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I wonder
As one flips through each page from cover to cover of Edward Popko and Chris 

Kitrick’s book Divided Spheres: Geodesics and the Orderly Subdivision of the Sphere, 
one will immediately realize the book will assume that rare location on your bookshelf  
reserved for books that will be visited most often. It has been wonderfully written for 
inquiring minds who are interested in discovering connections across many disciplines. 
It opens the mind to seeking answers to the I wonder questions all have from time to 
time. For those approaching the subject with little knowledge about Divided Spheres, 
introductory material is carefully explained when appropriate. For those seeking in-
depth information on the different subjects and their connections, many threads run 
throughout the visual as well as the written text.

While growing up, one learns many lessons about spheres. There are evenings when 
one can point to twinkling points in the sky that seemed close enough to touch. Often 
those points of the Milky Way became indistinguishable from the points of light from 
the fireflies emerging from the ground. That point, it’s Venus, a planet, or that one; it’s a 
photinus pyralis (Firefly), that group of points is “the Boys,” the Cherokee name for the 
Pleides. A geologist may explain the chemistry of the growth of the minerals introducing 
the atomic structure as related to crystal lattices of points of the atomic elements and lines 
of force. In the physical reality points are real, containable and measurable. The stars in 
the sky were spheres. The comets were described as lines as the spheres streaked across 
the sky. The spiral galaxies were explained as being planer made up of clusters of par-
ticles and gases. And, we live on a planet that is a volumetric spherical form. One would 
see them, touch them, and alter them. They exist. Those points, lines and planes are real. 
They are not imaginary.

However, in school it is taught that the point that was illustrated on the chalk board 
is imaginary and does not exist. It has zero dimensions. The teacher would place a se-
ries of points on the chalk board in a row and explain they represented a line that like-
wise did not exist (one dimension). Following that, the teacher would place a series of 
parallel lines on the chalk board and name it as a plane having two dimensions. It still 
did not exist. Finally, it was explained that by placing the non-existing planes on many 
parallel chalk boards, a solid having volume (three dimensions) would be generated.

Foreword
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How is something made from nothing? It is all dependent 
on one’s point-of- view which is constantly changing both in-
dividually and collectively.

A subtle lesson is learned throughout the book. As one 
looks more closely at the written text and the visual illustra-
tions, separations of the two basic elements of Universe be-
come apparent. One is the (metaphysical), the other is the 

physical. Both are required to make up the whole; Universe.
The points, lines, planes, and solids appear separated into two groups, one being 

abstract (metaphysical), the other real (physical).1 Ways of communicating ideas are 
metaphysical and objects made up of concentrated energy are physical.

Therefore, the metaphysical points can be a location in space; lines can denote di-
rection and distance, planes define area and solids volume. Lines, points, planes, and 
solids can all be at a common location at the same time.

However, physical lines, points, planes, and solids cannot be at a common location 
at the same time. They must accommodate each other by altering their physical form 
in order to share a common space.

Metaphysical at common location Physical at common location

Early in the book is the introduction of Fuller’s comprehensive anticipatory design 
science method, a unique process of combining metaphysical and physical with the 
scientific method.

Searching for principles operating in Universe crosses many disciplines but it is 
common to all. Universe is plural; the physical being energy and the metaphysical be-
ing the rules of behavior.

Without the whole the parts would not be.
Without the parts the whole could not be.

As the physical and metaphysical make connection, their relationship initiates a 
transformation of energy to take on a form that can be measured.

The physical has need for the metaphysical for instruction.
The metaphysical needs the physical to give instruction.

1 All images and photographs courtesy of Joseph D. Clinton.

Point, line, plane, and solid—
metaphysical to physical



Foreword xvii

While exploring the anticipatory design science method, (discussed in Chapter 2,) 
through the eyes of  atomic physics, an I Wonder view of the fractal patterns of  at-
oms might present itself. Instead of  the common atomic model used to describe the 
atom one may ask; is it possible that a fractal-link/knot model may explain it more 
completely? 2

Three-link knot of a spherical tetrahedron

One of the exciting aspects of Divided Spheres is the complimentary use of meta-
physical visual language and written language to describe physical reality.

These two languages emerged from the need to explain individual points-of-
view of  the physical and metaphysical aspects of  one’s environment. The meaning 
of  the elements of  language evolved from a personal point-of-view to a collective 
point-of-view common to the understanding of  the individual point-of-view. Yet 
the true meaning of  a symbol used in our language today is still only known by 
the individuals using the word. And, this changing understanding comes from the 
experiences one draws from exposure to unique observations of  one’s environment 
plus one’s understanding of  others experiences. As Edwin A. Abbotts 1884 book 
Flatland: A Romance of Many Dimensions so aptly described. “It all depends on 
one’s-point-of-view.”3

After the initial spellbinding I wonder experience one is faced with the decision 
to read Divided Spheres from cover to cover or to follow the threads provided from 
the beginning. That is where the choice must be made. For those who are new to the 
subject, start at the beginning. But, don’t be afraid to follow a subject thread and de-
viate from your original path. The I wonder path will be greatly rewarding. For those 
who wander through the book by starting in the middle, there will be a return to the 
beginning, looking for inspiration many more times in the future. Divided Spheres is 
a resource book that will help satisfy the yearning for answers to I wonder questions 
regardless of discipline or inquiry. The following examples may come to mind while 
traveling through the book.

In the early 1970s, an I wonder showed itself  again. I began exploring polyhedral 
forms from the intersection of cylinders based on the symmetry axes of the regular 
and semi-regular polyhedra. During the same period, Charles E. Peck became inter-
ested in the forms.4 After many discussions, we both expanded our ideas and began 

2 (Briddell 2012)
3 (Abbott 1884)
4 (Peck 1995)
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creating computer drawings of new polyhedron forms. In December 2003 Paul Bourke 
published many of the same forms on his website.5 In 2004, I published a paper ex-
panding the family of forms to two additional classes: the dual forms and the stellated 
forms.6 These forms have taken on the name Polycylinderhedron.

Class I, Class II, Class III polycylinderhedron

An art expression, like those discussed in Chapter 3, emerged from a series of 
thoughts revolving around the geometry of the Polycylinderhedron.

The  Polycylinderhedron  exemplifies the transformation from the metaphysical 
to the physical for the axis of  the polyhedron chosen to become a Polycylinderhe-
dron. The metaphysical axis, as a line, is given a diameter and becomes a physical real-
ity, a cylinder. The metaphysical line of  accommodation of  two adjacent cylinders is 
an elliptical path of  an energy transformation of  adjacent metaphysical planes. The 
art form evolved after many iterations of  applying metaphysical rules of  behavior 
to the physical realities of  energy and the “point of origin of all things” emerged as 
the Radix Universum.

Radix Universum sculpture

5 paulbourke.net/geometry/.
6 (Clinton 2004)
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Divided Spheres, the first edition, was a primary I Wonder inspiration to add to 
the collection of new polyhedron forms: Polyconehedrons. The Polyconehedrons are 
an extension of the family of Polycylinderhedrons. The symmetry axis of any polyhe-
dron can define a cone axis with its base circle being a great circle of the sphere. The 
vertex of the cone is located on the surface of the sphere. It is proposed that by using 
the same mathematical operations defined for the family of Polycylinderhedrons, three 
unique classes of forms will emerge. Gary Doskas describes them as Polyconix.7

Twelve-cone polyconehedron

After discussing the regular and semi-polyhedron, an early I wonder project was 
introduced to a group of students in Mr. Boles class at Joplin Junior College, Joplin, 
Missouri in 1959. He assigned to the class to use the polyhedron as inspiration, to do 
something with the objects discussed.

Growing up in a mineral rich part of the Midwest, there was a fascination for the 
crystals collected and their polyhedron forms. Instead of decorating models of the 
polyhedron, a different approach was taken.

Weaving lesser circles of a sphere, using spring steel wire, the symmetry of the faces 
of any spherical form of polyhedron could be illustrated. By penetrating the sphere 
with a circle of the same material and diameter representing the edges of the polyhe-
dron, something unusual occurred. The structures can collapse into a single circle.8

Over the years a family of new forms has emerged. Divided Spheres could become 
a source for continuous inspiration that could lead one to occasionally add new forms 
to the collection.

Twelve collapsible rings inside of a spherical Hexahedron

7 (Doskas 2011), see Section 1.7 Other Ways to Use Polyhedra.
8 (Clinton 1999)
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Chapters 2 and 10 are major additions to this second edition of  Edward Popko 
and Chris Kitrick’s book Divided Spheres. They are excellent presentations, on Chris 
Kitrick’s developments stemming from the following two I wonder thoughts.

In 1998, a change was taking place in the simulator field. The cathode ray tube (CRT) 
projectors were beginning to be phased out and replaced by solid state (LED) video pro-
jectors. In order to reshape an image for projection onto a spherical simulator screen 
with the CRT projectors, the image array was reshaped in the CRT. The image array was 
preserved. It was reshaped and there was little loss in image brightness and resolution. 
With the new LED projectors, however, the horizontal and vertical image array would 
be cropped with image reshaping. There was loss in the image array and both brightness 
and resolution was diminished. Being familiar with tessellations on a sphere, the I Wonder 
impulse was put to the test. Could a spherical surface be divided into diamonds having 
equal edges? If so, the image might be able to be reshaped optically for each area of the 
spherical projection screen. The result was a patent A Method of Tessellating a Surface.9

Rhombic Triacontahedron LED projector optics and projection screen

While studying Buckminster Fuller’s geodesic domes and tensegrity structures, 
Dick Boyt had an I Wonder vision. As a professor at Crowder College, Neosho, Mis-
souri, he wrote a paper describing his calculations for Rotegrity spheres.10

At the Soft Energy Fair11 in 1978, while demonstrating his Rotegrity spheres, Dick Boyt 
was introduced to Fuller. The two began a discussion making Bucky thirty minutes late 
in giving his keynote lecture. Dick discovered the “Rotegrity” geometry based on Bucky’s 
“turbining” effect at the tensegrity vertexes, see Figure 10.5. Fuller’s Central Angle Turbining.

Dick Boyt and rotegrity sphere at the 1978 Soft Energy Fair

 9 (Clinton 2004).
10 (Boyt 1991).
11 Workshop and conference held at Amherst, MA, 1978.
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The book is a remarkable collection of history, methods for tessellating the sphere 
and applications across disciplines. It is an inspiration to others to discover new forms 
and applications to add to the collection in the future editions. It is a must have, must 
use, must share addition to one’s very special location on the bookshelf.

A sphere has no beginning, has no end. It is a duality. It is both an abstraction and a 
reality. It can be perceived as position lacking size, only location. Or, it is a totality as 
the whole of all things. It has a duality of inside and outside or both neither. If perceived 
as position, it must have another sphere or location cannot be measured. But to be mea-
sured, it must have size. If it has size it is not an abstraction, but a reality.

A sphere can be an imagination or thought as part of the world of abstractions where 
points are only positions in space. The lines can intersect at those positions in space, and 
planes that only exist to describe areas that can blossom into physical reality. Or, a sphere 
can take on form in the world of physical reality where micro points, lines, planes, and 
macro points all have dimensions where they are not allowed to share a common space, 
but they can only accommodate each other.

Joseph D. Clinton
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This book summarizes the key spherical subdivision techniques that have evolved 
over 70 years to help today’s designers, engineers, and scientists use them to solve 

new problems.
I became enthusiastic about geodesic domes in the mid-1960s, through my asso-

ciation with Buckminster Fuller and his colleagues. I was an architectural intern at 
Geometrics, Inc., a Cambridge, Massachusetts, firm whose principals, William Ahern 
and William Wainwright, had pioneered geodesic radome designs. During my intern-
ship, Ahern and Wainwright were collaborating with Fuller and Shoji Sadao on the 
US Pavilion dome at Expo’67 in Montreal. I was immediately drawn to the beauty and 
efficiency of designs based on geodesic principles.

I first met Fuller at Geometrics. He surprised me with his stature and energy, his 
easy rapport with audiences, and his discourse on design. It was, however, a struggle 
to understand him. He had his own language, which combined geometry with physics 
and design into a personal philosophy he called Synergetics. Later, I visited the original 
geodesics “skunk works”—Synergetics, Inc. in Raleigh, North Carolina. At Synerget-
ics, Jim Fitzgibbon, T. C. Howard, and others showed me projects from their start-up 
years in the early 1950s, as well as their latest work. They were making history with 
their innovative spherical designs. Duncan Stuart, another early member of the firm, 
had made his own history in the early 1950s, when he invented a method (triacon sub-
division) that made geodesic domes practical to build. The spherical grids this method 
produced had the fewest number of different parts of any subdivision technique. It is 
still one of the best gridding methods and it is detailed in this book.

More recently, I met Manuel Bromberg and Chizuko Kojima. In the late 1940s, 
Bromberg, along with Jim Fitzgibbon, Duncan Stuart, and other faculty members at 
North Carolina State University, formed the first geodesic start-up company, Carolina 
Skybreak. When architectural commissions materialized, the original company evolved 
into two others, Synergetics, Inc. and Geodesics, Inc., and Raleigh quickly became the 
epicenter of geodesic design. Kojima was a “computer” for Geodesics in the late-1950s. 
In those days, “computer” was a job title for someone who calculated. Kojima’s job was 
to calculate hundreds of angles and grid coordinates for early dome projects—by hand.

Many years ago, I met Magnus Wenninger, a monk, teacher, mathematician, and 
polyhedral model builder par excellence. Wenninger has built thousands of models, 

Preface
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and his classic books on polyhedral and spherical models have inspired generations of 
schoolchildren, artisans, and mathematicians. He showed me how to work with some 
lesser-known skewed spherical subdivisions; the main techniques are covered in this book.

My professional work with Computer Aided Design (CAD) systems for architects 
and engineers led me to more applications of geodesics. My hobbies in sailing and 
celestial navigation with a sextant sharpened my understanding of spherical trigonom-
etry and improved my skills in geodesics. I had always been interested in world maps 
and their varied graphic projections as well as the delicate spherical structures found 
in microorganism exoskeletons. But what surprised me most were spherical designs in 
things like ocean-bobbing fish pens, panoramic photography, underground neutrino 
observatories, and virtual-reality simulators for the military—all of which used geode-
sic geometry. Geodesics appeared again in virus research, astronomy catalogs, weather 
forecasting, and kids’ toys. But the most unexpected geodesic application I found was 
in the innovative design and layout of golf  ball dimples. Dozens of different dimple 
patterns resembled small geodesic domes. These applications and many more are de-
tailed in a later chapter.

Divided Spheres
For designers, the principles of spherical design are, at first, counterintuitive and 
somewhat obscured by a unique vocabulary. Chapter 1, “Divided Spheres,” highlights 
the major challenges and approaches to spherical subdivision. The chapter states the 
design objectives that many designers use. We will meet them in later chapters. Key 
concepts and terms are introduced.

Buckminster Fuller’s pioneering work in the late 1940s and the research and de-
velopment of his colleagues in the 1950s led to many of the techniques we use today. 
Chapter 2, “Bucky’s Dome,” examines how Fuller’s design cosmology, Synergetic Ge-
ometry, was first applied to cartography and then to geodesic domes. The interplay 
between Fuller and key associates who worked out practical solutions to geometry and 
construction problems is particularly important. Many of today’s subdivision tech-
niques were developed at this time. This chapter contains the first commentary on how 
geodesic domes were originally calculated.

Chapter 3, “Putting Spheres to Work,” provides a brief  glimpse of the wide diversity 
of today’s spherical applications in fields like biology, astronomy, virtual-reality gam-
ing, climate modeling, aquaculture, supercomputers, photography, children’s games, 
and sports balls. If  you are a golfer, you will enjoy seeing how manufacturers use 
spherical design and unique dimple patterns to maximize player performance.

Spherical geometry is quite different from Euclidean geometry, though they share 
common principles. Chapter 4, “Circular Reasoning,” develops circular reasoning with 
points, circles, spherical arcs, and polygons. Spherical triangles are the most common 
polygon created when subdividing spheres. We look closely at their properties to estab-
lish an understanding of their areas, centers, type, and orientation.

It is easy to evenly divide the circumference of a circle on a computer to any practical 
level of precision. It’s not so easy to evenly subdivide spheres, computer or not. Chap-
ter 5, “Distributing Points,” focuses on the challenge of evenly distributing points on a 
sphere and, in so doing, defines specific design conditions that this book will develop.

Spherical polyhedra offer a convenient starting point for subdivision. Chapter 6, 
“Polyhedral Frameworks,” describes useful Platonic and Archimedean solids. We are 
particularly interested in their symmetry properties and their spherical versions.

Many readers will be surprised by the rich and varied spherical subdivisions that 
golf ball dimple patterns demonstrate. Chapter 7, “Golf Ball Dimples,” references some 
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of the famous US government patents, showing the golf  ball industry’s amazing diver-
sity of designs and illustrating why a seemingly small thing, such as dimple patterns 
have become a key part of a multimillion-dollar sports ball industry.

Divided Spheres presents six classic subdivision techniques grouped into three classes. 
In Chapter 8, “Subdivision Schemas,” each technique is presented in the same step-
by-step format. These techniques are flexible and apply to many different spherical 
polyhedra. Depending on the designer’s requirements, certain combinations of spheri-
cal polyhedra and subdivision techniques may be more appropriate to use than others. 
Thus, one objective of this chapter is to show how various techniques affect the final 
subdivision.

With so many design choices, it is natural to ask which combination is best. Of 
course, the answer depends on the application. Chapter 9, “Comparing Results,” shows 
how to cut through all the design variables and select a combination that best fits your 
design requirements. This chapter relies extensively on graphics rather than taking a sta-
tistical approach. This book is also the first to use graphical analysis, such as Euler lines 
and stereographics, to highlight the subtle differences between subdivision techniques.

Chapter 10, authored by Christopher Kitrick, introduces a new concept in spheri-
cal subdivision—self-organizing grids. These grids include honeycomb hexagonal 
grids and grids that are a combination of  hexagons and triangles called rotegrities 
or nexorades. The self-organizing concept is appealing because it can precisely solve 
some very challenging configurations that traditional subdivision techniques outlined 
in Chapter 8 cannot.

Three primers are included in the appendices: Stereographic Projection, Coordi-
nate Rotations, and Geodesic Math. Stereographic projection is a graphical technique 
for making 2D drawings of  the surface of  the sphere. Stereograms appear in several 
sections of  the book; we use them extensively in Chapter 9 to compare the results of 
subdivision methods in Chapter 8. Appendix A explains the theory behind this clas-
sic graphical technique. Each of  the subdivision techniques explained in this book 
create grids or point distributions that covers only a small part of  the sphere. This 
geometry must be replicated and rotated locally and then about the entire sphere to 
cover it without overlaps or gaps. Appendix B explains how this is done. Appendix 
C—Geodesic Math shows useful computer algorithms for each of  the subdivision 
and optimization methods presented. Small computer code snippets suggest how they 
might be implemented.

Graphic Conventions
This book is about 3D spherical geometry. The foundations for the most uniform sub-
divisions are based on the Platonic and Archimedean solids—forms discovered by the 
Greeks and made from combinations of regular polygons (polygons in which all edges 
and angles are equal), such as equilateral triangles, squares, pentagons, or hexagons. 
These 3D forms have pure “theoretic” definitions, but we use a number of graphic 
conventions in this book to illustrate and explain their features.

Figure 1 shows six different graphic conventions for the common dodecahedron 
(12 faces, 30 edges, and 20 vertices). Each graphic is the same scale and is shown from 
the same viewpoint. If  placed on top of one another, the vertices of all six figures 
would be coincident. Each convention emphasizes a different aspect of the solid.

The wireframe (a) and planar versions (d) are the most familiar and come closest 
to the pure definition of a planar dodecahedron. Its spherical cousin (b) makes the 
differences in volumes and face angles apparent. The holes in version (c) reveal the 
relationships of interior faces, show what lies behind the form, and draw attention to 
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(a)

(f )

(e)

(b)

(c)(d)

Figure 1. Polyhedron graphic conventions used in this book.

the centers of the faces (there is more than one type of center). Thick faces emphasize 
the angles (dihedral) between adjacent faces. Graphic convention (e) emphasizes the 
spherical arcs and planes of the dodecahedron’s edges, while the graphic convention in 
(f) is useful when examining the surface angles where arcs meet. The planes and arcs 
are part of the volume encompassed by the form. These six graphic conventions ap-
pear throughout this book.

You have already seen another graphic convention used in this book - emphasized 
key words in italic and blue font. They appear near where they are defined and 
are important terms about spherical geometry and subdivision. You will find them 
throughout this book and in most of the references in the Bibliography.

I have covered the basics of what I have learned over the years in my own spherical 
work. I hope that Divided Spheres makes it easier for you to understand the principles 
of spherical subdivision and to develop your own designs. Spherical applications are 
as limitless as they are beautiful.

—Edward S. Popko
Woodstock, New York
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1 Divided Spheres

We owe the word sphere to the Greeks; sphaira means ball or globe. The Greeks saw 
the sphere as the purest expression of form, equal in all ways, and placed it at the pin-
nacle of their mathematics. Today, the sphere remains a focus of astronomers, math-
ematicians, artisans, and engineers because it is one of nature’s most recurring forms, 
and it’s one of man’s most useful.

The sphere, so simple and yet so complex, is a paradox. A featureless, spinning 
sphere does not even appear to be rotating; all views remain the same. There is no top, 
front, or side view. All views look the same. The Dutch artist M. C. Escher (1898–
1972) ably illustrated this truth in his 1935 lithograph where the artist holds a reflective 
sphere in his hand as he sits in his Rome studio.1 It’s easy to see that even if  Escher 
were to rotate the sphere, the reflected image would not change. His centered eyes 
could never look elsewhere; the view of the artist and his studio would be unchanging. 
His sphere has no orientation, only a position in space.

The sphere is a surface and easy to define with the simplest of equations, yet this 
surface is difficult to manage.2 A sphere is a closed surface with every location on its 

1 1935 Lithograph, M. C. Escher’s “Hand with Reflecting Sphere” © 2009 The M.C. Escher Company Hol-
land. All rights reserved.
2 The equation of a sphere is very simple. For a sphere whose three-dimensional Cartesian origin is (0, 0, 
0), a point on the sphere must satisfy the equation = + +r x y z2 2 2 .



Divided Spheres2

surface equidistant from an infinitely small center point. A mathematician might go 
one step further and say the sphere is an unbounded surface with no singularities, 
which means there are no places where it cannot be defined. There are no exceptions.

The sphere is unusual, it has no edges, and it is undevelopable. By undevelopable, we 
mean that you cannot flatten it out onto a two-dimensional plane without stretching, 
tearing, squeezing, or otherwise distorting it.3 You can test this yourself  by trying to 
flatten an orange without distorting it. You can’t without stretching or tearing it no 
matter how small or large the orange is.

Any plane through the center of the sphere intersects the sphere in a great circle. 
For any two points, not opposite each other on the sphere (opposite points are called 
antipodal points), the shortest path joining the points is the shorter arc of the great 
circle through the points, and this arc is called a geodesic. Geodesics are the straightest 
lines joining the points; they are the best we can do since we can’t use straight lines or 
chords in three dimensions when we measure distance along the sphere. The length of 
a geodesic arc is defined as the distance between the two points on the sphere.4

Like the equator on a globe, any great circle separates the sphere into two hemi-
spheres. A plane not passing through the origin that intersects the sphere either meets 
the sphere in a single point or it intersects the sphere in a small circle, also called a 
lesser circle. Small circles separate the sphere into two caps, one of which is smaller 
than a hemisphere and resembles a contact lens. We use spherical caps later in the 
book to compare spherical subdivisions.

Great circles play a dual role when subdividing spheres. Points define great circles 
and great circle intersections create more points. When we start to subdivide a sphere, 
we typically start with just a few points that define a relatively small number of great 
circles. We define more points by intersecting various combinations of the great cir-
cles. The new points derived from intersections can now be used to define more great 
circles, and the cycle repeats. You can see already that we are going to make great use 
of the dual role of great circles when we describe the various techniques and their re-
sulting grids in Chapter 8. The difference in techniques is primarily how we define the 
initial set of points and great circles, and what combinations of great circles we select 
to intersect to define additional points.

Spherical polygons are polygons created on the surface of  a sphere by segments 
of  intersecting great circles. Spherical polygons demonstrate other differences be-
tween spherical and plane Euclidean geometry. The sides of  spherical polygons are 
always great circle arcs. As a result, two-sided polygons are possible. Just look at a 
beach ball or slices of  an orange or apple for examples. These two-sided polygons 
are called lunes or bigons (bi instead of  polygons). Spherical triangles are also differ-
ent. They can have one, two, or three right angles. And one of  the oddest differences 
between spherical and Euclidean geometry is that there are no similar triangles on a 
sphere! They are either congruent or they are different. In plane Euclidean geometry, 
three angles define an infinite number of  triangles differing only by the proportional 
length of  their sides. But on a sphere, triangles cannot be similar unless they are 
actually congruent.

3 The Swiss mathematician and physicist Leonhard Euler (1707–1783) did intense research on mathemati-
cal cartography (mapmaking). In a technical paper, “On the geographic projection of the surface of a 
sphere,” published by the St. Petersburg Academy in 1777, he proved that it was not possible to represent 
a spherical surface exactly (preserving all distances and angles) on a plane. The surface of a sphere is 
undevelopable.
4 The word geodesic comes from geodesy, the science or measuring the size and shape of the Earth. A 
geodesic was the shortest distance between two points on Earth’s surface, but today, it is used in other 
contexts such as geodesic domes.
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The sphere is a challenging but fascinating place to work. With all of these differ-
ences, how do we work with spheres and what Euclidean principles, if  any, can we use?

1.1 Working with Spheres
A sphere can be any size at all. Its radius, r, could be any distance and range from 
subatomic dimensions, to the size of a playground dome, to light-years across the 
observable universe. To make spheres easier to work with when their radius could be 
anything, we treat r as a positive real number and make it equal to one unit. A sphere 
with a unit radius is called a unit sphere. One what? Are we talking about 1 mile, 1 foot, 
1 inch, or one anything? Yes, to all these questions. Unit spheres, ones where r = 1, are 
easy to calculate, and any spherical result is easily converted to an actual dimension 
such as miles, feet, inches, or whatever. Angles do not have to be converted; they are 
used as-is no matter the size of the sphere. However, for distances, lengths, and areas, 
we need to convert unit sphere dimension into the true radius of the sphere our ap-
plication needs.

1.2 Making a Point
Although the sphere is an infinite set of points all equally distant from its center, practi-
cal design applications require us to locate specific points on the surface that relate to 
the design we have in mind. Locating points requires us to define a reference system and 
orientation for our work. In the simplest case, placing the sphere’s center at the center 
of the Cartesian axis system, the familiar xyz-coordinate system we use most often, 
we have defined at least six special reference points on the sphere’s surface, one for the 
positive and negative points where each coordinate axis intersects the sphere’s surface. 
In so doing, we have also adopted standard design conventions where we can refer to a 
top, bottom, side, or front, if  we need to. We are off to a good start. Out next challenge 
is to define points on the surface that help us with our design. So how do we do this?

It’s natural to think of points on a sphere like points around a circle. While it is easy 
to evenly distribute any number of points around the circumference of a circle, doing 
so on the surface of a sphere is actually quite difficult and certain numbers of points 
are impossible. Figure 1.1 gives us a sense of the problem. In Figure 1.1(a), an equal 
number of points are arranged around rings, or lesser circles, similar to the lines of 
latitude on Earth. Small circles surround each point to give a visual indicator of their 
spacing. We see that as the lesser circles get closer and closer to the sphere’s two poles, 

(a) (b)

Figure 1.1. Distributing points on a sphere.
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the points around them are getting closer and closer together; the circles surrounding 
them are overlapping. At the two poles, dozens of points are nearly superimposed. In 
this subdivision, the points are not uniformly distributed at all.

In Figure 1.1(b), we see a dramatically different distribution for the same number of 
points as in (a). Clearly, they are more uniformly spaced with a consistent symmetry and 
appearance. Notice that while some circles touch, none overlap. A grid connecting each 
point with its nearest neighbors would produce consistently shaped triangles, where-
as in the first layout they won’t. These two layouts illustrate our geometric challenge 
when we subdivide a sphere—how do we define arrangements like the one in (b) that 
give us freedom to have more or fewer points that allow us to make different shapes on 
the sphere’s surface that meet our design requirements?

We know that on a circle, we can evenly space an arbitrary number of points—say, 
256, or 2,011, 9, or 37 points. In a sense, this logic is what was used in Figure 1.1(a). So 
why can’t we evenly space an arbitrary number of points and get the result shown in 
(b)? The answer lies in the number of points we try to distribute and how symmetrical 
we want their arrangement to be. Let’s look at each of these related design issues and 
how we intend to address them.

1.3 An Arbitrary Number
Physicists and mathematicians have theorized how to distribute an arbitrary number 
of points on a sphere for some time. And today, with the help of computers, there are 
some partial solutions. One approach, familiar to physicists, sees the point distribution 
problem much the way they see the way particles interact. One technique uses particle 
repulsion to distribute points. It beautifully illustrates the problem of trying to evenly 
space an arbitrary number of points on a sphere.

Particles with the same charge (positive or negative) repel each other with strength 
inversely proportional to the square of their distance apart. The closer they are to-
gether, the stronger they repulse each other. This natural law, called the inverse-square 
law, can be exploited to subdivide a sphere when particles represent points that can be 
connected to form spherical grids.5

If  you cannot relate to charged particles, think of hermits instead of particles. Each 
hermit is standing on the Earth and each wants to get as far away from everyone else 
as they can.

Imagine a given number of particles randomly distributed over the surface of the 
sphere, say 252 of them. Figure 1.2(a) shows them surrounded by the same diameter 
sphere (white), each centered on the surface of an inner sphere (transparent gold). One 
particle’s position is fixed, but all others can move on the surface relative to the fixed 
one. A computer program simulates the effect of the particles repulsing each other. 
For each particle, the strength and direction of repulsion of every other particle act-
ing on it is found using the inverse-square law. After every particle has been evaluated, 
they are allowed to move a little in the direction found so that the repulsion forces act-
ing on them are lessened. Although the particles move a little at this stage, they always 
remain on the surface of the sphere. The computer once again simulates the effect of 
the particles repulsing each other and again, they are allowed to reposition a little to 
decrease the forces acting on them. In each cycle, all the particles are closer and closer 

5 Inverse-square law—a physical quantity like the intensity of light on a surface or the repulsion strength 
of two like-charged particles is inversely proportional to the square of the distance from the source of that 
quantity. For example, if  the distance to a source of light is doubled, only one quarter of the light now 
reaches the subject.
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to maximizing their distance to their neighbors; that is, each one is trying to get away 
from its neighbors and yet remain on the sphere’s surface.

Figure 1.2(b) and (c) shows their progress. At each stage, the particles are progres-
sively more evenly distributed; the spaces between them are more uniform and fewer 
small spheres are intersected. After a number of iterations, a program parameter, the 
particles reach an equilibrium state. Figure 1.2(d) shows that within tolerances, an-
other program parameter, they have established their final position on the sphere and 
the repositioning cycles end. None of the spheres surrounding the particles interfere 
now, though some touch each other. We have a visual check that the particles are as 
equally spaced from one another as they can be. A grid connecting neighboring par-
ticles (points) defines a triangular subdivision grid.6

The particle repulsion technique looks promising. The result in Figure 1.2(d) looks 
quite good and we have the advantage of distributing any number of points our design 
requires. So why not go with this approach? No need for great circles here!

As attractive as this approach is, there are some serious drawbacks that eliminate 
this approach for all but the most specialized applications. First, there are an infinite 
number of final arrangements for the same number of particles. Resprinkle the same 
number of them again, let them find their equilibrium positions again, and for sure, they 
will settle down in a different arrangement. This means you cannot repeat the process 
for the same number of points and get the same design outcome. Randomization and 
the sequence of rebalancing in each cycle guarantees that no two simulations for the 
same number of particles will produce the same end result. Second, for certain num-
bers of particles and initial placements, it is possible they will jostle around forever and 
never find their equilibrium state. Forever is not a good timeframe to wait if  you are 
trying to design something. This is one reason we fixed one point’s position before we 
started letting them rearrange themselves. Without one fixed point, each cycle would 

6 Particle repulsion simulation program Diffuse, courtesy of Jonathan D. Lettvin.

(a)

(b)

(d)

(c)

Figure 1.2. Distributing an arbitrary number of points on a sphere.
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simply continue to move particles around and they would never balance. Third, and 
this is a very big drawback, there is no symmetry in the final arrangement of points. 
Except for an occasional lucky number of points, there may be no stable pattern. The 
final arrangement of points depends on the initial random distribution, how forces are 
simulated and the iterative effects of relaxation and re-positioning. There is no way to 
anticipate if  multiple points will lie on the same great circle, form antipodal points (two 
points on opposites sides of the sphere), or create any symmetric arrangements at all. 
This also means there is no way to prove whether a final solution is unique or not.

None of the above outcomes are good, especially if the points are to be used in designs 
we intend to manufacture. What we are really looking for is a way to subdivide a sphere by

• distributing points evenly and define grids as course or fine as needed;

• minimizing the variation within the grid (chords and areas);

• creating grids where some members form continuous great circles for applica-
tions that require them;

• maximizing symmetry and reuse of local grids;

• defining coordinates that uniquely define any point on the grid;

• developing simple ways to convert from one coordinate system to another; and

• defining metrics for comparing one subdivision method with another.

So how can we do this? The Greeks will show us.

1.4 Symmetry and Polyhedral Designs
Like many things in geometry, the Greeks seem to have gotten there first. Although 
the five Platonic solids have been known since prehistoric times, the Greeks were the 
first to recognize their properties and relationships to one another.7 Figure 1.3 shows 

7 Stone figures resembling polyhedra, found on the islands of northeastern Scotland, have been dated to 
Neolithic times, between 2000 and 3000 BC. These stone figures are about 2 inches in diameter and many 
are carved into rounded forms resembling regular polyhedra such as the cube, tetrahedron, octahedron, 
and dodecahedron. By 400 BC, the time of Plato, all five regular polyhedra were known.

Figure 1.3. Platonic solids.
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them with holes in their faces to make it easier to see how their parts relate. Starting in 
the back and going clockwise, they are the tetrahedron, cube, dodecahedron, icosahe-
dron, and octahedron. The Platonics are one family of polyhedra (there are dozens). 
Polyhedra are three-dimensional (3D) forms with flat faces and straight edges and they 
take on an amazing variety of forms, many of which are very beautiful in their symme-
try and spatial design. They are one of the most intensely studied forms in mathematics.

The Platonics are unique among polyhedra. Every Platonic solid has regular faces 
(equilateral triangles, squares, or pentagons) and every edge on a Platonic face has the 
same length. All face angles are the same and the angle between faces that meet at an 
edge are the same.

Every Platonic solid is highly symmetrical. This means that they can be orientated 
in many ways and still retain their appearance. Certain pairs of Platonics can be placed 
inside one another and this characteristic demonstrates how they are interrelated. The 
Platonics and the properties just mentioned are so important in subdividing spheres, 
we devote an entire chapter to them and explain them in detail.

Abraham Sharp (1653–1742)
Sharp was an English mathematician, astronomer, and geometrist. He was assis-
tant to the famous astronomer Flamsteed from 1689 to 1696. Demands for high-
ly accurate sky references clearly influenced his work. In 1717, Sharp published 
a significant treatise on geometry and logarithms entitled Geometry Improv’d.8

Sharp’s tables and polyhedron calculations were unsurpassed for accuracy, 
some to 15 and 20 decimal places. Numerous illustrations show polyhedra for 
which he calculated their geometric properties and the sequence of cuts needed 
to make 3D wooden models of them. For those engaged in spherical subdivision 
today, Sharp’s illustrations resemble reference polyhedra for geodesic spheres 
where face areas that might be used for small-area grid development and projec-
tion to an enclosing circumsphere.9

    

8 (Sharp 1717).
9 In Section 1 of “Solid Bodies” p. 71, Sharp describes a “very elegant geometrical solid defined from the 
dodecahedron or icosahedron with planes upon all the edges of either.” Today, this polyhedron is called 
the Rhombic Triacontahedron (32 vertices, 60 edges, and 30 faces) and it’s a member of the Catalan family 
of polyhedra. It is also a dual to the icosahedron. A spherical version of it was used by Jeffrey Lindsay in 
1950 as design reference for the triangular gridding system of the first full-scale geodesic dome, Weather-
break, built in Montreal, Canada. See Section 2.7.3.
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Another key property of the Platonics, particularly useful in spherical subdivision, is 
their vertices or points (we use the two words interchangeably). They are evenly spaced 
and lay on the surface of sphere that surrounds them and share the same center point 
as the polyhedron. This circumscribing sphere is called the polyhedron’s circumsphere. 
Figure 1.4 shows the spherical versions of the five Platonics. The planar versions are 
shown inside to make the association between planar edges and spherical great circle 
arcs easier to see. Notice that in each spherical version, some pairs of vertices are on 
opposite sides of the sphere; they are antipodal points. Notice also that every spherical 
face in each Platonic is bounded by arcs of great circles and that a single Platonic has 
but one spherical face type (equilateral triangle, square, or pentagon). This is impor-
tant because any design we develop on one face can be replicated to cover the others, 
thus covering the entire sphere with a pattern that has no overlaps or gaps.

1.5 Spherical Workbenches
Spherical Platonics give the designer a huge head start in subdividing the sphere be-
cause the polyhedron’s vertices are already evenly distributed on its circumsphere and 
we can use them immediately to define great circles and reference points for further 
subdividing. Let’s take a quick look at how we are going to develop a design starting 
with a simple polyhedron. Later chapters in the book will explain the details of how 
this is done.

Referring to Figure 1.5, we start the subdivision process by first selecting one of 
the Platonic solids that best meets our design requirements. In this example, we select 
the icosahedron (a). It is the most used in spherical work, by far, but we could have 
used any of the other Platonics. We define the icosahedron’s spherical version (b); it’s 
an easy step given the planar one. The spherical version is now our subdivision work-
bench. We pick a conveniently positioned face to work with, or some symmetrical 
area within it (c). In this example, a complete icosahedral face is selected; one of its 
vertices is at the sphere’s zenith (top); this can simplify our calculations. Most of our 
efforts will be spent here, subdividing this single face. This face is not our only work-
ing area option, but it is an obvious choice. Within this face, we can use any one of 
several gridding techniques. In Chapter 8, we describe six techniques and Chapter 10 
describes several more. Each technique produces a different grid and each grid’s set of 
points offer its own benefits, depending on your application. Once the subdivision is 

Figure 1.4. Spherical Platonics.
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complete, we replicate the resulting points and grid to cover the rest of the sphere as 
shown in (d).

We have considerable flexibility in (a) through (c). We can use any of the five Pla-
tonics as our base, we can pick different standard areas to subdivide, and we can use 
different techniques to subdivide this area, making the grid as course or fine as we 
wish. Once we have a set of points, we have more flexibility in how we join combina-
tions of points to make triangles, hexagons, pentagons (all shown in Figure 1.5(f)), 
diamonds, or any other spherical shape. The design possibilities are limitless. With so 
many choices, one might ask, which is best? The answer, of course, depends on the 
application you have in mind. In Chapter 9, we will describe a series of metrics that 
you can use to evaluate the appropriateness of one layout or another to your needs. 
Various metrics show the differences between subdivision methods and this helps you 
decide, which combination best fits your requirements.

For many users, the subdivision grid in Figure 1.5(d) is just the starting point for 
further refinement. It must be developed into a physical design. The grid might define 
locations for openings, panels, struts, or even positions of dimples on a golf  ball, and 
not every subdivision point or grid member may be part of the final design.

Figure 1.5(e) shows one of many possible designs for this particular grid. Triangles 
might be combined into diamonds, hexagonal, or pentagonal patterns. Such refine-
ments call for other programs such as Computer Aided Design (CAD) where points, 
chords, and face definitions generate, manually or automatically, prismatic shapes, 
structural elements, surfaces, or geometric elements, as shown in a simple design appli-
cation (f). Grids can be combined or layered to create more intricate patterns or truss-
like structures. If  the design is for a geodesic dome, part of the subdivision may be cut 
off at the ground level to allow for foundations or supports. The design flexibility is 
limitless, and CAD provides powerful visualization and analysis capabilities as well. If  
the design is to be manufactured, the 3D geometry can be used to automate cutting, 

(a)

(b)

(c)

(d)

(e)

(f )

Figure 1.5. Progression of spherical subdivision to basic design application.
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welding, molding, or bending equipment during production. CAD is an accessible 
technology and a powerful tool for the spherist.

1.6 Detailed Designs
The grid shown in Figure 1.5(d) is quite modest. The surface of  the sphere is covered 
with 262 points. However, from the same starting point, the initial 12 vertices of 
the spherical icosahedron, shown in (b), we can distribute fewer or more points to 
make our grid. Figure 1.6 shows how. In each figure, the frequency of  points, a term 
explained later, steadily increases from the spherical icosahedron’s 12 vertices (top 
left figure) to 10,242 (bottom right figure) by progressively placing points between 
the points of  the previous layout. We could continue the process indefinitely, but 
most spherical applications do not need more points. Notice also, as more points 
are added, we can generate more subdivision triangles by connecting points to their 
nearest neighbors.10

In this series, the number of  points from left to right, top to bottom, is 12, 42, 
162, 642, 2562, and 10,242, respectively. The radius of  all accent spheres is the same 
in all illustrations. In the last illustration, some accent spheres touch, but none in-
terfere. In later chapters, we will use accent spheres such as these to visualize and 
analyze the point distributions that result from the spherical subdivision techniques 
we present.

10 The total number of points in any one of these spherical triangles is ( )+n n 1 /2. A single face in each of 
the images in Figure 1.6 contains 3, 6, 15, 45, 153, and 561 vertices, respectively. In Section 8.2, we will dis-
cuss the triangulation number formula which tells how many points result from any spherical subdivision.

Figure 1.6. Increasing the number of points over the sphere.
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1.7 Other Ways to Use Polyhedra
The polyhedral subdivisions we have been discussing are based on points defined by 
intersecting great circles. Great circle techniques are the ones we emphasize in this 
book, but it is possible to use polyhedra to define points on a sphere by intersecting 
lesser circles instead. Here’s how.

We will use the icosahedron again but instead of focusing on its spherical faces, 
we will use its vertex axes to develop our grid. Every one of the icosahedron’s six 
vertex axes passes through its center and they are perpendicular to the polyhedron’s 
circumsphere. A cylinder is positioned around each axis. Figure 1.7(a) represents the 
icosahedron’s axes with arrows; a single cylinder is positioned around one of them. If  
the cylinder radius is large enough, every cylinder will intersect its neighbor’s cylinder, 
as shown in (b). Each cylinder will also intersect the polyhedron’s circumsphere and 
define a lesser circle, as shown in (c). A point can be defined at each lesser circle inter-
section, as shown in both (c) and (d).

The lesser circle arcs between the points in (d) are not geodesics. Only an arc of a 
great circle, the shortest distance, can be a geodesic. The lesser circle arcs, technically 
speaking, do not define spherical polygons either. Again, only great circle arcs define 
the sides of spherical polygons. It is possible, however, to define great circles between 
these points by passing a plane through pairs of them (and the origin).

There are many variations on this technique. For example, one can substitute cones 
for cylinders. The cone’s apex is at the center of the sphere and the cone’s surface in-
tersects the sphere defining a lesser circle. Equations can systematically generate lesser 
circles on the sphere as well, and where circles intersect, subdivision grid points can be 
defined. Gary Doskas has done extensive research in this area; the patterns he explores 

(a) (b)

(c) (d)

Figure 1.7. Lesser circle spherical subdivisions.
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and their symmetry are beautiful and many are utilitarian.11 We mention lesser circle 
subdivision of spheres for completeness; they are not developed further in this book.12

1.8 Summary
In this chapter, we looked at the challenges of subdividing spheres and the fact that 
spheres have unique geometric properties. We have seen that it is impossible to evenly 
distribute an arbitrary number of points on a sphere and achieve symmetric and pre-
dictable results. Spherical polyhedra, particularly the Platonics, offer a symmetrical 
framework and jump start the subdivision process. The vertices of spherical Platonics 
are evenly spaced reference points on a sphere that surrounds the polyhedron. A small 
work area can be defined and grids developed there, as course or fine as a design re-
quires. The grid can then be replicated to cover the rest of the sphere without overlaps 
or gaps.

Designers can use any of the spherical Platonics as a design framework, define 
working areas on its faces, and use any one of a number of different subdivision tech-
niques to develop a grid over that face. The variety is limitless.

In the next chapter, we will look at the fascinating history of spherical subdivision. 
Buckminster Fuller, the inventor of the geodesic dome, was the first person to recog-
nize the value of spherical polyhedra and subdivision grids to general architectural 
construction. Most of the subdivision techniques we use today were developed in the 
late 1940s and 1950s by Fuller and his associates to build geodesic domes. In their day, 
some domes were the largest free-span structures on Earth. Fuller’s work is particu-
larly important because he achieved highly creative results while leveraging manufac-
turing techniques. The spherical subdivision techniques that evolved from the 1950s 
are as relevant today as they were then and are applied in a wide range of science and 
industrial applications that have nothing to do with geodesic domes. We survey some 
of these applications in Chapter 3.

Additional Resources
Doskas, Gary. Spherical Harmony—A Journey of Geometric Discovery. LuLu Market-

place: Hedron Designs, 2011.

Kitrick, Christopher J. “Geodesic Domes.” Structural Topology 11 (1985):15–20.

Messer, Peter W. “Polyhedra in Building.” Beyond the Cube: The Architecture of Space 
Frames and Polyhedra ed. J. Francois Gabriel. New York: John Wiley & Sons, 
1997.

Stuart, Duncan R. “The Orderly Subdivision of Spheres.” The Student Publications of 
the School of Design. Raleigh, NC: North Carolina State University, 1963.

11 See (Doskas 2011) for more information.
12 Polyhedra created from cones and cylinders have been explored and a general typology developed. See 
(Pecks 1995) and (Clinton 2004).



2 Bucky’s Dome

Buckminster Fuller (1895–1983), seen in the painting above,1 was a true American 
polymath. Bucky, as he was called, was a philosopher, designer, engineer, architect, 

author, futurist, and prolific inventor. His earliest inventions include building blocks, 
temporary shelters, and an environmentally sensitive bathroom where you could take 
a “fog shower” utilizing pressurized mist and less than a gallon of water. He even in-
vented a bullet-shaped, three-wheeled car that could turn complete circles in its own 
length. However, he is best remembered for the invention of the geodesic dome and 
designs that do more with less.2

Millions of visitors have seen the US Pavilion at Expo’67 in Montreal, Epcot Space-
ship Earth at Disney World in Orlando, or the La Géode Theater in Paris. Countless 
others live, shop, or worship in geodesic domes. Geodesic domes enclose radar equip-
ment at airports and air defense stations in remote polar regions. They corral fish 
in ocean-bobbing pens and record neutrinos from outer space, as they zip through 
underground spherical observatories. Geodesic tents shelter Boy Scouts and Mount 

1 Painting of inventor and philosopher, R. Buckminster Fuller, Jr., by Boris Artzybasheff (1899–1965). 
The media is tempera on board, 21.5 × 17 inch, circa 1964. Time Magazine cover, January 10, 1964, and 
gift of Time, Inc. to the National Portrait Gallery, Smithsonian Institution, Washington, DC, USA. Used 
with permission of the National Portrait Gallery and the Estate of R. Buckminster Fuller.
2 Buckminster Fuller patents include Prefabricated Bathroom (Patent 2,220,482, November 5, 1940) and 
Motor Vehicle (Patent 2,101,057, December 7, 1937).
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Everest climbers alike. A nearby playground might even have a geodesic jungle gym 
for kids to climb on. No single construction system has been built in so many sizes 
and of such diverse materials – wood, pipes, sheets of plastic and metal, foam panels, 
cardboard, plywood, bamboo, fiberglass, concrete, and even bicycle wheels and the 
tops of junked cars.3

These applications and many others use spherical techniques that Buckminster 
Fuller, or one of his associates, developed in the late 1940s and 1950s. They are as use-
ful today, as they were then, because they continue to solve new problems in fields that 
have nothing to do with domes, such as astronomy, weather prediction, materials sci-
ence, virology, product design, and PC game development. Even the dimple patterns 
on golf  balls owe a debt to Buckminster Fuller.

The concept of geodesics is not entirely new. For mathematicians, they are the 
shortest path between two points on a curved surface, any curved surface, not just a 
sphere’s. Spherical triangles and grids are hardly new, and neither is geodesic construc-
tion. The earliest example dates to 1922 when Walther Bauersfeld, an engineer for Carl 
Zeiss optical company, developed the world’s first reinforced concrete dome in Jena, 
Germany,4,5 for Zeiss’ planetarium. The dome’s steel reinforcing grid resembles the lat-
tice we associate with today’s geodesic dome.

Bauersfeld’s structure was highly innovative at the time. However, unlike Fuller’s 
domes, Bauersfeld’s dome was never developed into a generalized construction system 
or used elsewhere. Fuller was the first to establish geodesics in a framework he called 
energetic Synergetic Geometry, or Synergetics for short. For sure, Fuller’s relentless 
promotion of geodesics had a lot to do with the success of the geodesic dome, but 
this success was also the result of Synergetics. Synergetics acted as a vehicle for mov-
ing concepts in physics (spin, charge, attraction), mathematics (plane and spherical 
geometry), materials science (tension and compression), natural building processes 
(triangulate and space-filling forms), and design intent (conservation of energy, high 
strength-to-weight structures, and industrial processes) to different settings, such as 
mapping, long-span truss systems, and, most important, geodesic domes. The fact 
that these innovations were based on a broader framework for design increased their 
appeal and encouraged their application in new fields.

Fuller did not invent the geodesic dome in isolation. In the late 1940s, he taught at 
several colleges where he came into contact with highly creative and intelligent peo-
ple. His style, somewhat non-academic for the times, mixed seminars, workshops, and 
hands-on projects, in which his ideas were freely associated with those of students and 
colleagues. He often made their ideas his own. This style, borrowing ideas, character-
ized his business life as well. There, designers, architects, engineers, and artisans, such 
as Kenneth Snelson, Duncan Stuart, Jeffrey Lindsay, Donald Richter, T. C. Howard,6 
 William Wainwright, Jim Fitzgibbon, Shoji Sadao, and William Ahern, also had cre-
ative skills and energy. Some were inventors and would be awarded their own geode-
sic patents. They were often the designers and architects on projects that only Fuller 
 received credit for. There is no doubt that Fuller’s free-association inspired others, 

3 Drop City, a hippy commune in the 1960s, was an assemblage of geodesic panel domes made from the 
sheet metal of automobile roofs and other inexpensive materials.
4 (Kahn 1989).
5 (Fernández-Serrano 2019).
6 Thomas C. Howard (aka T.C.) (1931) was principal designer, architect, and engineer for Synergetics, Inc. 
from 1955 until 2006 and lead designer on many award winning geodesic dome projects. The T. C. Howard 
Papers on Synergetics, housed at NC State University Libraries, archives significant architectural drawings 
and related documentation to worldwide projects and showcase geodesic domes, octetrusses, and Charter-
Sphere Domes. Several of T. C. Howard’s projects appear in the book.
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 increased the flow of ideas, and hastened the development of geodesics. And while 
most relationships were symbiotic, some were not. This book recognizes the contribu-
tions of others, as often as possible.

Buckminster Fuller is a fascinating study of innovation, entrepreneurship, self-
belief, and opportunism. He was a prolific inventor and writer. While some writings 
are razor-sharp, others read like stream of consciousness. He was always concerned 
about being misunderstood and, given his elliptical style and self-made vocabulary, it 
was a reasonable worry. Many authors and historians have tried to place this complex 
personality and his inventions within the broader context of twentieth-century events. 
Anyone interested in the genesis of geodesic domes should attempt to understand the 
man, Buckminster Fuller. Those wanting to know more about him can consult the ad-
ditional resources at the end of this chapter.

2.1 Synergetic Geometry
Volumes have been written by and about Fuller’s Synergetic Geometry. This book 
examines only the very small part of  it that built the foundation for dividing spheres. 
By the late-1940s, Fuller was shifting his attention from developing affordable hous-
ing to exploring new ways of  thinking about design. He kept a sketchbook called 
Noah’s Ark II, where he diagrammed geometric relationships and spherical grids.7 
Fuller had always been interested in natural forms: rocks, crystals, shells, and so 
forth. He sensed that nature always found the most efficient solution to problems 
and he was taken by the idea that nature is in constant motion and that motion itself  
is relative. He looked for a way to unify fundamental laws of  physics (atoms, orbits, 
spin, energy, charges, and bonding) with geometry (polyhedra, space-filling lattices, 
great circles, symmetry, and maximum packing) into a design cosmology he would 
call Synergetic Geometry. Synergetics was Fuller’s summary of  natural phenomena 
and his framework for design. He drew his principles from natural systems and used 
mathematics, particularly solid geometry, to show relationships – synergy – between 
systems. “The whole is always more than the sum of  its parts,” he would say. In his 
cosmology, mathematics, observation, and the analysis of  natural systems were all 
telling us how to make the most efficient design. Fuller personalizes Synergetics with 
his own language, which is often difficult to understand. But his basic dictum was 
clear: man is part of  a natural system; he must learn from it, respect it, and use its 
principles in his work.8

He added, “I would not suggest that it is the role of the individual to add something to 
the universe. Individuals can only discover the principles and then employ them to move 
forward to greater understanding.”

Fuller had a keen sense of  how geometry increased strength and stability, and 
how some polyhedra could be packed together to fill space without leaving voids. 
He recognized the inherent stability and rigidity of  the tetrahedron, octahedron, 
and icosahedron, three solids with only equilateral triangular faces. The cuboctahe-
dron has both square and triangular faces, but can be constructed from just eight 
tetrahedra. As a result, it is highly stable and rigid. These solids were particularly 
important in Synergetics and would appear and reappear in different combinations 
in his future inventions.

7 (Fuller 1950).
8 (Edmondson 1987, 2007).
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The tetrahedron (four equilateral triangular faces, six edges, and four 
vertices) is the only polyhedron where every vertex is equidistant from 
every other one. Fuller visualized its geometry by clustering three equal-
diameter spheres into a triangle and nestling a forth on top, as seen in 
the figure to the left. All four spheres are packed in their closest three-
dimensional (3D) configuration; their centers define the vertices of a tet-
rahedron. The tetrahedron is the most basic form in Fuller’s Synergetic 
Geometry. It appears in numerous configurations in his later work.

The octahedron (8 equilateral triangular faces, 12 edges, and 6 vertices) 
can be visualized as two back-to-back square pyramids. Octahedra and 
tetrahedra together can be placed side by side and perfectly fill 3D space. 
Figure 2.1 shows the octahedral-tetrahedral truss system Fuller later called 
the octet truss. You can see how these two solids pack together to fill all 
the space.9

Fuller describes the relationship of the tetrahedron-octahedron: “Na-
ture’s simplest structural system in the universe is the tetrahedron. The 
regular tetrahedron does not fill all space by itself. The octahedron and tet-
rahedron complement one another to fill all space. Together they produce 
the simplest, most powerful structural system in the universe.”10

The icosahedron (20 equilateral triangular faces, 30 edges, and 12 verti-
ces) has the highest number of identical regular faces of any regular poly-
hedron. Its faces can be subdivided into six right triangles; thus, the overall 
solid could be made from 120 right triangles. The subdivision of any one 
of them can be replicated over its surface without overlaps or gaps. It is the 
most used polyhedron for spherical work by far. We discuss the icosahe-
dron in great detail later in the chapter.

The cuboctahedron (14 faces, 24 edges, and 12 vertices) is the only 
polyhedron out of hundreds where every edge is equal in length and this 
length is the distance between every vertex and the center of the poly-
hedron. You can visualize the cuboctahedron as a polyhedron made of 
eight tetrahedra, each sharing one vertex at the center of the polyhedron 
and their other vertices tangent to one another. Like the tetrahedron, the 
cuboctahedron can be created by close-packing spheres. A total of 12 spheres 

 9 (Fuller 1961, sheet 7/7, fig. 14).
10 (Fuller 1983, 168).

39

Figure 2.1. Synergetic building construction.
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nested around a 13th, central sphere, as shown in the figure to the right. 
Fuller thought this configuration and angular relationship was so spe-
cial he called it the vector equilibrium (VE), claiming that it was nature’s 
coordinate system as opposed to normal Cartesian coordinates man 
uses.11 Cuboctahedron and VE all refer to the same polyhedron and we 
use the terms interchangeably.

2.2 Dymaxion Projection
Perhaps due to his prior Navy service and the importance of charts and navigation, 
Fuller began his spherical work with cartography. Map projection, one of the longest 
standing geometric challenges, involves figuring out how to accurately represent fea-
tures of a round Earth on a flat plane, such as a piece of paper. The surface of a sphere 
is undevelopable, which means it cannot be rolled out or flattened without distortion. 
This centuries-old problem has attracted scores of geographers and mathematicians 
and led to numerous projection schemes. Some projections and maps preserve the 
shape of spherical shapes and angles, while others preserve great circle distances or 
compass headings between points on the sphere; others represent the area of shapes 
accurately. No two-dimensional (2D) projection preserves all these characteristics. In 
the end, all 2D maps of a sphere have some form of distortion.

At the time, and it’s still true 
today, the most common map 
projection was the Mercator 
projection. In this projection, 
the Earth is placed inside a 
cylinder (a curled-up map that 
wraps around the Earth), and 
rays from the center of the 
Earth paint the outline or land 
masses onto the cylinder. Only 
the equator, which is tangent 
to the cylinder, is accurately projected. The land masses distort more and more as the 
projection nears the poles. Greenland and the arctic regions appear huge in comparison 
to their true size. The poles cannot be projected at all, since rays from the Earth’s center to 
the poles would be parallel to the surface of the cylinder and never project at all.

In 1944, Fuller took a totally different approach and based his map projection on 
the spherical subdivision of the cuboctahedron, shown in Figure 2.2(a). Essentially, 
Fuller developed a grid over the faces of the cuboctahedron and then projected the 
grid onto a sphere that surrounded the solid. The grid he developed essentially runs 
parallel to the edges of the cuboctahedron’s regular square and triangular faces. The 
resulting spherical projection undeniably resembles a geodesic dome, though Fuller 
would not make this connection for a few more years.

In Figure 2.2(b), the projection is unfolded into a 2D view, sometimes called a 
net, and various combinations of land and ocean areas are displayed on a series of 
contiguous squares and triangles.12 Some displays show a continuous ocean, others 
continuous land. Each serves its own purpose. Few thought it possible to invent any-
thing new in a field so exhaustively studied and thoroughly developed as cartography 

11 The Cartesian coordinate system uses three mutually orthogonal axes; Fuller believed that nature’s coor-
dinate system is based on a 60° coordinate system. See also Williams (1979, 164).
12 Map image courtesy of the Estate of R. Buckminster Fuller.
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but Fuller did just that. In his patent, he briefly describes the problem he solved: “The 
Earth is a spherical body, so the only true cartographic representation of its surface 
must be spherical. All flat surface maps are compromises with truth.”13

Fuller called this configuration a Dymaxion Projection.14 The projection is based on 
a subdivision grid that runs either parallel or perpendicular to the edges of the square 
and triangular faces.

After pointing out the disadvantages of current projections, including the popular 
Mercator projection, Fuller goes on to say: “Another expedient has been to resolve the 
Earth’s surface into a polyhedron, projecting gnomonically to the facets of the poly-
hedron, the idea being that the sections of the polyhedron can be assembled on a flat 
surface to give a truer picture of the Earth’s surface and of directions and distance.”15

In essence, Fuller claims that a gnomonically projected16 map placed onto the faces 
of a polyhedron, the cuboctahedron in this case, provides a truer representation of 
areas, boundaries, directions, and distances than any plane surface map heretofore 
known. By using the cuboctahedron as the base polyhedron for his projection, all ver-
tices lie on one of four great circles.

Fuller makes three invention claims in his patent. The Dymaxion map is

• a projected map of square and triangular sections where edges are represented 
by projected great circles with a uniform cartographic scale;

13 Fuller (1946, p. 1, col. 1, para. 1).
14 In the 1930s, Fuller was advised to find a better name for his four-dimensional (4D) house invention, and 
with the help of an advertising wordsmith, Waldo Warren, the word “Dymaxion” was coined by select-
ing suitable syllables from Fuller’s account of his design ideas. The roots of this name are “dynamism,” 
“maximum,” and “ions” (Marks 1973).
15 Fuller (1946, p.1, col. 1, para. 2).
16 Gnomonic or gnomic projection is a map projection obtained by projecting points on the surface of a 
sphere from a sphere’s center to a plane that is tangent to the sphere or a projection from the center of 
a sphere to the surface that surrounds an object (such as a sphere around a polyhedron). In a gnomonic 
projection, great circles are mapped to straight lines.

    

Figure 2.2. World maps with Dymaxion Projection.


