relate to ordinary 
language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. It covers clas-
sical first-​order logic, and introduces supervaluations, many-​valued logics, paraconsistent logic, intuitionistic logic, 
modal sentential logic, free logic, and description theories. It also covers mathematical induction, completeness and 
soundness proofs, and formal semantics. In addition to these field-​specific topics, it considers how logical analysis 
might be applied to carefully represent the reasoning employed in academic and scientific work, better understand 
that reasoning, and identify its hidden premises. Logic Works deals with this material from the ground up, aiming to 
make it accessible to those with no prior background in logic, mathematics, or formal systems. It aims to be as much 
a reference work and a handbook for further, independent study as a course text. To this end, it covers more material 
than is typically covered in an introductory course, and it covers introductory material at greater length and in more 
depth. Course instructors will teach only a portion of the material presented here and will teach that portion by 
way of abbreviation, highlighting, and alternative explanation rather than supplementation. More advanced material 
is separated from foundational material by being placed in appendices, in a separate sequence of “advanced topics” 
chapters, and in chapter sections that build on advanced material introduced in earlier chapters. There are numerous 
answered exercises to facilitate self-​instruction.

An outline of classical sentential logic with some nonclassical variants is completed by the close of chapter 7. 
Later chapters repeatedly cycle through the material originally presented over chapters 2–​7, both reinforcing and 
embellishing that original learning. Alterations to previously presented material are highlighted, to focus attention 
on what is new and to make clear what is being retained with each step to a higher level.

Chapters interrupt exposition with exercises. Details are often worked out in running comments on the solutions 
to the selected exercises. It is necessary to work through the exercises and consult the solutions to get the full story.

Logic is learned by doing exercises. Language can be too ambiguous for the precise applications logic demands 
and details too small to be noticed at first can be crucial. Even the most clearly written English prose will be under-
stood differently by different people, and the attempt to explain everything in the detail it deserves can produce an 
account that frustrates its own purpose by being too long and tedious. To grasp the meaning behind the language 
it is necessary to work on the exercises. The theory of logic is abstract. We are better at understanding concrete 
examples than abstract concepts. Exercises are the examples. Logic Works makes working through the exercises even 
more essential by including important portions of the expository material in the solutions to selected exercises.

Exercises that are prefaced by an asterisk (*) are answered. Answers can be downloaded from the textbook’s 
product page at www.routledge.com/9780367460297. The answers should be used to check on the correctness of 
work, not as a substitute for it. Often, the solution to an exercise will make no sense to someone who has not first 
struggled to solve the exercise on their own. A history of failed attempts makes it clear why the answer is as it is. 
The exercises are progressive. Earlier ones teach things needed to handle later ones. Looking up answers to earlier 
exercises without working on them first makes it harder to remember the solution when needed for more advanced 
applications. A poor grasp of the solutions to earlier exercises makes engagement with the later exercises more dif-
ficult and time consuming. Time spent struggling with the earlier exercises is repaid by time saved dealing with the 
later ones.

Understanding the text is not a prerequisite for doing the exercises. Doing the exercises produces understanding. 
Trying to give an answer, even in the absence of understanding, is the beginning of understanding. Every second 
exercise is answered to serve as a prompt. An incorrect idea can be corrected by consulting a neighbouring, answered 
question. Neighbouring answered questions illustrate how to deal with similar cases. Sometimes only minor changes 
to an answered question are required to solve an unanswered one. Uncertainty over how to answer an exercise will 
prompt a review of important portions of the preceding text. When the text is reread with a particular difficulty in 
view, it will be found to say more than it did the first time through.
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Instructors’ Preface

Logic Works contains more material than can be taught in a single course. It does so with the aim of offering students 
a book that will continue to have value as a reference work and a guide for independent study. Instructors can focus 
on abbreviating, condensing, highlighting, sidelighting, answering questions, and taking up examples and exercises. 
Students can be referred to the text for more detailed explanations.

There are two sequences of chapters, a principal sequence (chapters 1–​17) and an advanced sequence (chapters 
A-​1–​A-​6). The advanced chapters are placed at points where they can be studied by those who have mastered the 
preceding principal chapters. They are not necessary for understanding the principal chapters that follow them. 
Later principal chapters sometimes refer to results established in earlier advanced chapters, but they do not demand 
understanding of how those results are established. The advanced chapters are progressive among themselves. It is 
necessary to have mastered the material in the earlier advanced chapters before taking up later advanced chapters.

Chapters 1, 3, 5, 7, 16, and 17 section some material off into appendices. This is done for different reasons. 
The appendix to chapter 1 is a summary presentation of basic concepts, better assigned for reading and reference 
than taken up in a class or lecture. Chapter 1 itself raises a philosophical problem with the foundations of logic 
and sets up an opposition between formalist and intuitionist answers to that problem that is explored throughout 
the subsequent chapters, and resolved (in one way and to some extent) in the advanced chapters. Otherwise, the 
chapter offers an introduction to methods and foundational concepts that can be quickly summarized or assigned 
as reading.

Instructors must decide whether to begin a course on formal logic by discussing how to formalize a natural lan-
guage or by presenting a largely uninterpreted formal language. Neither approach is a happy one. The first can be 
confusing for many, who find that the formal language does not mesh with their intuitions about how their natural 
language is used. The second tries the patience of many, who do not see the point of studying a formal system that is 
not clearly related to their natural language. Even more unfortunately, those who are confused by the first approach 
are most likely to be the ones who are impatient with the second.

Logic Works begins with two brief chapters on formal syntax and semantics and only relates the formal language 
to English in chapter 4. The aim is to familiarize students with how the formal language works before asking them 
to associate it with a natural language. Relating the formal language to a natural language is very important, but it 
requires caution to minimize confusion and frustration. Logic Works is designed on the principle that introducing the 
formal language as a way of capturing the form of natural language sentences and demonstrations invites too many 
misapprehensions to be pedagogically effective. At the risk of trying students’ patience, the formal language needs to 
first be sketched on its own terms. It can then be presented as a tool that might be used to formalize a part of what 
is said in natural languages, with due regard for the fact that the fit is not always exact.

The appendix to chapter 3 proves the expressive completeness of a formal language for sentential logic containing 
just five (or two or one) connectives. In passing, it introduces the concepts of disjunctive normal form and of a lean 
formal language. These are topics that can be skipped in an introductory course but that instructors might want to 
consider wedging in, depending on course objectives. The notion of a lean language is alluded to at the outset of 
chapter 6 to motivate introducing an abbreviated system of derivation rules. The derivation of disjunctive normal 
forms is discussed both in chapter 6 on derivations and chapter 7 on trees, where it serves as a hint that derivations, 
trees, and semantic techniques can be expected to establish the same results. The fact of expressive completeness is 
brought up when discussing how much of what is said in English lends itself to formalization (in chapter 4), and 
again in the appendix to chapter 5 when discussing what multi-​valued logics aim to achieve.

The material on multi-​valued logics is put in appendices to chapters 5 and 7 because it can be skipped, depending 
on course objectives. There are special reasons to include it in a course that aims to take a critical and philosoph-
ical approach to introductory logic. Students can find it liberating to be exposed to alternative ways in which logic 
might be conceived, some of which hearken back to non-​Western traditions, and the alternative approaches help to 
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strengthen their understanding of the foundations of the classical approach and of what is involved in designing an 
alternative system of logic.

Supervaluations are introduced in appendix 5.1. Those interested in exposing students to free logic and the philo-
sophical problems attendant on definite descriptions and discourse concerning nonexistent objects will want to 
include appendix 5.1 on their course syllabi. It is foundational for sections 11.7.7 and 14.4.4.

Chapter 4, on formalization (or translation) devotes special attention to the formalization of natural language 
conditionals. In conformity with standard practice, it discusses the reasons why the material conditional cannot 
adequately formalize causal and subjunctive conditionals and presents the paradoxes of material implication. 
Unusually, this chapter also draws attention to special contexts where natural language conditionals are intuitively 
captured by material conditionals. It further offers a unique analysis of how conditionals are expressed in English 
and of the types of English conditionals.

Logic Works makes no attempt to “sell” the study of logic to students on the ground that it will improve their 
reasoning skills. In part, this is because the sales pitch is inconsistent with the appeals to intuitive foundations that 
are made in many chapters. In part, it is because we are sceptical of the ability of any training in logic to overcome 
the psychological factors that induce resistance to counterdemonstrations. But Logic Works does make a case that the 
study of logic is both intrinsically philosophically interesting and that sentential logic is instrumentally valuable for  
students of philosophy. Familiarity with valid and invalid sentential forms aids in the analysis of philosophical 
arguments. While it rarely uncovers invalid arguments, it reveals implicit premises and questionable premises, assisting 
in crafting rigorous, critical papers. This makes section 4.12 and the attached exercises an important component of 
any course for philosophy students.

Logic Works inserts chapter 4 between two chapters on formal semantics. Chapter 3 deals with the essentials of 
sentential semantics, as illustrated by truth tables. Chapter 5 introduces a short table method for discovering models 
and discusses how to establish validity and invalidity by direct appeal to the connective rules. Chapter 4 interrupts 
the sequence to relate the formal language to natural language sentences and demonstrations as soon as is peda-
gogically feasible, but also because chapter 5 can be skipped, depending on time constraints and course objectives. 
Courses designed to present accepted decision procedures without digressing too far to discuss what justifies those 
procedures will pass directly from chapter 4 to chapter 6 or 7. Chapter 5 is important for a course that aims to 
teach formal semantics for more advanced systems of logic (it is presupposed by chapters 9, 11, 15, and 16) and for 
those wanting to expose students to the techniques for demonstrating metatheoretic results (there called “informal 
demonstrations,” and treated as such). Chapter 5 also quietly introduces natural deduction techniques in an informal 
context. Those planning on covering the material in chapter 6 will find that sections 5.2–​3 and 5.5 prepare the way, 
though the material in chapter 6 does not depend on any prior knowledge of chapter 5.

Some instructors may find it preferable to pass over the material on discovering models in section 5.1 in favour 
of using trees. Logic Works opts to present trees as derivational structures, albeit structures based on semantic rules 
rather than intuitively consequential forms. In keeping with that approach, it treats tree models as subject to veri-
fication. As usual, the verification procedure is to climb the path, appealing to the connective rules to demonstrate 
how truth flows up the tree from literals to the givens. That procedure is described in section 5.1 in the context 
of verifying models drawn from short tables. But instructors should find little difficulty in inverting the textbook 
order, taking up chapter 7 in place of section 5.1, and drawing on the relevant parts of section 5.1 to explain how 
to verify tree models.

Chapters 6 on natural deduction derivations, and 7, on reduction trees, have been designed so that either one may 
be taken up in the absence of the other. Those planning to take up soundness and completeness demonstrations for 
more advanced systems are advised that chapters A-​4, A-​5, and A-​6 only demonstrate the soundness of derivations 
and the completeness of trees. Appeal to a method for converting trees to derivations replaces the demonstra-
tion of the soundness of trees and the completeness of derivations. The reliability of that method is not rigorously 
demonstrated.

Chapter 6 follows up on the distinction drawn in chapter 1 between formal and intuitionistic approaches to 
solving the problems of logic. Derivations are there presented as a distinct approach to solving the problems of logic, 
grounded in intuitively obvious equivalences and entailments rather than a theory of the meaning of the senten-
tial connectives. Chapter 5 prepared for this move by informally relying on the rules of indirect proof, conditional 
proof, modus ponens, and proof by cases when giving semantic demonstrations. At the outset of chapter 6, this fact 
is invoked to counter the prejudice that semantic theory sits in judgement of the correctness of the derivation rules. 
Not all instructors will agree, and whether they do or not, the observation is not offered as dogma, but as an invita-
tion for philosophical consideration. Those who have the time to go further will find that the following advanced 
chapter, A-​2, presents soundness and completeness demonstrations as an answer. This is an important reason for 
making the advanced material available. It addresses the fundamental problem exposed in chapter 1.
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Though the derivation rules are justified by appeal to intuition, they are nonetheless classical. This makes rec-
ognition and discussion of alternative intuitions, prominently those labelled as “intuitionist,” a topic that cannot be 
merely relegated to an appendix. Many courses will not have the time for this material, but it is at least there as a 
source for the many readers who naturally question the identification of double negatives with positives.

Those who choose to take up the study of derivations will find two differences from other treatments. Logic 
Works tends to present the more complex and restrictive derivation rules first. Learning to apply derivation rules 
is not like physical training. It is not necessary to start easy and build up from there. It may in fact be counterpro-
ductive. The simpler rules are in no sense components of the more complex and restrictive rules. On the contrary, 
giving the impression that the more complex and restrictive rules are somehow developments of the simpler and 
more powerful ones makes it more tempting to take liberties with the application of the more complex rules, or 
to imagine that they can be replaced with the simpler ones. Those who learn the more restrictive rules first are less 
likely to abuse them.

Secondly, Logic Works cautions readers that while the rules are individually intuitive, the manner in which they 
are to be applied to obtain an assigned result is often quite difficult to discern. The approach taken to this problem 
is regimented and not at all left to “intuition.” Logic Works provides heuristics for the application of each rule. “Top-​
down” thinking is restricted to the application of particular rules, a “bottom-​up” method is inculcated for the 
remainder, and a flow chart for the sequence in which rules are to be applied is followed. To mitigate indecision due 
to multiplicity of choice, instruction begins with a derivation system designed for a “lean language” that recognizes 
only atomic sentences, negations, conditionals, and the associated derivation rules. This reduces the number of 
rules to be juggled from 11 to five without compromising the completeness of the system. Rewriting disjunctions, 
conjunctions, and biconditionals as the equivalent ~/​→ sentences makes for many challenging and instructive 
exercises, providing instruction in everything it is most important to know about doing derivations.

The lean derivation system is given a different name from the full derivation system, but chapter 6 does not teach 
two distinct systems. The names notwithstanding, there is one 11-​rule system. It is just presented over two stages. 
Instructors feeling time pressure have the option of just teaching the lean system (possibly backed up with instruc-
tion on how to convert disjunctions, conjunctions, and biconditionals to ~/​→ sentences, summarized in section 
6.5.1). This reveals everything that is most important to learn about doing derivations. The remainder can be left 
to independent study. Much of the material in chapter 6.5 can also be sacrificed to time constraints. Those who do 
take up sections 6.5.2–​4 will find that it establishes how derivations can be used to establish invalidity, by way of 
deriving the disjunctive normal form of the iterated conjunction of the premises and the negation of the conclu-
sion. Anyone planning to say more about the soundness of the derivation system should consider section 6.5.6 and 
making the comparison with exercise 5.12. This makes it possible to assign section A-​2.1 as supplementary reading 
for those who have studied A-​1.1.

Logic Works does not aim to offer a full course in modal logic. It does aim to provide enough of an introduction 
to normal sentential modal logics to give readers a sense of the scope of the field, and enough background to under-
stand Kripke semantics for intuitionistic logic and the associated tree method. Treatment of quantified modal logic 
is confined to an appendix to chapter A-​6, which discusses theoretical and philosophical questions to the exclusion 
of presenting a theory. The treatment of semantics for intuitionistic logic is extended to quantified logic with iden-
tity in chapter 14, which goes out on a limb in offering an intuitionistic identity theory, echoed by the treatment of 
“substances” in the appendix to chapter A-​6.

Somewhat idiosyncratically, Logic Works treats the logic of terms, predicates, and identity as a preliminary to 
quantificational logic, through to providing a semantics, derivations rules, and a tree method, as well as soundness 
and completeness results (the latter in the associated advanced topics chapter). This is done to provide a gradual 
introduction to the complexities of the semantics for quantified logic. It also provides an occasion to discuss def-
inite descriptions (considered as terms) and a range of non-​Russellian approaches to improper terms. Those in 
philosophy departments that offer courses touching on discourse concerning nonexistent objects will be interested 
in this material. Others can study sections 10.1–​2 and 11.1–​3 (and possibly 4) without taking up the following 
sections. The treatment of functional terms and definite descriptions in the remainder of chapters 10 and 11 takes 
place in two separate, supplementary modules, either of which can be studied independently of reference to the 
other. The module on definite descriptions gives special attention to supervaluations and to Meinongian semantics. 
This material is recommended for anyone going on to consider the treatment of trees for free description theory 
in chapter 14. Chapters 13 and 14, on derivations and trees for quantified predicate logic, place the treatment of 
derivations and trees for complex terms in separate subsections which can be skipped by those who chose not to 
study the prior material in chapters 10 and 11.

There are also two idiosyncrasies in the approach that Logic Works takes to quantified modal logic. One has to do 
with the treatment of formalization of natural language sentences in chapter 12. Many logic textbooks are oddly 
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silent about scope ambiguities in quantified sentences of natural language. Readers of these textbooks are told that 
whichever unary operator happens to be mentioned first has scope over the unary operator mentioned second. 
Work by linguists and philosophers of language has made it clear that this is false. “There is a fork by every plate” 
does not have to mean that the plates are all stacked up in a pile with a single fork beside them.1 “Someone loves 
everyone” is –​ the declarations of many textbooks notwithstanding –​ ambiguous. Rather than contradict those who 
have different intuitions about the parsing of quantified sentences, Logic Works identifies scope ambiguities in English 
and proposes policies for dealing with them. This takes some time and effort. It is necessary.

An immediate implication for those who recognize that natural languages are deeply infected with scope ambi-
guities is that it is hopeless to attempt to teach predicate semantics informally, by appeal to the declared meaning of 
natural language instantiations of formalized sentences. Many students will simply not intuit that the natural lan-
guage sentence means what the instructor says it does, and they will have every right to think differently. Attempts 
on the part of the instructor to brow ​beat them into submission only leave them feeling stupid and confused and no 
better able to intuit the justification for the parsing the instructor insists on. This leaves no alternative but to teach 
the semantics for quantified logic as formal semantics. (This is one reason why Logic Works places chapter 3 before 
chapter 4. Even when doing sentential semantics it is important to establish the principle that the semantics for the 
formal language has to be understood independently of reference to the complex and ambiguous meanings invested 
in associated terms of the natural language.) The difficulty of doing this in an introductory course is not to be 
underestimated, and may explain why so many textbooks abandon the effort to teach modern predicate semantics 
in favour of recourse to syllogisms or circle diagrams or an emphasis on monadic predicate logic.

In contrast, one of the principal aims of Logic Works, initiated with the apparently tedious verbal semantic 
demonstrations of chapter 5 and steadily pursued over the ensuing semantics chapters, is to make formal semantics 
for quantified logic easy. This is where the second idiosyncrasy comes in. It is common in logic to distinguish 
between monadic and polyadic systems. This is a distinction founded on the “arity” of predicates, and it has no 
relation to the complexity of sentences. ∀xGxx and ∀xGax are not significantly more complex than ∀xGx. The 
treatment of predicate logic without quantification in chapter 11 regards all predicates as satisfied by lists of objects. 
In that context the added complexity that comes from dealing with lists of two or more as compared to lists of one 
is not worth remarking on. (This is one reason why Logic Works contains two preliminary chapters on unquantified 
predicate logic.) With that preparation, derivations, trees, and tree model semantics can all be dealt with without 
having to remark on a distinction between monadic and polyadic logic. Formalization is another matter. Chapter 12 
deals with it by appealing to the concept of an instance to illustrate how formal language sentences must be parsed. 
Because the concept of an instance is syntactic, this can be done without appeal to a formal semantics. But that 
recourse will not serve to explain why the quantifier rules (for either derivations or trees) are sound, and it cannot 
explain why the quantifier rules are intuitive, which two of the four flatly are not. Failing a further appeal to 
instructor authority, a formal semantics is necessary.

Logic Works does this over chapters 15 and 16, the first devoted to singly quantified sentences and connective 
compounds of such sentences, and the second to sentences containing quantifiers with overlapping scope. This 
reflects a truly substantive step up in complexity, since sentences of the former sort can be dealt with by a semantics 
that works with variable assignments whereas those of the latter sort require appeal to variants. Both chapters pro-
vide numerous, progressive assignments training students first in the application of individual valuation rules, then 
in the application of sequences of those rules to establish the value of a formula on a given model, and finally in the 
application of the rules to discover and verify models or demonstrate that there can be no model. After this training, 
chapter 15 is able to conclude with two metatheorems (there simply called “principles”) that lay the foundations 
for a soundness demonstration. Chapter 16 provides similarly careful instruction in how to step up and step down 
through chains of variants on variants. The appendix could have been included in the following advanced topics 
chapter, but is so obviously demanded by the definition of truth of a quantified sentence that it is better that it be 
specially selected for attachment at that point.

Logic Works does not deal with higher-​order logic, undecidability, or incompleteness. However, it concludes with 
a brief treatment of second-​order logic designed to introduce the topic in a way that conforms with the style of the 
earlier chapters.

Logic Works is backed up with a set of slide presentations, useful for classroom or video conference presenta-
tion, and a set of answers to * exercise questions, both available from the book’s product page at www.routledge.
com/9780367460297. Editable copy of the answers to the remaining exercises questions, which can be cut and 
pasted to reduce labour when correcting student exercises or crafting lectures, is available to instructors on request.
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Sample course syllabus for a one semester, basic introduction to classical bivalent logic.

Chapter 1.1–​5
Chapter 2
Chapter 3.1–​4
Chapter 4
Chapter 5.1–​4 (possibly replacing 5.1 with 7)
Chapter 6.1–​2 and 6.6 or Chapter 7
Chapter 10.1–​2
Chapter 11.1–​3 (and 11.4 if Chapter 14.1–​2 will be done)
Chapter 12
Chapter 13.1 and 13.2.2 or Chapter 14.1–​2
Chapter 15
Other materials by choice and interest as time permits

Note

	1	 We owe this observation to conversations with our colleague, Robert Stainton.
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Symbol Summary

This summary is available to download from the book’s product page at www.routledge.com/​9780367460297

′ (prime) placeholder
1 (the one) definite description symbol
∀ (universal) each α (alpha) assignment
A sentence/​predicate symbol a object name
B sentence/​predicate symbol b object name
C sentence/​predicate symbol c object name
Γ (gamma) set
Δ (delta) secondary set δ (delta) denotes
D object domain d object name
𝔻 (hollow D) outer domain
∃ (existential) at least one
E exists e object name
F false f object name
G sentence/​predicate symbol f function variable
H sentence/​predicate symbol
I interpretation
J secondary interpretation
K sentence/​predicate symbol k closed term
L list
M secondary list m object metavariable
N neither true nor false n object metavariable
Ω (omega) domain of worlds o object metavariable
P sentence/​predicate metavariable p name metavariable

Q sentence/​predicate metavariable q name metavariable
R sentence/​predicate metavariable r name metavariable
S sees s term metavariable
T true t term metavariable

u world
v world
w world

X predicate variable x object variable
χ (chi) variable variable

Y predicate variable y object variable
ψ (psi) variable variable

Z predicate variable z object variable
ζ (zeta) variable variable

⊥ (con) contradiction symbol ∪ union
= (identity) is ⊢ yields
~ (tilde) not –​|–​ interderivable
& conjunction ⊨ entails
∨ disjunction =|= equivalence
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→ conditional Ø empty set
≡ biconditional | replace each
 necessarily ¦ replace one or more
 possibly Γ /​ P demonstration
(,) primary punctuation ↑ (nand) not-​and
[,]‌ secondary punctuation ↓ (nor) not-​or
{,} set # (hash) both true and false
<,> list ? nonevident
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1.1  Demonstration and Interpretation

Logic is the theory of what makes demonstration work. Metalogic is the theory of what makes logic work. This is 
a textbook of deductive logic, as illuminated by basic metalogic.

Demonstrations work with sentences of various sorts. Declarations, observations, commands, promises, and even 
questions1 can figure in demonstration. Logic comes into play insofar as sentences have values that can be determined 
by the values of their parts or the values of other sentences. Paradigmatically, the sentences logic is concerned with 
are declarative sentences and their logically salient values are “true,” “false,” “neither,” “both,” “undetermined,” and 
so on. These values are determined by more fundamental values ascribed to the parts of sentences. They can also 
be affected by larger contexts in which sentences are stated. Logic studies both how the more fundamental values 
determine truth and falsity (see chapters 10–​11 below) and how contexts affect truth and falsity (see chapters 8–​9 
below). It also studies other kinds of sentences with other kinds of values –​ for example, “evident” and “nonevident”; 
“obeyed” and “disobeyed”; “upheld” and “violated”; “answerable” and “unanswerable.” The question of whether the 
conditions of a contract (which is a type of promise) have been upheld or violated can be a matter for protracted 
dispute in a court of law. The same holds for the deduction of rights and duties (which are a kind of law) from other 
laws. Whatever else the lawyers and judges are doing, they are demonstrating what actions are required, prohibited, 
or allowed by contracts and legal commands. Those demonstrations are examined and systematized by logic.

A demonstration consists of a collection of sentences, called the premises of the demonstration, and a further sen-
tence, purported to be a consequence of the premises, called the conclusion of the demonstration.

Authors and speakers will often flag what they mean to assert as a conclusion, what they mean to assert as prem-
ises, or both. Words like “therefore,” “hence,” “so,” and “consequently,” or phrases like “it follows that,” and “it can be 
concluded that,” alert the reader or the listener to expect that what is about to be stated is a conclusion. In contrast, 
words or phrases like “for,” “since,” “because,” “from the fact that,” “for the reason that,” “given that,” or “supposing 
that” alert the reader to expect that what is about to be stated is a premise.

In ordinary speaking and writing, premises and conclusions may be presented in any order: conclusion first, 
followed by premises, premises first followed by conclusion, or conclusion interspersed among premises. The dem-
onstration may be interrupted by comments on other topics. The conclusion may be omitted if it is assumed that 
it will be sufficiently obvious to the audience. Important premises may be omitted, on the assumption that the 
audience will presuppose them. Indicator words may be omitted, on the assumption that the audience can tell 
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what the conclusion is and what its premises are. These assumptions may be mistaken. When they are, the author’s 
intended meaning needs to be determined by questioning or, in the author’s absence, reconstructed by the exer-
cise of interpretative skills. The art of interpretation, or hermeneutics, is not strictly part of logic. Logic proceeds 
on the assumption that the premises and the conclusion of a demonstration have already been identified, and that 
all questions about what sentences mean have been resolved. However, some aspects of the art of interpretation are 
taken up in chapters 4, 8, 10 and 12 below.

When demonstrations are critically examined, the premises and the conclusion are isolated and numbered for 
ease of reference. The conclusion is marked with an indicator word or symbol and placed last, as in the following 
demonstration, loosely based on Sextus Empiricus, Outlines of Pyrrhonism 1.87. Here, the indication of the conclu-
sion is a line placed after the last numbered premise. (In this textbook, displayed demonstrations and sentences will 
often be numbered for possible future reference, as with 1.1 below.)

1.1 1. Either we should have confidence in all people or only in some.
2. Having confidence in all is impossible since all are in disagreement.
3. Having confidence in some means we need to decide which ones.
4. Deciding which ones requires having a criterion for picking them out.
5. Having a criterion means putting confidence in someone’s opinion of what that criterion 

should be.
6. But whom to have confidence in is precisely what is in question.

We are in no position to have any confidence in anyone.

Sextus did not present his reasoning in this fashion. Instead, he wrote (in the translation of Inwood and Gerson 
[1988: 330]),

1.2 Either we shall have confidence in all men or in some. But if in all we shall be undertaking 
impossibilities and admitting opposing statements. But if in some, let them tell us to whom we 
are supposed to give assent. For the Platonist will say to Plato, the Epicurean to Epicurus, and 
the others analogously, and so being in an undecidable conflict they will induce suspension of 
judgement in us.

A philosopher, seeking to analyse Sextus’s demonstration, will isolate and number his premises, omit strictly irrele-
vant illustrative details, asides, and other interjections, supply missing premises judged from other parts of Sextus’s 
writings to have been intended, and separate the conclusion from the premises. It is not the business of logic to do 
this. It is the business of hermeneutics. Once the hermeneutical task has been performed, and the premises and con-
clusion have been laid out, logic takes over.

This having been said, the dependence between logic and hermeneutics is mutual. One of the fundamental her-
meneutical principles, the principle of charity, dictates that where there are two or more ways of understanding 
what someone said, the option that is most charitable, in the sense of being more likely to be true, interesting, or 
consequential, ought to be preferred. Logic has something to say about that.

1.2  Deductive and Inductive Demonstrations

Insofar as the conclusion of a demonstration is purported to have a value that is determined by the values of its 
premises, there is, as people say, “a logic” to the demonstration. That logic is concerned with whether and how the 
values of the premises determine the value of the conclusion.

Logic is not always concerned with determining the values of premises. Common experience and testimony, 
or, where that is inadequate, the investigations of the various sciences, determine such things as whether premises 
are true or false, or evident or nonevident, and whether promises were made, contracts signed, laws legislated, or 
questions asked. Logic is concerned with how contexts and the values of parts determine the values of premises, 
whether the value of the conclusion is indeed determined by the values of the premises, and with why it is so 
determined or fails to be so determined.

The relations between the premises and the conclusion of a demonstration are of two main sorts, probabilistic 
and deductive. Inductive demonstrations make a case for the likelihood of the conclusion. This case may be based 
on such things as
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	• experience and a supposition that things will continue to be the way they have been

	• analogy with other, less controversial cases

	• the measurement of frequencies or the use of sampling techniques considered to be statistically sound, and a 
further appeal to the laws of statistics or a theory that specifies how to calculate probability given evidence

Deductive demonstrations make a case for the certainty of the conclusion.
The study of inductive demonstrations, also called inductive logic, is not taken up in this textbook. This textbook 

deals with deductive demonstrations.

1.3 The Principle of Noncontradiction

Deductive demonstration is based on the principle of noncontradiction: the principle that nothing can be both 
affirmed and denied.2 A deductive demonstration makes a case for the certainty of a conclusion by attempting to 
set up a situation in which anyone who accepts the premises of the reasoning would be forced into a contradiction 
were they to deny the conclusion. No reasonable, honest person wants to contradict themselves, that is, to say at one 
and the same time, of one and the same thing, that it both has and does not have a certain value: that it both is and 
is not evident; must and must not be done; will and will not be done; is and is not questionable; even that it is “both 
true and false” (supposing “both true and false” to be a value that some sentences can have) and not “both true and 
false.” That is the hallmark of being illogical, duplicitous, or reckless. When presented with deductive reasoning, the 
honest, reasonable listener must either

	• accept the conclusion

	• deny one or more of the premises

	• find a way to reject the logic of the reasoning, that is, to evade the charge that there is a contradiction in denying 
the conclusion while still accepting the premises

While the principle of noncontradiction offers a short answer to the question of what makes deductive demonstra-
tion work, there is much to be said about what is responsible for producing or preventing contradictions, particularly 
in less obvious cases. It helps to begin with some definitions.

A contradiction arises when the same sentence is both affirmed and denied. Classically, the sentence is a declara-
tive sentence that is ascribed presumably incompatible values, such as “true” and “false.” But incompatible values can 
be more generally understood to be any pair of values that should not both be attributed to the same sentence, such 
as “obeyed” and “ignored” for commands; “kept” and “broken” for promises; or “answerable” and “not answerable” 
for questions. Taken yet more generally, nonlinguistic entities can have one or other of incompatible sets of values. 
States of affairs can be evident or nonevident; collections and lists can contain an element or an item or not contain 
it; electrical switches can be on or off; objects can be the same or different, or be and not be. These incompatible 
states of things are the ground of the incompatible values of sentences and hence of the contradictions that arise 
when incompatible values are attributed to the same sentence. Logic does not stop with considering sentences to 
be true or false. It recognizes other values sentences can have some of which are “designated” (like “true” or “nei-
ther true nor false”) as values we are particularly concerned to establish or demonstrate. More fundamentally, logic 
is concerned with how the values of sentences are determined by nonsentential values like “is” or “is not,” and “is 
in” or “is not in” as said of things.

A sentence is, as the grammarians say, a series of one or more words that expresses a complete thought. Insofar as 
deductive logic is concerned with demonstrations that are based on the principle of noncontradiction, its focus is 
on those sentences that can have a value. (This concern spills over into consideration of sentences that might have 
more than one value, or none; and eventually spills over into consideration of how to handle sentences that have 
intermediate or alternative values.) A good way to identify such sentences, though not a perfectly reliable one, is by 
considering whether they can be denied. “It is raining,” can be denied by “It is not raining”; “Eat the fruit of the tree 
of knowledge” by “Do not eat the fruit of the tree of knowledge”; “I will be on time” by “I will not be on time.” It is 
not so clear that a question can be denied, but even questions can have values, like “answerable” and “not answerable” 
that might be attributed to them as a consequence of the values of other sentences appearing in a demonstration.

A demonstration is anything that is apparently intended by the author to convince an audience to accept a con-
clusion (be it by way of believing it, acting on it, obeying it, or in some other such way). A demonstration need not 
succeed in this enterprise. Unsuccessful attempts at giving demonstrations are still demonstrations. They are just 
ineffective demonstrations.
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Effective demonstrations are of two sorts. Some are rhetorically effective. They have the intended effect of con-
vincing the intended audience. Others are logically effective. They compel anyone who accepts their premises to 
also accept the conclusion, on pain of contradicting themselves.

It is possible for demonstrations to be both rhetorically and logically effective, or neither, or one but not the other.
Logically effective deductive demonstrations are traditionally said to be “valid.” Logically ineffective deductive 

demonstrations are traditionally said to be “invalid.”

A demonstration is deductively valid if and only if anyone who affirms the premises 
but denies the conclusion would be caught in a contradiction.

A demonstration is deductively invalid if and only if anyone who affirms the premises 
can deny the conclusion without contradicting themselves.

(The English term, “valid” comes from the Latin, “vel,” which means “true,” and that historical sense has never been 
abandoned. In ordinary language, “valid” is still used as a synonym for “true.” That makes it a bad word to use to 
describe the relation between the premises and the conclusion of a demonstration. Truth is a value some sentences 
can have, not a relation between a collection of premises and a conclusion. It would be more appropriate to 
describe logically effective deductive demonstrations as “consequential” and logically ineffective demonstrations as 
“nonconsequential.” This having been said, standard practice in logic is to use the more misleading expressions, “valid” 
and “invalid.” That usage is followed here, with the coda that, as used by logicians, “valid” means “consequential.” It 
does not mean “true.”)

For any demonstration, there is a collection or “set” of sentences that corresponds to that demonstration: the set 
comprised of the premises of the demonstration and the denial of its conclusion. 1.1, for instance, has the following 
“corresponding set”:

1.3 {Either we should have confidence in all people or only in some,
Having confidence in all is impossible since all are in disagreement,
Having confidence in some means we need to decide which ones,
Deciding which ones requires having a criterion for picking them out,
Having a criterion means putting confidence in someone’s opinion of
  what that criterion should be,
Whom to have confidence in is precisely what is in question,
It is not the case that we are in no position to have any confidence in
  anyone}

Here, the sentence that appeared as the conclusion of the demonstration is denied, and that denial is included along 
with the premises to make up a set of sentences. (It is standard practice in logic to mark the start and end of a set 
with braces, as above.)

A demonstration is valid if and only if the corresponding set comprised of its premises and the denial of its con-
clusion is contradictory. This makes sense given that a demonstration is valid if and only if affirming its premises 
while denying its conclusion produces a contradiction.

When the sentences in a set of sentences cannot all be affirmed without contradiction the set is said to be 
“unsatisfiable.” It cannot be “made good,” so to speak.

A set of sentences is unsatisfiable if and only if anyone who affirms all the sentences in 
the set would be caught in a contradiction.

A set of sentences is satisfiable if and only if someone can affirm all the sentences in 
the set without contradicting themselves.

In applying the definitions of validity and satisfaction, it is important to distinguish between being contradictory 
and being false, and being noncontradictory and being true. Not everything that is false is contradictory. Many things 
that are false are simply contrary to fact. They could be made true, or be true in other circumstances. What is satis-
fiable could somehow be satisfied (that is, made to be or found to be true or evident, or to have been “obeyed” or 
“upheld”), even though it is not satisfied as a matter of current, local fact. What is unsatisfiable could not possibly be 
satisfied, where the bar for being “not possible” is placed very high: as involving a contradiction. What is contradictory 
is not simply contrary to fact, but contrary to itself or to other things that are accepted along with it. The sentence, 
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“The sky is green” is false. But it is not contradictory. “The sky is green but it is not” is contradictory. It is not contra-
dictory because it attributes both truth and falsity to “the sky is green.” It is contradictory because, supposing “true” 
and “false” are incompatible values, it both affirms and denies that “the sky is green” has the value “true.”

Similarly, the set {The sky is green, The Antarctic is in the Tropics} contains two false sentences. But there is no 
contradiction in affirming both of the sentences in that set.

Exercise 1.1

State whether the following sets of sentences are unsatisfiable. If they are unsatisfiable, identify one thing that anyone who 
believes all of them must both affirm and deny. Be careful to ensure that this thing is something that they are committed 
to accepting just insofar as they accept the sentences in the set and not insofar as they hold other background beliefs not 
described by sentences included in the set. If the sets are not unsatisfiable, describe a circumstance in which all would be true. 
In all exercises sets in this textbook, answers to questions marked with a star can be found online at www.routledge.
com/9780367460297. 

a.	 {Robert Walpole was British Prime Minister on 7 May 1731, Spencer Compton was British Prime 
Minister on 7 May 1731}

b.	 {Robert Walpole was British Prime Minister on 7 May 1731, Spencer Compton was British Prime 
Minister on 7 May 1731, Only one person was British Prime Minister on 7 May 1731}

*c.	{Robert Walpole was British Prime Minister on 7 May 1731, Spencer Compton was British Prime 
Minister on 7 May 1731, Only one person was British Prime Minister on 7 May 1731, Robert Walpole 
was not Spencer Compton}

d.	 {The Earth is flat, The Earth is not flat}
*e.	{The Earth is flat, The Earth is round}

f.	 {The Earth is flat, The Earth is round, Nothing can be both flat and round at the same time}
*g.	{The ball is either red or green, The ball is red, The ball is green}

h.	 {The ball is either red all over or green all over, The ball is red all over, The ball is green all over}
*i.	{The ball is either red all over or green all over, The ball is red all over, Nothing can be both red all over 

and green all over, The ball is green all over}
j.	 {You can have either ice cream or cake, You had ice cream, You can have cake}

1.4 Abstraction, Variables, and Formalization; Logical and Nonlogical Elements;  
Formal Contradiction

To make what is responsible for producing or preventing a contradiction stand out, logicians abstract the other 
aspects of a sentence or set of sentences. This is done by replacing these nonlogical elements with variables. A vari-
able is a symbol that stands in for what can vary, that is, for any of a number of different things. In the case at hand, 
it stands for what can vary without affecting whether the sentence or set of sentences gives rise to a contradiction.

To take a simple case, the sentences

1.4 It is raining
1.5 It is not the case that it is raining

are contradictory. Any two sentences, one of which is the same as the other but for being prefaced by the words “it 
is not the case that” must be contradictory. Here, the logical element is the phrase “it is not the case that,” whereas 
the variable element is whatever is said to both be and not be the case. The latter can be replaced with a variable. 
Take the capital letters of the English alphabet, A, B, C, G, H, K, to be variables for sentences (“sentence variables” 
for short). If more are needed, put numerical subscripts on A’s to get an infinite supply, A1, A2, A3, … (The other 
capitals are reserved for other uses.)

In the case at hand, the result is:

1.6 A
1.7 It is not the case that A

Though variables stand in the place that can be occupied by a variety of things, within any given context 
(within the same discussion, example, exercise, or case), no one variable can replace two or more different 
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variants. If the variable, A, is put in the place of one occurrence of the sentence, “It is raining,” it may not else-
where be put in the place of some other sentence, such as “Pigs have wings.” The two occurrences of A in the 
case displayed above must therefore replace the same sentence.3 It need not be specified what sentence that is. 
It is allowed that it could be any sentence (e.g., “I promise to be on time”). But it must be the same sentence in 
each place the variable occurs.

Sameness is understood very strictly.

One sentence is the same as another if and only if the two sentences consist of the 
same words, placed in the same order.

Replacing variants with variables produces a form. In the case just given, the form is a form for a pair of contra-
dictory sentences. This example of abstraction defines the notion of a formal contradiction.

A formal contradiction is a set of two sentences of the form {A, It is not the case that A}

The form contains the logical element, “it is not the case that,” and the variable, A, which here stands for any sen-
tence. Putting any deniable sentence in the place of the two occurrences of A in the form produces two contra-
dictory sentences. (Caution needs to be exercised to ensure that when a sentence replaces a variable, the result is 
still a complete thought. “Is it raining?” and “Close the door!” become ungrammatical when prefaced by “It is not 
the case that.” In some cases, an appropriate rewrite can serve instead. “Close the door” can be replaced by “The last 
person out is hereby commanded to close the door,” which is a deniable sentence.)

There are many other contradictory forms. The sentence

1.8 It is raining but it is not raining

is by itself a contradictory sentence. Here, the logical elements are “but” and “not.” The sentence that is repeated 
before and after these logical elements can vary. Many sentences, first stated on their own and then repeated under 
the word “not” and conjoined with their initial statement by the word “but,” build a compound sentence that must 
be contradictory. Abstracting from what can vary without affecting whether a contradiction arises gives rise to

1.9 A but not A

which is one form that a self-​contradictory sentence can have.
The definition of a formal contradiction can be extended to include this alternative.

A formal contradiction is either a set of two sentences of the form {A, It is not the case 
that A} or a single sentence of the form A but not-​A or the form not-​A but A.

This having been said, not all contradictions are formal, and hermeneutics plays a large role in identifying those 
that are not by showing how they can be identified with formal contradictions. As noted earlier, what people say or 
write can often need to be interpreted, that is, rewritten in other words to make the intention more explicit. This 
happens with reasoning, so it necessarily happens with the sentences that figure in reasoning. It would be absurd to 
insist that someone who says

1.10 The ball is red yet it isn’t

has not contradicted themselves. Technically, “The ball is red” and “It isn’t” are not two sentences that consist of the 
same words placed in the same order except for the fact that one is prefaced with the word “not” and the two are 
conjoined with “but.” Nonetheless, this sentence is implicitly contradictory because it can be interpreted as formally 
contradictory. It can be rewritten as

1.11 The ball is red but [yet] it is not [’nt] the case that the ball [it] is red

Provided the rewrite accurately represents what the author meant, the original sentence counts as being implicitly 
contradictory.
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Rewrites must be done with care. One of the fraught issues in logic concerns the scope of negations. “It is not the 
case that you are commanded to …” and “It is not the case that I promise to …” do not mean the same thing as “You 
are commanded to not …” and “I promise to not …” The account that has just been given of a formal contradiction 
captures what is called a “wide scope” denial. There are also “narrow scope” denials, exemplified by commands or 
promises to not do something. Capturing the forms of narrow scope denials is a project for later chapters. Now it 
only matters to be sensitive to the possibility that rewriting a sentence to replace prefatory “it is not the case that” 
with internal “not” needs to ensure the original meaning is preserved.

Exercise 1.2

1.	 State whether the following pairs of sentences are the same or different.
	*a.	Dr Jekyll is Mr Hyde. Mr Hyde is Dr Jekyll.
	 b.	The coffee has sugar in it. The coffee is sugared.
	*c.	Either there will be a sea battle tomorrow or there will not be a sea battle tomorrow. Either there will 

not be a sea battle tomorrow or there will be a sea battle tomorrow.
	 d.	 Some doctors are lawyers. Some lawyers are doctors.
	*e.	Some doctors are lawyers. It is not true that no doctors are lawyers.
	 f.	 Some doctors are lawyers. At least one doctor is a lawyer.

2.	 State whether the following sentences or pairs of sentences are formally contradictory.
	*a.	Dr Jekyll is Mr Hyde. It is not the case that Mr Hyde is Dr Jekyll.
	 b.	All bankrupts are despicable. No bankrupts are despicable.
	*c.	All bankrupts are despicable. Not all bankrupts are despicable.
	 d.	All bankrupts are despicable. Some bankrupts are not despicable.
	*e.	It is not the case that all bats are rabid, but they are.
	 f.	 It is not the case that all bats are rabid, but some are.

3.	 State whether the following pairs of sentences are implicitly contradictory. Justify your answers.
	*a.	The light is red. The light is green.
	 b.	 The coffee is hot. The coffee is not hot.
	*c.	There are bats in the belfry. It is not the case that there are flying mammals in the belfry.
	 d.	 Some doctors are lawyers. Some doctors are not lawyers.
	*e.	Dr Jekyll is Mr Hyde. It is not the case that Mr Hyde is Dr Jekyll.
	 f.	 Some doctors are lawyers. No doctors are lawyers.

As noted earlier, within any one case (exercise, example, etc.) repeated occurrences of the same variable designate 
the same variant. However, occurrences of different variables need not designate different variants. This is part of 
what it means for variables to stand for what can vary. When a variable is used, one of the things it could stand for 
is the same thing that some other variable stands for.

Different variables certainly may stand for different things. It is always considered that they could just as well stand 
for different things as for the same thing. Consequently, (i) someone who wants different variables to be understood 
to stand for the same thing must say so; (ii) someone who wants to rule out the possibility that different variables 
stand for the same thing must say so; (iii) someone who says nothing either way must be understood to include both 
possibilities. (iii) is the default, so those in the third group are never obliged to remark on it. The reader is expected 
to assume that (iii) is meant when neither (i) nor (ii) is stated. Therefore,

1.6 A
1.12 It is not the case that B

and

1.13 A but not B

are not formal contradictions. This is not because A and B could not possibly stand for the same sentence, but 
because there is no promise that A stands for the same sentence as B.
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This having been said, in important cases it is permissible to underscore the default, with phrases like, “where 
A and B are any two (not necessarily distinct) sentences.”

1.5 A Fundamental Problem

Contradictions do not just arise when one sentence explicitly denies another, or when a single sentence contains 
formally contradictory components, or even when one sentence lends itself to being interpreted in a way that makes 
it deny another sentence. Consider the set of sentences found in exercise 1.1(c).

1.14 {Robert Walpole was British Prime Minister on 7 May 1731,
Spencer Compton was British Prime Minister on 7 May 1731,
Only one person was British Prime Minister on 7 May 1731,
Robert Walpole was not Spencer Compton}

A contradiction arises from considering all these sentences to be true. This contradiction has nothing to do with 
who Walpole or Compton were or how the British government worked in 1731. It arises from certain logical elem-
ents contained in these sentences. These logical elements have to do with attribution, quantification (saying how 
many), and identification (or its opposite, differentiation). To bring them out, use lower-​case letters a, b, c, as variables 
for objects and use upper-​case G, H, K as variables for attributes that objects might be said to have.4 Take the variable 
“a” to stand for Robert Walpole, b to stand for Spencer Compton and G to stand for being British Prime Minister 
on 7 May 1731.5 Then the set has the form,

1.15 {a is G,
b is G,
Only one object is G,
a is not b}

The first two sentences attribute something, G, to some objects, “a,” and b. The third says how many objects have the 
G attribute. The fourth denies an identity, saying that object “a” is not the same object as object b. What the attribute 
is and what the objects are does not matter. What matters is that only one thing is said to have the attribute and yet 
two things that are not the same are said to have it.

When “formalized” in this way, the set is intuitively contradictory. The original English set may not have seemed 
so when doing exercises 1.1(a) and 1.1(b). Those exercises may have inspired the question of whether there is yet 
some further trick preventing 1.1(c) from being contradictory. There is not, and the formalization makes it intui-
tively obvious why.

But though the formalized set is intuitively contradictory, it is not formally contradictory. It does not contain 
two sentences, one of the form A (or “a is G,” or “only one object is G,” or “a is b”) and one of the form not-​A (or 
the corresponding denial of any of the other sentences mentioned). This poses a problem: What if someone does 
not share the intuition that this set is contradictory? What if they cannot “see” it? One recourse appeals to other 
things the person accepts to reduce the implicitly contradictory sentences to a formal contradiction. This amounts 
to demonstrating that the set really is contradictory.6 In this case, the other things the person accepts might be ways 
of restating the given sentences in equivalent terms, or they might be beliefs the person has about what sentences 
are entailed by what other sentences.

For instance, it can be said that the sentences

1.16 a is G
1.17 b is G
1.18 a is not b

are equivalent to the sentence

1.19 At least two different objects are G

and that this entails that

1.20 It is not the case that only one object is G
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which does formally contradict

1.21 Only one object is G

(The difference between equivalence and entailment is that equivalence goes both ways, from what is given to what 
it is equivalent to, and from that back to what is given. Entailment need go only one way, from what is given to what 
it entails. If object “a” has attribute G and object b has attribute G and object “a” is not object b, then there must 
be at least two objects that have attribute G. The reverse is also the case: if at least two things have attribute G, then 
at least one object, “a,” has attribute G, and at least one object, b, has attribute G and object “a” is not object b. In 
contrast, from the fact that at least two different objects are G it follows that it is not the case that at least one object 
is G. But it does not go the other way. If it is not the case that at least one object is G, it does not follow that at least 
two are. It might instead be that none are.)

Hopefully, anyone who cannot “see” why the original set is contradictory will be able to see it when the point 
is demonstrated by appeal to intermediate equivalences and entailments. Otherwise, a vicious regress threatens. The 
threat becomes apparent when considering how equivalence and entailment are defined.

Two sentences are equivalent if and only if there is a contradiction in affirming either 
one while denying the other.

Two sentences are not equivalent if and only if there is no contradiction in affirming 
one of them while denying the other.

A sentence is entailed if and only if it is the conclusion of a valid demonstration, that 
is, if and only if there is a contradiction in denying it while affirming the premises 
that entail it.

There is no problem if the contradictions spoken of in these definitions are formal contradictions. Determining 
whether two sentences are formally contradictory is easy. It only requires looking to see if they are the same 
but for the fact that one of them is prefaced by “it is not the case that” or words to that effect. But when the 
contradictions are only implicit there is a problem. Implicit contradictions are made explicit (demonstrated to 
lead to formal contradictions) by appealing to equivalences and entailments. But equivalences and entailments are 
themselves established by appealing to the impossibility of denying them without getting caught in a contradic-
tion. When a contradiction is only implicit, any equivalence or entailment invoked to expose it must also be only 
implicit, and so equally in need of demonstration. (Working only with formal contradictions never gets beyond 
affirming and denying the same thing. The only equivalences and entailments that are established by appeal to 
formal contradictions are those with forms like “A if and only if A,” “A is A,” and “A entails A,” which are trivial. An 
equivalence or entailment used to establish an implicit contradiction could not be trivial and so would need its own 
demonstration.) A vicious regress threatens.

There are two ways to block the regress: (i) recognize that we intuitively accept certain equivalences and 
entailments, even though the contradiction that arises from rejecting them is only implicit, and trust that those 
intuitions are correct, or (ii) develop a theory of the meaning of the logical elements that explains why equivalences 
and entailments are contradictory. As an example of (i), it might be claimed that demonstrations like

1.22 1. a is G.
2. b is G.
3. a is not b.

At least two objects are G.

or

1.23 1. A.
2. If A then B.

B.



10  Introduction to the Study of Logic

10

are just obviously valid. The contradiction in accepting the premises while denying the conclusion is so obvious that 
any attempt to demonstrate it from more fundamental principles would be less obvious.

Undaunted, a champion of (ii) might nonetheless attempt to explain the meaning of the logical elements involved 
in these sentences and attempt to show how an explicit contradiction follows from those meanings.

Both approaches to what makes logic work are explored in the chapters that follow. An application of (ii) is 
explored in chapters 3 and 5; one of (i) in chapter 6. Later chapters alternate between the two, and some, like the 
optional chapter A-​2, explore the extent to which the two approaches can be trusted to deliver the same results.

It might be thought that (ii) is obviously superior to (i). But there is a problem with it. Different theories of the 
meaning of the logical elements can be proposed. These theories yield different results, some of which sit better 
with our intuitions than others. In this respect, type (ii) accounts are like geometry. There are various geometries, 
Euclidean and non-​Euclidean, and it is a question which best describes physical space, or visual space, or tactile space. 
Chapters 8 and 9 show how a similar situation arises in modal logic. Even in the comparatively simple sentential 
logic of chapters 2–​7 there are theoretical disputes. Some of them are taken up in what follows, beginning with the 
appendix to chapter 5. A very important issue, centred on the role of intuition in demonstration, is explored begin-
ning in section 6.6.

In fairness, the same problem might be raised with (i). Even fundamental principles of logic such as the law of the 
excluded middle (either A or not-​A), the reduction of double negations (if not-​not-​A then A), and the principle that 
anything follows from a contradiction might be (and have been) denied to be intuitively obvious. These concerns 
are also taken up, beginning with the appendix to chapter 5 and continuing with section 6.6.

1.6  Chapter Outline

In addition to using variables to stand for the nonlogical elements in a sentence or a set of sentences, logicians will 
often use special symbols for the logical elements. For example, the logical element, “not” or “it is not the case that,” 
is symbolized by the tilde (~) in some logic textbooks and by the corner sign (¬) or the minus sign (–​) in others. 
“But” and “and” are symbolized by the ampersand (&) in some textbooks and the hat (∧) or dot (•) in others. There 
is no standardized way of doing this. But (as this textbook is written in English), there is something to be said for 
using symbols that are readily accessible on the English keyboard.

A system of variables and logical symbols constitutes a formal language, that is, a language used to represent the 
forms of sentences and sets of sentences of a natural language. An increasingly enhanced formal language for demon-
strative logic is developed over the chapters that follow.

A language for formalizing some basic deductive demonstrations is presented in chapter 2. In chapters 3 and 5, 
an account is given of why forms described using this system are equivalent or not equivalent, and contradictory or 
noncontradictory. In chapters 5, 6, and 7, procedures for testing for validity, unsatisfiability, entailment, and equiva-
lence are presented. In the optional chapters A-​2 and A-​3, these test procedures are shown to agree.

Initially, the formal language is presented on its own terms. Its symbols are only incidentally related to ordinary 
language. The relation between the formal language and English is discussed in chapter 4, after the workings of the 
formal language have been discussed in chapters 2 and 3. This may seem disorienting, but it is important to bear 
with it. The formal language is a power tool, designed for application to the materials provided by natural languages. 
Like the power tools of the construction trade, its use and limitations need to be understood before it is applied, to 
avoid damage and injury.

Procedural Note

It is natural to attempt to understand what is unfamiliar (the formal language) by analogy 
with what is familiar (the natural language), just as it is natural to think that the way to learn 
to use a power saw is to pick it up and start hacking away at something. An early attempt to 
relate formal languages to sentences and demonstrations in ordinary language can cause more 
confusion than illumination. The correspondence between logical systems and natural languages 
is not exact, in part because natural languages carry elements of meaning that basic logical 
systems are not designed to formalize, and in part because expressions in natural languages need 
to be understood in context. Those beginning the study of logic know their natural language 
better than they know the formal language. When they are presented with natural language 
interpretations of the symbols in a basic formal system, they invest the symbols with too much 
meaning. This causes them to misapply the formal tool, producing material damage. When the 
material damage is discovered, it produces upset and confusion, which are cognitive injuries. 
Proper advance training in the workings of the formal language can avoid both.
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In chapter 4, it is shown that there are limitations to the formal language that has been developed over chapters 2–​
3. Some of the limitations serve as the occasion for the presentation of refinements to the system. This is done 
repeatedly in chapters 8–​17, with the introduction of formal languages of increasing complexity, each adding to 
what was done by the previous one to extend the system to cases it previously could not handle.

At various points, the textbook presentation of this material is interrupted with chapters on advanced topics, 
labelled A-1 through A-6. These chapters are inserted at the point where enough has been said to understand the 
material taken up in the chapter, but they can be skipped or reserved for a more advanced course or for inde-
pendent study. Results proven in the advanced chapters are often mentioned in subsequent chapters, but it is in no 
case necessary to understand how those results were proven. The material contained in appendices is also optional.

Technical Appendix: Elements of a Theory of Demonstrative Logic

The following concepts are fundamental and common to all the languages that will be studied. Later chapters will 
make them more familiar and provide opportunity to become experienced in their application. They need not 
be memorized or fully understood at this point. This appendix is intended as a useful summary and reference for 
later work.

A sentence is any sequence of one or more symbols that the language in question 
recognizes as a sentence. As such a sentence must:

(i)  consist of elements included in the vocabulary of the language
(ii)  list those elements in an order approved by the grammar of the language.

Two sentences are the same if and only if they consist of the same symbols, placed in 
the same order.

Two sentences are different if and only if they are not the same.

Two sentences are opposite if and only if they are the same but for the fact that one of 
them is preceded by “it is not the case that,” or other words or phrases to that effect, 
or symbols recognized by the language in question as symbolizing words or phrases 
to that effect.

In addition to sentences, all systems of logic are concerned with three main groups of sentences: sets, lists, and 
demonstrations. They are also concerned with a special relation that can be defined in terms of sets and lists, that of 
a function.

(1) A set consists of 0 or more different members (for now, the set members are sentences), collected in no par-
ticular order.

A set with no members in it, called the empty set, counts as a set, as does a set with only one member in it, called 
a unit set.

By convention, sets are identified by being enclosed in braces with the members of the set separated from 
one another by commas. In the case where the set contains only one member, and context makes it clear  
that the member is being considered as the member of a unit set, the braces may be omitted. The empty set may be 
designated either by { } or by the symbol, Ø, or simply by a blank space in a place where a set would otherwise be 
identified. When the intention is to speak about some set or other, without specifying what members it contains, 
or without having any one set in mind, the Greek capital, Γ (gamma), is used. (Γ is L flipped, and L is later used to 
stand for a related concept, that of a list. Some flipped symbols [⊥, Γ, ∀, ∃] are so pleasingly evocative that they are 
used in this text even though they are not readily accessible on the keyboard.) On occasions where more than one 
set must be referred to, numerical subscripts or primes (′) may be employed, as below. On some (rare) occasions, the 
Greek capital, Δ (delta), may also be used.

A further symbol, ∪ (union), is used to represent the set that results from combining two sets or from adding a 
sentence to a set. Γ ∪ Γ′ is the set of everything in Γ supplemented with everything in Γ′. Γ ∪ A is the set of every-
thing in Γ with the addition of A. Some writers will insist that only sets may be united and hence that Γ ∪ A should 
be written Γ ∪ {A}, where {A} is the unit set containing A. In keeping with a general policy to reduce clutter 
whenever no mistake can arise from doing so, Logic Works is not so scrupulous. Since ∪ is understood to be preceded 
by a set, braces may even be omitted on the left when the set is a unit set. However, they are retained to delimit the 
contents of sets that contain more than one member.
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Two sets are different if and only if there is at least one member that is in one set but 
not in the other; otherwise they are the same.

One set, Γ, is a subset of another, Γ′, if and only if every member of Γ is in Γ′. There 
may, but need not be members of Γ′ that are not in Γ (so every set is a subset of 
itself). As a special case, Ø is a subset of every set.

One set, Γ, is a superset of another, Γ′, if and only if every member of Γ′ is in Γ. There 
may, but need not be members of Γ that are not in Γ′ (so every set is also a superset 
of itself).

Sets can themselves be members of sets. There can be sets of sets, sets of sets of sets, and so on.
(2) A list consists of 0 or more not necessarily different items (for now, the list items are sentences) listed one after 

another. By convention, lists are identified by being enclosed in angle brackets with the items on the list separated 
from one another by commas. The ordinary sense of the term notwithstanding, a list of no items counts as a list, as 
does a list of just one item. In the case where the list consists of a single item, the angle brackets may be omitted. 
The empty list is designated by < > or by Ø or simply by a blank space. On lists, it is often only the last item on the 
list that matters. In that case, the English capital, L, is used to designate whatever earlier items there might be on the 
list. Since the appearance of L by itself indicates the presence of a list, the angle brackets may be omitted when L is 
used. For example, L,A designates a list that begins with the items on the list, L, and ends with A.

In addition to standing for the earlier items on a list, L may be used when the intention is to speak of some list 
or other, without specifying what items it contains, or what item it ends with. On the rare occasions where more 
than one such list must be referred to, numerical subscripts or primes (′) may be employed. On some occasions,  
M may also be used to designate a second list.

Two lists are different if and only if the same items do not occur in the same order on 
each list; two lists are the same if and only if they consist of the same items listed in 
the same order.

Both conditions must be satisfied; a list, L, that consists of the same items found on another list, M, but that does not 
list those items in the same order as they are on M is not the same as M.

Lists can themselves be items on lists, as can sets. There can be lists of lists, lists of sets, lists of lists and sets, and so 
on. There can also be sets of lists.

Both sets and lists might metaphorically be described as bags of members or items. The difference is that 
a set is like a bean bag whereas a list is like an egg carton. The members of a set are just there, in no order, 
whereas each item has its own place on a list. On a list, the same item can occur two or more times in different 
places, whereas in a set this makes no sense. The set {1,1,2} is no different from the set {1,2,1} or from the set 
{2,1} since what defines a set is just what members it contains. But on a list, the list items have place relative to 
one another, which makes it possible for the same item to occur more than once, in different places. The lists, 
<1,1,2>, <1,2,1>, <1,2>, and <2,1> are all different from one another. Some of these lists contain three items, 
others two, and some contain the same number of the same items but differ from one another in how the items 
are ordered on the list.

In the examples just given, numbers make up the set members and list items. But anything (and for present 
purposes notably sentences) can appear in a set or on a list, as suggested by the example of a task list or a bag of gro-
ceries. Numerals are often used as names for list items or set members that it would be irksome to have to describe 
or name in other ways. When numerals appear in examples in Logic Works, they only rarely stand for mathematical 
objects. They most often designate list items or set members that are not worth identifying beyond being called 
“member/​item 1,” “member/​item 2,” and so on.

(3) A demonstration is a list, <Γ,A>, consisting of a set of 0 or more sentences, Γ, followed by a further sentence, 
A. The sentences in Γ are called the premises of the demonstration and A is called its conclusion.

Notwithstanding the oddity of doing so, a demonstration with no premises is recognized as a demonstration.
Γ is a (possibly empty) set, not a list. The list is the list of the set, Γ, followed by the sentence, A.
As noted in section 1.1 above, one form for presenting a demonstration assigns numbers to a finite subset of the 

sentences in Γ and lists these numbered sentences above a horizontal line, below which the sentence A is placed. 
Logic Works also uses the briefer notation, Γ /​ A, to represent demonstrations. When Γ is empty, /​ A by itself indicates 



Introduction to the Study of Logic  13

    13

that A is the conclusion of a demonstration that has no premises. (Presumably, A is such a good conclusion that it is 
valid all by itself.) Where appropriate, Γ may have the appearance of a set of sentences separated from one another 
by commas. The forward slash (/​) is used in place of a comma between the last sentence in Γ and A. It serves as a 
conclusion indicator. Because the forward slash by itself indicates that what lies to the left is a set of premises of a 
demonstration and what lies to the right is a conclusion, the angle brackets and the braces are omitted.

When Γ /​ A is valid, A is said to be entailed by Γ. When Γ /​ A is invalid, Γ does not entail A. A special symbol, 
the double turnstile (⊨) is used to represent entailment. A slash through the double turnstile (which for purposes 
of work at the keyboard can be approximated by the bar symbol followed by the not equals symbol, |≠) represents 
nonentailment. Γ ⊨ A is read as “gamma entails A,” Γ ⊭ A as “gamma does not entail A.” Like /​, ⊨ is understood to 
be preceded by a set and followed by a sentence. When Γ is a unit set, the braces may be omitted.

When Γ /​ A is valid, the corresponding set, Γ ∪ not-​A, is unsatisfiable. When Γ /​ A is invalid, Γ ∪ not-​A is 
satisfiable.

(4) A function is a special relation between a set of lists, called the arguments of the function, and another set, called 
the range of the function. The lists in the first set must all have the same length, and they cannot be empty. If the lists 
are lists of one thing, the function is called a one-​place function, if they are lists of two things, the function is called 
a two-​place function, and so on. The second set, the range, is a set of one or more values.

Functions are commonly notated in the form f(L) is x, where f is a symbol used to designate the function, L is 
an argument (a list), and x is a value drawn from the range. Though the argument is always a list, even if only a list 
of one, it is customary to put parentheses around it, rather than angle brackets. Functions are ubiquitous in math-
ematics and mathematicians like to use = in place of “is.” An example drawn from mathematics is +(1,2)=3, read 
as “the sum of 1 and 2 is 3,” where + is the “sum of” function. (In the case of two-​place functions, it is common 
to put the function between the list items. This produces the more common 1 + 2 = 3.) An example drawn from 
everyday life is f(Alma) is Boda, read as “the mother of Alma is Boda,” where f is the “mother of ” function, “Alma” 
is one of the arguments for that function, and Boda (who is, incidentally, Alma’s mother) is the value that argument 
takes under that function.

The set of lists comprising the arguments of a function is based on a more remote set, called the domain of the 
function. (When the domain and the range are discussed together, the range is often called the co-​domain instead.) 
The domain specifies what objects are to be used to make lists. For each function of n places (where n may be 1, 2, 
3, or whatever number), the set of lists must include every list of n objects that it is possible to form from objects 
in the domain. When the function is a one-​place function, the set of argument lists is just the set of each object in 
the domain. When it is a two-​place function the set of argument lists contains each ordered pair that it is possible to 
form using (not necessarily distinct) members of the domain.

For example, consider a domain that has two members. It does not matter what the members are, so just consider 
the domain to be {A, B} where A and B are labels for these two members. Consider also a co-​domain or range of 
values, say the set {T, F}. (In principle, the co-​domain might include some or all of the members of the domain or 
it might include none. The aim at this point is to cover all bases, so nothing hangs on what is considered to be in the 
domain or what is considered to be in the co-​domain.) Now consider a three-​place function that relates (or “maps”) 
this domain to (or onto) these values. The function must assign exactly one value from the set of values in the range 
to each list of three that it is possible to form from members of the domain. In the case at hand, this means that it 
must make an assignment of exactly one of T or F to each of the following lists:

1.24 <A,A,A>
<A,A,B>
<A,B,A>
<A,B,B>
<B,A,A>
<B,A,B>
<B,B,A>
<B,B,B>

Each of these lists is an argument that the function uses to determine a value. Given the domain and the values 
specified, there will be as many different three-​place functions as there are different ways of assigning exactly one 
value from the range to each list. Here is a list of the values assigned to each of these lists by a function that can 
be symbolized as, 1/​a, and that is defined as the function that assigns T to each argument that contains exactly one 
A and otherwise assigns F.
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1.25 1/​a(A,A,A) is F
1/​a(A,A,B) is F
1/​a(A,B,A) is F
1/​a(A,B,B) is T
1/​a(B,A,A) is F
1/​a(B,A,B) is T
1/​a(B,B,A) is T
1/​a(B,B,B) is F

There are of course many other ways of assigning exactly one of T or F to each list in 1.24. Each of them is a 
different function, beginning with the function that assigns T to each list and F to none and continuing through a 
total of 256 different ways of assigning exactly one of T and F to each of these eight lists. Were A, B, and C considered 
to be sentence variables and T and F to designate the values, true and false, these functions would represent various 
ways of assigning a single truth value to each different list of the three sentences in the domain.

Exercise 1.3

*a.	Specify a possible domain and a range for the function, “square of.”
*b.	Specify a possible domain and a range for the function, “mother of.”
*c.	Why is “square root of ” not functional over the domain of rational numbers and the range of real 

numbers?
*d.	Why is “brother of ” not functional over the domain and range of human beings?
*e.	Specify a domain and a range over which the relation “spouse of ” is functional.

Notes

	1	 Questions can set the task for reasoning or challenge it. The answerability of questions can be a topic for reasoning. Hamami 
and Roelofsen (2015) offer introductory comments on the logic of questions.

	2	 Immanuel Kant (1724–​1804) identified the principle of noncontradiction as “the highest principle of all analytic judgments,” 
which for Kant are sentences asserting the containment of predicate concepts under subject concepts. For Kant, contradictions 
accordingly affirm and deny that one thing falls under a concept. On this account, contradiction has more to do with relations 
of containment under a concept than truth and falsity. Truth and falsity are derivative from the more fundamental relation of 
being in or not in. Arthur (2011: 26) traces the thesis that deductive reasoning is based on “incompatibility” back to the Stoic 
logician Chrysippus (279–​206 BCE).

	3	 Those who are concerned to flag cases where a term is mentioned might want to see A put in quotes. Logic Works is not so 
scrupulous. It does not employ any special means for distinguishing between use and mention, except in those cases where 
a reader might initially confuse an expression that is only being mentioned with one that is being used. In that case the 
mentioned term is put in double quotes.

	4	 There is a shift here between using variables to stand for linguistic entities (sentences) and using them to stand for non-
linguistic entities (objects and predicates of objects). This is in order. The shift is discussed in chapter 10.

	5	 The use of “a” as a variable has a drawback. It is both a lower-​case letter of the English alphabet and a word of English 
(an indefinite article). Consider, for instance the three stand-​alone occurrences of the first lower-​case letter of the English 
alphabet in the sentence, “The use of a as a variable has a drawback.” In many contexts, inserting the variable in a sentence 
without further ado could lead a reader to confuse it with the definite article at first glance, forcing a double-​take when the 
rest of the sentence does not fit with that assumption. Throughout this work occurrences of “a” will often be quoted to ease 
the reading when the letter is used as a variable. This caution is not necessary with other variables.

	6	 The implication is noteworthy: demonstrations are only called for when intuition fails us.
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2.1  Introduction

Deductive logic seeks to identify the factors responsible for producing or preventing a contradiction. This is done 
by constructing a formal language, that is, a language that contains variables to stand for the nonlogical parts of 
sentences or sets of sentences, and special symbols to stand for the logical parts. The nonlogical parts are the parts 
that can vary without creating or eliminating a contradiction. The logical parts are the parts that play a role in cre-
ating or preventing a contradiction.

Formal languages can be constructed at various levels of specificity, incorporating more or fewer of the elem-
ents responsible for giving rise to contradictions. It is best to start with fewer. This and the following chapters start 
with those elements that give rise to contradictions when sentences are compounded with one another, be it in 
demonstrations, sets, or compound sentences. The study of these elements comprises the logic of sentences, also 
called sentential logic.

Some sentences are atomic, which is to say that they do not consist of parts that are themselves sentences. “Pigs 
have wings” is an atomic sentence. Other sentences are built up from atomic sentences using connective expressions.

A connective may be unary, in which case it is attached to one sentence. “It is not the case that pigs have wings” 
is a compound sentence, compounded from the atomic sentence “Pigs have wings” and the unary connective “It is 
not the case that …”

A binary connective connects two sentences. “Pigs have wings but they cannot fly” is a compound sentence, 
compounded from the atomic sentence “Pigs have wings” and a further sentence “Pigs cannot fly,” using the con-
nective expression “but.” In this example, “but” connects an atomic sentence with a sentence that is already a 
compound of an atomic sentence, “Pigs can fly,” and a unary connective, “not.” “But” is nonetheless still a binary 
connective because it connects only two sentences, even though one of them is itself compound.

There are also connective expressions that are used to connect three or more sentences. “At least one but no 
more than two of Alma, Boda, and Crumb were advised by Gear” uses the higher-​place connective “at least one but 
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no more than two of …” to connect the sentences “Alma was advised by Gear,” “Boda was advised by Gear,” and 
“Crumb was advised by Gear.”

Exercise 2.1

State whether the following sentences are atomic or compound. If they are compound, identify their atomic components. An 
atomic component of a compound sentence must be a part that is a sentence in its own right. As a special case, some com-
pound sentences may consist of one atomic component and a connective expression.

*a.	Active power is what enables someone to bring about an effect.
b.	 It is the soul that sees, and not the eye; and it does not see directly, but only by means of the brain.

*c.	 Bodies produce ideas in us by impulse, as that is the only way we can conceive bodies to operate in.
d.	 Our ideas are adequate representations of the most minute parts of extension.

*e.	 If morality has some influence on human actions, it is right to try to inculcate it; and that multitude of 
rules, with which all moral writings abound, is not pointless.

f.	 A succession of ideas constitutes time, and is not only the sensible measure of time.

Some connective expressions are of interest to logicians and others are not. Most systems of sentential logic 
include symbols for five connectives, though systems vary in which symbols are used for these five connectives.

There are more than five connectives that are of interest to logicians and many more that are not of interest to 
logicians. The question of how to identify and deal with all the logically interesting ones is taken up in the appen-
dices to chapters 3 and 5.

Some systems of sentential logic, including the one presented here, also use a special symbol, ⊥, to stand for 
contradiction. This is appropriate given the central role of contradiction in deductive logic (see chapters 1.4−1.6). 
⊥ has various names: “up tack,” “falsum,” and “bottom” or “bot” are some. “Con” is a memorable name that alludes 
to the precise meaning the symbol has in this textbook while avoiding troublesome associations with a sentential 
value and irrelevant associations with its shape. The symbol is best entered at the English keyboard with “space,”  
“capital I,” “space,” all underlined:  I .
⊥ and symbols for the five chosen connectives make up the logical vocabulary of a formal language for senten-

tial logic, called SL. The language is further outfitted with an infinite stock of variables, to stand for sentences, and 
a pair of punctuation marks.

Vocabulary of SL

(The commas that appear below are not included in the vocabulary; 
they serve to separate those items that are.)

Sentence letters: A, B, C, G, H, K, A1, A2, A3, …
Contradiction symbol: ⊥

Connectives: ~, &, ∨, →, ≡
Punctuation marks: ), (

The infinity of the stock of sentence letters is provided for by placing numerical subscripts on A’s. The subscripts are 
considered part of the A’s they are attached to, so numerals do not need to be added as separate vocabulary items. 
The six unscripted capitals are unnecessary. They are included to make the language easier to read and use. Six sen-
tence letters are more than are needed for most purposes. There is something to be said for working with a logical 
vocabulary that uses characters that are readily accessible on the keyboard, thereby facilitating electronic submission 
of work. Ideally, those characters would also be mnemonic. Using just six English capitals as sentence letters frees the 
remainder for other purposes. (D, E, F, and I, for instance, are later used for “domain,” “exists,” “false,” and “interpret-
ation.” J is reserved for a second interpretation in those cases where more than one interpretation is under consid-
eration.) When this approach is not always followed, it is out of respect for conventions, because the symbol is only 
infrequently used in student exercises, because the best mnemonic English character has already been put to other 
uses, or because the symbol is especially evocative of what it stands for.
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The names of the connective symbols are tilde (~), ampersand (&), wedge (∨), arrow (→), and triple bar (≡). At 
the keyboard, arrow can be produced with “hyphen,” “right angle bracket”: -​>. Triple bar should be rendered with 
“left angle bracket,” “hyphen,” “right angle bracket”: <-​>. The names for the connectives are intentionally descrip-
tive only of the shape, not of the meaning. At this point, only the shape matters. Meaning is taken up in chapter 3.

When the sentence letters of SL are interpreted by having sentences of English or other natural languages 
assigned to them, and natural language connective expressions are assigned to the connectives of SL, SL can be used 
to represent the forms of sentences, sets of sentences, and demonstrations of natural languages. The use of SL to for-
malize English sentences, and the techniques for instantiating sentences of SL in English (coming up with an English 
sentence that is an instance of the form described by a sentence of SL) are taken up in chapter 4.

The remainder of this chapter deals just with how the vocabulary elements of SL are arranged.
Any vocabulary element or sequence of vocabulary elements constitutes an expression of SL.
In this and the preceding chapter, some symbols are introduced that do not appear in the vocabulary of SL  

(P, Q, R, Ø, Γ, Δ, L, M, ∪, /​, ⊨, ⊢, {, }, <, >). On the following pages, these symbols are often mixed with vocabulary 
elements of SL. The resulting formulas are not expressions of SL. Expressions of SL consist only of the vocabulary 
elements listed earlier.

Even lower-​case letters of the English alphabet, or upper-​case letters in boldface, italics, or other fonts, or upper-​
case letters other than A, B, C, G, H, and K in the font used here, or upper-​case B, C, G, H, and K when followed by 
numerical subscripts are not vocabulary elements of SL.

Ellipses and commas are also not vocabulary elements, even though they may be mixed in with vocabulary elem-
ents, as in the description of the vocabulary of SL given above. There, the ellipses indicate that “A” may have numer-
ical subscripts that go to infinity. Commas are used to separate listed items from one another.

Exercise 2.2

State whether the following symbol sequences are expressions of SL. Justify your answers.

*a.	~⊥
b.	[A ∨ B]
c.	⊥ A

*d.	((A ≡ B7()
e.	~)A & B(
f.	¬ A ∧ B
g.	(A ∨ C)
h.	(A ≡ (D & C))

While any vocabulary element or sequence of vocabulary elements is an expression of SL, not just any vocabu-
lary element or sequence of vocabulary elements is a sentence. To be a sentence, the vocabulary elements need to 
be arranged in the right way. This way is defined by a brief system of formation rules. The rule system is recur-
sive, which means that longer sentences can be built by reapplying the rules to sentences constructed by previous 
applications of the rules.

According to the rules, ⊥ is a sentence and each of the sentence letters is a sentence. The rules further specify 
that the result of putting ~ in front of a sentence is a sentence. For example, because ⊥ is a sentence, ~⊥ is a sen-
tence, and thus so are ~~⊥ and ~~~⊥. The rules finally specify that taking any two sentences, putting a binary con-
nective between them, and enclosing the result in parentheses produces a sentence. Because A and ~A are sentences,  
(A & ~A) is a sentence. And because rules may be applied on top of rules, the fact that ~⊥ and (A & ~A) are 
sentences means that ~(A & ~A) and (~(A & ~A) ∨ ~⊥) are sentences.

Meaning is not at issue at this point. Only form and formation are at issue. It does not matter whether 
arranging vocabulary elements in accord with the formation rules produces a form that might be taken to 
mean something absurd or contradictory. On the contrary, it would be a bad thing if the formation rules of SL 
prohibited constructing a formally contradictory sentence, since SL is supposed to identify some of the factors 
responsible for generating contradictions. What is invalid or unsatisfiable needs as much to be symbolized as 
what is valid or satisfiable.

The formation rules constitute the grammar or, in more technical language, the syntax of the language.
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The syntax for SL can be more precisely formulated by using the symbols P and Q (and later, R and numerically 
subscripted P’s) as variables for expressions of SL. Because SL is itself a language built around variables that stand for 
sentences of a natural language, this makes P and Q variables for variables, or what are called metavariables.

Syntax of SL

An expression is any vocabulary element or sequence of vocabulary elements.
A sentence is any expression formed in accord with the following rules:

(SL): If P is ⊥ or a sentence letter, then P is a sentence.
(~): If P is a sentence, then ~P is a sentence.

(bc): If P and Q are two (not necessarily distinct) sentences, then (P & Q), (P ∨ Q),
(P → Q), and (P ≡ Q) are sentences.

(exclusion): Nothing is a sentence unless it has been formed by one or more applications
of the preceding rules.

In what follows, the expression (~) is used to name the second of the formation rules given above. It is not used as an 
expression of SL. Similarly (SL), (bc), and (exclusion) are names of the first, third, and fourth of the formation rules.

According to the rules, a tilde may only be added to the front of a sentence, a binary connective may only be 
placed between two sentences, and punctuation marks may only be used in left and right pairs, placed on either side 
of the sentences conjoined by a binary connective. Punctuation is never placed around ⊥ or the sentence letters, 
and never used when adding a tilde to a sentence. ~(A) is not a sentence. ~(~A) is not a sentence. (A & (~B)) is not 
a sentence. And so on. The only rule that adds punctuation is (bc). For each pair of corresponding parentheses, there 
must be exactly one binary connective that is dedicated to that pair of parentheses. Where there is no corresponding 
binary connective there should be no parentheses. Where there is a binary connective there must be exactly one pair 
of parentheses. No pair of parentheses may be shared by more than one binary connective, no binary connective 
may use more than one pair of parentheses, and no pair of parentheses may appear that is not dedicated to exactly 
one binary connective.

Exercise 2.3

State whether the following expressions are sentences of SL. Justify your answers, following the example of the answers 
linked to the * questions. Be careful to appeal to (exclusion) when justifying the claim that an expression is not a sentence.

*a.	 AB
b.	 A~B

*c.	 (A & (~B))
d.	 (A & ~B)

*e.	 (A & ~(~B))
f.	 (A & ~(~B ∨ C))

*g.	 (A & A)
h.	 (A & ~A)

*i.	 ((~⊥) & B)
j.	 ~(⊥ & B)

*k.	 ~(~A & B)
l.	 ((A & ~(B ∨ C))

*m.	 ((A & B & C) ∨ ⊥)
n.	 ((A & B) & C ∨ ⊥)
o.	 (((A & B) & C) ∨ ⊥)
p.	 (⊥ → ~⊥)

*q.	 (~((~A → A) ≡ ~(A & ~A)) ∨ (~A → A))
r.	 (A ∨ (~(B ∨ C)))

Understanding the syntactic rules requires an ability to relate expressions containing the metavariables P, Q, and 
R to sentences of SL that instantiate those expressions. Expressions containing metavariables, like P, ~P, and P & Q, 
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have the status of forms that various sentences of SL can share. Relating metalinguistic expressions and sentences of 
SL means recognizing which sentences of SL are instances of which forms.

An instance is any result of replacing the variables in a form with objects that the 
variables could stand for, doing so in such a way that the same object is put in the 
place of each occurrence of the same variable.

Instances are not always direct. ~(A & B) is an instance of ~(P & Q), but so are:

2.1 ~(A & A)
2.2 ~(⊥ & A)
2.3 ~(~A & B)
2.4 ~(A & ~B)
2.5 ~(~A & ~B)
2.6 ~(((~B → ~G) ∨ K) & ~(B ≡ ~K))

Like all variables, P and Q could stand for arbitrarily complex sentences of SL. They could also stand for the same 
sentence of SL.

Exercise 2.4

1.	 State whether the following sentences are instances of the form, ~P. If they are, identify the sentence that instantiates 
P. If they are not, say why not.
	*a.	~⊥
	 b.	 ~~B
	*c.	(~C & ~G)
	 d.	 ~(C & ~G)
	*e.	 ~((~A & B) ∨ C)
	 f.	 (~(~A & B) ∨ C)

2.	 State whether the following sentences are instances of the form, (P & Q). If they are, identify the sentences that instan-
tiate P and Q. If they are not, say why not.
	*a.	(A & A)
	 b.	 (⊥ & B)
	*c.	((A & B) & ⊥)
	 d.	 (A & ~A)
	*e.	~(A & B)
	 f.	 (~A & B)
	*g.	((~A & B) ≡ C)
	 h.	 (~A & (B ≡ C))

3.	 State whether the following sentences are instances of the form, ~(P → ~Q). If they are, identify the sentences that 
instantiate P and Q. If they are not, say why not.
	*a.	~(~A → ~B)
	 b.	 ~(A → ~A)
	*c.	(~A → ~⊥)
	 d.	 ~(~A → ~~⊥)
	*e.	~(A → ~(B → C))
	 f.	 ~(A → (~B → C))

4.	 State whether the following sentences are instances of the form, (~P → Q). If they are, identify the sentences that 
instantiate P and Q. If they are not, say why not.
	*a.	~(A → B)
	 b.	 (~A → ~B)
	*c.	(~~A → B)
	 d.	 (~(~A → B) → ~(C → A))
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	*e.	(~⊥ → ⊥)
	 f.	 ((~A → B) ≡ C)

5.	 State whether the following sentences are instances of the form, (P → (Q ∨ ~P)). If they are, identify the sentences 
that instantiate P and Q. If they are not, say why not.
	*a.	(A → (A ∨ ~A))
	 b.	 (A → (~A ∨ ~A))
	*c.	(~A → (B ∨ ~A))
	 d.	 (~A → (B ∨ ~~A))
	*e.	(~(A ∨ B) → (B ∨ ~~(A ∨ B)))
	 f.	 (~B → (A ∨ B))

6.	 (This question draws on material presented in chapter 1.3 and point 1 of the technical appendix to chapter 1. Please 
review those sections before proceeding and consult the solutions to the * questions before attempting those that are 
unanswered. This having been said, the solutions demonstrate that it is possible to answer these questions without 
knowing anything about what Γ, “set,” ∪, or { } stand for. Forms can be instantiated without knowing anything about 
the meanings of the elements used to construct either the form or the items plugged into it. This is the most valuable 
lesson to take away from this exercise.)

State whether the following are instances of the form, Γ ∪ ~P, where Γ is a set of sentences and P is a sentence. If 
they are, identify the set of sentences that instantiates Γ and the sentence that instantiates P. If they are not, say why 
not. Keep the following points in mind: Braces ({ }) are put around the members of a set. No other symbols are used 
for this purpose. A set may contain only one sentence, in which case the braces before ∪ may be omitted. A set may also 
be empty, in which case it can be designated by Ø, by { }, or by nothing at all.
	*a.	{(A → B), A} ∪ ~B
	 b.	 {(A → B), (B → C)} ∪ ~(A → C)
	*c.	A ∪ ~A
	 d.	 A ∪ A
	*e.	{(A → B), ~B} ∪ ~~A
	 f.	 ~B ∪ ~B

2.2  Conventions

The vocabulary of SL contains just two punctuation marks, and the third syntactic rule requires the use of paren-
theses with each binary connective. The ensuing forest of punctuation marks can make sentences hard to read. To 
improve the appearance of sentences, two conventions are adopted.

 (b)	 Brackets may be substituted for parentheses.
(op)	 Outermost parentheses may be coloured out (they are still there).

These are conventions in the sense that they are not officially included in the vocabulary or allowed by the syntax 
of the language. In strictness, brackets should be understood to really be poorly drawn parentheses, and outer par-
entheses should be understood to really be there, written in ink too pale to see.

(op) only allows colouring out outer parentheses if they really are outer. To be outermost the left parenthesis must 
be the first vocabulary element of the sentence. In accord with this definition

2.7 ~(A → A)

has no outermost parentheses.
Outermost parentheses may only be coloured out if they remain outer. If a further vocabulary element is added 

to either the front or the back of a sentence, the outermost parentheses must be coloured back in before the add-
ition occurs.

In the chapters that follow, frequent mention is made of the negation, ~P, of a sentence, P, and it is often necessary 
to construct negations.
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The negation, ~P, of a sentence, P, is constructed by applying (~) to P.

Caveat: If (op) has been applied to P, the outer punctuation must be coloured back in 
before applying (~).

In accord with the caveat, the negation of A ∨ B is ~(A ∨ B). ~A ∨ B cannot be constructed by negating A ∨ B. It 
must be constructed by disjoining ~A and B.

~A ∨ B and ~(A ∨ B) are not the same. Sentences are not the same unless they consist of the same vocabulary 
elements presented in the same order. Parentheses are vocabulary elements. They are officially present even when 
not coloured in. Parentheses serve to define the “scope” or extension of the associated binary connective. In ~(A ∨ 
B) the leftward scope of “∨” is A. In ~A ∨ B, otherwise written as (~A ∨ B), the leftward scope of ∨ is ~A. This is 
a significant syntactic difference. It is a separate question whether there is also a difference in meaning. (In this case, 
there is.) For now, the only question is whether sentences are the same or different, and that question is decided by 
the appearance, not by the meaning.

Two sentences are not the same unless they consist of the same vocabulary elements, 
presented in the same order.

Caveat: When determining whether two sentences are the same, disregard the effect 
of applying any informal notational conventions.

Exercise 2.5

1.	 State whether the sentences in each of the following pairs are the same. Give reasons to justify your answer.
	*a.	A, ~~A
	 b.	 A & B, B & A
	*c.	A & (B & C), (A & B) & C
	 d.	 A → B, (A → B)
	*e.	(A ≡ [C ∨ B]), [A ≡ (C ∨ B)]
	 f.	 ~(A & B), (~A & ~B)

2.	 Construct the negation of each of the following sentences.
	*a.	~A
	 b.	 ~(A ∨ B)
	*c.	~A ∨ B
	 d.	 A → ⊥
	*e.	A → (B → ⊥)
	 f.	 (A → B) → ⊥

2.3  Syntactic Demonstrations and Trees

An expression can be demonstrated to be a sentence by showing how it is built in accordance with the formation 
rules. For example, ~A ∨ B is demonstrated to be a sentence as follows:

Since A is a sentence by (SL), ~A is a sentence by (~). B is also a sentence by (SL), so since it has just been 
established that ~A is also a sentence, it follows by (bc) that (~A ∨ B) is a sentence. So, by (op), ~A ∨ B is 
a sentence.

This demonstration is given in the conversational style of everyday discourse. Another style of demonstration says 
the same things, but numbers the different assertions and separates justifications from assertions.

1.	 A and B are sentences (by (SL)).
2.	 ~A is a sentence (from line 1 by (~)).
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3.	 (~A ∨ B) is a sentence (from lines 2 and 1 by (bc)).
4.	 ~A ∨ B is a sentence (from line 3 by (op)).

Numbering assertions is useful for referring to what was established at earlier points. As demonstrations grow longer, 
it can become difficult for the reader to remember all their parts. This makes it useful to have an indexing system to 
allow the reader to quickly look up what was established earlier.

To take another example, the entirely different expression, ~(A ∨ B), is demonstrated to be a sentence by an 
appeal to a different sequence of steps. Since it is tedious to write “is a sentence” and “from … by” on every line, and 
since after seeing one demonstration written in this way everyone should understand how it goes, an abbreviated 
format may be adopted.

1. A (SL)
2. B (SL)
3. (A ∨ B) 1,2 (bc)
4. ~(A ∨ B) 3 (~)

At line 3 (bc) is applied to A and B rather than (~) to A, setting the course for building ~(A ∨ B) rather than 
~A ∨ B.

Another way of demonstrating that an expression is a sentence is by means of syntactic trees, which diagram how 
the parts are put together, step by step, to form the sentence. Here are syntactic trees for the two sentences discussed 
previously.

1. A B (SL) 1. A B (SL)

2. ~A 1 (~)
2. (A → B) 1,1 (bc)

3. (~A → B) 2,1 (bc) 3. ~(A → B) 2 (~)

4. ~A → B 3 (op)

Whereas living trees grow from the bottom up, these syntactic trees are drawn from the top down. There is one 
branch at the top of the tree for each occurrence of ⊥ or a sentence letter, taken in order from left to right as they 
appear in the sentence. If ⊥ or a sentence letter occurs more than once in a sentence, they are listed more than once 
on the first line. The first line of the tree is always justified by (SL). If (op) is applied, it may only be applied on the 
last line of the tree or demonstration. The intermediate lines depict how the sentence is built from its parts. Where 
there are differences between sentences, their trees look different.

The trees above are simple. When sentences get more complex, it can be unclear how to proceed with the tree, 
and there can be different ways of doing so. If it is not obvious how to proceed, it can help to box off the parts of 
the sentence in the following order:1

1.	 Draw a box around each sentence letter and each ⊥. This identifies each application of (SL).
2.	 Draw the box defined by each pair of corresponding punctuation marks. This identifies applications of (bc). 

Where the corresponding punctuation marks are brackets it also identifies applications of (b).
3.	 If a tilde is followed by a box, draw the box that contains that tilde and the box that follows it. Repeat as neces-

sary if this creates a new case of a tilde being followed by a box. This identifies each application of (~).
4.	 If the previous steps have not put the whole sentence in a box, draw the box that contains the whole sentence. 

This identifies an application of (op).

For example, the sentence,

2.8 ~[(~A → A) ≡ ~(A & ~⊥)] ∨ (~A → A)
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can be boxed off in the following stages. Step 1 produces six boxes:

~ [ ( ~ A → A  ) ≡ ~ ( A & ~ ⊥ ) ] ( ~ A → A )

1 2 3 4 5 6

∨

Step 2 produces four more:

~ [ ( ~ A → A  ) ≡ ~ ( A & ~ ⊥ ) ] (~ A → A )

7 8 9

∨

and

~ [ ( ~ A → A  )≡ ~ ( A &~ ⊥ ) ] ( ~ A → A )

10

∨

Step 3 produces:

~ [ ( ~ A → A ) ≡ ~ ( A & ~ ⊥ ) ] ( ~ A → A )

11 12
13

14
15

∨

Step 4 produces:

~ [ ( ~ A → A ) ≡ ~ ( A & ~ ⊥ ) ] ( ~ A → A )

16

∨

The boxes exhibit how the sentence’s atomic parts are put together to make compounds that are put together 
to make larger compounds. (The atomic parts are ⊥ and the sentence letters.) When producing a syntactic tree, 
work from innermost boxes out to the boxes that contain those boxes, to the boxes that contain those boxes, and 
so on. For example, work from box 1 to box 11, from boxes 11 and 2 to box 7, from 4 to 12, from 3 and 12 to 
8, from 8 to 14, and so on. When a larger box contains two smaller boxes separated by a binary connective, there 
can be a choice whether to start with the smallest boxes on the left side, or those on the right. For example, when 
constructing the contents of box 10, it is just as good to start by going from 4 to 12, 3 and 12 to 8, and 8 to 14 as 
it is to start from 1 to 11, and 11 and 2 to 7. Going from left to right incrementally generates the following tree for 
~[(~A → A) ≡ ~(A & ~⊥)] ∨ (~A → A):

1. A A A ⊥ A A (SL)

The first line of the tree always lists the atomic components as they appear from left to right. They are sentences 
according to (SL). Starting with the leftmost of the innermost boxes and going out means going from the sentence 
in box 1 to the sentence in box 11, which is done by (~).

1. A A A ⊥ A A (SL)

2. ~A 1 (~)
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Box 11 is contained in box 7, which joins the sentence in box 11 to the one in box 2 with an arrow, so the next step 
is to apply (bc) to generate the contents of box 7.

1. A A A A A (SL)

2. ~A 1 (~)

3. (~A → A) 2,1 (bc)

Box 7 is contained in box 10, which joins the sentence in box 7 to the one in box 14 with a triple bar. Since the sen-
tence in box 14 is compound, the tree needs to show how it is constructed before joining it to the sentence in box 
7. The leftmost of the innermost boxes in box 14 is box 3. The sentence in that box is joined to the one in box 12 
with an ampersand. Since the sentence in box 12 is again compound, the tree must first show how it is constructed 
before joining it to box 3. This means the next step on the tree is to start with the sentence in box 4. Stepping up 
from it to what is contained in box 12 means applying (~):

1. A A A A A (SL)

2. ~A 1 (~)

3. (~A → A) 2,1 (bc)
4. ~ 1 (~)

Now (bc) can be applied to the sentences in boxes 3 and 12 to generate the sentence in box 8:

1. A A A A A (SL)

2. ~A 1 (~)

3. (~A → A) 2,1 (bc)
4. ~ 1 (~)

5. (A & ~ ) 1,4 (bc)

Now it is possible to go from the sentence in box 8 to the one in box 14.

1. A A A A A (SL)

2. ~A 1 (~)

3. (~A → A) 2,1 (bc)
4. ~ 1 (~)

5. (A & ~ ) 1,4 (bc)

6. ~(A & ~ ) 5 (~)
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And now it is possible to go from the sentences in boxes 7 and 14 to the one in box 10. When the sentences in boxes 
7 and 14 are conjoined, it must be by applying (bc), which always introduces parentheses. However, the sentence 
being constructed contains brackets. This necessitates a subsequent application of (b) to convert the parentheses to 
brackets.

1. A A A A A (SL)

2. ~A 1 (~)

3. (~A → A) 2,1 (bc)
4. ~ 1 (~)

5. (A & ~ ) 1,4 (bc)

6. ~(A & ~ ) 5 (~)

7. ((~A → A) ≡ ~(A & ~ )) 3,6 (bc)

8. [(~A → A) ≡ ~(A & ~ )] 7 (b)

Now it is possible to go up to box 15.

1. A A A A A (SL)

2. ~A 1 (~)

3. (~A → A) 2,1 (bc)
4. ~ 1 (~)

5. (A & ~ ) 1,4 (bc)

6. ~(A & ~ ) 5 (~)

7. ((~A → A) ≡ ~(A & ~ )) 3,6 (bc)

8. [(~A → A) ≡ ~(A & ~ )] 7 (b)
9. ~[(~A → A) ≡ ~(A & ~ )] 8 (~)

Box 15 is contained in box 16, which joins the sentence in box 15 to the one in box 9 with a wedge. Since the 
sentence in box 9 is again compound, it must first be built up from its components. Once this has been done over 
lines 10 and 11 applying (bc) and (op) completes the tree.
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1. A A A A A (SL)

2. ~A 1 (~)

3. (~A → A) 2,1 (bc )
4. ~ 1 (~)

5. (A & ~ ) 1,4 (bc )

6. ~(A & ~ ) 5 (~)

7. ((~A → A) ≡ ~(A & ~ )) 3,6 (bc )

8. [(~A → A) ≡ ~(A & ~ )] 7 (b)
9. ~[(~A → A) ≡ ~(A & ~ )] 8 (~)

10. ~A 1 (~)

11. (~A → A) 10,1 (bc)

12. (~[(~A → A) ≡ ~(A & ~ )] (~A → A)) 9,11 (bc)

13. ~[(~A → A) ≡ ~(A & ~ )] (~A → A) 12 , (op)

Because there are only five formation rules (including (op) and (b)), and their application is obvious, it is permissible 
to omit the line numbers and justifications and just draw the tree.

However, it is not permissible to omit the applications of (op) and (b). (bc) does not add brackets, and it never 
fails to add parentheses, so it would not be permissible to skip line 7 above and declare line 8 to be obtained by (bc), 
or to skip line 12 and declare line 13 to be obtained by (bc).

(op) may only be applied on the last line. It is used to remove outer punctuation and no punctuation has the status 
of being outer before the entire sentence has been constructed.

With practice, it becomes unnecessary to draw boxes to determine how to construct a tree. The punctuation 
marks and the positions of the tildes by themselves define where the boxes should go, making it possible to see how 
a sentence falls into parts and sub-​parts without needing to draw boxes.

Exercise 2.6

Draw syntactic trees to prove that the following are sentences, being careful to apply the conventions when called for. Line 
numbers and justifications may be omitted.

*a.	⊥ → [A & ~A]
b.	~~~B
c.	(A ≡ ~A) ∨ ~B
d.	⊥ ≡ (~A ∨ ~B)
e.	~[~(A & B) & C]

*f.	~([~A → B] ∨ [C & (G ∨ ⊥)]) ≡ ~G
g.	[(⊥ → ⊥) → [⊥ → (A & ~A)]]

*h.	[A → (C ∨ ~C)] & [~A → (C ∨ ~C)]
i.	~(⊥ & A) ≡ (~⊥ ∨ ~A)
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2.4  Scope; Main Connective and Immediate Components; Named Forms

The concepts of the scope or extension of a connective and of the main connective of a sentence are foundational 
for many other syntactic concepts. Intuitively, the scope of a connective is the sentences that the connective connects 
to (or together). On the line of a syntactic tree where a connective is added to a sentence, the scope of the con-
nective is the prior sentence or sentences the new connective is added to. The main connective of a sentence is the 
last connective to be added in the process of generating the sentence. It is the only connective to have scope over 
the whole sentence. More rigorously, scope is defined as follows:

	• when ~ is followed by an atomic sentence (⊥ or a sentence letter), its scope is that atomic sentence

	• when ~ is followed by an opening punctuation mark, its scope is everything from that mark up to the 
corresponding closing punctuation mark, inclusive of those marks

	• when ~ is followed by a tilde, its scope is the following tilde and whatever falls within the scope of that 
following tilde

	• the scope of a binary connective (&, ∨, →, or ≡) begins and ends with the punctuation marks added to 
the sentence in conjunction with that connective, excluding that connective, but including its punctuation  
marks

Exercise 2.7

1.	 Number the tildes in each of the following sentences from left to right. Beside the number for each tilde, write down the 
sentence that falls within that tilde’s scope.
	*a.	~⊥
	 b.	 ~~⊥
	*c.	~⊥ ∨ B
	 d.	 ~(⊥ ∨ B)
	*e.	~(~⊥ ∨ ~B)
	 f.	 ~~~A
	*g.	~(A & B) → ⊥
	 h.	 ~C ∨ A
	*i.	~(C → ~A)
	 j.	 ~[~(~A & B) & C]

2.	 Number the binary connectives in each of the following sentences from left to right. Beside the number for each binary 
connective, write down the sentence that falls within the leftward scope of that binary connective, followed by the sentence 
that falls within the rightward scope of that binary connective.
	*a.	~~A ≡ B
	 b.	 ~(~A ≡ B)
	*c.	A → (B → A)
	 d.	 (A → B) → A
	*e.	(A & B) ∨ (B ≡ C)
	 f.	 [(A ∨ B) → C] & G
	*g.	A ≡ [(A & H) ∨ K]
	 h.	 B ∨ [A ∨ (C ∨ G)]

The main connective of a sentence is rigorously defined as a connective with a scope that ranges over all the 
other parts of the sentence. Some sentences, those comprised of a single sentence letter or ⊥, have no main con-
nective. The rest can only have one. A demonstration that no sentence can have more than one main connective can 
be found in chapter A-​1.1.

The immediate components of a sentence are the sentences that remain after the main connective and its 
associated punctuation, if any, have been removed from the sentence. Since sentences can only have one main con-
nective, and the connectives are only unary or binary, and the binary connectives conjoin two sentences whereas 
the unary attach to one, sentences can have at most two immediate components and as few as none (none if they 
have no main connective).
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Each sentence is considered a component of itself, as are its immediate components (if any), and the immediate 
components of anything previously identified as a component. For example, the components of ~[(A → ~B) & 
C] are:

	• ~[(A → ~B) & C]

	• (A → ~B) & C

	• A → ~B

	• C

	• A

	• ~B

	• B

Sentences and their immediate components are given special names depending on what their main connective is. 
The names hint at the meaning of the connectives. Those hints should be disregarded for now.

Named Forms

A sentence that has no main connective is an atomic sentence. Atomic sentences have 
no immediate components. In particular, ⊥ is an atomic sentence, as is each sentence 
letter.

A sentence with ~ as its main connective is a negation. Negations have the form ~P, 
where P is the immediate component of the negation. P is called the nullation of ~P.

The atomic sentences and the negations of atomic sentences are literals. A negation 
is not a literal unless its nullation is atomic. So ~~A is not a literal, though ~A 
and A are.

A sentence with & as its main connective is a conjunction. Conjunctions have the 
form P & Q, and the immediate components, P and Q, are called conjuncts.

A sentence with ∨ as its main connective is a disjunction. Disjunctions have the form 
P ∨ Q, and the immediate components, P and Q, are called disjuncts.

A sentence with → as its main connective is a conditional. Conditionals have the 
form P → Q. The left immediate component is called the antecedent and the right 
immediate component is called the consequent.

A sentence with ≡ as its main connective is a biconditional. Biconditionals have the 
form P ≡ Q.

Arbitrarily more specific forms can be described using combinations of these names: conditionals with negated 
antecedents, conjunctions with a first conjunct that is a negated conditional and a second conjunct that is a disjunc-
tion of a biconditional and a negation, and so on.

Alternatively, more specific forms can be pictured using metavariables for the unanalysed components. A negated 
disjunction has the form ~(P ∨ Q), a disjunction with a negated first disjunct has the importantly different form 
~P ∨ Q, and a conjunction with a first conjunct that is a negated conditional and a second conjunct that is a dis-
junction of a biconditional and a negation has the form ~(P → Q) & [(R ≡ P1) ∨ ~P2].

The ability to parse a sentence is the ability to identify its main connective, its 
immediate component(s), the main connective of each immediate component, the 
immediate component(s) of each immediate component and so on up the syntactic 
tree to atomic components.
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Exercise 2.8

State whether each of the following sentences is a negation, conjunction, disjunction, conditional, or biconditional. Then 
identify its immediate component or components and say whether that immediate component is atomic or is a negation, 
conjunction, disjunction, conditional or biconditional.
*a.	~A ∨ B

b.	~(A ∨ B)
*c.	A ∨ ~(B ≡ A)

d.	 ~(A ∨ B) ≡ A
*e.	K ∨ (~[G ∨ ~(B ≡ K)] → A)

f.	K → ~([G ∨ ~(B ≡ K)] → A)
*g.	(K ∨ G) ∨ [~B ≡ (K → A)]

h.	~[(K ∨ G) → [~B ≡ (K → A)]]
*i.	 [~(A & B) → (B ≡ (H &C))] & ~⊥

j.	 [(A ∨ ~A) & ⊥] ≡ ~(C ≡ A)

2.5  Formal Properties

Sameness
No expression or sentence of SL is the same as any other unless it consists of the same 
vocabulary elements, placed in the same order.

Two expressions or sentences are distinct if and only if they are not the same.
Caveat: The effects of applying informal notational conventions are to be 

disregarded when determining whether two expressions or two sentences are 
the same.

Negation
The negation, ~P, of a sentence, P, is constructed by applying (~) to P. If (op) has been 
applied to P, P’s outer punctuation must be replaced before applying (~).

Opposition
Two sentences are opposites if and only if one of them is the negation of the other.

Formal Contradiction
A formal contradiction is either two sentences, one of the form P, the other of the form 
~P, or the sentence ⊥, or any sentence of the form (P & ~P), or any sentence of the 
form (~P & P).

Converse, Inverse, and Contrapositive
Given a conditional sentence, P → Q,
      the converse of P → Q is Q → P
      the inverse of P → Q is ~P → ~Q
      the contrapositive of P → Q is ~Q → ~P.

Exercise 2.9

1.	 State whether the sentences in each of the following pairs are opposites. Give reasons to justify your answer. If the 
sentences are not opposites, identify the true opposite of each.
	*a.	 ~A, ~~A
	 b.	 A, ~~~A
	*c.	 A & B, ~A & ~B
	 d.	 ~(A ∨ B), ~~(A ∨ B)
	*e.	 ~(A ∨ B), [A ∨ B]
	 f.	 A → (B ∨ C), ~A → (B ∨ C)
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2.	 Construct the converse, inverse, and contrapositive of each of the following conditionals.
	*a.	A → (B & C)
	 b.	 ~A → ⊥
	*c.	 ~⊥ → ~~⊥
	 d.	 A → (B → C)
	*e.	 (⊥ → ~⊥) → ~~⊥
	 f.	 ~(A → B) (trick question)

Note

	1	 Not everyone has difficulty seeing how sentences are constructed. They should skip to the concluding four paragraphs of  
this section.
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3.1  Semantics for ⊥ and the Sentence Letters

Whereas the syntax for SL specifies how the vocabulary elements can be arranged, the semantics specifies the 
meaning of the vocabulary elements and of their various arrangements.

The sentence letters of SL are used as variables for sentences of English or other natural languages. As such, their 
meaning is not fixed, but varies from case to case. A case might be an example, an exercise question, or a discussion 
in a textbook section.

Consider all the sentences of English to be lined up in a column. In a column to their left are all the sentence 
letters of SL. Now imagine each sentence letter as the terminus of exactly one arrow originating from an English 
sentence. Each sentence letter must be pointed to by an arrow. No sentence letter can be pointed to by more than 
one arrow. But the same English sentences can send arrows to multiple different sentence letters. And some English 
sentences can send no arrows.
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A1 Fish are fish.

A2 Roses are red.

A3 Pigs have wings.

A4 Scott is the author of Waverly

A5 5 is greater than 7
• •
• •
• •

This scheme illustrates the central semantic notion of an interpretation (hereafter often designated with the symbol, 
“I”). An interpretation is one way of interpreting or assigning sentences of a natural language to sentence letters. 
There are infinitely many others. Imagine all the different ways an arrow could be drawn to each of the sentence 
letters in the left column from any sentence in the right column. Each way of drawing exactly one arrow to each 
sentence letter is an interpretation.

Another way to put this point is to say that interpretations are one-​place functions in the sense discussed at the 
close of chapter 1. Each sentence letter is an “argument” the function assigns a value (an English sentence) to. The 
sentence letters are the things up for valuation or the “arguments.” The sentences of English are the “values” that the 
function assigns to them. Any one interpretation is any one way of assigning exactly one value (English sentence) 
to each argument (sentence letter).1

While the sentence letters can be interpreted in infinitely many ways, there are two constraints on any one 
interpretation:

	• Logic does not tolerate ambiguity. No sentence letter can have two different meanings on any one interpret-
ation. This means no interpretation can assign two different sentences to a sentence letter. It does not hold the 
other way. There is nothing wrong with assigning the same English sentence to two different sentence letters. 
That just means that different sentence letters are names or symbols for the same sentence. The meaning of each 
sentence letter is still unambiguous.

	• No sentence letter can be meaningless. Each must have exactly one sentence assigned to it. Again, it does not 
hold the other way. Some sentences can go unsymbolized. In the extreme, one sentence might be assigned to 
all the sentence letters, leaving all the remaining sentences unsymbolized.

Granting that these two constraints have been met, a question arises about values. There are many values that might 
be ascribed to sentences: true, false, both true and false, neither true nor false, indeterminate, evident, nonevident, 
possibly true, true to degree x, obeyed, disobeyed, kept, broken, answered, unanswered, answerable, unanswerable, and 
the list goes on. A simple place to start is with just two values, true and false. (Other values will be introduced after 
learning how things work with just these two.) Confining consideration to just those English sentences that can bear 
exactly one of these two values means placing a further (temporary) restriction on interpretations. They may only 
assign those English sentences that bear exactly one of the two values to sentence letters. Paradigmatically, these are 
assertions. But the range of English sentences up for consideration may be broadened to include sentences that do 
other things in addition to making an assertion. Someone who makes a promise might be said to perform the act of 
bringing an obligation into being. But part of making a promise is declaring that an event within the agent’s control 
will occur at a certain time provided the right circumstances have been met, and this is an assertion about the future 
course of events that can prove to be true or false. Someone who issues a command or asks a question simultaneously 
makes a (necessarily true) autobiographical report (“I order you to …”; “I would like to ask you whether …”).  
That report can be picked up and anonymously reissued by others (“It is required that …”; “It is questionable 
whether …”), and these restatements may be true or false depending on how accurately they represent what was 
originally commanded or asked.

By assigning sentences that make an assertion to sentence letters, interpretations invest those sentence letters 
with values. A sentence letter acquires the value true if the sentence assigned to it is true, and false if the sentence 
is false. Often, these values are symbolized as T and F. However, it is not uncommon to use other symbols (1 and 0 
are popular but are needed for other purposes in this textbook), and to associate those symbols with other pairs of 
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opposed values, such as “switched on” and “switched off.” For now, T means “true” and F means “false,” but in later 
chapters these symbols will be extended to stand for other values and taken to be determined by other values.

A1 (F) Fish are fish (True)

A2 (T) Roses are red (True)

A3 (T) Pigs have wings (False)

A4 (F) Scott is the author of Waverley (True)

A5 (T) 5 is greater than 7 (False)
• •
• •
• •

For sentence letters, truth is relative. There are infinitely many ways of drawing a single arrow to each sentence letter 
from one of the sentences of a natural language like English. Each corresponds to a different interpretation. The 
value of the sentence letters changes depending on how they are interpreted. A sentence letter is always true or false 
on an interpretation. No sentence letter is absolutely true or false.

The discussion so far has not mentioned ⊥, and ⊥ has not appeared on any of the columns of sentences and sen-
tence letters displayed above. ⊥ is not a variable. It is a part of the logical vocabulary of SL, like the connectives. This 
makes it an exception. It has a meaning that is not open to interpretation. The meaning of ⊥ is F.2

When speaking of the values of sentences it is common to use expressions like “A is true on I,” “B is true on J,” 
“C is false on I,” where A, B, and C are sentence letters and I and J are interpretations. In writing, it saves time and 
effort to employ a more abbreviated form: I(A) is T, J(B) is T, I(C) is F.

It is also common to display interpretations on a table.

A B C G H K A1 A2 …

I T T F F T T F T …

On this table the sentence letters are listed in alphanumeric order on the top row and the values I assigns to each 
sentence letter are listed on the bottom row. ⊥ is not listed as it is not up for interpretation.

When two interpretations, I and J, are under consideration they can be compared on the same table.

A B C G H K A1 A2 …

I T F F F T T F T …

J T T F F T T F T …

The table shows that J is like I but for assigning T to B, and perhaps in other ways as well that do not make it onto 
the displayed portion of the table.

The difference in the assignments that I and J make to B would be explained by the fact that they assign different 
sentences of English to B. Perhaps I assigns “snow is green” to B and J assigns “grass is green” to it.

In logic, it is often unimportant what sentence is assigned to a sentence letter. It only matters whether it is 
assigned to a true sentence or a false one. It is irksome to have to make the connection between sentence letters 
and values by appeal to sentences. The truth or falsity of sentences is often dependent on the facts or the context 
in which the sentence is uttered, and that requires that these facts and contexts be known or ascertained. To get 
around this, logicians often skip over identifying which sentence is assigned to which sentence letter. Instead, they 
just consider whether a sentence letter has one of the true sentences or one of the false ones assigned to it. This 
is tantamount to treating the sentence letters as if they were each assigned one of the values, rather than assigned 
sentences with these values.
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A1

A2 T

A3 F

A4

A5

•
•
•

This gives rise to two ways of understanding an interpretation: as an assignment of sentences of a natural language 
to sentence letters of SL that results in an assignment of values to sentence letters of SL, or as a direct assignment of 
values to sentence letters of SL, ignoring the intermediate assignment of sentences of English. An interpretation that 
works in the second of these ways is called a valuation.

A valuation is an assignment of values to the nonlogical vocabulary elements of a formal language.

A valuation for SL is an assignment of exactly one of T and F to each sentence letter. Notation: I(P) 
is T or I(P) is F, where P is a sentence letter.

A valuation for SL is a function on the domain of sentence letters. It specifies a co-​domain, V, of values, {T,F}. It 
takes each sentence letter as an argument and returns exactly one of T or F as value. There are infinitely many different 
ways of assigning exactly one of T and F to each sentence letter. Each of these ways is a different valuation and so 
a different interpretation. Different interpretations return different values in the case of at least one sentence letter.

Exercise 3.1

1.	 Identify what value the following interpretations assign to the specified sentence letter.
*a.	I(A) is “The Sun is an astronomical object.”

b.	 I(B) is “The Eiffel Tower is an astronomical object.”
*c.	I(C) is “The Eiffel Tower is a terrestrial object.”
d.	 I(G) is “The Sun is the Eiffel Tower.”

*e.	I(H) is “The Sun is the Sun.”
f.	 I(K) is “The Eiffel Tower is not the Eiffel Tower.”

	*g.	Is it possible for the same interpretation to make all of the assignments described in (a)–​(f)? Why or 
why not?

2.	 Identify a sentence that I might assign to the indicated sentence letter or sentence letters in order to assign the identified 
value. Draw on sentences that are generally well known to be true or false, not those that are controversial or that others 
would have to research to learn about. In cases where questions identify assignments to two or more sentence letters, 
consider whether one sentence could do the job for more than one sentence letter and make identifications accordingly. 
Consult the answered questions for further guidance.
	*a.	I(A) is F
	 b.	 I(B) is T
	*c.	I(A) is T and I(C) is T
	 d.	 I(A) is F and I(C) is T
	*e.	I(A) is T, I(B) is T, I(C) is F
	 f.	 I(A) is F, I(B) is T, I(C) is T

Logicians are not concerned which of the infinitely many interpretations is the correct one. It is standard practice 
to consider all of them.
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This is not always as big a job as it might seem. When considering one sentence letter, A, the infinitely many 
interpretations reduce to two: the ones that assign T to A and the ones that assign F to A. After all, if the interest is 
just in A, all that needs to be considered is whether an interpretation assigns it T or F, regardless of how values are 
assigned to all other sentence letters.

Similarly, when considering two sentence letters, A and B, the infinitely many interpretations reduce to four, the 
ones that assign T to both A and B, the ones that assign T to A but F to B, the ones that assign F to A but T to B, and 
the ones that assign F to both.

When considering three sentence letters, there are 8 interpretations; four, 16; five, 32; and so on, though for prac-
tical purposes more than five will rarely be considered. The number of different interpretations is 2n, where n is the 
number of different sentence letters under consideration.

When the number of sentence letters is not too great, there is a standard form for listing interpretations. The 
interpretations are presented on a table. On the top row of the table, the sentence letters are listed in alphanumeric 
order (A–​K first, followed by the subscripted A’s). Below this row is the appropriate number of rows for that number 
of sentence letters (2n where n is the number of atomic sentences). In the rightmost column, the one for the last 
sentence letter in the alphanumeric order, T and F alternate for the appropriate number of rows. In the next column 
to the left, two T’s alternate with two F’s, then four with four, eight with eight, and so on out to the first sentence 
letter in the alphanumeric order.

The alteration is based on the following considerations: For a single sentence letter, A, there are just two kinds of 
interpretations: those that assign T and those that assign F.

A

IT T

IF F

When two sentence letters, A and B, are under consideration, each of these cases splits into two. The interpretations 
that assign T to A divide into those that assign T to B and those that assign F to B, and likewise for the interpret-
ations that assign F to A.

A B

IT1 T T

IT2 T F

IF1 F T

IF2 F F

When three sentence letters, A, B, and C, are under consideration, each of these four cases again splits into two. The 
interpretations that assign T to A and B divide into those that assign T to C and those that assign F to C, and likewise 
for the other three groups of interpretations, producing 4 × 2 or 8 groups:

A B C

IT1-​1 T T T

IT1-​2 T T F

IT2-​1 T F T

IT2-​2 T F F

IF1-​1 F T T

IF1-​2 F T F

IF2-​1 F F T

IF2-​2 F F F
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Each time a further sentence letter is added to the table, each of the previously listed types of interpretation splits 
into two groups, thereby continually doubling the number of listed interpretations.

Exercise 3.2

1.	 Tabulate the possible interpretations for the following collections of sentence letters in standard form.
	*a.	A, ⊥
	 b.	 C, A
	*c.	A1, B
	 d.	 G, A, C
	*e.	C, A, A3, B
	 f.	 A1, A4, G, A10, A2

2.	 State what is wrong with the following tables of interpretations (each has something wrong with it).

*a. A ⊥ b. A B *c. A B C d. A1 B C

I1 T F I1 T T I1 T T T I1 T T T

I2 T F I2 F T I2 T T F I2 T T F

I3 F F I3 T F I3 T F T I3 T F T

I4 F F I4 F F I4 F F F I4 T F F

I5 F F T I5 F T T

*e. C G f. A B C I6 F T F I6 F T F

I1 T T I1 T T T I7 T F F I7 F F T

I2 F T I2 T F F I8 F T T I8 F F F

I3 T F I3 T T T

I4 F F I4 F F F

I5 T T I5 F T T

I6 F T I6 F F F

I7 T F

I8 F F

3.2  Semantics for the Connectives

The connectives of SL build compound sentences that have a value that is completely determined by the values of 
their immediate components. Each connective does this in a different way. The meaning of each connective is given 
by the way it does this. ⊥ can be treated as if it were a connective.

⊥	 builds an atomic sentence that is false on any interpretation
~	 builds a compound sentence that has the opposite value of its immediate component
&	 builds a compound sentence that is true if and only if both immediate components are true and otherwise 

is false
∨	 builds a compound sentence that is true if and only if at least one immediate component is true and other-

wise is false
→	 builds a compound sentence that is false if and only if its antecedent is true but its consequent is false and 

otherwise is true
≡	 builds a compound sentence that is true if and only if its immediate components have the same value and 

otherwise is false
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Keeping in mind that truth is truth on an interpretation, the connectives are symbols for rules that an interpretation 
follows in assigning values to compound sentences, depending on what connective is used to build the compound. 
These rules can be called valuation rules.

Valuation Rules

(⊥): I(⊥) is F
(~): I(~P) is T if and only if I(P) is F; otherwise I(~P) is F
(&): I(P & Q) is T if and only if I(P) and I(Q) are T; otherwise, I(P & Q) is F
(∨): I(P ∨ Q) is T if and only if at least one of I(P) and I(Q) is T; otherwise I(P ∨ Q) is F
(→): I(P → Q) is F if and only if I(P) is T and I(Q) is F; otherwise I(P → Q) is T
(≡): I(P ≡ Q) is T if and only if I(P) is the same as I(Q); otherwise I(P ≡ Q) is F

This statement of the valuation rules is optimized for both use and concision. Though the format is different from 
the informal statement given earlier, the two versions come to the same thing.

(~) was used in chapter 2 as a label for a syntactic formation rule. It is reused here as a label for a semantic rule. 
There is no danger of confusing the two.

The valuation rules might be more expansively presented by unpacking the phrases, “if and only if ” and 
“otherwise.”

“Otherwise” means “in all other cases.” At this point only two cases are under consideration, so specifying the 
“other” cases gives rise to a statement of both the conditions under which I assigns a T to a compound and the 
conditions under which it assigns an F.

(T~) (F~)
I(~P) is T if and only if I(P) is F I(~P) is F if and only if I(P) is T

(T&) (F&)
I(P & Q) is T if and only if I(P) and I(Q) 
are T

I(P & Q) is F if and only if at least one of I(P) 
and I(Q) is F

(T∨∨) (F∨∨)
I(P ∨ Q) is T if and only if at least one of 
I(P) and I(Q) is T

I(P ∨ Q) is F if and only if I(P) and I(Q) are F

(T→) (F→)
I(P → Q) is T if and only if at least one of 
the following: (i) I(P) is F; (ii) I(Q) is T

I(P → Q) is F if and only if I(P) is T and I(Q) 
is F

(T≡≡) (F≡≡)
I(P ≡ Q) is T if and only if I(P) are I(Q) 
are the same

I(P ≡ Q) is F if and only if I(P) and I(Q) are 
different

These rules can be further expanded by unpacking their “if and only if ” clauses. An English sentence of the form, 
“A if B” asserts that B is sufficient for A. B’s being the case is all that is needed for A to be the case.

An English sentence of the form, “A only if B” says something else: that B is necessary for A. B’s being the case 
is one thing (not necessarily the only thing) that is required for A to be the case.

While “A if B” says that B is all that is needed for A, it does not rule out other ways of getting A than by having 
B. So, it does not say that B is necessary for A. By contrast, while “A only if B” says that B is one thing that is required 
for A, it does not say that B is the only thing that is required for A. So, it does not say that B is sufficient for A.

While “A only if B” does not mean the same thing as “A if B,” it does mean the same thing as “If A then B.” “If 
A then B” says that A is all that is needed to get B. “A” suffices for B. So, having A means having B. “A only if B” says 
that having A requires having B. B is necessary for A. So, having A again means having B.

In light of these points, “A if and only if B” can be seen to assert two different things:

	• “A if B,” which is the same as “if B, A” or “if B then A”
	• “A only if B,” which is the same as “if A then B”
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Using terminology that was introduced in chapter 2, “A if and only if B” asserts both “if A then B,” and its converse, 
“if B then A.” It is like a conditional that goes both ways, from left to right, so to speak (from A to B), and from right 
to left (from B back to A).

Because the valuation rules are stated using “if and only if,” they can be read “in reverse,” so to speak. They do 
not just specify the conditions under which I assigns a T or an F to compound sentences of different sorts. They also 
specify what assignments I must have earlier made to the components to be able to make the assignment it did to 
the compound.

Unpacking the “if and only if ” clauses into an “if ” clause and an “only if ” clause gives the following, compound 
to component and component to compound statement of the rules:

Compound to Component
(for making short tables and demonstrating that there is no model)

(T~) (F~)
If I(~P) is T then I(P) is F If I(~P) is F then I(P) is T

(T&) (F&)
If I(P & Q) is T then I(P) is T
If I(P & Q) is T then I(Q) is T

If I(P & Q) is F then at least one of I(P) and 
I(Q) is F

(T∨∨) (F∨∨)
If I(P ∨ Q) is T then at least one of I(P) 
and I(Q) is T

If I(P ∨ Q) is F then I(P) is F
If I(P ∨ Q) is F then I(Q) is F

(T→) (F→)
If I(P → Q) is T then at least one of the 
following: i) I(P) is F; ii) I(Q) is T

If I(P → Q) is F then I(P) is T
If I(P → Q) is F then I(Q) is F

(T≡≡) (F≡≡)
If I(P ≡ Q) is T then I(P) are I(Q) are 
the same

If I(P ≡ Q) is F then I(P) and I(Q) are 
different

In the case of (T&), (F∨), and (F→), one or both of the listed inferences may be drawn.

Component to Compound
(for making long tables and verifying that there is a model)

(T~) (F~)
If I(P) is F then I(~P) is T If I(P) is T then I(~P) is F

(T&) (F&)
If both I(P) and I(Q) are T then  
I(P & Q) is T

If I(P) is F then I(P & Q) is F
If I(Q) is F then I(P & Q) is F

(T∨∨) (F∨∨)
If I(P) is T then I(P ∨ Q) is T
If I(Q) is T then I(P ∨ Q) is T

If both I(P) and I(Q) are F then I(P ∨ Q) 
is F

(T→) (F→)
If I(P) is F then I(P → Q) is T If I(P) is T and I(Q) is F then I(P → Q) is F
If I(Q) is T then I(P → Q) is T

(T≡≡) (F≡≡)
If I(P) is the same as I(Q) then  
I(P ≡ Q) is T

If I(P) is different from I(Q) then I(P ≡ Q) 
is F

In the case of (F&), (T∨), and (T→), one or both of the listed inferences may be drawn.
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Exercise 3.3

1.	 State what, if anything, follows from each of the following by each of the valuation rules. Answers to these questions 
require applying the valuation rules by reasoning from values of components to values of compounds. Consult the 
answered questions for further illustration of how to do this.
	*a.	 I(P) is T
	 b.	 I(P) is F
	*c.	 I(P) is T and I(Q) is T
	 d.	 I(P) is T and I(Q) is F
	*e.	 I(P) is F and I(Q) is T
	 f.	 I(P) is F and I(Q) is F
	*g.	 I(P) is the same as I(Q)
	 h.	 I(P) is not the same as I(Q)

2.	 State what, if anything, follows from each of the following by a single application of the appropriate valuation rule. 
Answers to these questions require applying the valuation rules by reasoning from values of compounds to values of 
immediate components. (Do not draw conclusions for components of immediate components.) Consult the answered 
questions for further illustration of how to do this.
	*a.	 I(~P) is T
	 b.	 I(~P ∨ Q) is F
	*c.	 I(~P & Q) is F
	 d.	 I(~P) is F
	*e.	 I(P & ~Q) is T
	 f.	 I(~P & Q) is F
	*g.	 I(~(P & Q)) is F
	 h.	 I(~(P ∨ Q)) is T
	*i.	 I(~P ∨ Q) is T
	 j.	 I(P ∨ ~Q) is F
	*k.	 I(P → (Q ∨ R)) is T
	 l.	 I(~P → Q) is F
	*m.	 I((P → Q) ≡ (Q → P)) is T
	 n.	 I(~(P → Q) ≡ (~Q → P)) is F
	*o.	 I(~[(P → Q) ≡ (~Q → P)]) is T
	 p.	 I((P → Q) ≡ ~R) is F

3.	 State what follows from each of the following by first reasoning from the given value of the given compound to the 
value(s) of its component(s) and then reasoning from the given value of the sentence to the value of a negation, conjunc-
tion, disjunction, conditional, or biconditional containing that sentence as one of its immediate components. Consult the 
answered questions for further illustration of how to do this.
	*a.	 I(~P) is T
	 b.	 I(~P) is F
	*c.	 I(P & Q) is F
	 d.	 I(P & Q) is T
	*e.	 I(P ∨ Q) is T
	 f.	 I(P ∨ Q) is F
	*g.	 I(P → Q) is T
	 h.	 I(P → Q) is F
	*i.	 I(P ≡ Q) is F
	 j.	 I(P ≡ Q) is T

Over the course of this section, the valuation rules have been defined in two ways, first concisely, then expansively. 
There is a third way the valuation rules might be defined: as functions. The valuation rules can be considered in a 
very abstract way, one that does not even mention sentence letters, let alone sentences of English or other natural 
languages. Considered at this level of abstraction, the valuation rules are operations that assign exactly one of the 
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values, T and F, to lists of the values T and F. ~ is a one-​place function from lists of one value onto one of the values. 
In other words, it assigns exactly one of T and F to each list of one T or one F. Each of the binary connectives is a 
different two-​place function. Each assigns exactly one of T and F to each list of two of the values. Each connective 
does this in a different way, in accord with its own valuation rule. ~ assigns F to the list <T> and T to the list <F>. 
& assigns T to the list <T,T> and F to the three remaining lists of two values, <T,F>, <F,T>, and <F,F>.

~(<T>) is F

~(<F>) is T

&(<T,T>) is T ∨(<T,T>) is T →(<T,T>) is T

&(<T,F>) is F ∨ (<T,F>) is T →(<T,F>) is F

&(<F,T>) is F ∨ (<F,T>) is T →(<F,T>) is T

&(<F,F>) is F ∨ (<F,F>) is F →(<F,F>) is T

≡(<T,T>) is T

≡(<T,F>) is F

≡(<F,T>) is F

≡(<F,F>) is T

While this abstract way of understanding how the valuation rules work is important, and will be brought up 
again in the appendix to this chapter, it will not be used for the time being. Functions go from arguments to values. 
In the case at hand, they go from previously made assignments to components to values that are then assigned to 
compounds. But in sentential logic, it is equally important to go in the other direction –​ that is, to think about what 
values the components must or might have in order to account for why the compound has the value it does. Even 
when going from components to compounds, the functional statement is more specific than it needs to be. In many 
cases, it is not necessary to know the values of both components in order to determine the value assigned to the 
compound. If either conjunct is false, the conjunction is false, regardless of the value of the other conjunct. If either 
disjunct is true, the disjunction is true regardless of the value of the other disjunct, and likewise for conditionals with 
a false antecedent and conditionals with a true consequent. If a biconditional is false, often all that matters is that the 
components have different values, not which is the one that gets the T.

Similar problems infect a further way of understanding the valuation rules. The effects of applying four of the 
five valuation rules can be represented on “characteristic tables.” Characteristic tables combine the function tables 
given above, with tables of interpretations. Whereas tables of interpretations list all the ways of making assignments 
to the sentence letters, characteristic tables list all the ways of making assignments to immediate components. They 
then go on to specify the value that a valuation rule determines for the compound on each of those assignments.

According to (~) a negation receives the opposite value of its nullation. This is illustrated by the characteristic 
table for ~.

P ~P

T F

F T

According to (&) a conjunction receives a T if and only if both conjuncts get T and otherwise receives an F.  
This is illustrated by the characteristic table for &.

P Q P & Q

T T T

T F F

F T F

F F F
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According to (∨) a disjunction receives a T if and only if at least one of its disjuncts gets a T and otherwise 
receives an F. This is illustrated by the characteristic table for ∨.

P Q P ∨ Q

T T T

T F T

F T T

F F F

And according to (≡) a biconditional receives a T if and only if its immediate components receive the same value 
and otherwise receives an F. This is illustrated by the characteristic table for ≡.

P Q P ≡ Q

T T T

T F F

F T F

F F T

Setting the different characteristic tables alongside one another provides an aerial view of how the valuation rules 
work. A glance shows how the assignments made by (&) differ from those made by (∨), or (≡).

P Q P & Q P ∨ Q P ≡ Q

T T T T T

T F F T F

F T F T F

F F F F T

Despite their utility for various purposes, characteristic tables are, like functional definitions of the valuation rules, 
underdetermined in one respect and overdetermined in another.

Using tables makes it easy to work from components to compounds: just identify the row with the given pair of 
component values on the table and scan across to see the value assigned to the compound in that case. But working 
with tables makes it harder to go in the reverse direction, since compounds can receive the same value on multiple 
rows, leading to multiple different conclusions about the values of the components. For example, if a conjunction 
is false, the characteristic table makes it false on three different rows that reveal three different pairs of values its two 
conjuncts could have. It seems like there are three different alternatives that have to be juggled. In fact, there is only 
one. A conjunction is false if and only if at least one component is false. The characteristic table does not reveal that 
rule. The valuation rule does.

A characteristic table for (→) has so far been neglected because it is misleading. The spatial arrangement of T’s 
and F’s on the table adds information that is not entailed by the rule. A table that does not facilitate misinterpretation 
would have to be incomplete.

P → P′

row 1 T T T

row 2 T F

row 3 F T

row 4 F F T
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This table puts nothing above the two left columns of values. It also makes no assignments to → on rows 2 and 
3. This is not because the values are unknown or nonexistent. They are just not determined by the information 
that is present on the table. To fill in the blanks, it must be known which of P and P′ is the component receiving 
which column of values. Deciding that question and assigning T’s and F’s to P → P′ accordingly, and then presenting 
this information on a table as if it were the characteristic table for →, can invite the mistaken inference that the 
assignment is determined by which row of the table the F appears on rather than by the assignments made to P and 
P′ on that row. The confusion does not matter for any of the other connectives. In no other case does the order of 
the immediate components make any difference to the assignment to the compound.

Covering both alternatives at once can also be confusing.

P P′ P′ → P P → P′
row 1 T T T T

row 2 T F T F

row 3 F T F T

row 4 F F T T

This table gives a false appearance of variety. It makes it look like the rule reverses the way it assigns T and F between 
rows 2 and 3. In fact, the rule always puts F in the same place, the place where the antecedent gets T and the conse-
quent gets F. (This happens on both row 2 last column, and row 3 second last column.) The apparent variety arises 
only because, when P and P′ are flipped between antecedent and consequent positions, they carry their values along 
with them and that changes the row on which there is a true antecedent and a false consequent. The change results 
from a change in the place where the true component is put relative to the false component, not a change in the 
values of the components or a change in how (→) applies.

3.3  Semantics for Compound Sentences

The sentences of SL have two sorts of meaning: extensional meaning and intensional meaning.

The extensional meaning of a sentence on an interpretation, I, is its value on I.

The intensional meaning of a sentence is its value on each possible interpretation.

Intensional meaning is uninteresting for atomic sentences. Since an interpretation is any way of assigning exactly 
one of T and F to each sentence letter, and ⊥ is F on any interpretation, there could always be an interpretation on 
which any sentence letter is assigned a different value from ⊥ or on which any two sentence letters are assigned 
different values. Thus, each sentence letter is intensionally distinct from ⊥ and from each other sentence letter. This 
does not hold for compound sentences. Different compound sentences can have the same intensional meaning, 
that is, they can have the same value on each interpretation. Some can have other, noteworthy forms of intensional 
meaning. Extensional meaning must be considered first, however, as the range of extensional meanings determines 
intensional meaning.

3.3.1  Extensional Meaning

The extensional meaning of a sentence on an interpretation, I, is determined by working up from the values I assigns 
to its atomic components using the valuation rules. The atomic components are ⊥ and the sentence letters. The 
value of ⊥ is F on all interpretations. On any one interpretation, I, the value of the sentence letters is assigned by 
I. The value (on I) of any compound that has ⊥ or the sentence letters as its immediate components is determined 
by the values (on I) of those components and the rule for the compound’s connective. The value (on I) of any com-
pound that has those compounds as its immediate components is determined by their values (on I) and the rule for 
the main compound’s connective. And so on, up to the main connective, which gives the sentence its value (on I).

When determining values on an interpretation, it is important to be able to see the architecture of the sentences 
of SL at a glance. This means seeing what the main connective is, what the immediate components are, what the 
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main connective of each immediate component is, and so on down to atomic components. The ability to parse 
sentences of SL (to be able to identify main connectives and immediate components, and break sentences down into 
their component structure) is essential for further progress in the study of logic. If the parsing is unclear, drawing the 
architecture boxes described in chapter 2.3 should help. As a reminder, boxes are drawn by following these steps, in 
the order they are written:

	• Draw a box around each atomic component.
	• Draw the box defined by each pair of corresponding punctuation marks.
	• Where there is a tilde that is followed by a box, draw the box that contains that tilde and the following box. 

Repeat this step as necessary when applying it puts boxes in front of further tildes.
	• Draw the box containing the whole sentence, if prior steps have not already produced it.

The boxes illustrate how the sentence is compounded from its innermost parts (those in the innermost boxes) to 
its outermost.

Exercise 3.4

Box the parts of the following sentences following the instructions just given.
*a.	 ~(~A ∨ B)

b.	 ~~A ∨ B
*c.	 ~~(A & B) → (~A ≡ B)
d.	 ~[(A & B) → (~A ≡ B)]

*e.	⊥ ≡ [(~A & B) ∨ [C → (G ≡ H)]]
f.	 ~[⊥ & ~(A & B)] ∨ (~A ∨ ~B)

Values are calculated by working from the innermost boxes out. The smallest boxes contain ⊥ or sentence letters. 
⊥ is always F and the sentence letters have values that are given by I. Larger boxes contain either one immediately 
smaller box preceded by a tilde, or two immediately smaller boxes separated by a binary connective. The “right-​to-​
left” (component to compound) version of the valuation rule together with the values in the immediately smaller 
boxes determines the value of the next box up. When the rule requires that only one of two components have a spe-
cified value and the component in the appropriate box has that value, only the value in that box need be considered 
when assigning a value to the larger box.

Exercise 3.5

Proceeding from innermost boxes out, enter values in the boxes created for the sentences in exercise 3.4 using the interpret-
ation that assigns T to A, C and H, and F to B and G.

Answers for a, c, and e

Once the ability to parse a sentence of SL has been developed, questions can be answered without drawing 
boxed sentences. The value of a sentence can instead be demonstrated from a given assignment to the atomic 
components.

For example, the value of ~(A → ~B) → ~⊥ on I is determined by looking up what values I assigns to A and 
B. Once those values have been determined, the value of I(~B) and I(~⊥) can be determined. Given values for I(A) 
and I(~B), the value of I(A → ~B) can be determined. (In some cases, the value of I(A → ~B) can be determined 
from just one of I(A) and I(~B).) Given a value for I(A → ~B), the value of I(~(A → ~B)) can be determined. And 
given values for I(~(A → ~B)) and I(~⊥), the value of I(~(A → ~B) → ~⊥) can be determined. (Though this is one 
case where both values do not need to be known for the rule to deliver a result.)

There are many equally good ways to do this. Two are discussed here: using syntactic trees, and using skeletal 
semantic trees. To use the method of syntactic trees, first make the syntactic tree.
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1. ___ A___ B (SL)
2. ~B ~ 1 (~)

3. (A → ~B) 1,2 (bc)
4. ~(A → ~B) 3 (~)

5. (~(A → ~B) → ~ ) 4,2 ( bc)
6. ~(A → ~B) → ~ 5 (op)

Then go to the first line and convert the atomic components that appear on that line to the assignments I makes to 
those components. Suppose I assigns T to A and F to B. By (⊥), ⊥ gets F on any interpretation. These can be notated 
as the assignments that are “given.”

1. I(A) is T I(B) is F I( ) is F given
2. ~B ~ 1 (~)

3. (A → ~B) 1,2 (bc)
4. ~(A → ~B) 3 (~)

5. (~(A → ~B) → ~ ) 4,2 (bc)
6. ~(A → ~B) → ~ 5 (op)

Now go down the tree applying the valuation rules in the place of the formation rules. For example, if the syntactic 
rule (~) is used to add ~ to a sentence, instead apply the semantic rule (~) to calculate the value of the negation given 
the value previously assigned to its nullation.

1. I(A) is T I(B) is F I( ) is F given
2. I(~B) is T I(~ ) is T 1 (~)

3. (A → ~B) 1,2 (bc)
4. ~(A → ~B) 3 (~)

5. (~(A → ~B) → ~ ) 4,2 (bc)
6. ~(A → ~B) → ~ 5 (op)

If (bc) is used to conjoin two previously formed sentences with a binary connective, instead apply the semantic rule 
for that connective to calculate the value of the compound given the values previously assigned to its components.

1. I(A) is T I(B) is F I( ) is F given
2. I(~B) is T I(~ ) is T 1 (~)

3. I(A → ~B) is T 2 (→)
4. ~(A → ~B) 3 (~)

5. (~(A → ~B) → ~ ) 4,2 (bc)
6. ~(A → ~B) → ~ 5 (op)


