RSC Drug Discovery

Edited by Lyn H Jones and Andrew J McKnight

Biotherapeutics

Recent Developments using Chemical and Molecular Biology

RSCPublishing

Biotherapeutics Recent Developments using Chemical and Molecular Biology

RSC Drug Discovery Series

Editor-in-Chief:

Professor David Thurston, King's College, London, UK

Series Editors:

Dr David Fox, Vulpine Science and Learning, UK Professor Ana Martinez, Medicinal Chemistry Institute-CSIC, Madrid, Spain Professor David Rotella, Montclair State University, USA

Advisor to the Board: Professor Robin Ganellin, University College London, UK

Titles in the Series:

- 1: Metabolism, Pharmacokinetics and Toxicity of Functional Groups
- 2: Emerging Drugs and Targets for Alzheimer's Disease; Volume 1
- 3: Emerging Drugs and Targets for Alzheimer's Disease; Volume 2
- 4: Accounts in Drug Discovery
- 5: New Frontiers in Chemical Biology
- 6: Animal Models for Neurodegenerative Disease
- 7: Neurodegeneration
- 8: G Protein-Coupled Receptors
- 9: Pharmaceutical Process Development
- 10: Extracellular and Intracellular Signaling
- 11: New Synthetic Technologies in Medicinal Chemistry
- 12: New Horizons in Predictive Toxicology
- 13: Drug Design Strategies: Quantitative Approaches
- 14: Neglected Diseases and Drug Discovery
- 15: Biomedical Imaging
- 16: Pharmaceutical Salts and Cocrystals
- 17: Polyamine Drug Discovery
- 18: Proteinases as Drug Targets
- 19: Kinase Drug Discovery
- 20: Drug Design Strategies: Computational Techniques and Applications

- 21: Designing Multi-Target Drugs
- 22: Nanostructured Biomaterials for Overcoming Biological Barriers
- 23: Physico-Chemical and Computational Approaches to Drug Discovery
- 24: Biomarkers for Traumatic Brain Injury
- 25: Drug Discovery from Natural Products
- 26: Anti-Inflammatory Drug Discovery
- 27: New Therapeutic Strategies for Type 2 Diabetes: Small Molecules
- 28: Drug Discovery for Psychiatric Disorders
- 29: Organic Chemistry of Drug Degradation
- 30: Computational Approaches to Nuclear Receptors
- 31: Traditional Chinese Medicine
- 32: Successful Strategies for the Discovery of Antiviral Drugs
- 33: Comprehensive Biomarker Discovery and Validation for Clinical Application
- 34: Emerging Drugs and Targets for Parkinson's Disease
- 35: Pain Therapeutics; Current and Future Treatment Paradigms
- 36: Biotherapeutics: Recent Developments using Chemical and Molecular Biology

How to obtain future titles on publication:

A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:

Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247, Email: booksales@rsc.org Visit our website at www.rsc.org/books

Biotherapeutics Recent Developments using Chemical and Molecular Biology

Edited by

Lyn H. Jones

Pfizer R&D WorldWide Medicinal Chemistry Cambridge, MA USA Email: lyn.jones@pfizer.com

and

Andrew J. McKnight

AnaptysBio, Inc. San Diego, CA USA Email: amcknight@anaptysbio.com

RSCPublishing

RSC Drug Discovery Series No. 36

ISBN: 978-1-84973-601-5 ISSN: 2041-3203

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2013

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

The RSC is not responsible for individual opinions expressed in this work.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Preface

Biotherapeutic modalities are often considered beyond the reach of the medicinal chemist. The language and terminology can differ significantly between small and large molecule drug discovery, and yet the aims are essentially the same. We believe chemistry has an essential role in the future success of this exciting area, and this book was conceived as an attempt to illustrate the successful partnership of chemical and molecular biology to enable and advance biotherapeutics (so-called 'chemologics').

The design-synthesis-screen-design cycle, an engine for successful small molecule drug discovery, is not usually a component of biotherapeutic discovery, yet our challenge to this community is that that need not be the case – a deeper molecular understanding should be brought to bear in the biotherapeutics field, such that the empiricism that currently persists can be addressed. The challenge will be to generate knowledge and apply those learnings prospectively to avoid making the same mistakes and accelerate our decision making – the delineation of structure–function or structure–toxicology relationships will find increasing value in the biotherapeutic space. Small molecule drug discovery has already evolved past the period of 'make lots of stuff, screen lots of stuff, and see what pops out!' It is neither inspiring nor cost effective - design strategies are now far more sophisticated, augmented significantly by advances in biophysical techniques, computational sciences and the accuracy of predictive *in silico* tools. Our belief is that these methods will be harnessed to a greater extent in the advancement of biotherapeutic discovery and optimization approaches in the future.

This book approaches the huge area of biotherapeutics from the perspective of improved *molecular design*, which draws from the synergies between chemical biology, medicinal chemistry and molecular biology in particular. Recent developments in these disciplines that have delivered drugs, clinical candidates or significantly advanced biotherapeutic discovery and design will

RSC Drug Discovery Series No. 36

Biotherapeutics: Recent Developments using Chemical and Molecular Biology

Edited by Lyn H. Jones and Andrew J. McKnight

[©] The Royal Society of Chemistry 2013

Published by the Royal Society of Chemistry, www.rsc.org

be described. A broad range of modalities are highlighted that will appeal to those working in a number of biomolecular areas (oligonucleotides, sugars, proteins and peptides). The chapters, written by an impressive list of world experts in their respective fields, detail a number of diverse therapeutic opportunities, including immunopharmacotherapy, optimized fully human or humanized antibodies, bicyclic peptide phage libraries, synthetic proteins and vaccines, micro-RNA, bacterial toxins, stabilized cyclotides, antibody–drug conjugates, peptide epitope mimicry and synthetic immunology.

Additionally, we believe this book will serve as inspiration for the medicinal chemistry community, particularly when presented with examples of how their expertise can make considerable impact in the biotherapeutics arena. Much has been made of the need to chose the 'best target' in drug discovery, but as much emphasis should then be placed on choosing the 'best modality', really, our approach should be 'modality agnostic'.

Our vision is that all biopharmaceutical chemists, whether in industry or academia, are equipped with capabilities both in small and large molecule drug discovery (and as a minimum can speak the language of, and engage in, 'biotherapies') and we hope this book will help towards that goal. In some ways, this book is a call to the traditional small molecule medicinal chemistry community to ask broader questions of their projects and therapeutic programmes. At the earliest stage of interest in a biological target we should be asking 'what therapeutic modalities shall we apply?' and both chemists and biologists are fundamental to the success of those strategic discussions, as well as the successful prosecution of the programme.

We are extremely grateful to the authors of the chapters in this book. They have not only described their areas of interest and expertise with great skill, but they have also shared compelling insights into the future opportunities for biotherapeutics. We also thank Rosalind Searle and Cara Sutton, RSC Publishing, for their editorial support and encouragement.

Lyn H. Jones and Andrew J. McKnight

Contents

Chapter 1	Synthetic Immunology <i>Thihan R. Padukkavidana, Patrick J. McEnaney and</i> <i>David A. Spiegel</i>				
	1.1	Introduction and Scope	1		
	1.2	Synthetic Ligands for Pattern Recognition Receptors			
		(PRRs)	2		
		1.2.1 Synthetic Mimics of TLR Ligands	2		
		1.2.2 Synthetic NOD Agonists	6		
		1.2.3 Peroxisome Proliferator-activated Receptor	0		
		124 C Type Lectin Pecentors (CLPs)	0		
	13	Synthetic Systems for Controlling Cell-Cell	9		
	1.5	Communication: Cutoking Mimetics	10		
	1 /	Synthetic Molecules that Modulets the Complement	10		
	1.4	Synthetic Molecules that Modulate the Complement	12		
	1.5	System	13		
	1.5	Mimicking and Hijacking Antibody Function Synthetic Molecules that Modulate T- and B-cell	15		
	1.0	Responses	17		
	17	Concluding Remarks	22		
Chapter 2	References				
	Immunopharmacotherapy for Nicotine Addiction				
	Jonathan W. Lockner and Kim D. Janda				
	2.1	Introduction	36		
	2.2	Nicotine and the Body	37		
	2.3	Nicotine and the Brain	38		
	2.4	Nicotine and the Immune System	40		

Biotherapeutics: Recent Developments using Chemical and Molecular Biology

Edited by Lyn H. Jones and Andrew J. McKnight

RSC Drug Discovery Series No. 36

[©] The Royal Society of Chemistry 2013

Published by the Royal Society of Chemistry, www.rsc.org

Contents

	2.5	Nicoti	ine and the Antibody	41
	2.6	Preclin	nical Studies of Nicotine	
		Immu	nopharmacotherapy	43
		2.6.1	Janda	44
		2.6.2	Pentel	45
		2.6.3	Sanderson	46
		2.6.4	Bunce/Bond/Aker	47
		2.6.5	Maurer/Bachmann	47
		2.6.6	Cerny	48
		2.6.7	Svensson/de Villiers	48
		2.6.8	Crystal	49
	2.7	Clinic	al Trials of Nicotine Vaccines	49
		2.7.1	Cytos Biotechnology AG	50
		2.7.2	ImmuLogic/Cantab/Xenova/Celtic Pharma	50
		2.7.3	Nabi Biopharmaceuticals/Biota	
			Pharmaceuticals	51
		2.7.4	Chilka Limited	51
		2.7.5	Independent Pharmaceutica AB	52
		2.7.6	Selecta Biosciences	52
		2.7.7	Pfizer Vaccines Ltd	52
	2.8	New I	Directions to Improve Immunogenicity	53
		2.8.1	Carrier	54
		2.8.2	Delivery Method	54
		2.8.3	Adjuvants	55
		2.8.4	Hapten Design Coverti No Nigoting Vaccing Should Pa	30
		2.8.3	Viewed as a "Magic Bullet" Cure	57
		286	Miscellany	58
	20	2.0.0 Concl	usions and Future Prospects	50
	Ack	nowled	gements	60
	Refe	rences	gements	60
	Reit	i chees		00
3	Car	bohvdra	ate Vaccines	68
	Ben	jamin S	Schumann, Chakkumkal Anish,	
	Clar	nev L. I	Pereira and Peter H. Seeberger	
		2	Ŭ	
	3.1	Introd	luction	68
		3.1.1	Cell Surface Glycans as Vaccine Candidates	69
		3.1.2	Immunology of Carbohydrate-based Vaccines	72
		3.1.3	Production and Manufacture of	
			Glycoconjugate Vaccines	74
		3.1.4	Opportunities and Challenges of Vaccines	
			Based on Synthetic Oligosaccharides	77
	3.2	Chemi	ical Immunology of Glycoconjugate Vaccines	77
		3.2.1	Effect of the Glycan on the Immune Response	78
			3.2.1.1 Saccharide Length	78
			3.2.1.2 Epitope Charge	79

Chapter

Contents

		3.2.1.3 Exposed Epitopes	80				
		3.2.1.4 Monosaccharide Modifications	82				
	3.2.2	Effects of Conjugation on the Immune					
		Response	83				
		3.2.2.1 Conjugation Chemistry	83				
		3.2.2.2 Immunogenicity of Linker/Spacer					
		Constructs	83				
		3.2.2.3 Antigen Density	83				
		3.2.2.4 T Cell Epitopes	84				
		3.2.2.5 Carrier Priming and Carrier-Induced					
		Epitope Suppression	85				
	3.3 Novel I	Developments in Vaccine Design	86				
	3.3.1	Multicomponent Vaccines	86				
	3.3.2	Novel Carrier Platforms	87				
	3.3.3	Rational Vaccine Design	88				
	3.4 Conclu	sions	89				
	Acknowledge	ements	90				
	References		90				
Chanton 1	Concretion a	and Maturation of Thoronoutia Antibodies via					
	Generation and Iviaturation of Inerapeutic Antibodies via						
	<i>In vitro</i> Somatic repermutation						
	Durin V. Huiz						
	4.1 Antibo	dies as Therapeutic Agents	105				
	4.2 Approa	Approaches to the Generation of Therapeutic					
	Antibo	dies	106				
	4.2.1	Recovery of Antibodies from <i>In Vivo</i> Sources	108				
	4.2.2	Recovery of Antibodies from <i>In Vitro</i> Sources	110				
	4.3 Mamm	alian Cell Display	113				
	4.4 Somatie	c Hypermutation (SHM)	117				
	4.5 Combin	ning Mammalian Cell Display with In Vitro	11,				
	SHM	ing inaninanan con Display with in the	119				
	References		123				
	References		125				
Chapter 5	Synthetic Protein Biologics						
	Benjamin G.	Davis					
	5.1 Introdu	action and Strategy	130				
	5.1.1	Synthetic Biology as a Parallel to Synthetic					
		Organic Chemistry	130				
	5.1.2	Synthetic Biology as the Driver for Chemical					
		Medicine	132				
	5.1.3	Current Strategic Small-Mindedness and					
		Opportunities Beyond It	133				
	5.1.4	Current Limitations Provide Further					
		Opportunities	134				

ix

	5.2	Synth	etic Vacc	ines	135
	5.3	Pegyla	ation Tec	hnology and the Pegylation of Proteins	137
	5.4	Synth	etic Biolo	ogics with Payloads	139
	5.5	Futur	e Prospec	ets and Conclusions	140
	Refe	erences			142
Chapter 6	Rec Edn	ent Adv nund I.	v ances in Graziani	Antibody–Drug Conjugates and L. Nathan Tumey	145
	6.1	Introc	luction		145
	6.2	Recen	t Develo	pments in ADC Linker Technology	146
		6.2.1	Cleavab	ble Linkers	146
		6.2.2	Nonclea	avable Linkers	153
		6.2.3	Impact	of Linkers on Biophysical Properties	155
	6.3	Recen	t Develo	pments in Site Specific Conjugation	
		of AD	DCs		156
		6.3.1	Enginee	ered Cysteines	157
		6.3.2	Unnatu	ral Amino Acids as Reactive Handles	
			for Ant	ibody Conjugation	160
		6.3.3	Chemic	al and Enzymatic Methods for	
	<i>.</i>	D	Site-Spe	ecific Protein Conjugation	162
	6.4	Recen	t Develo	pments in ADC Metabolism and PK	164
		6.4.1	Payloac	Release In Targeted Tissues	165
		6.4.2	Nem To	ure Payload Release In Circulation And	177
		612	Dhormo	alignetics / Dharmanadynamics	167
		0.4.5 6 4 4		cokinetics/Pharmacodynamics	169
	65	0.4.4 Summ	ADC C	Future Prospects	160
	0.5 Refe	erences	lary and	Future Prospects	170
	Ken	erences			170
Chapter 7	Mic Dev Ster	croRNA velopme rghios A	Biothera nt Perspe Athanasio.	apeutics: Key Challenges from a Drug ctive s Moschos	176
	7.1	Introc	luction		176
	7.2	Micro	RNA Bi	ogenesis	180
		7.2.1	Genom	ic Organization of Endogenous	
			miRNA	LS C	181
		7.2.2	Virus-E	ncoded miRNAs	182
			7.2.2.1	Herpesviruses	182
			7.2.2.2	Adenovirus	183
			7.2.2.3	RNA Viruses: an Unlikely, yet	
				Flexible Group of Vectors	183
		7.2.3	Canoni	cal miRNA Maturation	184
			7.2.3.1	Excision of miRNA Precursors from	
				Primary Transcripts	185
			7.2.3.2	Nuclear Export of Pre-miRNAs	186

			7.2.3.3	Removal of the Hairpin Loop	186		
			1.2.3.4	Protein Complexes	187		
			7235	Guide Strand Selection	188		
		7.2.4	EXP5 a	nd Safety of Ectopic RNAi Mediator	100		
			Express	ion	189		
		7.2.5	Alterna	tive Maturation Pathways	190		
			7.2.5.1	Mirtrons and Simtrons	190		
			7.2.5.2	miRNAs Encoded in Small Nucleolar			
				RNAs	192		
			7.2.5.3	miR-451	193		
			7.2.5.4	miRNA Offset RNAs	193		
			7.2.5.5	Viral Lessons on RNAi Precursor	10.4		
		7.0 (Maturation	194		
	7.0	/.2.6	Post-Ir	anscriptional Processing of miRNAs	195		
	7.3	mIRN	A Functi	ion	198		
		7.3.1	Molecu	lar Actions of miRNAs: Therapeutic	100		
			Challen	ges and Opportunities	198		
			7.3.1.1	Ago2-Mediated Translational	100		
				Repression	198		
			7.3.1.2	Slicer-Independent Translational	200		
			7 2 1 2	Repression	200		
	74	Canal	/.3.1.3	Other Mechanisms of miRINA Action	204		
	/.4		wiDNA Knowledge Deep on Distherementies				
		mikn	A Know	ledge base on Biotherapeutics	207		
	D	Devel	opment E	Efforts	207		
	Refe	erences			209		
Chapter 8	Nov	el Ther	apeutic A	gents from Bacterial Toxins	224		
	Joh	n A. Ch	naddock				
	8.1	Introc	luction		224		
	8.2	Thera	peutic O	pportunities from Cytotoxic Bacterial			
		Toxin	S		226		
		8.2.1	Pre-Clir	nical Studies with Cytotoxic Bacterial			
			Toxin I	Domains	226		
			8.2.1.1	Diphtheria Toxin-Based			
				Opportunities	226		
			8.2.1.2	Pseudomonas Exotoxin-Based			
				Opportunities	227		
		8.2.2	Clinical	Application of Cytotoxic Bacterial			
			Toxin I	Domains	228		
	8.3	Thera	peutic Op	oportunities from Non-Cytotoxic			
		Bacter	rial Toxir	15	229		
		8.3.1	Clinical	Application of Natural Toxin			
			Product	S	229		

		8.3.2	The Domain Structure of BoNT as a Template					
			for New Product Engineering	231				
		8.3.3	Utilising Toxin Domains to Deliver					
			Therapeutic Cargo	232				
		8.3.4	Harnessing the Properties of Clostridial					
			Neurotoxin Domains in Engineered Hybrids	233				
			8.3.4.1 Creation of Improved Product					
			Opportunities	233				
		8.3.5	Targeted Secretion Inhibitors	234				
		0.010	8.3.5.1 Concept and Potential	234				
			8.3.5.2 Implementing the Concept at the					
			Research Phase	234				
			8.3.5.3 Development of Recombinant TSI	235				
			8.3.5.4 Pre-Clinical Evidence of TSI					
			Development	236				
			8.3.5.5 Targeted Secretion Inhibitors in the					
			Clinic	237				
	8.4	Concl	usions	238				
	Refe	erences		239				
Chapter 9	Pha	ige Sele	ction of Mono- and Bicyclic Peptide Ligands	241				
	Shiy	Shiyu Chen and Christian Heinis						
	9.1	Introd	luction	241				
	9.2	Phage	Selection of Monocyclic Peptides	242				
		9.2.1	Phage Display Systems	242				
		9.2.2	Disulfide-Cyclized Peptide Phage Libraries	245				
		9.2.3	Phage Panning of Disulfide-Cyclized Peptide					
		_	Libraries	246				
	9.3	Exam	ples of Phage-Selected Monocyclic Peptides	247				
		9.3.1	Ligands of Vascular Endothelial Growth					
			Factor	247				
		9.3.2	Cyclic Peptide Erythropoietin Receptor Agonists	248				
	9.4	Phage	Selection of Bicyclic Peptides	250				
		9.4.1	Bicyclic Peptides	250				
		9.4.2	Bicyclization of Peptides on Phage	252				
		9.4.3	Bicyclic Peptide Phage Libraries	252				
		9.4.4	Phage Panning of Bicyclic Peptide Phage	0.5.4				
	0.5	-		254				
	9.5	Exam	ples of Phage-Selected Bicyclic Peptides	254				
		9.5.1	Inhibitors of Plasma Kallikrein	255				
		9.5.2	Inhibitors of Urokinase-Type Plasminogen	0.5.5				
	0 (a .	Activator	256				
	9.6	Concl	usions	257				
	Ack	nowled	gments	258				
	Refe	erences		- 258				

Chapter 10	Chemical Approaches for Localization, Characterization and Mimicry of Peptide Epitopes <i>Paul R. Werkhoven and Rob M.J. Liskamp</i>				
	10.1	Introdu	ction. Definitions and Different Types of		
	1011	Enitone	s	263	
	10.2	Shape a	nd Structure of Epitopes	265	
	10.2	Determ	ination of the Primary Secondary or Tertiary	200	
	10.5	Structur	re of Epitopes	268	
	10.4	Applica	tions of Pentide Epitone Mimics	200	
	10.4	10 4 1	Enitope Mimics as Synthetic Vaccines	270	
		10.4.1	Epitope Mimics as Lynchetter Vacenies	270	
		10.4.2	(Antagonists) of Protein_Protein		
			Interactions	271	
		10/3	Paratone Mimics as Synthetic Antibodies	271	
	10.5	10.4.5 Mimior	ratatope Minnes as Synthetic Antibodies	271	
	10.5	10 5 1	Single Linear Pantides as Continuous	212	
		10.3.1	Enitone Mimies	272	
		10 5 2	Constraining Particles for Optimization of	212	
		10.3.2	Structural Miniary	272	
		10 5 2	A southly of Dantidas for Miniamy of	212	
		10.5.5	Discontinuous Enitenes	274	
			10.5.2.1 Assembly of Dentides by the	274	
			10.5.3.1 Assembly of Peptides by the		
			Preparation of Dimers or	075	
			Multimers	275	
			10.5.3.2 Assembly of Peptides by	075	
			Scaffolding	275	
		10 5 4	10.5.3.3 Scaffolds	276	
		10.5.4	Requirements for Discontinuous Epitope		
		~ .	Containing Protein Mimics	277	
	10.6	Conclus	sions	278	
	Refer	ences		278	
Chantor 11	Cysti	no Knot I	Miara Protoins	285	
Chapter 11	Bill E	Idridge.	Simon Robins and Duncan McGregor	203	
	11.1	Cystine	-Knot Micro-Proteins	285	
		11 1 1	Conotoxins and Venom-Derived CK		
			Micro-Proteins	286	
		1112	Human CK Micro-Proteins	287	
		11.1.2	Plant-Derived CK Micro-Proteins	287	
	11.2	I se ac	Scaffolds	207	
	11.4	11 2 1	Loon Grafting	200	
		11.2.1	Display Libraries Using Loop	200	
		11.2.2	Replacement	200	
			Replacement	200	

	11.2.3 MCOTI-II as a Loop Replacement		
	Scaffold	289	
11.3	Stability of Selected CK Micro-Proteins	290	
11.4	Potential Therapeutic Applications of CK		
	Micro-Proteins	293	
References			
Subject Index		298	

xiv

CHAPTER 1 Synthetic Immunology

THIHAN R. PADUKKAVIDANA,^{a,†} PATRICK J. McENANEY^{a,†} AND DAVID A. SPIEGEL*^{a,b}

^a Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA; ^b Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, SHM B350B, New Haven, CT 06520, USA *Email: david.spiegel@yale.edu

1.1 Introduction and Scope

The field of immunology has become increasingly lucid at the level of atoms and molecules. Owing also to advances in synthetic chemistry, the rational design and construction of synthetic systems that perform complex immunological functions – an area termed synthetic immunology – has come within reach. Here we will highlight one facet of synthetic immunology concerned with the development of low-molecular weight ("small"), synthetic molecules that are capable of functionally mimicking biological molecules. It is important to note at the outset that this article does not aim to be comprehensive in scope. At the expense of being all-inclusive, we focus on several specific contributions, which highlight how advances in immunology and chemistry have proven mutually complementary. We have divided this chapter into four subsections: (1) synthetic ligands for pattern recognition receptors, including toll-like receptors (TLRs), NOD-like receptors (NLRs), nuclear family receptors and C-type lectins, (2) synthetic molecules that modulate the complement system,

[†]These authors contributed equally to this work.

Edited by Lyn H. Jones and Andrew J. McKnight

RSC Drug Discovery Series No. 36

Biotherapeutics: Recent Developments using Chemical and Molecular Biology

[©] The Royal Society of Chemistry 2013

Published by the Royal Society of Chemistry, www.rsc.org

(3) synthetic systems for controlling cell-cell communication, including chemokine/cytokine mimetics, and (4) synthetic ligands for modulating adaptive immune processes, including T-cell and B-cell functions.

We regret not being able to cover all of the exciting developments that might be classified into the area of Synthetic Immunology. Such areas include: synthetic vaccine development, as this topic is covered elsewhere in this book;¹ synthetic modulators of cellular signaling processes, as the functions of such molecules extend beyond the immune system;^{2–5} protein-based and cellular immunotherapies, including therapeutic monoclonal antibodies;^{6–9} immunomodulator strategies involving nanoparticles or virus-like particles;^{10–13} DNA- and RNA-based therapeutics;^{14–16} and strategies for controlling cellular differentiation.^{17–20} Lead references to each of these areas are provided for interested readers.

It is our hope that this chapter will serve as a broad-based introduction for biomedical scientists, including chemists interested in extending their activities into the immunological realm, as well as immunologists looking to learn about how modern synthetic chemistry can enhance fundamental biological understanding. Ultimately, we believe that the intellectual perspective residing at the interface between synthetic chemistry and immunology will enable scientific advances that were never before thought possible, thus proving critical to the furtherance of basic biomedical research and patient care.

1.2 Synthetic Ligands for Pattern Recognition Receptors (PRRs)

Pattern recognition receptors (PRRs) are a diverse class of proteins that function canonically as part of the innate immune response. These receptors recognize pathogen-associated molecular patterns (PAMPs), which are widely conserved, repeating motifs found within pathogens and not within hosts, as well as damage-associated molecular patterns (DAMPs), which are host-derived molecules that arise from tissue damage.^{21,22} Improper activation of these receptors has been shown to cause hyper-inflammatory disease states, and extensive research efforts have focused on identifying PRR antagonists. Such developments have been reviewed elsewhere.^{23–33} In this section we discuss a few select examples of molecules that functionally mimic the natural ligands of PRRs.

1.2.1 Synthetic Mimics of TLR Ligands

Toll-like receptors (TLRs) were originally discovered as important receptors for *Drosophila melanogaster* embryonic development,³⁴ and were later found to play a critical role in innate immunity in humans.³⁵ Extensive research during the past two decades has revealed the TLR superfamily to contain more than ten different family members (TLRs 1–13).²²

TLR2 is capable of binding various bacterial lipopeptides,²² as well as self-derived ligands such as high mobility group box 1 (HMGB1) and products of lipid oxidation.^{36,37} Interestingly, TLR2 preferentially forms heterodimers with other TLR members (e.g., TLRs 1 and 6), thus expanding its ligand binding profile.³⁸ Indeed, synthetic lipopeptide collections, designed to mimic the acylated amino terminus of bacterial lipoproteins.^{39,40} have proven critical to understanding the different adaptor molecules involved in TLR2 function. These studies have led to the understanding that the TLR2 heterodimer formed in response to a given ligand depends both on the arrangement of fatty acyl groups and the sequence of peptide backbones in that ligand.^{38,41} For example, synthetic tri-acylated lipopetpides, such as Pam_3CSK_4 (Figure 1.1, Panel A, 1), selectively engage the TLR2–TLR1 heterodimer, while di-acylated analogs. such as Pam₂CSK₄ (2), bind both TLR2-TLR1 and TLR2-TLR6 heterodimers.⁴⁰ Modification of the peptide backbone in Pam_2CSK_4 with the decapeptide GDPKHSPKSF provides fibroblast-stimulating lipopeptide-1 (FSL-1, 3),⁴² which is selective for the TLR2-TLR6 complex.³⁸ Å crystal structure of the TLR1–TLR2–lipopeptide provides some insight into the molecular origin of this ligand-dependence.⁴³ Furthermore, the specific TLR2 heterodimer formed in response to ligand stimulation can have a significant effect on downstream biological outputs. For example, synthetic ligands that induce TLR2-TLR1 heterodimer formation (e.g., Pam₃CSK₄) have been

Figure 1.1 TLR 2 and TLR4 ligands. (A) Synthetic ligands capable of agonizing TLR2-containing heterodimers. (B) Lipid A-derived ligands for TLR4 including natural *E. coli* lipid A (4) and monophosphoryl lipid A (5). (C) Lipid A derivatives eritoran (6), aminoalkyl glucosaminide 4-phosphates (AGPs, 7), and non-carbohydrate ligand E6020 (8).

shown to enhance regulatory T-cell (T_{reg}) proliferation to a larger extent than those leading to other heterodimeric TLR2 complexes.⁴⁴ Conversely, a small molecule inhibitor of the TLR2–TLR1 complex was recently discovered through a cell-based high-throughput small molecule screen.⁴⁵ Efforts to expand the repertoire of TLR2-targeted compounds offer hope of providing chemical insights into immunomodulatory functions, while also delivering useful lead molecules for studying pathogen recognition, cancer progression, and other disease-relevant biological processes.^{21,46}

TLR4 recognizes lipopolysaccharide (LPS), a component of the Gramnegative bacterial cell wall. Stimulation of TLR4 leads to rapid induction of various pro-inflammatory processes including cytokine release and immune cell differentiation.²² TLR4 ligands can serve as useful adjuvants for vaccine development,⁴⁷ however activation of this receptor is also associated with autoimmune diseases, neuropathies, and septic shock.⁴⁸ Therefore there has been significant interest in identifying both synthetic agonists and antagonists of TLR4.49,50 Efforts to this end have primarily started from lipid A (Figure 1.1, Panel B, 4) – the hydrophobic portion of LPS – and have led to the development of numerous synthetic immunomodulators. For example, early studies demonstrated that removal of the anomeric phosphate group in 4 can ameliorate some of the molecule's toxic effects in humans. The resulting compound, monophosphoryl lipid A (MPL, 5), retains its TLR4 agonist activity and has been approved by the FDA, for use as a vaccine adjuvant.⁵¹ Further investigations into synthetic lipid A analogs have led to a general model relating ligand structure with TLR4-modulating activity: agonists are believed to form "conical" structures in solution - wherein the cross-section of the hydrophobic portion of the molecule is greater than that of the hydrophilic one - whereas antagonists are believed to form "cylindrical" shapes such that hydrophobic and hydrophilic cross-sections are nearly identical.⁴⁷ Indeed, this model is supported by extensive structure-activity relationships along with recent crystallographic studies.⁵²⁻⁵⁴ For example, compounds lacking hydrophobic acyl substituents – such as eritoran (Figure 1.1, Panel C, 6) – serve as receptor antagonists.^{55,56} On the other hand, agonist structures have been obtained from replacement of labile phosphate moieties with negatively charged bioisosteres (e.g., sulfate), substitution of ester-branched acvl groups with corresponding alkyl ethers, and removal of the lipid A reducing sugar to afford aminoalkyl glucosaminide 4-phosphates (AGPs, 7).^{50,57} Complete replacement of the lipid A disaccharide with a simple phosphatidylethanolamine-based construct provides agonist E6020 (8), which is believed to retain the "conical" conformation and is capable of eliciting TNF- α production from whole blood, as well as IL-6 production and NF-KB activation in cell lines expressing TLR4.47,58-60 Additional TLR4 modulators have been obtained using "glycocluster" strategies,⁶¹ attaching LPS to magnetic nanoparticles,⁶² and other approaches.^{63–65} Furthermore, the discovery of TLR4-active compounds structurally unrelated to lipid A, such as paclitaxel, heme derivatives, and opioids, will undoubtedly lead to new opportunities for developing synthetic immunomodulators.

TLR7/8 are expressed in a variety of immune cells of the myeloid lineage and are intimately involved in anti-viral immunity by triggering the release of type 1 interferons.⁶⁶ The first synthetic ligands for TLR7/8 were discovered by 3M scientists in cellular screens of nucleoside analogs for antiviral applications.⁶⁷ Interestingly, although these efforts led to the development of the class of imidazoquinoline derivatives – including Imiquimod (Figure 1.2, Panel A, 9), which was first marketed in 1997 for treating complications of human papilloma virus (HPV) infection⁶⁸ – it was not until much later that the mechanism of these compounds as TLR7/8 agonists was confirmed.⁶⁹ Over the past decade, derivatives of imidazoquinolines, including resiguimod (10) and S-27609 (11).⁷⁰ have proven to be effective TLR7-stimulating adjuvants resulting in anti-tumor activity⁷¹ and polarization of immune cells towards T_{H1} responses.^{70,72} Like single-stranded RNA (ssRNA), which is the natural ligand for TLR7/8, small molecule agonists such as 9-11 activate macrophages to produce pro-inflammatory cytokines (IFN, TNF-a and others) via the TLR7 MyD88-dependent signaling pathway.⁶⁹ Furthermore, homology modeling studies suggest that both ssRNA and small molecule 10 have overlapping binding sites on TLR8, suggesting that imidazoquinolines are both structural and functional mimics of natural ligands.^{68,73,74} Further progress in illuminating the structural details of TLR7/8 interactions with their ligands will undoubtedly lead to improvements in synthetic ligand mimics.

Like TLR7/8, TLR9 is localized to endolysosomal compartments, recognizes foreign nucleic acids, and induces a type-1 IFN response upon activation.⁷⁵

Figure 1.2 Ligands for TLRs 8, 9, and 10. (A) TLR7/8 ligands based upon an imidazilone core structure, including Imiquimod (9), Resiquimod (10) and S-27609 (11). (B) One example of the "immunomer" class of TLR9 ligands.

Unlike TLR7/8, however, the natural ligand for TLR9 is unmethylated CpG oligodeoxynucleotides (CpG DNA), which is present in both bacterial genomes and DNA viruses. Synthetic agonists for TLR9 that take advantage of structural similarities with natural nucleic acid ligands have been developed. For example, having determined that an accessible 5'-end of CpG-containing oligodeoxynucleotides is necessary for immunomodulatory activity of synthetic TLR9 ligands,⁷⁶ researchers at Hybridon have developed a class of "immunomers" (12) containing short CpG DNA sequences chemically connected through synthetic 3'-3' linkers.⁷⁷ Interestingly, both the chemical composition and the length of "immunomer" derivatives were found to impact their immunomodulatory effects.^{78–80} Indeed, immunomers containing only 5 or 6 nt in each segment possess immunostimulatory properties in both mice and humans.⁸¹ Also, replacement of phosphate backbone with phosphorothioate motifs,^{82,83} or incorporation of 5'-dinucleotides containing non-natural bases,⁷⁸ can confer enhanced stability and alter patterns of cytokine secretion in tissue culture systems. Evaluation of synthetic TLR9 agonists in human clinical trials as vaccine adjuvants, and immunotherapies for allergy, cancer, and infectious disease are currently underway.⁸⁴

1.2.2 Synthetic NOD Agonists

Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of soluble cytosolic proteins consisting of over twenty members. NLRs are believed to detect cytosolic PAMPs derived from foreign agents as well as danger-associated molecular patterns (DAMPs) from injured host tissue. NLRs promote NF- κ B and mitogen-activated protein kinase (MAPK) signaling and complex with the inflammasomes to upregulate proinflammatory IL-18, IL-1 β , IL-6, TNF, and type I IFN secretion.⁸⁵

NOD1 has been shown to recognize the dipeptide, D-glutamyl-mesodiaminopimelic acid (iE-DAP),⁸⁶ present as a component of bacterial peptidoglycan (13), which activates the NF-κB pathway, enhancing the production and secretion of several cytokines.⁸⁷ Hasegawa and coworkers have chemically synthesized iE-DAP derivatives to identify minimal motifs responsible for NOD1 activation.⁸⁸ It was found that the iE-DAP structure serves as a core motif for NOD-1 activation; functionalization of this group with substituted alkyl chains (14), benzamides (15, 16), or short peptides (17) enhances NOD-1 activation. The authors speculate that this enhancement may result from increased hydrophobicity of the molecules compared to the parent compound (18), which enhances their interactions with the cell membrane. Notably, compound 14 was found to be several hundred fold more active than the original iE-DAP.⁸⁹ Moreover, it was found that iE-meso-DAP stereoisomer showed a 10 to 10,000 fold greater ability to stimulate NOD-1-mediated NF-κB activation as compared to other stereoisomers.⁸⁸

NOD2, a close relative of NOD1, is expressed in several phagocytic cells, including monocytes, granulocytes, and dendritic cells.⁹⁰ Its natural ligand is believed to be the MurNAc-L-Ala-D-isoGln muramyl dipeptide (MDP,

Figure 1.3, Panel A, red box),⁹¹ which is found in both Gram-positive and Gram-negative bacteria. In a similar manner to NOD1, NOD2 ligation leads to the secretion of IL-12, IL-8, IL-6, and TNF- α . Almost four decades of research on MDPs have led to the development of numerous analogs,⁹² including mifamurtide (Figure 1.3, Panel C, **19**), approved for combination chemotherapy treatments.⁹³ One of the primary reasons for the development of these synthetic molecules was the potent pyrogenicity and somnogenicity induced by the natural ligand that made it relatively unattractive as an adjuvant. These derivatives of MDP have been shown to have greater biological activity and lack the

Figure 1.3 Natural and synthetic ligands for NOD 1 and NOD2. (A) Generic structure of bacterial peptidoglycan (13) with boxes indicating the components recognized by NOD1 (blue) and NOD2 (red). (B) Synthetic NOD1 agonists with various substitution on the N-terminus of iE-DAP (blue box). (C) Two NOD2 agonists mifamurtide (19) and MDP-C (20). Red boxes indicate the regions of natural peptidoglycan that are being mimicked.

undesirable characteristics of MDP, and have been extensively discussed elsewhere.^{92,94} Other efforts to optimize the biological effects of MDP have led to the identification of MDP-C (**20**), which is both apyrogenic and nonallergenic, yet potently immunostimulatory. Here, Yang *et al.* utilized a novel mesh-bagged gathered-bunch combinatorial chemistry strategy (abbreviated MBGB) to synthesize MDP analogs on solid supports.⁹⁵ They produced over 2300 MDP derivatives and tested their ability to stimulate murine macrophages to eliminate tumor cells. This work has resulted in the discovery of the novel compound MDP-C (**20**), which significantly enhances dendritic cell (DC)-mediated, IL-2, IL-12 release and the induction of cytotoxic activity by cytotoxic T-cells (CTLs) *in vitro*. Finally, MDP-C has also been shown to have Hepatitis B Surface Antigen specific antibody response *in vivo*, with minimal pyrogenicity (in rabbits), passive cutaneous anaphylaxis (in rats), and low toxicity (in mice).⁹⁶

Researchers have also explored the use of cocktails of synthetic PRR agonists to stimulate NLRs and TLRs simultaneously. Such a combinatorial treatment may more closely mimic a bacterial infection compared to single agents, and in turn induce a potent immune reaction. Indeed, Tada *et al.* combined two synthetic NOD2 agonists (MDP and N-acetylmuramyl-L-aranyl-L-isoglutamine (MDP-LL)), two NOD1 agonists (FK565 and FK156),⁹⁷ and various TLR agonists (TLR4- lipid A, TLR2- Pam₃CSSNA, TLR3- poly (I:C), and TLR9- CpG DNA) to stimulate DC cultures. Combination treatments led to the synergistic upregulation of IL-12 and IFN- γ production by T-cells, indicative of a T_H1-response.⁹⁸ Utilizing complex cocktails to mimic the natural repertoire of PRR ligands is likely to prove increasingly important to synthetic immunology strategies in the future.

1.2.3 Peroxisome Proliferator-activated Receptor Gamma

Peroxisome proliferator-activated receptor gamma (PPAR- γ) is a ligandactivated transcription factor that plays an important role in regulating storage and catabolism of dietary fats, and whose stimulation is also associated with various immunosuppressive effects. These include inhibition of DC maturation, $CD4^+$ T-cell differentiation into $T_H 17$ cells,⁹⁹ and the suppression of pro-inflammatory cytokine release.¹⁰⁰ Endogenous PPAR-γ ligands are similar to one another in that they are highly lipophilic and contain long, polyunsaturated fatty acid structural motifs (e.g., docosahexanoic acid, arachidonic acid, eicosapentaenoic, and gamolenic acid).¹⁰¹ Among these ligands, 15-deoxy- $\Delta^{12,14}$ -prostaglandin J₂ (15d-PGJ₂, Figure 1.4, **21**), which is formed as a terminal product of the cyclooxygenase-2 pathway, has proven especially useful in studying PPAR- γ .¹⁰² Perhaps the most widely studied synthetic PPAR- γ ligands were not originally developed for their immunomodulatory effects; the class of thiazolidinediones (TZDs) or "glitazones" which include pioglitazone (22), troglitazone (23) and others - were discovered from screening efforts in rodent models for insulin resistance and have been used for over 28 years as therapeutics for diabetes.¹⁰¹ Their mechanisms of action have only recently been shown to involve PPARs.¹⁰³ The critical features

Figure 1.4 Natural and synthetic ligands for PPAR-γ. Red stars in structures 22 and 23 indicates the C-5 position of the thiazolidinedione core, which is prone to epimerization.

of these synthetic ligands that allow binding to PPAR- γ are believed to include the 2,4-thiazolidinedione structural motif, which mimics the head-group of a lipid molecule, and the aromatic, unsaturated, tail, which mediates hydrophobic contacts with the receptor. This structural model is supported by apoand ligand-bound crystal structures of PPAR- γ .^{104,105} Optimization of TZD compounds using direct PPAR- γ binding assays have revealed that only compounds in the (*S*)-enantiomeric series at C-5 (indicated with red stars in Figure 1.4) bind the receptor.¹⁰⁶ Because the thiazolidinedione nucleus is prone to epimerization at this position, next-generation PPAR- γ modulators have incorporated head groups of increasing kinetic stability such as tyrosine derivatives (e.g., GI 262570, **24**),¹⁰⁷ and the achiral GW 0207 (**25**).¹⁰⁸ Explorations into the immunomodulatory activities of PPAR- γ ligands are still at an early stage; future studies that combine efforts of chemists and immunologists will surely provide insight into fundamental and biomedical applications for PPAR- γ ligands.¹⁰⁹

1.2.4 C-Type Lectin Receptors (CLRs)

C-type lectin receptors (CLRs) comprise a group of membrane-bound Ca²⁺-dependent carbohydrate-binding proteins found on "professional" antigen presenting cells (APCs) such as macrophages, DCs, and B-cells.¹¹⁰ Although there are up to 14 different types of CLRs, we deal here with synthetic strategies for modulating only one of these family members – the DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN).^{111,112} Like other CLRs, DC-SIGN can recognize glycosylated peptides and proteins,¹¹³ leading to internalization, antigen processing, presentation on MHC class II molecules, and cross-presentation on MHC class I molecules.¹¹⁴

Notably, DC-SIGN expression is restricted to DCs, it possesses a dual specificity for both high-mannose and Lewis-type carbohydrates,¹¹⁵ and functions to maintain immune homeostasis through cell adhesion and intracellular signaling. Interest in identifying synthetic DC-SIGN modulators has arisen due to the protein's intriguing function as a receptor for pathogen entry; binding to DC-SIGN has been shown to promote infections by both viral and bacterial pathogens. Structural studies have provided insight into DC-SIGN-ligand binding, and numerous DC-SIGN modulators have developed. For example, researchers have explored the binding of various carbohydrates to DC-SIGN, most of which bind with relatively low affinity, and other groups have aimed to enhance interaction strength using multivalent ligands. Prost and colleagues have disclosed an approach wherein functionalization of a (-)-shikimic acid core structure with mannose derivatives, followed by bioconjugation with bovine serum albumin (BSA), afforded a ligand capable of stimulating DC-SIGN-mediated endocytosis as well as JNK signaling.¹¹⁶ Kiessling and coworkers have identified non-carbohydrate guinoxalinone-based DC-SIGN ligands using a high-throughput screening assay, followed by focused medicinal chemistry efforts.^{117,118}

In a separate study, Srinivas *et al.* explored whether a synthetic glycotargeting approach could be utilized to induce antigen uptake and crosspresentation by DCs via the MR or DC-SIGN.¹¹⁹ To achieve this, the authors developed a fully synthetic glycocluster conjugate containing a 25 amino acid peptide conjugated with either Man α -6Man or a mixture of Lewis^a and Lewis^x oligosaccharides (not shown), which targeted both the MR and DC-SIGN receptor. Romero *et al.* specifically chose a melanoma antigen, A27L Melan-A/Mart-1 epitope,¹²⁰ to evaluate if the synthetic glycocluster could facilitate the cross-presentation of this antigen to elicit a CTL response, with the aim of developing a vaccine. Interestingly, their synthetic molecule was not only able to bind to both MR and DC-SIGN in SPR experiments, but it was also able to induce internalization into DCs, and to stimulate Melan-A-specific CD8⁺ T-cells to induce IFN- γ production *in vitro*. This work serves as an interesting example of how synthetic mimics of biomacromolecules can elicit receptorspecific, targeted pro-inflammatory responses.

1.3 Synthetic Systems for Controlling Cell–Cell Communication: Cytokine Mimetics

The immune system relies heavily on intercellular communication to regulate critical surveillance and defense functions. Cytokines are a diverse family of soluble molecules that have been divided into subtypes based on their function, secreting cell type, and presumed target. These subtypes include chemokines, which trigger cell movement or chemotaxis; interleukins, which are key players in transferring information between leukocytes; and interferons, named for their ability to interfere with viral replication. Because of their roles in coordinating both pro- and anti-inflammatory processes, cytokines are critical for

maintaining immune homeostasis. Small molecules capable of replicating cytokine functions have been widely sought.¹²¹ Here we discuss several examples of synthetic molecules capable of functioning as cytokine mimics.

Chemokines are a class of small proteins (8–12 kDa) that are primarily responsible for stimulating leukocyte migration, which is critical for their activation, differentiation, and survival.¹²² Chemokine receptors are members of the class of G-protein coupled receptors (GPCRs), which contain seven transmembrane-spanning domains and elicit a complex downstream signaling cascade.¹²² Here we focus on a few examples of how synthetic approaches to mimic the natural chemokines have led to novel ligands for several chemokine receptors, including CCR1, CCR3, and CXCR3.

CCR1 interacts with natural peptide ligands CCL3 and CCL5, and triggers chemotaxis of monocytes, macrophages, and T-cells.¹²³ Jensen *et al.* have recently identified two small molecule metal chelators – 2,2-bipyridine and 1,10-phenanthroline (Figure 1.5, **26**) – which can serve as chemokine mimics. When these compounds are complexed to Cu^{2+} or Zn^{2+} , they are capable of inducing G-protein signaling by binding CCR1. Interestingly, the mechanism of this effect was found to involve binding of the metal–chelator complex deep within a cleft in CCR1, leading to antagonism of the CCL5 binding interaction and enhancement of CCL3 association.¹²⁴

CCR3 is found primarily on eosinophils, and is involved in modulating allergic reactions when activated by its natural ligand CCL11/eotaxin.¹²⁵ Using a high-throughput cell-based small-molecule screen involving FACS-based detection of changes in cellular morphology, researchers have identified the chemokine mimic CH0076989 (27).^{126,127} Mechanistic studies have revealed that 27 can promote chemotaxis of a pre-B lymphoma cell line in a CCR3-specific manner, albeit not as potently as CCL11. Follow-up homology modeling studies have suggested that the binding site for 27 on CCR3 is similar to that for the natural ligand (CCL11), yet appears to overlap with prototypical

Figure 1.5 Molecules that influence immune cell communication.

antagonist binding regions.¹²⁶ Taken together, these findings have indicated that minor changes in the orientation of synthetic ligands can result in major changes in the receptor response. Therefore, these studies have the potential to aid in future structure-based design efforts of both agonists and antagonists of CCR3.

CXCR3 is expressed primarily on T-cells and regulates chemotactic responses to natural ligands CXCL9, CXCL10, and CXCL11.¹²⁸ CXCR3 agonists have shown benefits in therapeutic applications such as wound healing and anti-tumor activity through enhancement leukocyte chemotaxis.^{129–131} Using a calcium mobilization assay in CXCR3-transfected HEK293 T-cells, Stroke *et al.* screened an encoded combinatorial library of tetrahydro-isoquinolines and piperidinyl diazepanones to search for chemokine mimics. These studies have led to the discovery of several CXCR3 agonists (**28** and **29**) capable both of inhibiting CXCL10 and CXCL11 binding, and promoting T-cell chemotaxis.¹³² Follow-up experiments have revealed these small molecule agonists can bind three critical residues (D112, D195, and E196) within an intrahelical pocket in CXCR3, thus mimicking the Pro-Arg-Val sequence (positions 37–39) in CXCL10.¹³³ These molecules represent both structural and functional mimics of chemokines, and may provide effective alternatives to recombinant CXCL10 and CXCL11 tumor therapies.^{130,131}

The cytokine Granulocyte-Colony Stimulating Factor (G-CSF) is a potent regulator of survival, proliferation, differentiation, and activation of granulocytes. G-CSF binds to the G-CSF receptor (CD114), which results in activation of the JAK/STAT signaling pathway, transcriptional activation of interferon responsive genes, and enhancement of cell proliferation and differentiation.^{134,135} Indeed, recombinant G-CSF or filgrastim (marketed by Amgen under the brand name Neupogen[®]) is used clinically to replenish the loss of leukocytes in response to chemotherapy or bone-marrow transplantation.¹³⁶ Synthetic mimics of G-CSF have the potential to provide effective, low cost, and non-immunogenic alternatives to such treatments. To identify G-CSF mimics, one group has developed a high-throughput screening assay utilizing a myeloid-derived murine cell line with a JAK/STAT pathway-dependent luciferase reporter construct. Execution of this screen has led to the identification of the non-peptidic small molecule SB247464 (30); this compound has been shown to elicit JAK/STAT signaling, and increase the neutrophil count in an immunosuppressed neutropenic mouse model (BDF-1).¹³⁷ Notably, the two-fold rotational symmetry in **30** is believed to be critical to its ability to mimic G-CSF function in inducing oligmerization and activation of CD114.137-139 Interestingly, although human G-CSF can activate both murine and human G-CSFR, SB247464 has only been found to stimulate murine, but not human, CD114. To address this deficiency, another group performed a high-throughput cellular screen of 10,000 synthetic compounds for their ability to stimulate proliferation of a human G-CSF sensitive BAF/B03 cell line (hematopoetic B-cell line).¹⁴⁰ These studies have identified imidazole derivatives SSCL02446 (31) and SSCL02448 (32), which have been shown to stimulate STAT3 signaling and increase neutrophil counts in vivo in neutropenic rats.¹⁴⁰

1.4 Synthetic Molecules that Modulate the Complement System

The complement system is an integral part of humoral immunity, serving as a cytotoxic effector system against a variety of pathological stimuli. As shown in Figure 1.6, the complement pathway involves a network of proteins that act in concert to regulate immune cell responses, clear infections and cellular debris, and lyse antibody-opsonized targets.¹⁴¹ The activation of complement, either through the classical, lectin, or alternative pathways,^{142,143} leads to a cascade of enzymatic reactions, culminating in complement-mediated pro-inflammatory signaling, phagocytosis, or lysis of targets.¹⁴⁴ As shown in Figure 1.6, the responses of the complement system are also negatively regulated by various control proteins, including C1-INH, factor H, C4BP, CD46, and CD55. Dysregulation of any of these components can lead to the development of diseases including glomerulonephritis, pancreatitis, psoriasis, rheumatoid arthritis, and asthma.^{141,145}

A molecular-level understanding of the complement cascade has facilitated the development of synthetic molecules capable of mimicking the endogenous regulators. For example, in order to develop mimics of complement factor H–related protein 1 (CFHR1) – a human plasma protein that inhibits the activity of C5 convertase – researchers have developed an assay to monitor the C5 cleavage in the presence of a library of aptamers.¹⁴⁶ This screening protocol has led to the identification of C5C6 (Figure 1.7, **32**), a specific inhibitor of C5 esterase that can prevent the formation of C5a and

Figure 1.6 Schematic representation of the complement cascade. The endogenous complement inhibitors are colored in purple. MASPs: mannan-binding lectin serine proteases; C1: complement component 1; C3: complement component 3, C5: complement component 5; CFHR1: complement factor H–related protein 1; CHIPS: chemotaxis inhibitory protein Staphylococcus aureus; fH: factor H.

Figure 1.7 Synthetic complement modulators. C5C6 aptamer (32) inhibits C5 convertase (sites containing 2'-OMe indicated with red circles). C089 (34) and cyclic derivatives 35 and 36 inhibit C5.

C5b, much like CFHR1. The three 2'-OMe substitutions in **33** have proven critical for increasing its serum stability and enabling maximal inhibition of complement-mediated hemolytic activity of sheep erythrocytes.¹⁴⁷ Subsequent truncation of C5C6, followed by conjugation to PEG and capping with an inverted nucleotide at the 3' end, have provided ARC1905, an aptamer derivative with improved pharmacokinetic properties compared to **33**.¹⁴⁸ This molecule has shown clinical promise as a treatment for age-related macular degeneration (AMD) and is an excellent example of a fully synthetic, modified aptamer capable of emulating a natural complement-inhibiting protein.

Several naturally-occurring peptides and proteins have been identified, which are capable of enabling pathogens to evade the human complement response.¹⁴⁹ For example, the Gram-positive bacteria *Staphylococcus aureus* secretes a chemotaxis inhibitory protein called CHIPS. CHIPS binds to the N-terminus of C5a and abrogates the binding of C5a to the C5a receptor (Figure 1.6, C5aR or CD88,).¹⁵⁰ With the goal of developing novel antiinflammatory compounds, researchers have identified several synthetic molecules that mimic the function of CHIPS. In one such example – called the chemotaxis inhibitory construct protein of *S. aureus* (CHOPS)¹⁵¹ – researchers took into account critical structural features of CHIPS (an α -helix and three β -strands), as well as the spatial orientation of its binding to C5aR. To this end, a D-Pro-Gly was incorporated into CHOPS, which helped maintain the helical structural features, resembling the motifs found in CHIPS. Using isothermal titration calorimetry, researchers then found CHOPS to have an affinity for C5aR of 3–4 μ M. Although this value is three-orders of magnitude lower than the affinity of CHIPS for C5aR, CHOPS has served as an important lead compound for further ligand-design efforts.¹⁵¹

An alternative mechanism for synthetically mimicking the action of CHIPs has been to develop C5a mimetics that block the C5a–C5aR interaction.¹⁵² C5a has two binding sites that enable it to bind and activate the C5aR; one of these resides at the core inter-helical loops of C5a and contains positively charged residues,^{153,154} and the other comprises an eight-residue motif at the protein's C-terminus, which itself is sufficient to agonize C5aR.¹⁵⁵ Researchers have utilized this octapeptide agonist as a basis for developing linear (**34**, C089) and cyclic (**35**, **36**) synthetic antagonists of the C5a–C5aR interaction.¹⁵⁶ These molecules have exhibited inhibitory effects on neutrophil chemotaxis and cytokine production from macrophages both *in vitro* and *in vivo*.¹⁵⁷ These non-immunogenic, synthetic molecules have the potential to serve as starting points for effective anti-complement therapeutics, capable of treating a range of diseases including arthritis, ischemia-reperfusion injuries, and sepsis.^{146,158}

Factor H (fH) is an inhibitory protein that is highly abundant in human plasma, and prevents C3 convertase formation by binding to components C3b and C3d.¹⁵⁹ Factor H is recruited to endothelial cells by polyanionic ligands such as sulfated heparin, dermatan sulfate, and glycosaminoglycan, thus protecting these cells from the alternative complement pathway.¹⁶⁰ Therefore, functionalization of biomaterials with synthetic structures capable of recruiting fH has served as a useful strategy for preparing complement-compatible materials.¹⁴⁵ For example, using phage-display-based screening technologies, Wu *et al.* have identified a hexapeptide termed 5C6, which is capable of binding fH without interfering with its complement-inhibitory properties.¹⁶¹ Immobilization of 5C6 on pegylated polystyrene or glass surfaces, using thiol-maleimide bond-forming reactions, prevented complement fixation in erythrocyte hemolytic assays.¹⁶² This research has provided an interesting and potentially useful approach to the production of biocompatible materials.

1.5 Mimicking and Hijacking Antibody Function

Antibody proteins bridge the innate and adaptive wings of the immune system; they are produced in response to immunogenic epitopes, yet they function by activating innate cytotoxic processes. Antibody-based therapeutic approaches have blossomed over the past decade, in part because they exploit both innate and adaptive features; they can be generated against wide-ranging disease-relevant epitopes, and they can also activate endogenous immune effector mechanisms, such as complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). The development of synthetic systems capable of emulating – and improving upon – the function of antibody molecules has represented an exciting focus of synthetic immunology research in recent years.

For example, with the goal of emulating the adaptive immune system's ability to rapidly identify highly selective epitope-targeting motifs, Kodadek and colleagues have developed a systematic small-molecule synthesis and screening protocol. This process involves construction of oligomeric, bead-based small molecule libraries using split-and-mix synthesis methods, followed by execution of protein- and/or cell-binding selections directly on synthesis resins.^{163–166} Because small molecule ligands identified through this approach are both potent and selective – in analogy to natural antibody proteins – they have been termed "antibody mimics."^{167,168} Indeed, using their streamlined synthesis-screening protocol, the Kodadek lab has identified nanomolar "antibody mimics" against both soluble and cell-surface-bound targets such as cholera toxin,¹⁶⁹ VEGF receptor,^{170,171} orexin receptor,¹⁷² phosphoproteins,¹⁷³ and other systems.^{174–179}

Researchers have also explored the development of novel cytotoxic agents that are capable of exploiting the innate effector functions of antibodies. For example, attachment of synthetic targeting motifs to intact antibodies or immunoglobulin constant (Fc) domains has led to the development of novel anticancer agents for targeting the endothelin receptor,¹⁸⁰ or $\alpha_v\beta_3$ and $\alpha_v\beta_5$ integrins.^{181–184} Bioconjugation reactions leading to the assembly of these chimeric agents can also be performed *in vivo*, potentially providing new approaches for *in situ* self-assembly of targeted chemotherapeutic agents.¹⁸⁵ Another strategy has been to develop small molecules that hijack antibodies already present in the human bloodstream, and recruit them to disease-relevant cell-surface targets. Indeed, humans possess endogenous antibodies that recognize simple, low-molecular weight haptens such as 2,4-dinitrophenyl, α -gal trisaccharide, and others. By attaching these antibody recognition motifs to high-affinity chemical groups that recognize disease-associated targets, it has been possible to develop bifunctional molecules that exploit the innate cytotoxic properties of antibodies to clear pathologic cells (Figure 1.8). These synthetic agents - called antibody-recruiting molecules (ARMs) - have been used to target cancers,¹⁸⁶⁻¹⁹⁶ bacteria,¹⁹⁷⁻²⁰¹ and viruses,²⁰²⁻²⁰⁴ and are currently in clinical development. A review summarizing ARM-based strategies has recently appeared in the literature.¹⁸⁴

Overall, by mimicking and/or exploiting the properties of antibody proteins, researchers hope to develop more effective, safer and less costly alternatives to current immunotherapeutic strategies.

Figure 1.8 Schematic diagram representing the concept of antibody recruiting molecules (ARMs). ARMs are bifunctional molecules capable of bindig to pathogenic target and simultaneously recruiting antibody molecules, this eliciting antibody-dependent immune responses.

1.6 Synthetic Molecules that Modulate T- and B-cell Responses

Immune responses to foreign invaders frequently result in a series of molecular and cellular events that endow a host with long-term immunity (Figure 1.9). This process – termed adaptive immunity – begins with the uptake and processing of non-self molecular motifs by DCs, macrophages, B-cells, and other professional antigen presenting cells (APCs). APCs then present antigens to T-cells, and when accompanied by the appropriate pro-inflammatory signals, the activation and proliferation of antigen-specific B- and T-cells

Figure 1.9 Summary of components of the adaptive immune system. Following an infection, pathogen associated molecular patters (PAMPs) are recognized and internalized by pattern recognition receptors (PRRs) on the antigen presenting cells, for subsequent presentation of antigenic epitopes on major histocompatibility complex class II (MHC II) proteins. These MHC II complexes are recognized by specific naïve T-cell receptors (TCRs). Costimulatory signals mediated by CD40 and CD80 of the antigen presenting cells, and CD154 and CD28 on the CD4+ T-cells lead to T-cell proliferation and polarization to T helper cells (T_H1 and T_{H2}), which then secrete inflammatory cytokines (labeled in red). CD152 regulates this proinflammatory response by inhibiting the interaction between CD28 and CD80. Invariant natural killer cells (iNKTs) are a subset of T-cells whose TCRs recognize lipidated molecules presented by CD1d on antigen presenting cells to elicit either T_{H1} or T_{H2} cytokine responses.

ensues. B-cells differentiate into plasma cells, capable of secreting antigenspecific antibody molecules that give rise to humoral immunity, while T-cells can differentiate into variants of helper T-cells or cytotoxic T-lymphocytes (CTLs), responsible for antigen-specific cell-mediated immunity. Synthetic approaches to emulate, stimulate and/or suppress adaptive immune responses have been explored, and we highlight a selected few in this section.

With the goal of developing synthetic molecules to promote adaptive immune responses against Trypanosoma cruzi - the causative agent of Chagas disease -Fournel *et al.* have developed synthetic molecules that mimic the CD40 ligand (CD154).²⁰⁵ CD154 is expressed on activated T-cells, while its receptor is present mainly on APCs. The CD40-CD154 interaction is critical for regulating B-cell proliferation and memory cell development, as well as "licensing" DCs to present antigen to cytotoxic T-cells.²⁰⁶ To mimic natural CD154, researchers developed synthetic structures called miniCD40Ls (Figure 1.10, Panel A). These compounds contain a rigid, symmetrical, trimeric scaffold comprised of either β^3 -tripeptide (37) or D,L- α -hexapepetide (38) coupled to a peptide sequence derived from CD40 ligand (CD154).²⁰⁵ This trimeric structure reflects X-ray crystallographic findings, which indicate that CD154 presents itself to CD40 as a trimer.²⁰⁷ Indeed, compound **37** has proven functionally effective in stimulating mouse B-cell proliferation and maturation of a DC cell line, and confirmatory surface plasmon resonance (SPR) experiments have revealed that 37 and 38 binds CD40 trivalently. Furthermore, exposure of T. cruzi-infected mice to miniCD40Ls leads to increases in IFN- γ production by lymphocytes, proliferation of B-cells, maturation of DCs, and reversal of T. cruzi-mediated immunosuppression, leading to effective control over infection in vivo.²⁰⁸

An interesting strategy for modulating B-cell receptor (BCR) activity has recently been disclosed by Kiessling and colleagues. Because crosslinking of cell-surface BCRs can induce B-cell activation without assistance from T-cells, these researchers have developed hapten-functionalized polymers that can display BCR ligands in a multivalent fashion (**39**).²⁰⁹ Exposure of hapten-specific B-cells to these functionalized polymers leads to BCR clustering and production of anti-hapten antibodies *in vitro*. This research has also provided insights into the molecular requirements for B-cell activation and lays a foundation for a novel immunization protocol that could prove useful when extended to living organisms.^{210,211}

Invariant natural killer cells (iNKTs) are a class of T-cells involved in the recognition of lipid antigens, which are presented on APCs by CD1 family members – a class of APC-expressed glycoproteins related to MHC I.²¹² Derivatives of the natural product agelasphin (Figure 1.10, Panel B, **40**), have proven useful in understanding and mimicking CD1-mediated antigen presentation. Agelasphin and derivatives such as KRN7000 (α -GalCer, **41**) can be taken up by scavenger receptors (SR) on macrophages and DCs, which are then presented to iNKT-cells bound to CD1d. This activation event can lead to the production of both T_H1 (IFN- γ) and T_H2 (IL-4, IL-5, and IL-13) cytokine responses *in vitro*.^{213–215} More recently, synthetic, crystallographic,²¹⁶ and computational studies²¹⁷ have led to a more detailed understanding of the

Figure 1.10 Molecules that modulate the function of B-cells (Panel A) and iNKT-cells (Panel B).

CD1d-glycolipid interaction.²¹⁸ Importantly, synthetic studies have resulted in the generation of α -GalCer analogs capable of polarizing iNKT-cells to produce either T_H1 or T_H2 cytokine responses.^{218–222} In one example, altering only the connectivity between the glycan and lipid portions of ligands, as in Clinked compound 42, has led to increases in T_{H1} cytokine production, and enhanced activity in vivo against melanoma metastases in mice.²²³ T_H1 responses can be further enhanced by functionalization of one acyl chain with arenes, leading to the optimized structure 43. Compound 43 has been found to elicit protection against bacterial (Sphingomonas casulata and S. aureus) and viral (Japanese encephalitis virus) infections in mouse models.²²⁴ Conversely, alterations in the length and saturation of an acyl chain in α -GalCer derivatives were sufficient to elicit potent T_{H2} responses.²²⁵ For example, the molecule C20:2 (44) was found to reduce IFN- γ levels and increase IL-4 and IL-13 production in mice, conferring protection from type 1 diabetes.²²⁶ These examples illustrate the ability to utilize synthetic derivatives of a natural molecule to fine-tune the adaptive immune response.