

Developing Graphics
Frameworks with Python

and OpenGL

https://taylorandfrancis.com

Developing Graphics
Frameworks with Python

and OpenGL

Lee Stemkoski
Michael Pascale

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Lee Stemkoski and Michael Pascale

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of
their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write
and let us know so we may rectify in any future reprint.

“The Open Access version of this book, available at www.taylorfrancis.com, has been made
 available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license”

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data
Names: Stemkoski, Lee, author. | Pascale, Michael, author.
Title: Developing graphics frameworks with Python and OpenGL /
Lee Stemkoski, Michael Pascale.
Description: First edition. | Boca Raton : CRC Press, 2021. |
Includes bibliographical references and index.
Identifiers: LCCN 2021002036 | ISBN 9780367721800 (hardback) |
ISBN 9781003181378 (ebook)
Subjects: LCSH: OpenGL. | Computer graphics—Computer programs. |
Python (Computer program language) | Computer graphics—Mathematics.
Classification: LCC T385 .S7549 2021 | DDC 006.6—dc23
LC record available at https://lccn.loc.gov/2021002036

ISBN: 978-0-367-72180-0 (hbk)
ISBN: 978-1-032-02146-1 (pbk)
ISBN: 978-1-003-18137-8 (ebk)

DOI: 10.1201/9781003181378

Typeset in Minion Pro
by codeMantra

http://www.taylorfrancis.com
https://lccn.loc.gov
https://doi.org/10.1201/9781003181378

v

Contents

Authors, ix

CHAPTER 1 ◾ INTRODUCTION TO COMPUTER GRAPHICS 1
1.1 CORE CONCEPTS AND VOCABULARY 2

1.2 THE GRAPHICS PIPELINE 8

1.2.1 Application Stage 9
1.2.2 Geometry Processing 10
1.2.3 Rasterization 12
1.2.4 Pixel Processing 14

1.3 SETTING UP A DEVELOPMENT ENVIRONMENT 17

1.3.1 Installing Python 17
1.3.2 Python Packages 19
1.3.3 Sublime Text 21

1.4 SUMMARY AND NEXT STEPS 23

CHAPTER 2 ◾ INTRODUCTION TO PYGAME AND OPENGL 25
2.1 CREATING WINDOWS WITH PYGAME 25

2.2 DRAWING A POINT 32

2.2.1 OpenGL Shading Language 32
2.2.2 Compiling GPU Programs 36
2.2.3 Rendering in the Application 42

2.3 DRAWING SHAPES 46

2.3.1 Using Vertex Bufers 46
2.3.2 An Attribute Class 49

vi ◾ Contents

2.3.3 Hexagons, Triangles, and Squares 51
2.3.4 Passing Data between Shaders 59

2.4 WORKING WITH UNIFORM DATA 64

2.4.1 Introduction to Uniforms 64
2.4.2 A Uniform Class 65
2.4.3 Applications and Animations 67

2.5 ADDING INTERACTIVITY 77

2.5.1 Keyboard Input with Pygame 77
2.5.2 Incorporating with Graphics Programs 80

2.6 SUMMARY AND NEXT STEPS 81

CHAPTER 3 ◾ MATRIX ALGEBRA AND TRANSFORMATIONS 83
3.1 INTRODUCTION TO VECTORS AND MATRICES 83

3.1.1 Vector Defnitions and Operations 84
3.1.2 Linear Transformations and Matrices 88
3.1.3 Vectors and Matrices in Higher Dimensions 98

3.2 GEOMETRIC TRANSFORMATIONS 102

3.2.1 Scaling 102
3.2.2 Rotation 103
3.2.3 Translation 109
3.2.4 Projections 112
3.2.5 Local Transformations 119

3.3 A MATRIX CLASS 123

3.4 INCORPORATING WITH GRAPHICS PROGRAMS 125

3.5 SUMMARY AND NEXT STEPS 132

CHAPTER 4 ◾ A SCENE GRAPH FRAMEWORK 133
4.1 OVERVIEW OF CLASS STRUCTURE 136

4.2 3 D OBJECTS 138

4.2.1 Scene and Group 141
4.2.2 Camera 142
4.2.3 Mesh 143

4.3 GEOMETRY OBJECTS 144

Contents ◾ vii

4.3.1 Rectangles 145
4.3.2 Boxes 147
4.3.3 Polygons 150
4.3.4 Parametric Surfaces and Planes 153
4.3.5 Spheres and Related Surfaces 156
4.3.6 Cylinders and Related Surfaces 158

4.4 MATERIAL OBJECTS 164

4.4.1 Base Class 165
4.4.2 Basic Materials 166

4.5 RENDERING SCENES WITH THE FRAMEWORK 172

4.6 CUSTOM GEOMETRY AND MATERIAL OBJECTS 177

4.7 EXTRA COMPONENTS 184

4.7.1 Axes and Grids 185
4.7.2 Movement Rig 188

4.8 SUMMARY AND NEXT STEPS 192

CHAPTER 5 ◾ TEXTURES 193
5.1 A TEXTURE CLASS 194

5.2 TEXTURE COORDINATES 201

5.2.1 Rectangles 202
5.2.2 Boxes 202
5.2.3 Polygons 203
5.2.4 Parametric Surfaces 204

5.3 USING TEXTURES IN SHADERS 206

5.4 RENDERING SCENES WITH TEXTURES 212

5.5 ANIMATED EFFECTS WITH CUSTOM SHADERS 215

5.6 PROCEDURALLY GENERATED TEXTURES 221

5.7 USING TEXT IN SCENES 228

5.7.1 Rendering Text Images 228
5.7.2 Billboarding 232

5.7.2.1 Look-At Matrix 232
5.7.2.2 Sprite Material 236

5.7.3 Heads-Up Displays and Orthogonal Cameras 241

viii ◾ Contents

5.8 RENDERING SCENES TO TEXTURES 247

5.9 POSTPROCESSING 254

5.10 SUMMARY AND NEXT STEPS 265

CHAPTER 6 ◾ LIGHT AND SHADOW 267
6.1 INTRODUCTION TO LIGHTING 268

6.2 LIGHT CLASSES 271

6.3 NORMAL VECTORS 274

6.3.1 Rectangles 274
6.3.2 Boxes 275
6.3.3 Polygons 276
6.3.4 Parametric Surfaces 276

6.4 USING LIGHTS IN SHADERS 280

6.4.1 Structs and Uniforms 280
6.4.2 Light-Based Materials 282

6.5 RENDERING SCENES WITH LIGHTS 291

6.6 EXTRA COMPONENTS 295

6.7 BUMP MAPPING 298

6.8 BLOOM AND GLOW EFFECTS 302

6.9 SHADOWS 312

6.9.1 Teoretical Background 312
6.9.2 Adding Shadows to the Framework 317

6.10 SUMMARY AND NEXT STEPS 328

INDEX, 331

ix

Authors

Lee Stemkoski is a professor of mathematics and computer science.
He earned his Ph.D. in mathematics from Dartmouth College in 2006 and
has been teaching at the college level since. His specialties are computer
graphics, video game development, and virtual and augmented reality
programming.

Michael Pascale is a sofware engineer interested in the foundations of
computer science, programming languages, and emerging technologies.
He earned his B.S. in Computer Science from Adelphi University in 2019.
He strongly supports open source sofware and open access educational
resources.

https://taylorandfrancis.com

CHAP T ER 1

Introduction to
Computer Graphics

The importance of computer graphics in modern society is
illustrated by the great quantity and variety of applications and their

impact on our daily lives. Computer graphics can be two-dimensional (2D)
or three-dimensional (3D), animated, and interactive. Tey are used in
data visualization to identify patterns and relationships, and also in scien-
tifc visualization, enabling researchers to model, explore, and understand
natural phenomena. Computer graphics are used for medical applications,
such as magnetic resonance imaging (MRI) and computed tomography
(CT) scans, and architectural applications, such as creating blueprints or
virtual models. Tey enable the creation of tools such as training simu-
lators and sofware for computer-aided engineering and design. Many
aspects of the entertainment industry make use of computer graphics to
some extent: movies may use them for creating special efects, generat-
ing photorealistic characters, or rendering entire flms, while video games
are primarily interactive graphics-based experiences. Recent advances in
computer graphics hardware and sofware have even helped virtual reality
and augmented reality technology enter the consumer market.

Te feld of computer graphics is continuously advancing, fnding new
applications, and increasing in importance. For all these reasons, combined
with the inherent appeal of working in a highly visual medium, the feld
of computer graphics is an exciting area to learn about, experiment with,
and work in. In this book, you’ll learn how to create a robust framework

DOI: 10.1201/9781003181378-1 1

https://doi.org/10.1201/9781003181378-1

2 ◾ Developing Graphics Frameworks with Python and OpenGL

capable of rendering and animating interactive three-dimensional scenes
using modern graphics programming techniques.

Before diving into programming and code, you’ll frst need to learn
about the core concepts and vocabulary in computer graphics. Tese ideas
will be revisited repeatedly throughout this book, and so it may help to
periodically review parts of this chapter to keep the overall process in
mind. In the second half of this chapter, you’ll learn how to install the
necessary sofware and set up your development environment.

1.1 CORE CONCEPTS AND VOCABULARY
Our primary goal is to generate two-dimensional images of three-
dimensional scenes; this process is called rendering the scene. Scenes
may contain two- and three-dimensional objects, from simple geometric
shapes such as boxes and spheres, to complex models representing real-
world or imaginary objects such as teapots or alien lifeforms. Tese objects
may simply appear to be a single color, or their appearance may be afected
by textures (images applied to surfaces), light sources that result in shading
(the darkness of an object not in direct light) and shadows (the silhouette
of one object's shape on the surface of another object), or environmen-
tal properties such as fog. Scenes are rendered from the point of view of
a virtual camera, whose relative position and orientation in the scene,
together with its intrinsic properties such as angle of view and depth of
feld, determine which objects will be visible or partially obscured by
other objects when the scene is rendered. A 3D scene containing multiple
shaded objects and a virtual camera is illustrated in Figure 1.1. Te region
contained within the truncated pyramid shape outlined in white (called a
frustum) indicates the space visible to the camera. In Figure 1.1, this region
completely contains the red and green cubes, but only contains part of the
blue sphere, and the yellow cylinder lies completely outside of this region.
Te results of rendering the scene in Figure 1.1 are shown in Figure 1.2.

From a more technical, lower-level perspective, rendering a scene
produces a raster—an array of pixels (picture elements) which will be
displayed on a screen, arranged in a two-dimensional grid. Pixels are typi-
cally extremely small; zooming in on an image can illustrate the presence
of individual pixels, as shown in Figure 1.3.

On modern computer systems, pixels specify colors using triples of
foating-point numbers between 0 and 1 to represent the amount of red,
green, and blue light present in a color; a value of 0 represents no amount
of that color is present, while a value of 1 represents that color is displayed

Introduction to Computer Graphics ◾ 3

FIGURE 1.1 Tree-dimensional scene with geometric objects, viewing region
(white outline) and virtual camera (lower right).

FIGURE 1.2 Results of rendering the scene from Figure 1.1

FIGURE 1.3 Zooming in on an image to illustrate individual pixels.

4 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 1.4 Various colors and their corresponding (R, G, B) values.

at full (100%) intensity. Tese three colors are typically used since photore-
ceptors in the human eye take in those particular colors. Te triple (1, 0, 0)
represents red, (0, 1, 0) represents green, and (0, 0, 1) represents blue. Black
and white are represented by (0, 0, 0) and (1, 1, 1), respectively. Additional
colors and their corresponding triples of values specifying the amounts of
red, green, and blue (ofen called RGB values) are illustrated in Figure 1.4.

Te quality of an image depends in part on its resolution (the number of
pixels in the raster) and precision (the number of bits used for each pixel).
As each bit has two possible values (0 or 1), the number of colors that can
be expressed with N-bit precision is 2N . For example, early video game
consoles with 8-bit graphics were able to display 28 = 256 diferent colors.
Monochrome displays could be said to have 1-bit graphics, while modern
displays ofen feature “high color” (16-bit, 65,536 color) or “true color”
(24-bit, more than 16 million colors) graphics. Figure 1.5 illustrates the
same image rendered with high precision but diferent resolutions, while
Figure 1.6 illustrates the same image rendered with high resolution but
diferent precision levels.

In computer science, a bufer (or data bufer, or bufer memory) is a part
of a computer's memory that serves as temporary storage for data while
it is being moved from one location to another. Pixel data is stored in a
region of memory called the framebufer. A framebufer may contain mul-
tiple bufers that store diferent types of data for each pixel. At a minimum,
the framebufer must contain a color bufer, which stores RGB values.
When rendering a 3D scene, the framebufer must also contain a depth
bufer, which stores distances from points on scene objects to the virtual
camera. Depth values are used to determine whether the various points
on each object are in front of or behind other objects (from the camera’s
perspective), and thus whether they will be visiblewhen the scene is ren-
dered. If one scene object obscures another and a transparency efect is

Introduction to Computer Graphics ◾ 5

FIGURE 1.5 A single image rendered with diferent resolutions.

FIGURE 1.6 A single image rendered with diferent precisions.

6 ◾ Developing Graphics Frameworks with Python and OpenGL

desired, the renderer makes use of alpha values: foating-point numbers
between 0 and 1 that specifes how overlapping colors should be blended
together; the value 0 indicates a fully transparent color, while the value
1 indicates a fully opaque color. Alpha values are also stored in the color
bufer along with RGB color values; the combined data is ofen referred to
as RGBA color values. Finally, framebufers may contain a bufer called
a stencil bufer, which may be used to store values used in generating
advanced efects, such as shadows, refections, or portal rendering.

In addition to rendering three-dimensional scenes, another goal in
computer graphics is to create animated scenes. Animations consist of a
sequence of images displayed in quick enough succession that the viewer
interprets the objects in the images to be continuously moving or chang-
ing in appearance. Each image that is displayed is called a frame. Te
speed at which these images appear is called the frame rate and is mea-
sured in frames per second (FPS). Te standard frame rate for movies and
television is 24 FPS. Computer monitors typically display graphics at 60
FPS. For virtual reality simulations, developers aim to attain 90 FPS, as
lower frame rates may cause disorientation and other negative side efects
in users. Since computer graphics must render these images in real time,
ofen in response to user interaction, it is vital that computers be able to
do so quickly.

In the early 1990s, computers relied on the central processing unit (CPU)
circuitry to perform the calculations needed for graphics. As real-time 3D
graphics became increasingly common in video game platforms (including
arcades, gaming consoles, and personal computers), there was increased
demand for specialized hardware for rendering these graphics. Tis led to
the development of the graphics processing unit (GPU), a term coined by the
Sony Corporation that referred to the circuitry in their PlayStation video
game console, released in 1994. Te Sony GPU performed graphics-related
computational tasks including managing a framebufer, drawing polygons
with textures, and shading and transparency efects. Te term GPU was
popularized by the NVidia Corporation in 1999 with their release of the
GeForce 256, a single-chip processor that performed geometric transfor-
mations and lighting calculations in addition to the rendering computa-
tions performed by earlier hardware implementations. NVidia was the frst
company to produce a GPU capable of being programmed by developers:
each geometric vertex could be processed by a short program, as could
every rendered pixel, before the resulting image was displayed on screen.
Tis processor, the GeForce 3, was introduced in 2001 and was also used

Introduction to Computer Graphics ◾ 7

in the Xbox video game console. In general, GPUs feature a highly parallel
structure that enables them to be more efcient than CPUs for rendering
computer graphics. As computer technology advances, so does the quality
of the graphics that can be rendered; modern systems are able to produce
real-time photorealistic graphics at high resolutions.

Programs that are run by GPUs are called shaders, initially so named
because they were used for shading efects, but now used to perform many
diferent computations required in the rendering process. Just as there are
many high-level programming languages (such as Java, JavaScript, and
Python) used to develop CPU-based applications, there are many shader
programming languages. Each shader language implements an application
programming interface (API), which defnes a set of commands, functions,
and protocols that can be used to interact with an external system—in this
case, the GPU. Some APIs and their corresponding shader languages include

• Te DirectX API and High-Level Shading Language (HLSL), used on
Microsof platforms, including the Xbox game console

• Te Metal API and Metal Shading Language, which runs on modern
Mac computers, iPhones, and iPads

• Te OpenGL (Open Graphics Library) API and OpenGL Shading
Language (GLSL), a cross-platform library.

Tis book will focus on OpenGL, as it is the most widely adopted graphics
API. As a cross-platform library, visual results will be consistent on any
supported operating system. Furthermore, OpenGL can be used in con-
cert with a variety of high-level languages using bindings: sofware librar-
ies that bridge two programming languages, enabling functions from one
language to be used in another. For example, some bindings to OpenGL
include

• JOGL (https://jogamp.org/jogl/www/) for Java

• WebGL (https://www.khronos.org/webgl/) for JavaScript

• PyOpenGL (http://pyopengl.sourceforge.net/) for Python

Te initial version of OpenGL was released by Silicon Graphics, Inc. (SGI)
in 1992 and has been managed by the Khronos Group since 2006. Te
Khronos Group is a non-proft technology consortium, whose members

https://jogamp.org
https://www.khronos.org
http://pyopengl.sourceforge.net

8 ◾ Developing Graphics Frameworks with Python and OpenGL

include graphics card manufacturers and general technology companies.
New versions of the OpenGL specifcation are released regularly to support
new features and functions. In this book, you will learn about many of the
OpenGL functions that allow you to take advantage of the graphics capa-
bilities of the GPU and render some truly impressive three-dimensional
scenes. Te steps involved in this rendering process are described in detail
in the sections that follow.

1.2 THE GRAPHICS PIPELINE
A graphics pipeline is an abstract model that describes a sequence of steps
needed to render a three-dimensional scene. Pipelining allows a compu-
tational task to be split into subtasks, each of which can be worked on
in parallel, similar to an assembly line for manufacturing products in a
factory, which increases overall efciency. Graphics pipelines increase
the efciency of the rendering process, enabling images to be displayed
at faster rates. Multiple pipeline models are possible; the one described
in this section is commonly used for rendering real-time graphics using
OpenGL, which consists of four stages (illustrated by Figure 1.7):

• Application Stage: initializing the window where rendered graphics
will be displayed; sending data to the GPU

• Geometry Processing: determining the position of each vertex of the
geometric shapes to be rendered, implemented by a program called
a vertex shader

• Rasterization: determining which pixels correspond to the geometric
shapes to be rendered

• Pixel Processing: determining the color of each pixel in the rendered
image, involving a program called a fragment shader

Each of these stages is described in more detail in the sections that follow;
the next chapter contains code that will begin to implement many of the
processes described here.

FIGURE 1.7 Te graphics pipeline.

Introduction to Computer Graphics ◾ 9

1.2.1 Application Stage

Te application stage primarily involves processes that run on the CPU.
One of the frst tasks is to create a window where the rendered graphics
will be displayed. When working with OpenGL, this can be accomplished
using a variety of programming languages. Te window (or a canvas-like
object within the window) must be initialized so that the graphics are read
from the GPU framebufer. In the case of animated or interactive appli-
cations, the main application contains a loop that re-renders the scene
repeatedly, typically aiming for a rate of 60 FPS. Other processes that may
be handled by the CPU include monitoring hardware for user input events,
or running algorithms for tasks such as physics simulation and collision
detection.

Another class of tasks performed by the application includes read-
ing data required for the rendering process and sending it to the GPU.
Tis data may include vertex attributes (which describe the appearance
of the geometric shapes being rendered), images that will be applied to
surfaces, and source code for the vertex shader and fragment shader pro-
grams (which will be used later on during the graphics pipeline). OpenGL
describes the functions that can be used to transmit this data to the GPU;
these functions are accessed through the bindings of the programming
language used to write the application. Vertex attribute data is stored in
GPU memory bufers called vertex bufer objects (VBOs), while images
that will be used as textures are stored in texture bufers. It is important
to note that this stored data is not initially assigned to any particular pro-
gram variables; these associations are specifed later. Finally, source code
for the vertex shader and fragment shader programs needs to be sent to
the GPU, compiled, and loaded. If needed, bufer data can be updated dur-
ing the application's main loop, and additional data can be sent to shader
programs as well.

Once the necessary data has been sent to the GPU, before rendering
can take place, the application needs to specify the associations between
attribute data stored in VBOs and attribute variables in the vertex shader
program. A single geometric shape may have multiple attributes for each
vertex (such as position and color), and the corresponding data is streamed
from bufers to variables in the shader during the rendering process. It
is also frequently necessary to work with many sets of such associations:
there may be multiple geometric shapes (with data stored in diferent buf-
fers) that are rendered by the same shader program, or each shape may be
rendered by a diferent shader program. Tese sets of associations can be

10 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 1.8 Wireframe meshes representing a sphere and a teapot.

conveniently managed by using vertex array objects (VAOs), which store
this information and can be activated and deactivated as needed during
the rendering process.

1.2.2 Geometry Processing

In computer graphics, the shape of a geometric object is defned by a mesh:
a collection of points that are grouped into lines or triangles, as illustrated
in Figure 1.8.

In addition to the overall shape of an object, additional information
may be required to describe how the object should be rendered. Te prop-
erties or attributes that are specifc to rendering each individual point are
grouped together into a data structure called a vertex. At a minimum, a
vertex must contain the three-dimensional position of the corresponding
point. Additional data contained by a vertex ofen includes

• a color to be used when rendering the point

• texture coordinates (or UV coordinates), which indicate a point in an
image that is mapped to the vertex

• a normal vector, which indicates the direction perpendicular to a
surface and is typically used in lighting calculations

Figure 1.9 illustrates diferent renderings of a sphere that make use of these
attributes. Additional vertex attributes may be defned as needed.

During the geometry processing stage, the vertex shader is applied to
each of the vertices; each attribute variable in the shader receives data
from a bufer according to previously specifed associations. Te pri-
mary purpose of the vertex shader is to determine the fnal position of

Introduction to Computer Graphics ◾ 11

FIGURE 1.9 Diferent renderings of a sphere: wireframe, vertex colors, texture,
and with lighting efects.

FIGURE 1.10 One scene rendered from multiple camera locations and angles.

each point being rendered, which is typically calculated from a series of
transformations:

• the collection of points defning the intrinsic shape of an object may
be translated, rotated, and scaled so that the object appears to have
a particular location, orientation, and size with respect to a virtual
three-dimensional world. Tis process is called the model transfor-
mation; coordinates expressed from this frame of reference are said
to be in world space

• there may be a virtual camera with its own position and orientation
in the virtual world. In order to render the world from the camera’s
point of view, the coordinates of each object in the world must be
converted to a frame of reference relative to the camera itself. Tis
process is called the view transformation, and coordinates in this
context are said to be in view space (or camera space, or eye space).
Te efect of the placement of the virtual camera on the rendered
image is illustrated in Figure 1.10

• the set of points in the world considered to be visible, occupying
either a box-shaped or frustum-shaped region, must be scaled to and
aligned with the space rendered by OpenGL: a cube-shaped region
consisting of all points whose coordinates are between −1 and 1.

12 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 1.11 A series of cubes rendered with orthogonal projection (a) and
perspective projection (b).

Te position of each point returned by the vertex shader is assumed
to be expressed in this frame of reference. Any points outside this
region are automatically discarded or clipped from the scene; coor-
dinates expressed at this stage are said to be in clip space. Tis task is
accomplished with a projection transformation. More specifcally, it is
called an orthographic projection or a perspective projection, depend-
ing on whether the shape of the visible world region is a box or a
frustum. A perspective projection is generally considered to produce
more realistic images, as objects that are farther away from the vir-
tual camera will require greater compression by the transformation
and thus appear smaller when the scene is rendered. Te diferences
between the two types of projections are illustrated in Figure 1.11.

In addition to these transformation calculations, the vertex shader may
perform additional calculations and send additional information to the
fragment shader as needed.

1.2.3 Rasterization

Once the fnal positions of each vertex have been specifed by the vertex
shader, the rasterization stage begins. Te points themselves must frst be
grouped into the desired type of geometric primitive: points, lines, or tri-
angles, which consist of sets of 1, 2, or 3 points. In the case of lines or
triangles, additional information must be specifed. For example, consider
an array of points [A, B, C, D, E, F] to be grouped into lines. Tey could
be grouped in disjoint pairs, as in (A, B), (C, D), (E, F), resulting in a set
of disconnected line segments. Alternatively, they could be grouped in
overlapping pairs, as in (A, B), (B, C), (C, D), (D, E), (E, F), resulting in a
set of connected line segments (called a line strip). Te type of geometric

Introduction to Computer Graphics ◾ 13

primitive and method for grouping points is specifed using an OpenGL
function parameter when the rendering process begins. Te process of
grouping points into geometric primitives is called primitive assembly.

Once the geometric primitives have been assembled, the next step is to
determine which pixels correspond to the interior of each geometric prim-
itive. Since pixels are discrete units, they will typically only approximate
the continuous nature of a geometric shape, and a criterion must be given
to clarify which pixels are in the interior. Tree simple criteria could be

 1. the entire pixel area is contained within the shape

 2. the center point of the pixel is contained within the shape

 3. any part of the pixel is contained within the shape

Tese efects of applying each of these criteria to a triangle are illustrated
in Figure 1.12, where the original triangle appears outlined in blue, and
pixels meeting the criteria are shaded gray.

For each pixel corresponding to the interior of a shape, a fragment is
created: a collection of data used to determine the color of a single pixel in
a rendered image. Te data stored in a fragment always includes the raster
position, also called pixel coordinates. When rendering a three-dimensional
scene, fragments will also store a depth value, which is needed when points
on diferent geometric objects would overlap from the perspective of the
viewer. When this happens, the associated fragments would correspond
to the same pixel, and the depth value determines which fragment’s data
should be used when rendering this pixel.

Additional data may be assigned to each vertex, such as a color, and
passed along from the vertex shader to the fragment shader. In this case, a
new data feld is added to each fragment. Te value assigned to this feld at

FIGURE 1.12 Diferent criteria for rasterizing a triangle.

14 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 1.13 Interpolating color attributes.

each interior point is interpolated from the values at the vertices: calculated
using a weighted average, depending on the distance from the interior
point to each vertex. Te closer an interior point is to a vertex, the greater
the weight of that vertex’s value when calculating the interpolated value.
For example, if the vertices of a triangle are assigned the colors red, green,
and blue, then each pixel corresponding to the interior of the triangle will
be assigned a combination of these colors, as illustrated in Figure 1.13.

1.2.4 Pixel Processing

Te primary purpose of this stage is to determine the fnal color of each
pixel, storing this data in the color bufer within the framebufer. During
the frst part of the pixel processing stage, a program called the fragment
shader is applied to each of the fragments to calculate their fnal color. Tis
calculation may involve a variety of data stored in each fragment, in com-
bination with data globally available during rendering, such as

• a base color applied to the entire shape

• colors stored in each fragment (interpolated from vertex colors)

Introduction to Computer Graphics ◾ 15

FIGURE 1.14 An image fle (a) used as a texture for a 3D object (b).

• textures (images applied to the surface of the shape, illustrated by
Figure 1.14), where colors are sampled from locations specifed by
texture coordinates

• light sources, whose relative position and/or orientation may lighten
or darken the color, depending on the direction the surface is facing
at a point, specifed by normal vectors

Some aspects of the pixel processing stage are automatically handled by
the GPU. For example, the depth values stored in each fragment are used
in this stage to resolve visibility issues in a three-dimensional scene, deter-
mining which parts of objects are blocked from view by other objects.
Afer the color of a fragment has been calculated, the fragment’s depth
value will be compared to the value currently stored in the depth bufer
at the corresponding pixel coordinates. If the fragment's depth value is
smaller than the depth bufer value, then the corresponding point is closer
to the viewer than any that were previously processed, and the fragment’s
color will be used to overwrite the data currently stored in the color bufer
at the corresponding pixel coordinates.

Transparency is also handled by the GPU, using the alpha values stored
in the color of each fragment. Te alpha value of a color is used to indicate
how much of this color should be blended with another color. For example,
when combining a color C1 with an alpha value of 0.6 with another color
C2, the resulting color will be created by adding 60% of the value from
each component of C1 to 40% of the value from each component of C2.
Figure 1.15 illustrates a simple scene involving transparency.

16 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 1.15 Rendered scene with transparency.

However, rendering transparent objects has some complex subtleties.
Tese calculations occur at the same time that depth values are being
resolved, and so scenes involving transparency must render objects in a
particular order: all opaque objects must be rendered frst (in any order),
followed by transparent objects ordered from farthest to closest with respect
to the virtual camera. Not following this order may cause transparency
efects to fail. For example, consider a scene, such as that in Figure 1.15,
containing a single transparent object close to the camera and multiple
opaque objects farther from the camera that appear behind the transparent
object. Assume that, contrary to the previously described rendering order,
the transparent object is rendered frst, followed by the opaque objects in
some unknown order. When the fragments of the opaque objects are pro-
cessed, their depth value will be greater than the value stored in the depth
bufer (corresponding to the closer transparent object), and so the opaque
fragments’ color data will automatically be discarded, rather than blended
with the currently stored color. Even attempting to use the alpha value of
the transparent object stored in the color bufer in this example does not
resolve the underlying issue, because when the fragments of each opaque
object are being rendered, it is not possible at this point to determine if
they may have been occluded from view by another opaque fragment (only
the closest depth value, corresponding to the transparent object, is stored),
and thus, it is unknown which opaque fragment's color values should be
blended into the color bufer.

Introduction to Computer Graphics ◾ 17

1.3 SETTING UP A DEVELOPMENT ENVIRONMENT
Most parts of the graphics pipeline discussed in the previous section—
geometry processing, rasterization, and pixel processing—are handled
by the GPU, and as mentioned previously, this book will use OpenGL for
these tasks. For developing the application, there are many programming
languages one could select from. In this book, you will be using Python
to develop these applications, as well as a complete graphics framework
to simplify the design and creation of interactive, animated, three-
dimensional scenes.

1.3.1 Installing Python

To prepare your development environment, the frst step is to download
and install a recent version of Python (version 3.8 as of this writing) from
http://www.python.org (Figure 1.16); installers are available for Windows,
Mac OS X, and a variety of other platforms.

• When installing for Windows, check the box next to add to path.
Also, select the options custom installation and install for all users;
this simplifes setting up alternative development environments later.

Te Python installer will also install IDLE, Python’s Integrated
Development and Learning Environment, which can be used for devel-
oping the graphics framework presented throughout this book. A more

FIGURE 1.16 Python homepage: http://www.python.org.

http://www.python.org
http://www.python.org

18 ◾ Developing Graphics Frameworks with Python and OpenGL

sophisticated alternative is recommended, such as Sublime Text, which
will be introduced later on in this chapter, and some of its advantages
discussed. (If you are already familiar with an alternative Python
development environment, you are of course also welcome to use that
instead.)

IDLE has two main window types. Te frst window type, which auto-
matically opens when you run IDLE, is the shell window, an interactive
window that allows you to write Python code which is then immediately
executed afer pressing the Enter key. Figure 1.17 illustrates this win-
dow afer entering the statements 123 + 214 and print("Hello,
world!"). Te second window type is the editor window, which func-
tions as a text editor, allowing you to open, write, and save fles containing
Python code, which are called modules and typically use the.py fle exten-
sion. An editor window can be opened from the shell window by selecting
either File > New File or File > Open... from the menu bar. Programs may
be run from the editor window by choosing Run > Run Module from the
menu bar; this will display the output in a shell window (opening a new
shell window if none are open). Figure 1.18 illustrates creating a fle in the
editor window containing the following code:

print("Hello, world!")
print("Have a nice day!")

FIGURE 1.17 IDLE shell window.

FIGURE 1.18 IDLE editor window.

Introduction to Computer Graphics ◾ 19

FIGURE 1.19 Results of running the Python program from Figure 1.18.

Figure 1.19 illustrates the results of running this code, which appear in a
shell window.

1.3.2 Python Packages

Once Python has been successfully installed, your next step will be to
install some packages, which are collections of related modules that pro-
vide additional functionality to Python. Te easiest way to do this is by
using pip, a sofware tool for package installation in Python. In particular,
you will install

• Pygame (http://www.pygame.org), a package that can be used to
easily create windows and handle user input

• Numpy (https://numpy.org/), a package for mathematics and scientifc
computing

• PyOpenGL and PyOpenGL_accelerate (http://pyopengl.sourceforge.
net/), which provide a set of bindings from Python to OpenGL.

If you are using Windows, open Command Prompt or PowerShell (run
with administrator privileges so that the packages are automatically avail-
able to all users) and enter the following command, which will install all
of the packages described above:

py -m pip install pygame numpy PyOpenGL
PyOpenGL_accelerate

If you are using MacOS, the command is slightly diferent. Enter

python3-m pip install pygame numpy PyOpenGL
PyOpenGL_accelerate

http://www.pygame.org
https://numpy.org
http://pyopengl.sourceforge.net
http://pyopengl.sourceforge.net

20 ◾ Developing Graphics Frameworks with Python and OpenGL

To verify that these packages have been installed correctly, open a new
IDLE shell window (restart IDLE if it was open before installation). To
check Pygame, enter the following code, and press the Enter key:

import pygame

You should see a message that contains the number of the Pygame
version that has been installed, such as "pygame 1.9.6", and a greet-
ing message such as "Hello from the pygame community". If
instead you see a message that contains the text No module named
'pygame', then Pygame has not been correctly installed. Furthermore,
it will be important to install a recent version of Pygame—at least a
development version of Pygame 2.0.0. If an earlier version has been
installed, return to the command prompt and in the install command
above, change pygame to pygame==2.0.0.dev10 to install a more
recent version.

Similarly, to check the Numpy installation, instead use the code:

import numpy

In this case, if you see no message at all (just another input prompt), then
the installation was successful. If you see a message that contains the text
No module named 'numpy', then Numpy has not been correctly
installed. Finally, to check PyOpenGL, instead use the code:

import OpenGL

As was the case with testing the Numpy package, if there is no message
displayed, then the installation was successful, but a message mentioning
that the module is not installed will require you to try re-installing the
package.

If you encounter difculties installing any of these packages, there is
additional help available online:

• Pygame: https://www.pygame.org/wiki/GettingStarted

• Numpy: https://numpy.org/install/

• PyOpenGL: at http://pyopengl.sourceforge.net/documentation/
installation.html

https://www.pygame.org
https://numpy.org
http://pyopengl.sourceforge.net
http://pyopengl.sourceforge.net

Introduction to Computer Graphics ◾ 21

1.3.3 Sublime Text

When working on a large project involving multiple fles, you may want to
install an alternative development environment, rather than restrict your-
self to working with IDLE. Te authors particularly recommend Sublime
Text, which has the following advantages:

• lines are numbered for easy reference

• tabbed interface for working with multiple fles in a single window

• editor supports multi-column layout to view and edit diferent fles
simultaneously

• directory view to easily navigate between project fles in a project

• able to run scripts and display output in console area

• free, full-featured trial version available

To install the application, visit the Sublime Text website (https://www.
sublimetext.com/), shown in Figure 1.20, and click on the “download”
button (whose text may difer from the fgure to reference the operating
system you are using). Alternatively, you may click the download link in
the navigation bar to view all downloadable versions. Afer downloading,
you will need to run the installation program, which will require
administrator-level privileges on your system. If unavailable, you may
alternatively download a “portable version” of the sofware, which can

FIGURE 1.20 Sublime Text homepage

https://www.sublimetext.com
https://www.sublimetext.com

22 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 1.21 Sublime Text editor window.

FIGURE 1.22 Output from Figure 1.21.

be found via the download link previously mentioned. While a free trial
version is available, if you choose to use this sofware extensively, you are
encouraged to purchase a license.

Afer installation, start the Sublime Text sofware. A new editor window
will appear, containing an empty fle. As previously mentioned, Sublime
Text can be used to run Python scripts automatically, provided that Python
has been installed for all users of your computer and it is included on the
system path. To try out this feature, in the editor window, as shown in
Figure 1.21, enter the text:

print("Hello, world!")

Next, save your fle with the name test.py; the.py extension causes
Sublime Text to recognize it as a Python script fle, and syntax highlighting
will be applied. Finally, from the menu bar, select Tools > Build or press
the keyboard key combination Ctrl + B to build and run the application.
Te output will appear in the console area, as illustrated in Figure 1.22.

Introduction to Computer Graphics ◾ 23

1.4 SUMMARY AND NEXT STEPS
In this chapter, you learned about the core concepts and vocabulary used
in computer graphics, including rendering, bufers, GPUs, and shaders.
Ten, you learned about the four major stages in the graphics pipeline: the
application stage, geometry processing, rasterization, and pixel processing;
this section introduced additional terminology, including vertices,
VBOs, VAOs, transformations, projections, fragments, and interpolation.
Finally, you learned how to set up a Python development environment. In
the next chapter, you will use Python to start implementing the graphics
framework that will realize these theoretical principles.

https://taylorandfrancis.com

