

KEY CONCEPTS & TECHNIQUES IN GIS

JOCHEN ALBRECHT

KEY CONCEPTS & TECHNIQUES IN GIS

© Jochen Albrecht 2007

First published 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act, 1988, this publication may be reproduced, stored or transmitted in any form, or by any means, only with the prior permission in writing of the publishers, or in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

SAGE Publications Ltd 1 Oliver's Yard 55 City Road London EC1Y 1SP

SAGE Publications Inc. 2455 Teller Road Thousand Oaks, California 91320

SAGE Publications India Pvt Ltd B1/I I Mohan Cooperative Industrial Area Mathura Road, New Delhi 110 044 India

SAGE Publications Asia-Pacific Pte Ltd 33 Pekin Street #02-01 Far East Square Singapore 048763

Library of Congress Control Number 2007922921

British Library Cataloguing in Publication data

A catalogue record for this book is available from the British Library

ISBN 978-1-4129-1015-6 ISBN 978-1-4129-1016-3 (pbk)

Typeset by C&M Digitals (P) Ltd, Chennai, India Printed and bound in Great Britain by TJ International Ltd Printed on paper from sustainable resources

Contents

List	of Figures	ix
Pref	ace	xi
1	Creating Digital Data	1
1.1	Spatial data	2
1.2	Sampling	3
1.3	Remote sensing	5
1.4	Global positioning systems	7
1.5	Digitizing and scanning	8
1.6	The attribute component of geographic data	8
2	Accessing Existing Data	11
2.1	Data exchange	11
2.2	Conversion	12
2.3	Metadata	13
2.4	Matching geometries (projection and coordinate systems)	13
2.5	Geographic web services	15
3	Handling Uncertainty	17
3.1	Spatial data quality	17
3.2	How to handle data quality issues	19
4	Spatial Search	21
4.1	Simple spatial querying	21
4.2	Conditional querying	22
4.3	The query process	23
4.4	Selection	24
4.5	Background material: Boolean logic	25
5	Spatial Relationships	29
5.1	Recoding	29
5.2	Relationships between measurements	32
5.3	Relationships between features	34

vi CONTENTS

6	Con	nbining Spatial Data	37
6.1	Ove	erlay	37
6.2	Spa	tial Boolean logic	40
6.3	Buf	fers	41
6.4	Buf	fering in spatial search	43
6.5	Cor	mbining operations	43
6.6	Thie	essen polygons	44
7	Loc	ation-Allocation	45
7.1	The	best way	45
7.2	Gra	vity model	46
7.3	Loc	ation modeling	47
7.4	Allo	cation modeling	50
8	Map	o Algebra	51
8.1	Ras	eter GIS	51
8.2	Loc	al functions	53
8.3	Foc	al functions	55
8.4	Zon	al functions	56
8.5	Glo	bal functions	57
8.6	Map	o algebra scripts	58
9	Terr	ain Modeling	59
9.1	Tria	ngulated irregular networks (TINs)	60
9.2	Visi	bility analysis	61
9.3	Digi	tal elevation and terrain models	62
9.4	Hyd	Irological modeling	63
10	Spa	tial Statistics	65
10.1	Ged	p-statistics	65
10).1.1	Inverse distance weighting	65
10	.1.2	Global and local polynomials	66
10	.1.3	Splines	67
10).1.4	Kriging	69
10.2	Spa	itial analysis	70
	.2.1	Geometric descriptors	70
	.2.2		72
	.2.3	·	74
10	.2.4	Geographic relationships	75

		CONTENTS	vii
11	Geocomputation		77
11.1	Fuzzy reasoning		77
11.2	Neural networks		79
11.3	Genetic algorithms		80
11.4	Cellular automata		81
11.5	Agent-based modeling systems		82
12	Epilogue: Four-Dimensional Modeling		85
Gloss	sary		89
Refe	rences		95
Index	(99

List of Figures

Figure 1	Object vs. field view (vector vs. raster GIS)	3
Figure 2	Couclelis' 'Hierarchical Man'	4
Figure 3	Illustration of variable source problem	5
Figure 4	Geographic relationships change according to scale	6
Figure 5	One geography but many different maps	12
Figure 6	Subset of a typical metadata tree	14
Figure 7	The effect of different projections	15
Figure 8	Simple query by location	22
Figure 9	Conditional query or query by (multiple) attributes	23
Figure 10	The relationship between spatial and attribute query	24
Figure 11	Partial and complete selection of features	25
Figure 12	Using one set of features to select another set	26
Figure 13	Simple Boolean logic operations	26
Figure 14	Typical soil map	30
Figure 15	Recoding as simplification	30
Figure 16	Recoding as a filter operation	31
Figure 17	Recoding to derive new information	31
Figure 18	Four possible spatial relationships in a pixel world	33
Figure 19	Simple (top row) and complex (bottom row) geometries	33
Figure 20	Pointer structure between tables of feature geometries	34
Figure 21	Part of the New York subway system	35
Figure 22	Topological relationships between features	35
Figure 23	Schematics of a polygon overlay operation	38
Figure 24	Overlay as a coincidence function	38
Figure 25	Overlay with multiple input layers	39
Figure 26	Spatial Boolean logic	40
Figure 27	The buffer operation in principle	41
Figure 28	Inward or inverse buffer	42
Figure 29	Corridor function	42
Figure 30	Surprise effects of buffering affecting towns	
	outside a flood zone	43
Figure 31	Thiessen polygons	44

x LIST OF FIGURES

Figure 32	Areas of influence determining the reach	
	of gravitational pull	47
Figure 33	Von Thünen's agricultural zones around a market	48
Figure 34	Weber's triangle	48
Figure 35	Christaller's Central Place theory	49
Figure 36	Origin-destination matrix	50
Figure 37	The spatial scope of raster operations	52
Figure 38	Raster organization and cell position addressing	52
Figure 39	Zones of raster cells	53
Figure 40	Local function	54
Figure 41	Multiplication of a raster layer by a scalar	54
Figure 42	Multiplying one layer by another one	55
Figure 43	Focal function	55
Figure 44	Averaging neighborhood function	56
Figure 45	Zonal function	57
Figure 46	Value grids as spatial lookup tables	58
Figure 47	Three ways to represent the third dimension	59
Figure 48	Construction of a TIN	60
Figure 49	Viewshed	61
Figure 50	Derivation of slope and aspect	62
Figure 51	Flow accumulation map	63
Figure 52	Inverse distance weighting	66
Figure 53	Polynomials of first and second order	67
Figure 54	Local and global polynomials	67
Figure 55	Historical use of splines	68
Figure 56	Application of splines to surfaces	68
Figure 57	Exact and inexact interpolators	69
Figure 58	Geometric mean	71
Figure 59	Geometric mean and geometric median	72
Figure 60	Standard deviational ellipse	73
Figure 61	Shape measures	73
Figure 62	Joint count statistic	74
Figure 63	Shower tab illustrating fuzzy notions	
	of water temperature	78
Figure 64	Schematics of a single neuron	79
Figure 65	Genetic algorithms	81
Figure 66	Principles of genetic algorithms	82

Preface

GIS has been coming of age. Millions of people use one GIS or another every day, and with the advent of **Web 2.0** we are promised GIS functionality on virtually every desktop and web-enabled cellphone. GIS knowledge, once restricted to a few insiders working with minicomputers that, as a category, don't exist any more, has proliferated and is bestowed on students at just about every university and increasingly in community colleges and secondary schools. GIS textbooks abound and in the course of 20 years have moved from specialized topics (Burrough 1986) to general-purpose textbooks (Maantay and Ziegler 2006). With such a well-informed user audience, who needs yet another book on GIS?

The answer is two-fold. First, while there are probably millions who use GIS, there are far fewer who have had a systematic introduction to the topic. Many are self-trained and good at the very small aspect of GIS they are doing on an everyday basis, but they lack the bigger picture. Others have learned GIS somewhat systematically in school but were trained with a particular piece of software in mind – and in any case were not made aware of modern methods and techniques. This book also addresses decision-makers of all kinds – those who need to decide whether they should invest in GIS or wait for GIS functionality in Google Earth (Virtual Earth if you belong to the other camp).

This book is indebted to two role models. In the 1980s, Sage published a tremendously useful series of little green paperbacks that reviewed quantitative methods,
mostly for the social sciences. They were concise, cheap (as in extremely good quality/
price ratio), and served students and practitioners alike. If this little volume that you
are now holding contributes to the revival of this series, then I consider my task to
be fulfilled. The other role model is an unsung hero, mostly because it served such
a small readership. The CATMOG (Concepts and Techniques in Modern
Geography) series fulfills the same set of criteria and I guess it is no coincidence that
it too has been published by Sage. CATMOG is now unfortunately out of print but
deserves to be promoted to the modern GIS audience at large, which as I pointed out
earlier, is just about everybody. With these two exemplars of the publishing pantheon in house, is it a wonder that I felt honored to be invited to write this volume?
My kudos goes to the unknown editors of these two series.

Jochen Albrecht