RSC Polymer Chemistry Series

Edited by Wai-Yeung Wong and Alaa S Abd-El-Aziz

Molecular Design and Applications of Photofunctional Polymers and Materials

RSCPublishing

Molecular Design and Applications of Photofunctional Polymers and Materials

RSC Polymer Chemistry Series

Series Editors:

Professor Ben Zhong Tang (Editor-in-Chief), The Hong Kong University of Science and Technology, Hong Kong, China Professor Alaa S. Abd-El-Aziz, University of Prince Edward Island, Canada Professor Stephen L. Craig, Duke University, USA Professor Jianhua Dong, National Natural Science Foundation of China, China Professor Toshio Masuda, Fukui University of Technology, Japan Professor Christoph Weder, University of Fribourg, Switzerland

Titles in the Series:

- 1: Renewable Resources for Functional Polymers and Biomaterials
- 2: Molecular Design and Applications of Photofunctional Polymers and Materials

How to obtain future titles on publication:

A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:

Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247, Email: booksales@rsc.org Visit our website at http://www.rsc.org/Shop/Books/

Molecular Design and Applications of Photofunctional Polymers and Materials

Edited by

Wai-Yeung Wong

Department of Chemistry and Centre for Advanced Luminescence Materials, Hong Kong Baptist University, Hong Kong Email: rwywong@hkbu.edu.hk

Alaa S Abd-El-Aziz University of Prince Edward Island, Canada

RSCPublishing

RSC Polymer Chemistry Series No. 2

ISBN: 978-1-84973-575-9 ISSN: 2044-0790

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2012

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

The RSC is not responsible for individual opinions expressed in this work.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Printed in the United Kingdom by Henry Ling Limited, at the Dorset Press, Dorchester, DT1 1HD

Preface

Photofunctional organic and organometallic polymers and materials have become a field of intense activity in optoelectronic/photonic and energy research since they have unique advantages in device fabrication – they are low cost and light weight, offer ease of device fabrication and have potential use in flexible devices. They hold great promise as versatile functional materials for use in energy interconversions. New synthetic methods need to be developed to produce technologically useful materials with specific functional roles. Such research clearly presents a promising way out of the worldwide energy problem. The transformations of light into electricity (*i.e.* electrical energy generation in photovoltaic cells) and electricity into light (*i.e.* light generation in organic light-emitting diodes) are two important interrelated but complementary areas that have attracted considerable research interest in recent years. Work in other optoelectronic, electronic and nanotechnological applications are also emerging rapidly and attract considerable academic and industrial attention. This edited book aims to survey recent research at the frontiers of the topic, with emphasis on fundamental concepts and current applications. Here, a group of experts in the field have made significant contributions to this volume. Other topics such as photochemically degradable polymers, electrochromic and photochromic materials, biosensing and bioimaging materials, and low- and high-refractive index materials are also included. This contribution is very timely and will attract much attention in the scientific community.

Chapter 1, written by Ho and Wong, presents the development of some yellow- and orange-emitting metallophosphors. These phosphorescent dyes find key applications in fabricating monochromatic and white organic light-emitting devices (OLEDs). Chapter 2, by Brady and Tyler, describes some photochemically degradable polymers containing metal-metal bonds and their

 \odot The Royal Society of Chemistry 2012

RSC Polymer Chemistry Series No. 2

Molecular Design and Applications of Photofunctional Polymers and Materials Edited by Wai-Yeung Wong and Alaa S Abd-El-Aziz

Published by the Royal Society of Chemistry, www.rsc.org

synthetic and photochemical aspects. The applications of metal acetylide complexes and polymers as photofunctional materials and molecular wires are summarized by Raithby and Long in Chapters 3 and 4, respectively. Chapter 5, by Lo and co-workers, covers the growing field of luminescent transition-metal complexes as biomolecular labels and probes. In Chapters 6 and 7, Nishihara et al. first report the exciting area of photoactive metallopolymers whereas Wong and Yam survey the interesting field of photofunctional metalcontaining complexes in the latter case. All of these molecules can function effectively as photochromic and optoelectronic materials. In Chapter 8, Mak and co-workers highlight the synthesis and applications of some rhenium(I)containing polymers. Chapter 9, by Abd-El-Aziz and Strohm, discusses the recent advances in the chemistry of azo-conjugated organometallic and coordination compounds, ranging from small molecules to polymers. Tang et al. cover in Chapter 10 the synthesis, characterization and potential photonic applications of some hyperbranched aryleneethynylene polymers. In Chapter 11, Tian and co-workers also nicely present the molecular design of various organic photosensitizing dyes with various donor- π -acceptor-type structures which can be applied in dye-sensitized solar cells, whereas Jin also discusses the related work in Chapter 15 using functional polymers instead of small molecules. A good overview of the recent advances in conjugated polymer nanoparticles is given by Liu et al. in Chapter 12, in which they review their different synthetic methods and applications ranging from optoelectronics, cellular imaging to biosensors. In Chapters 13 and 14, Wu and Xie describe some recent studies on polymer-based white light-emitting devices and organic photovoltaic cells, respectively. Within the realm of energy science, both of these topics have important implications towards energy-saving and energy-producing applications.

Clearly, photofunctional materials chemistry represents an intriguing interdisciplinary subject that deserves further research attention in the forthcoming years. Many emerging future challenges as well as opportunities exist for both exploratory and application-oriented research. We are very optimistic to the continuing developments of these light-driven functional materials in the scientific community.

> Wai-Yeung Wong Alaa S. Abd-El-Aziz

Contents

. .

Chapter 1	Hea Ora Che	vy-Meta nge Trij uk-Lam	al Organometallic Complexes as Yellow and plet Emitters for Organic Light-Emitting Diodes Ho and Wai-Yeung Wong	1	
	1.1	Introd	uction	1	
	1.2	Iridiur	n(III) Complexes	2	
		1.2.1	Homoleptic and Heteroleptic Iridium(III) Complexes with Modified 2-Phenylpyridyl Moieties	2	
		1.2.2	Iridium(III) Complexes Containing Fluorene, Carbazole or Triphenylamine	9	
	1.3	Platinu	um(II) Complexes	17	
	1.4	Other	Metals	25	
	1.5	Conclu	uding Remarks	27	
	Ack	nowledg	gements	27	
	Refe	erences		27	
Chapter 2	Photochemically Degradable Polymers; Synthesis of Polymers with Metal–Metal Bonds Along the Backbone Using Click Chemistry Sarah E. Brady and David R. Tyler				
	2.1	Introd	uction	31	
	2.2	Functi	onalized Metal–Metal Bonded Dimers	33	
	2.3	Polym	er Syntheses	35	
	2.4	Polym	er Photochemistry	36	
		2.4.1	Photochemical Reactions of the Polymers in		
			Solution	37	

....

-- --

Molecular Design and Applications of Photofunctional Polymers and Materials Edited by Wai-Yeung Wong and Alaa S Abd-El-Aziz

RSC Polymer Chemistry Series No. 2

The Description of Chambred 2012

[©] The Royal Society of Chemistry 2012

Published by the Royal Society of Chemistry, www.rsc.org

	2.4.2 Photochemical Reactions of the Polymers in the Solid State	39
	2.4.3 Dependence of Solid-State Photochemical Degradation Reactions on Temperature	40
	2.4.4 Dependence of Solid-State Photochemical	40
	2.5 Overview of Click Chemistry	42
	2.6 Synthesis of Metal–Metal Bond-Containing Click	
	Synthons	45
	2.7 Model Click Reactions	46
	2.8 Step Polymerizations Using the Huisgen Reaction	48
	2.9 Summary	51
	Acknowledgement	52
	References	52
Chapter 3	Metal Acetylide Complexes, Oligomers and Polymers in	
	Photofunctional Materials Chemistry	56
	Marek Jura, Paul R. Raithby and Paul J. Wilson	
	3.1 Introduction	56
	3.1.1 OLEDs	57
	3.1.2 Transition-Metal σ -Acetylide Complexes	59
	3.2 Platinum and Palladium Acetylide Complexes,	60
	3.3 Gold Silver and Mercury Acetylide Complexes	00
	Oligomers and Polymers	69
	3.4 Ruthenium and Osmium Acetylide Complexes.	0)
	Oligomers and Polymers	72
	3.5 Properties of Transition-Metal σ -Acetylide Complexes	74
	3.6 Conclusions	78
	Acknowledgements	79
	References	79
Chapter 4	Metal σ-Alkynyl Complexes as Molecular Wires and Devices:	
	A Comparative Study of Electron Density and Delocalisation Michael S. Inkpen and Nicholas J. Long	85
	4.1 Introduction	85
	4.2 Synthetic Considerations	87
	4.2.1 Metal Alkynyl σ-Bond Formation	87
	4.2.2 Complexes for Molecular Electronics	88
	4.2.3 Stepwise Bis-Acetylide Syntheses	90
	4.2.3.1 Vinylidene Formation	90
	4.2.3.2 Elimination of Methane	91

			4.2.3.3	Reaction of <i>fac</i> –W(CO) ₃ (dppe)(THF)	93
			4.2.3.4	Selective Desilylation of {Mn(dmpe) ₂ }	
				Bis-acetylides	94
			4.2.3.5	Steric Effects at $\{Ru_2(L-L)_4\}$ Centres	95
	4.3	Molec	ular Con	ductance Measurements	96
		4.3.1	Pt-Cont	aining Systems	98
		4.3.2	Ru-Con	taining Systems	99
	4.4	Role of	of the Me	tal Centre in Electron Delocalisation	101
		4.4.1	Theoreti	ical Aspects	101
			4.4.1.1	Mixed Valence Complexes – The	
				Creutz–Taube Ion	101
			4.4.1.2	Near-IR Spectroscopy	102
			4.4.1.3	Electrochemical Methods	104
		4.4.2	Investig	ations into the Correlation of Electron	
			Density	with $\Delta E_{1/2}$	106
			4.4.2.1	Background and Inspiration	106
			4.4.2.2	Scope and Datasets	107
			4.4.2.3	Identification of Outliers	110
			4.4.2.4	Discussion	111
			4.4.2.5	Predictions	115
		~ .	4.4.2.6	Extensions to the Current Study	117
	4.5	Concl	usion		117
	Ack	nowled	gements		118
	DC		8		110
	Refe	erences	6		118
Chaptor 5	Refe	erences	t Transiti	on Motal Complexes as Riemologular	118
Chapter 5	Refe Lum	erences linescen	t Transiti	on-Metal Complexes as Biomolecular	118
Chapter 5	Refe Lum and	erences inescen Cellular neth Ka	t Transiti r Probes	on-Metal Complexes as Biomolecular	118 130
Chapter 5	Refe Lum and Kenn	erences iinescen Cellulau neth Ka	t Transiti r Probes im-Wing I	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li	118 130
Chapter 5	Refe Lum and Kem 5.1	erences iinescen Cellulai neth Ka Introd	t Transiti r Probes m-Wing I	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li	118 130
Chapter 5	Refe Lum and Kenn 5.1 5.2	erences iinescen Cellular <i>meth Ka</i> Introd DNA	t Transiti r Probes m-Wing I luction Labels ar	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li nd Probes	118 130 130 131
Chapter 5	Refe Lum and Kenn 5.1 5.2	erences iinescen Cellular neth Ka Introd DNA 5.2.1	t Transiti r Probes <i>m-Wing I</i> luction Labels ar Covalen	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li nd Probes t DNA Labels	118 130 130 131 131
Chapter 5	Refe Lum and Kem 5.1 5.2	inescen Cellular neth Ka Introd DNA 5.2.1	t Transiti r Probes m-Wing I luction Labels ar Covalen 5.2.1.1	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li nd Probes t DNA Labels Premodification	118 130 130 131 131 131
Chapter 5	Refe Lum and Kenn 5.1 5.2	erences inescen Cellula <i>neth Ka</i> Introd DNA 5.2.1	t Transiti r Probes m-Wing I luction Labels ar Covalen 5.2.1.1 5.2.1.2	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li nd Probes t DNA Labels Premodification Postmodification	118 130 130 131 131 131 135
Chapter 5	Refe Lum and Kenn 5.1 5.2	inescen Cellular <i>Cellular</i> <i>Introd</i> DNA 5.2.1	t Transiti r Probes m-Wing I luction Labels ar Covalen 5.2.1.1 5.2.1.2 Noncov	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li nd Probes t DNA Labels Premodification Postmodification alent DNA Probes	118 130 130 131 131 131 135 139
Chapter 5	Refe and Kenn 5.1 5.2	inescen Cellular <i>Meth Ka</i> Introd DNA 5.2.1	t Transiti r Probes m-Wing I luction Labels an Covalen 5.2.1.1 5.2.1.2 Noncov 5.2.2.1	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li nd Probes t DNA Labels Premodification Postmodification alent DNA Probes Complexes Coordinated with an	118 130 130 131 131 131 135 139
Chapter 5	Refe Lum and Kenn 5.1 5.2	inescen Cellular neth Ka Introd DNA 5.2.1 5.2.2	t Transiti r Probes m-Wing F luction Labels ar Covalen 5.2.1.1 5.2.1.2 Noncov 5.2.2.1	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li nd Probes t DNA Labels Premodification Postmodification alent DNA Probes Complexes Coordinated with an Extended Planar Ligand	118 130 130 131 131 131 135 139 140
Chapter 5	Refe Lum and Kem 5.1 5.2	inescen Cellular neth Ka Introd DNA 5.2.1 5.2.2	t Transiti r Probes m-Wing I luction Labels at Covalen 5.2.1.1 5.2.1.2 Noncov 5.2.2.1 5.2.2.2	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li and Probes t DNA Labels Premodification Postmodification alent DNA Probes Complexes Coordinated with an Extended Planar Ligand Complexes Appended with an Organic	118 130 130 131 131 131 135 139 140
Chapter 5	Refe Lum and Kem 5.1 5.2	inescen Cellular <i>Cellular</i> <i>Introd</i> DNA 5.2.1 5.2.2	t Transiti r Probes m-Wing I luction Labels an Covalen 5.2.1.1 5.2.1.2 Noncov 5.2.2.1 5.2.2.2	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li and Probes t DNA Labels Premodification Postmodification alent DNA Probes Complexes Coordinated with an Extended Planar Ligand Complexes Appended with an Organic Intercalator	118 130 130 131 131 131 135 139 140 148
Chapter 5	Reference control Reference co	inescen Cellular meth Ka Introd DNA 5.2.1 5.2.2	t Transiti r Probes m-Wing I luction Labels an Covalen 5.2.1.1 5.2.1.2 Noncov 5.2.2.1 5.2.2.2	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li and Probes t DNA Labels Premodification Postmodification alent DNA Probes Complexes Coordinated with an Extended Planar Ligand Complexes Appended with an Organic Intercalator Groove Binders	118 130 130 131 131 131 135 139 140 148 150
Chapter 5	Reference and <i>Kenn</i> 5.1 5.2	inescen Cellular meth Ka Introd DNA 5.2.1 5.2.2	t Transiti r Probes m-Wing I luction Labels an Covalen 5.2.1.1 5.2.1.2 Noncov 5.2.2.1 5.2.2.2 5.2.2.2 n Labels	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li and Probes t DNA Labels Premodification Postmodification alent DNA Probes Complexes Coordinated with an Extended Planar Ligand Complexes Appended with an Organic Intercalator Groove Binders and Probes	118 130 130 131 131 131 135 139 140 148 150 152
Chapter 5	Refe Lum and Kenn 5.1 5.2	inescen Cellular meth Ka Introd DNA 5.2.1 5.2.2 Proteir 5.3.1	t Transiti r Probes m-Wing D luction Labels ar Covalen 5.2.1.1 5.2.1.2 Noncov 5.2.2.1 5.2.2.2 5.2.2.3 n Labels Covalen	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li and Probes t DNA Labels Premodification Postmodification alent DNA Probes Complexes Coordinated with an Extended Planar Ligand Complexes Appended with an Organic Intercalator Groove Binders and Probes t Protein Labels	118 130 130 131 131 131 135 139 140 148 150 152 152
Chapter 5	Refe Lum and Kenn 5.1 5.2	erences inescen Cellular neth Ka Introd DNA 5.2.1 5.2.2 Proteir 5.3.1	t Transiti r Probes m-Wing I luction Labels an Covalen 5.2.1.1 5.2.1.2 Noncov. 5.2.2.1 5.2.2.2 5.2.2.3 n Labels Covalen 5.3.1.1	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li and Probes t DNA Labels Premodification Postmodification alent DNA Probes Complexes Coordinated with an Extended Planar Ligand Complexes Appended with an Organic Intercalator Groove Binders and Probes t Protein Labels Amine-Reactive Complexes	118 130 130 131 131 131 135 139 140 148 150 152
Chapter 5	Reference no constraint constrain	erences inescen Cellular neth Ka Introd DNA 5.2.1 5.2.2 Proteir 5.3.1	t Transiti r Probes m-Wing I luction Labels at Covalen 5.2.1.1 5.2.1.2 Noncov 5.2.2.1 5.2.2.2 5.2.2.3 n Labels Covalen 5.3.1.1 5.3.1.2	on-Metal Complexes as Biomolecular Lo and Steve Po-Yam Li and Probes t DNA Labels Premodification Postmodification alent DNA Probes Complexes Coordinated with an Extended Planar Ligand Complexes Appended with an Organic Intercalator Groove Binders and Probes t Protein Labels Amine-Reactive Complexes Sulfhydryl-Reactive Complexes	118 130 130 131 131 131 131 135 139 140 148 150 152 152 152 152 152 152 157

ix

		5.3.2	Noncova 5.3.2.1	alent Protein Probes Nonspecific Probes	159 159	
			5.3.2.2	Estradiol, Indole and Biotin		
				Complexes	162	
			5.3.2.3	Other Specific Probes	169	
	5.4	Cellula	ar Probes		174	
		5.4.1	Cellular	Uptake and Cytotoxicity	174	
			5.4.1.1	Effects of Charge and Lipophilicity	174	
			5.4.1.2	Specific Cellular Uptake	177	
			5.4.1.3	Uptake Mechanisms	178	
			5.4.1.4	Cytotoxicity	180	
		5.4.2	Intracell	ular Localisation	181	
			5.4.2.1	Cytomembrane and Cytoplasm	181	
			5.4.2.2	Mitochondrion	183	
			5.4.2.3	Golgi Apparatus and Endoplasmic	106	
			5 4 2 4	Nucleus and Nucleabus	180	
	55	Cond	5.4.2.4	Inucleus and Inucleofus	100	
	J.J Ack	nowled	gements		192	
	Refe	erences	gements		192	
	1001				175	
Chapter 6	Photoactive Multinuclear Metal-Containing Polymeric					
1	Syst	tems		8 v	199	
	R. Sakamoto and H. Nishihara					
	61	Introd	luction		199	
	0.1	muou			1//	
	6.2	Polym	ers Conta	ining Organic Photochromics	201	
	6.2	Polym 6.2.1	ers Conta Photome	ining Organic Photochromics odulation of Magnetic Properties	201 201	
	6.2	Polym 6.2.1 6.2.2	ers Conta Photomo Changeo	ining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths	201 201 202	
	6.2	Polym 6.2.1 6.2.2 6.2.3	Photome Changed ON/OFI	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism	201 201 202 206	
	6.2	Polym 6.2.1 6.2.2 6.2.3 6.2.4	Photomo Changeo ON/OFI Photoco	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and	201 201 202 206	
	6.2	Polym 6.2.1 6.2.2 6.2.3 6.2.4	Photomo Changeo ON/OFI Photoco Environ	atining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment	201 201 202 206 208	
	6.2	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	Photomo Changeo ON/OFI Photoco Environi Photonio	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical	201 201 202 206 208	
	6.2	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	Photomo Changeo ON/OFI Photoco Environi Photonio Properti	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es	201 201 202 206 208 209	
	6.2	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro	Photomo Changed ON/OFI Photoco Environ Photonic Properti ochromic	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials	201 201 202 206 208 209 211	
	6.2	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1	Photoma Changeo ON/OFI Photoco Environ Photonia Properti ochromic Redox-A	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and	201 201 202 206 208 209 211	
	6.2	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1	Photoma Changed ON/OFI Photoco Environ Photonia Properti ochromic Redox-A Organor	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and netallics	201 201 202 206 208 209 211 211	
	6.2 6.3	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1 6.3.2	ers Conta Photome Changed ON/OFI Photoco Environ Photonic Properti ochromic Redox-A Organor Prussian	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and netallics Blue	201 201 202 206 208 209 211 211 215	
	6.26.36.4	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1 6.3.2 Photo	Photomo Changeo ON/OFI Photoco Environ: Photonio Properti ochromic Redox-A Organor Prussian magnetisr	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and netallics Blue n	201 201 202 206 208 209 211 211 211 215 218	
	6.26.36.4	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1 6.3.2 Photo 6.4.1	ers Conta Photomo Changec ON/OFI Photoco Environ Photonia Properti ochromic Redox-A Organor Prussian magnetisr Prussian	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and netallics Blue n Blue Analogues dwood Excited Spin State Transies	201 201 202 206 208 209 211 211 211 215 218 218 218	
	6.2 6.3 6.4	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1 6.3.2 Photo 6.4.1 6.4.2 A puli	ers Conta Photomo Changed ON/OFI Photoco Environ Photonia Properti ochromic Redox-A Organor Prussian magnetisr Prussian Light-In	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and netallics Blue n Blue Analogues duced Excited Spin State Trapping Ontoologtopping	201 201 202 206 208 209 211 211 215 218 218 218 222 225	
	6.26.36.46.5	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1 6.3.2 Photo 6.4.1 6.4.2 Applia	ers Conta Photome Changed ON/OFI Photoco Environ Photonic Properti ochromic Redox-A Organor Prussian magnetisr Prussian Light-In cations in	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and netallics Blue n Blue Analogues duced Excited Spin State Trapping Optoelectronics Photochromics	201 201 202 206 208 209 211 211 215 218 218 218 225 225	
	6.26.36.46.5	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1 6.3.2 Photo 6.4.1 6.4.2 Applic 6.5.1	ers Conta Photome Changed ON/OFI Photoco Environ Photonic Properti ochromic Redox-A Organor Prussian magnetisr Prussian Light-In cations in Organic	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and netallics Blue n Blue Analogues duced Excited Spin State Trapping Optoelectronics Photovoltaics ight Emitting Diodes	201 201 202 206 208 209 211 215 218 218 218 225 225 225 225	
	 6.2 6.3 6.4 6.5 6.4 	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1 6.3.2 Photo 6.4.1 6.4.2 Applic 6.5.1 6.5.2 Photo	ers Conta Photomo Changed ON/OFI Photoco Environ: Photonic Properti ochromic Redox-A Organor Prussian magnetisr Prussian Light-In cations in Organic White L	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and netallics Blue n Blue Analogues duced Excited Spin State Trapping Optoelectronics Photovoltaics ight-Emitting Diodes	201 201 202 206 208 209 211 211 215 218 218 218 218 225 225 225 225 229	
	 6.2 6.3 6.4 6.5 6.6 	Polym 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Electro 6.3.1 6.3.2 Photo 6.4.1 6.4.2 Applic 6.5.1 6.5.2 Photo	ers Conta Photomo Changec ON/OFI Photoco Environ Photonic Properti ochromic Redox-A Organor Prussian magnetisr Prussian Light-In cations in Organic White L active Me	aining Organic Photochromics odulation of Magnetic Properties over of Photochromic Wavelengths F Switching of Photochromism ntrol of Coordination Affinity and ment c Switching of Nonlinear Optical es Materials Active Metal Complexes and netallics Blue n Blue Analogues duced Excited Spin State Trapping Optoelectronics Photovoltaics ight-Emitting Diodes tal-Organic Frameworks and Porous	201 201 202 206 208 209 211 211 215 218 218 218 225 225 225 225 229	

Chapter 8	Mat Mac	terial De	esign and Applications of Rhenium(I)-Containing cules	287
	Refe	erences		277
	Ack	nowled	gements	277
	7.5	Summ	ary	276
			Dye-Coated TiO ₂ Electrode	274
		7.4.4	Photocurrent–Voltage Characteristics of Pt-	<i>2</i> / 1
		7.4.3	Photophysical Studies	270
		742	Synthesis and Characterisation	209
			Background	209
		Comp	iexes and their Use as sensitisers in Dye-	260
		Alkyn	yipiatinum(II) Terpyridyl and Bipyridyl	
	7.4	Synthe	esis, Photophysical Properties of	
	7 4	G 1	Light-Emitting Devices	266
		7.3.4	Electroluminescence Properties in Organic	• • •
		7.3.3	Photophysical Studies	262
		7.3.2	Synthesis and Characterisation	261
		7.3.1	Background	259
		Applic	cations in Organic Light-Emitting Devices	259
		Cycloi	metalated Alkynylgold(III) Complexes and their	
	7.3	Synthe	esis, Photophysical Properties of Bis-	
			(TPIL)	256
		/ ·2·T	(TPA) and Two-Photon-Induced Luminescence	
		7.2.3	NLO Properties of Two-Photon Absorption	252
		723	Photophysical Studies	245
		1.2.1	Dackground Synthesis and Characterisation	247
		Comp	Peakaround	247
		Proper	rties of Platinum(II) Bisphosphino Bis-Alkynyl	247
	7.2	Synthe	esis, Photophysical and Nonlinear Optical	
	7.1	Introd	uction	245
	Keit	h Man-	Chung Wong and Vivian Wing-Wah Yam	
Chapter 7	Mol	ecular I	Design and Synthesis of Photofunctional Materials	245
	Refe	erences		236
		6.6.3	Photonic Postsynthetic Modifications	233
		6.6.2	Energy Transfer Among Hosts and Guests	233
		6.6.1	Photocatalysis	232
Contents				X1

Wai Kei Cheung and Chris S. K. Mak

8.1 Introduction 287

	8.2	Photoj Polym	physical Properties of Rhenium(I)-Containing	289			
	8.3	Nanos	tructures and Nanopatterning Based on Re(I)-	202			
		8 3 1	Polyetyrana Block Doly(vinylnyridina) Tethered	292			
		0.3.1	with Eemissive Re(I) Complexes	202			
		832	Polystyrene-Block-Poly(vinylpyridine) Tethered	292			
		0.5.2	with Photosensitising Re(I) Complexes	295			
	8.4	Develo	opment of Polymeric Luminescent Materials for	275			
	0.1	OLEC		296			
		8.4.1	Polymer-Based OLED Development	296			
		8.4.2	Rigid-Rod Re(I)-Containing Conjugated				
			Polymers	297			
		8.4.3	Re(I)-Containing Dendrimers	299			
	8.5	Photos	sensitisers for Photovoltaic Applications	300			
		8.5.1	Re(I)-Containing Nonconjugated Polymers	301			
		8.5.2	Re(I)-Containing Block Copolymers	303			
		8.5.3	Re(I) Hyperbranched Polymers	304			
		8.5.4	Re(I)-Containing Conjugated Polymers	306			
	8.6	Biolog	ical Applications of Bioconjugates and Polymers				
		Incorp	porated with Re(I) Complexes	308			
		8.6.1	Covalent Bonding to Proteins	309			
		8.6.2	Noncovalent Binding to Biomolecules	309			
			8.6.2.1 DNA Sensing by Intercalative Re(I)				
			Complexes	309			
			8.6.2.2 Avidin Sensing by Re(I) Biotin				
			Complexes	310			
		8.6.3	Re(I)-Containing Macromolecules for				
			Antitumour Therapeutics	311			
			8.6.3.1 Re(I)-Folate Bioconjugate	311			
			8.6.3.2 Re(I)-Containing Poly(amidoamine)	312			
	8.7	Conclu	uding Remarks	312			
	Ack	nowled	gements	313			
	Refe	rences	-	313			
Chanter 9	Rece	ont Dev	elonments in Metal-Containing Complexes with				
Chapter 9	Δ 70	Aza Chromonhore Functionalities					
	A.S.	Abd-E	l-Aziz and E.A. Strohm	517			
	9.1	Introd	uction	317			
	9.2	Azo-B	ridged Ferrocene Complexes	318			
	9.3	Catior	nic Iron-Coordinated Macromolecules	329			
	9.4	Pyridi	ne and Bipyridine Derivatives	333			
	9.5	Terpy	ridine Derivatives	338			
	9.6	Metall	adithiolene Complexes	339			

Contents		xiii
	9.7 Alkynyl-Based Metal Complexes	342
	9.8 Methacrylate-Based Polymers	344
	9.9 Conclusion	345
	Acknowledgements	346
	References	346
Chapter 10	Hyperbranched Acetylenic Polymers from Metal-Free and Regioselective Polycyclotrimerization of Arylene Bipropiolatos: Synthesis, Characterization, and Photonia	
	Properties	351
	Cathy K W Jim Aniun Oin Jacky W Y Lam and Ben	551
	Zhong Tang	
	10.1 Introduction	351
	10.2 Experimental	355
	10.2.1 Materials	355
	10.2.2 Instrumentation	355
	10.2.3 Monomer Preparation	356
	10.2.4 Polymer Synthesis	357
	10.2.5 Model Reaction	357
	10.3 Results and Discussion	358
	10.3.1 Monoyne Model Reaction	358
	10.3.2 Dryne Polycyclotimerization	361
	10.3.4 Degree of Branching	363
	10.3.5 Solubility and Stability	366
	10.3.6 Optical Transparency	367
	10.3.7 Light Refractivity	367
	10.3.8 Chromatic Dispersion	368
	10.4 Conclusion	369
	Acknowledgements	370
	References	370
Chapter 11	Organic Dyes for Dye-Sensitized Solar Cells	373
	Zhijun Ning and He Tian	
	11.1 Introduction	373
	11.2 The First Stage of Development: Dyes with Large	274
	π -Conjugated Structure	374
	11.2.1 Porphyrin Dyes	3/4
	11.2.2 Perylene Dyes	3/3
	11.2.3 Seculul Summary 11.3 The Second Stage of Development: Dues with D = A	5/0
	Structure	376

Contents	5
----------	---

		11.3.1	Cyanine Dyes	376
		11.3.2	Coumarin Dyes	377
		11.3.3	Indoline Dyes	378
		11.3.4	Triarylamine Dyes	379
		11.3.5	Heteroanthracene Dyes	380
		11.3.6	Tetrahydroquinoline Dyes	381
		11.3.7	Carbazole Dyes	381
		11.3.8	Boron-dipyrromethene Dyes	382
		11.3.9	Squarine Dyes	383
		11.3.10	Section Summary	383
	11.4	The Th	nird Stage of Development: Molecular	
		Modifi	cation of D-π-A Structured Dyes	384
		11.4.1	D-D- π -A or D- π (D)-A Configuration	384
		11.4.2	D-A-π-A and D-π-A-A Configuration	386
		11.4.3	The Introduction of Alkyl Chains	387
		11.4.4	Starburst-Shaped Sensitizers Structure	389
		11.4.5	Cone-Shaped Sensitizers Structure	390
		11.4.6	Increasing the Electron-Injection Efficiency of	
			Dyes	390
		11.4.7	The Design of Aggregation-Resistant Dyes	392
		11.4.8	Section Summary	393
	11.5	Conclu	isions and Prospects	393
	Ackr	nowledge	ements	394
	Refe	rences		394
Chantor 17	Cor	ingotod	Polymor Nanonarticles, Applications in	
Chapter 12	Ont	oelectro	nics Rightmaging and Rightmaging	300
		iong I i	Kai Li and Rin Liu	377
	1 119	iong Li,		
	12.1	Introd	uction	399
	12.2	Prepar	ation of Conjugated Polymer Nanoparticle	
		(CPNs)	400
		12.2.1	Direct Synthesis of CPNs from Monomers	400
		12.2.2	Synthesis of CPNs via Precipitation	401
		12.2.3	Synthesis of CPNs via Emulsion	404
		12.2.4	Self-Assembled CPNs	405
		12.2.5	Unimolecular CPNs	407
	12.3	Proper	ties of CPNs	409
		12.3.1	Electrical Conductivity	409
		10 2 2	Photoluminascont Properties	410
		12.3.2	r notorunniescent r roperties	410
	12.4	Applic	ations of CPNs	413
	12.4	Applic 12.4.1	ations of CPNs Optoelectronic Devices	410 413 413
	12.4	Applic 12.4.1	ations of CPNs Optoelectronic Devices 12.4.1.1 Electronic Devices	413 413 413
	12.4	Applic 12.4.1	ations of CPNs Optoelectronic Devices 12.4.1.1 Electronic Devices 12.4.1.2 Opals and Photonics	410 413 413 413 414

			12.4.2.1	Targeted Cellular Imaging	415
			12.4.2.2 12.4.2.3	Magnetic-Fluorescent Nanoparticles	415
			10 4 0 4	for Bimodal Imaging	417
			12.4.2.4 12.4.2.5	Fluorescent Tracking of Drug	418
				Release	418
		12.4.3	Biosenso	Drs	420
	12.5	Concl	usions an	d Future Perspectives	420
	Ackr	nowledg	ements		421
	Refe	rences			421
Chapter 13	Wh	ite Ligh	t-Emitting	g Polymers and Devices	424
	DIN	Znang,	wei Ian	g ana Hongbin wu	
	13.1	Introd	luction		424
	13.2	Single	-Compon	ent White Light-Emitting Polymers	425
		13.2.1	Fluores	cent White Light-Emitting Polymers	426
			13.2.1.1	Fluorescent Chromophores	
				Incorporating into Polymer Main	
				Chains	427
			13.2.1.2	Fluorescent Chromophores	
				Incorporating into Polymer Side	
				Chains	431
		13.2.2	Phospho	prescent White Light-Emitting	
			Polymer	S	432
			13.2.2.1	Phosphorescent Chromophores	
				Incorporating into Polymer Main	
				Chains	432
			13.2.2.2	Phosphorescent Chromophores	
				Incorporating into Polymer Side	
		_		Chains	434
	13.3.	Prog	ess on the	e Structure of White Polymer Light-	
		Emitt	ing Devic	xes	435
		13.3.1	White P	olymer Light-Emitting Devices Based	
		10.0.0	on Singl	e Active Layer Configuration	435
		13.3.2	White P	olymer Light-Emitting Devices Based	400
	10.4	C 1	on Mult	illayer Stacked Configuration	439
	13.4	Concl	usions		442
	Ackr	nowledg	ements		443
	Kete	rences			443

xv

Chapter 14	Stra Pho Zhi	itegies T tovoltaic -yuan Xi	owards Enhancing Charge Collection in Polymer Devices	445		
	14.1 Introduction					
	14.2	Worki	ng Principles of Organic Photovoltaic Cells	446		
		14.2.1	Light Absorption and Exciton Generation	448		
		14.2.2	Exciton Diffusion and Dissociation	448		
		14.2.3	Charge-Carrier Transport and Extraction	449		
	14.3	Optim	ization of the Film Morphology for Efficient			
		Charge	e Collection	449		
	14.4	Electro	ode Modification Towards Enhancing Charge	1.5.6		
		Collec	tion	456		
		14.4.1	Anode Modification Towards Enhancing	150		
		1440	Charge Collection	456		
		14.4.2	Cathode Modification Towards Enhancing	460		
	145	Donall	Charge Collection	400		
	14.5	Canal	A-Connected Tandem Polymer Solar Cells	402		
	14.0 A okr	Concil		404		
	Dofo	rances		405		
	Kele	rences		405		
Chapter 15	Nov	el Fluoro	ene-Based Functional "Click Polymers" for Dye-	168		
	Sun	g-Ho Jir		400		
	15.1	Introd	uction	468		
	15.2	Experi	mental Techniques	470		
		15.2.1	Method (I) for the Synthesis of Click			
			Polymers, P1–P4	470		
		15.2.2	Method (II) for the Synthesis of Click			
			Polymer, P5	470		
		15.2.3	Method (III) for the Synthesis of Click			
			Polymers, P6	471		
		15.2.4	Fabrication of DSSCs	471		
	15.3	Result	s and Discussion	472		
	15.4	Summ	ary	481		
	Ackr	nowledge	ement	481		
	References					

CHAPTER 1

Heavy-Metal Organometallic Complexes as Yellow and Orange Triplet Emitters for Organic Light-Emitting Diodes

CHEUK-LAM HO AND WAI-YEUNG WONG*

Institute of Molecular Functional Materials[†] and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China

*E-mail: rwywong@hkbu.edu.hk

[†]Areas of Excellence Scheme, University Grants Committee, Hong Kong

1.1 Introduction

While lighting applications account for about 19% of the electricity consumption of the world,¹ the need to reduce energy consumption associated with the low efficiency of conventional lighting systems (*e.g.* the incandescent bulbs) has prompted researchers to pay considerable research attention to developing new energy-saving technologies such as organic light-emitting devices (OLEDs). Actually, incandescent bulbs that have long been the most common lighting sources are very inefficient (converting only 5–10% of this energy into light) and dissipate the main part of the electrical energy absorbed as heat. Even the energy-saving compact fluorescent lamps are only about 20% energy efficient with typical power efficiency of 40–70 lm W⁻¹. Moreover, fluorescent lamps contain a small but significant amount of toxic mercury in the tube,² which

© The Royal Society of Chemistry 2012

RSC Polymer Chemistry Series No. 2

Molecular Design and Applications of Photofunctional Polymers and Materials Edited by Wai-Yeung Wong and Alaa S Abd-El-Aziz

Published by the Royal Society of Chemistry, www.rsc.org

complicates their disposal and causes an important environmental impact. Recently, the efficiencies of white organic light-emitting devices (WOLEDs) have been shown to approach or surpass those of the fluorescent lamps due to recent advances in novel material synthesis and optimisation of device structures in the past few years.^{3,4} The key advantages of OLEDs for flat-panel display applications are their self-emitting property, high luminous efficiency, full colour capability, wide viewing angle, high contrast, low power consumption, low weight, potentially large-area colour displays and flexibility.⁵ In particular, recent developments in using phosphorescent materials have led to significant improvements in OLED performance up to 100 lm W^{-1,6} thus providing organic semiconducting lighting with a very bright future and allowing WOLEDs to become the next generation of light illumination systems.

White-light emission can be obtained based on the principle of additive colour mixing. In practice, this is mostly done by mixing the three primary colours (red, green and blue, RGB). Besides R-G-B phosphorescent emitters, phosphors showing complementary colours, such as blue (B) and orange or yellow (O or Y), can also be utilised to produce white-light emission in the devices. This approach can eliminate the necessity for excessive emissive dopants in a device, hence reducing structural heterogeneities and the device fabrication process can generally be simplified. Building on these attractive properties, research on two-colour WOLEDs still remains scarce and is driving many researchers to investigate high-efficiency yellow or orange triplet emitters.

Of the various heavy-metal ions that could be envisaged for promoting radiative emission of triplet states in OLEDs, iridum(III), platinum(II) and other transition metals have attracted most attention to date. Flourishing studies over the past decade have revealed how the excited-state energies and hence emission colours in several classes of their complexes can be controlled through rational ligand design.⁷ Here, we summarise a number of triplet emitters that show yellow or orange electroluminescence (EL) that may serve as good candidates for WOLED applications.

1.2 Iridium(III) Complexes

Iridium(III) complexes are considered to be the seminal generation of phosphorescent emitters. As a general approach, the emission peak wavelength was found to be greatly dependent on the molecular design of the cyclometallating ligand chelates.

1.2.1 Homoleptic and Heteroleptic Iridium(III) Complexes with Modified 2-Phenylpyridyl Moieties

Recently, for OLEDs based on heavy-metal Ir(III) complexes, the benchmark green emitters fac-[Ir(ppy)₃] and [Ir(ppy)₂(acac)]⁸ (Hppy = 2-phenylpyridine, Hacac = acetylacetone) have drawn great attention due to their ease of synthesis and high efficiency. To generate yellow or orange colour, a very versatile avenue

3

can be adopted towards emission colour tuning of Ir(III) complexes via the facile derivatisation of the phenyl or pyridyl moiety of ppy with various substituents or functionalities. Attachment of the main-group moieties SO2 and PO to ppy in Ir-1 and Ir-2 was reported by Wong et al. in which the approach successfully shifts the charge-transfer character from the pyridyl group in some ppy-type complexes to the electron-withdrawing main-group moieties.⁹ This kind of complex improves their electron-injection (EI) and electron-transporting (ET) features. The strongly electron-withdrawing inductive influence of the polar PO group in Ir-2 was shown to lower significantly the lowest unoccupied molecular orbital (LUMO) energy, thus redshifting the emission peak as compared to [Ir(ppy)₂(acac)]. Ir-2 shows a shorter emission wavelength at 541 nm than Ir-1 (550 nm). The vacuum-deposited vellow-emitting device based on Ir-1 turned on at 3.7 V, with a maximum luminance (L_{max}) of 48 567 cd m⁻² at 19.9 V and maximum external quantum efficiency (η_{ext}) of 10.7%, luminance efficiency (η_{I}) of 35.1 cd A⁻¹, and power efficiency (η_P) of 23.1 lm W⁻¹, while a higher turn-on voltage (12.1 V) was found in the solution-processed yellow-orange device based on Ir-2 with L_{max} of 7103 cd m⁻² at 27.9 V and maximum efficiencies of 3.49%, 11.89 cd A^{-1} and 2.40 lm W^{-1} .

By extending the π -electron delocalisation of the aromatic ligand, the energy gap between the ground and lowest excited states can be effectively reduced to provide a redshifted emission. Complexes **Ir-3** to **Ir-7** consist of additional fused aromatic rings either on the phenyl or pyridyl ring of the ppy ligand. Yellow phosphorescence from **Ir-3** exhibits a very broad and featureless peak at *ca*. 550 nm with a wide full spectral width at half-maximum (FWHM) of 87 nm without the formation of excimer emission.¹⁰ It gives high peak forward-viewing η_L , η_P and η_{ext} of 33.6 cd A⁻¹, 21.8 lm W⁻¹ and 10.5% along with Commission international de l'Eclairage (CIE) coordinates of (0.45, 0.54). This broad emission and nonexcimer formation effectively overcome the problem of inevitably low colour rendering indexes (CRI) that are common in many WOLEDs. Highly efficient WOLEDs with maximum efficiencies as high as 46 cd A⁻¹ and 41 lm W⁻¹ under forward voltage bias can be achieved.

3-Phenylisoquinolinyl (**Ir-4** to **Ir-6**)¹¹ and phenylbenzoquinoline-based (**Ir-**7)¹² Ir(III) complexes also achieve yellow or orange electrophosphorescence.

Their corresponding CIE coordinates are (0.49, 0.51), (0.46, 0.53), (0.41, 0.54) and (0.55, 0.44) for **Ir-4** to **Ir-7**, respectively. The better EL performance observed in **Ir-4** can be ascribed to its shorter phosphorescence lifetime. The triplet–triplet (T–T) annihilation becomes more serious for the fluoro derivatives **Ir-5** and **Ir-6**.

Substitution of benzothiazole for pyridine leads to a redshift in the phosphorescence emission. The EL peaks of benzothiazole-based complexes Ir-8 and Ir-9 [7e,13,14] appear at around 560 nm in the vellow region and the replacement of S by O in the chromophore causes a blueshift in the emission wavelength to the green region for Ir-10 due to the lower polarisability and basicity of oxygen relative to sulfur. However, by introducing a CF₃ substituent to Ir-10,¹⁵ the phosphor dye emits yellow light at 544 nm with luminance up to 9200 cd m^{-2} at 100 mA cm⁻². Orange-emitting OLEDs were also fabricated by using crosslinkable compound Ir-11,¹⁶ which can be crosslinked with a hole-conducting matrix via cationic ring-opening polymerisation to yield an insoluble emitting layer by using the spin-coating method. The optimal device has a maximum $\eta_{\rm L}$ of 18.4 cd A^{-1} at 100 cd m⁻² and $\eta_{\rm P}$ of 11.7 Im W^{-1} . At a luminous density of 1000 cd m⁻², the efficiency was still 15 cd A^{-1} and 11.5 lm W^{-1} , respectively. The results gave a performance that compares favourably with other multilayered devices fabricated by thermal evaporation.

 \hat{K} won and coworkers designed a Ir(III) complex Ir-12¹⁷ with high device efficiency owing to its regulated energy levels and high stability stemming from

the introduction of the imide group as well as the suppressed T–T annihilation in the EL devices in the presence of a bulky isopropyl unit. All the devices with different doping concentrations emit intense orange EL at 566–570 nm with the CIE chromaticity coordinates of (0.51, 0.49) to (0.52, 0.47). The orangeemitting device ($\lambda = 570$ nm) with 4 wt.% dopant level exhibited a low operation voltage of 5.3 V at 1000 cd m⁻², a maximum η_{ext} of 13.8%, and a maximum η_{P} of 32.7 lm W⁻¹. Adoption of a double layer-structure enhanced the η_{ext} further to 14.4%.

The use of styrylbenzoimidazole derivatives instead of the traditional pyridine derivatives enhances the ET ability and OLED efficiency at high brightness levels. Devices based on **Ir-13** and **Ir-14** gave yellow EL at 570 and 585 nm, respectively.¹⁸ The performances of the devices based on **Ir-14** are inferior to those of the corresponding devices based on **Ir-13**. The device based on **Ir-13** exhibited a L_{max} of 56 162 cd m⁻², accompanied by high η_{L} of 25.7 cd A^{-1} at high brightness of 1000 cd m⁻² and 20.7 cd A^{-1} at 10 000 cd m⁻².

To investigate the structure-property relationship and develop durable, high-efficiency devices, the groups of Guo and Zou synthesised a series of

6

Ir(III) complexes Ir-15 to Ir-17 bearing the pyrazine ligands. High yellow colour purity with a featureless emission peak at 580 nm was obtained using Ir-15.¹⁹ A systematic study on colour tuning *via* variation of the cyclometallating and ancillary ligands was then carried out. Their phosphorescence peak wavelength can be fine tuned in the yellow range. The emission shifts to the blue in Ir-16²⁰ ($\lambda_{EL} = 561$ nm; CIE = (0.45, 0.54)) by adding some fluoro groups to the ligand. The use of picolinic acid instead of acetylacetonate as the ancillary ligand in Ir-17 also causes a hypsochromic shift in the EL wavelength to 569 nm with CIE of (0.48, 0.50). This result suggests that the strategies for tuning the emission colour and colour purity by changing the ligand substituents can also be applied to the pyrazine system.

The use of a sterically hindered amidinate as the chelating ancillary ligand in **Ir-18** effectively relieves the self-quenching problem in the EL emission and such a group also acts as a good ambipolar charge-transporting material with high hole and electron mobilities.²¹ The highest occupied molecular orbital (HOMO) level of this complex is higher than that with acac ligand and therefore the energy gap of **Ir-18** is significantly smaller than that with acac and this can be ascribed in part to the higher π -bonding ability of the amidinate ligand. The better hole-transporting ability of **Ir-18** resulted in excellent EL performance for the orange-emitting device with peak η_{ext} of 18.4%, η_{L} of 21.4 cd A⁻¹ and η_{P} of 18.7 lm W⁻¹. A WOLED with the structure of ITO/NPB/**Ir-18**:Bepp₂/Bepp₂/LiF/Al was fabricated (Bepp₂ = bis(2-(2-hydroxyphenyl))-pyridine)beryllium, a deep blue-emitting fluorescent complex). The CIE coordinates remain almost unchanged (0.35 ± 0.02, 0.33 ± 0.02) upon varying the luminance and so the device possesses a high colour reproduci-

Ir-18

bility. A reasonably low turn-on voltage (2.7 V) was recorded with remarkable EL efficiency at a peak η_{ext} of 27.8% (η_L of 60.8 cd A^{-1}) at a luminance of 300 cd m⁻² (4.4 V) and the highest η_P of 48.8 lm W⁻¹ at 80 cd m⁻² (3.8 V). Such high performance of the WOLED should be attributed to the carrier direct-injection mechanism as well as efficient energy transfer from Bepp₂ to **Ir-18** in the emitting layer.

Devices based on the heteroleptic Ir(III) cyclometallates Ir-19 and Ir-20 containing both azolate and diphenylphosphinoaryl chelates displayed bright orange emission.²² Their photophysical properties are almost identical, regardless of the identity of X and their phosphorescence quantum efficiency can reach near unity for good device performance. The device structure employed was ITO/PEDOT:PSS/NPD/TCTA/host:dopant (10%)/TPBI/LiF/A1 (PEDOT:PSS = poly(ethylenedioxythiophene)-poly(styrenesulfonic acid); NPD = N,N'-di-1-naphthyl-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine; TCTA = 4,4',4''-tris(carbazol-9-yl)-triphenylamine; TPBI = 1,3,5-tris[N-(phenyl)benzimidazolelbenzene). Two different host materials, namely, 4.5-diaza-2'.7'bis(carbazol-9-vl)-9.9'-spirobifluorene and 4.4'-N.N'-dicarbazolebiphenvl (CBP), were used for comparison. The results identified that effective energy confinement and appropriate guest-host combinations were observed for the devices using the spirobifluorene-based host that showed higher EL efficiencies with L_{max} of 19 300 cd m⁻², $\eta_{\text{ext}} = 17.1\%$, $\eta_{\text{P}} = 49.3 \text{ lm W}^{-1}$, CIE at (0.51, 0.48) for **Ir-19**, and L_{max} of 21 100 cd m⁻², $\eta_{\text{ext}} = 15\%$, $\eta_{\text{P}} = 37 \text{ lm W}^{-1}$, CIE at (0.51, 0.49) for **Ir-20**.

Besides modification of the ligand structures, colour tuning was also realised by incorporation of ligands with different electrochemical properties in some heteroleptic coumarin-based structures. Complexes **Ir-21** to **Ir-24** were reported by Ren and coworkers.²³ Due to the fact that coumarin is strongly electron withdrawing and very electron deficient, any replacement of ppy ligands in $Ir(ppy)_3$ with coumarin derivatives can significantly decrease the HOMO energy but it has a less pronounced effect on the LUMO energy, consequently leading to an increased HOMO–LUMO gap and a blueshift in the emission energy. Therefore, the λ_{PL} of **Ir-21** shifts from 550 to 536 nm in **Ir-22**, whereas **Ir-23** shifts from 570 to 544 nm in **Ir-24**. The OLEDs fabricated

X = CH Ir-19 N Ir-20

using these coumarin-based Ir(III) complexes as emissive dopants are highly efficient and stable with η_{ext} as high as 20–21% and η_P above 45 lm W⁻¹ at 1 mA cm⁻². Improved charge balance in the emissive layer was observed in Ir-21; thanks to the fact that Ir-21 is already a good charge-transporting material. Its η_{ext} showed a steady increase as the doping concentration was increased.

Dendrimers are found to be useful in high-performance OLEDs since they can get rid of the lower-purity problem in polymers but can still be processed by solution-based techniques and possess higher thermal properties and glasstransition temperatures than small molecules. To generate yellow EL, Bolink *et al.* synthesised a planar nondelocalised cyclic phosphazene **Ir-25** where the central core is inert, and its optical and electronic properties are dependent on the nature of the dendron, *i.e.* the Ir(ppy)₃ fragment in **Ir-25**.²⁴ This approach is synthetically facile and these rigid spheres can also improve the amorphous properties of the resulting complexes. The EL colour of the device is yellow (CIE coordinates at x = 0.45, y = 0.54) and becomes redshifted with respect to [Ir(ppy)₂(acac)] (0.31, 0.57), because of elongation of the effective conjugation length *via* the biphenyl unit. The device also provides better results by over 30– 35% than that with [Ir(ppy)₂(acac)] fabricated using similar device architectures showing η_L of 24 cd A⁻¹ and luminance of 3362 cd m⁻².

Single-layer devices were fabricated using charged Ir(III) complex **Ir-26** and it was found to emit yellow light with a brightness that exceeds 300 cd m⁻² and a luminous power efficiency that exceeds 10 lm W⁻¹ at just 3.0 V.²⁵ Their EL peak maximum varied with the applied bias, and it appeared at 560 nm under forward bias and showed a redshift of 20 nm under reverse bias. The CIE coordinates are x = 0.425, y = 0.549 for the forward bias and x = 0.491, y =0.496 for the reverse one. The PF₆⁻ space charge was found to dominate the device characteristics.

Ir-25

Recent research endeavours for Ir(III) complexes in OLEDs have involved the use of fluorene-based chromophores, which possess great promise as highly stable and efficient emissive cores in the synthesis of useful Ir(III) complexes. Fluorene-bridged materials possess the advantages of ease of functionalisation at their 9-position of the fluorene ring.²⁶ By replacing the phenyl ring in $[Ir(ppy)_3]$ with fluorene as for **Ir-27**,²⁷ the PL peak maximum was largely shifted to 548 nm with a minor shoulder peak at around 588 nm and this

10

yellow phosphorescence did not show a strong dependence on the dopant level. The apparently yellow emission results from the mixing of green and orange colours in the device. The device at the 2 wt.% doping concentration shows the highest η_{ext} of 10.3%, which corresponds to a peak η_L of 36.7 cd A^{-1} and a η_P of 17.7 lm W^{-1} . The corresponding brightness reached ~ 8190 cd m⁻² at 12 V and the CIE colour coordinates of 2 wt.% **Ir-27**-doped OLED is (0.44, 0.55), falling into the yellow region of the chromaticity diagram. This promising phosphor was then used to fabricate colour-stable WOLEDs with a four-emission-layer structure. With the optimised device structure and conditions, the highest efficiencies reached 23 cd A^{-1} and 13%, corresponding to a maximum total η_P of ~ 21 lm W^{-1} .

Extension of the π -conjugation through incorporation of electron-rich and hole-transporting carbazole unit in Ir-28-Ir-31²⁸ and triphenylamine unit in Ir-32–Ir- 33^{29} to the fluorene fragment shows an obvious redshift in their emission profile and destabilises the ground state of the complex by electron donation. This approach increases the HOMO levels and improves the charge balance in the complexes. Better hole injection (HI) and hole transport (HT) were observed in carbazole- or triphenylamine-capped metallophosphors. The HOMO levels are higher for the 3-substituted 9-phenylcarbazole end group than for the N-coordinated carbazole unit (*i.e.* Ir-30 > Ir-28 and Ir-31 > Ir-**29**), making the PL peak shift more to the red in the former. They all give intense yellow or orange electrophosphorescene with high EL efficiencies. OLEDs fabricated from multicomponent complexes Ir-28-Ir-31 as the solution-processed emissive layer have been fabricated which showed very high peak efficiencies (9.6%, 29.8 cd A^{-1} and 13.4 lm W^{-1}). Enhanced thermal stability and more morphologically stable amorphous thin-film formation were observed in Ir-32-Ir-33 as compared to Ir-27. For optimised orange devices at 5 wt.% of Ir-33, the $L_{\rm max}$ reached ~ 45 530 cd m⁻² at 12 V and the highest $\eta_{\rm L}$ is 34.8 cd A⁻¹, corresponding to a peak $\eta_{\rm P}$ of 18.2 lm W⁻¹ and an $\eta_{\rm ext}$ of 10.5%.

Work was extended to the ionic metallophosphors as well. **Ir-34** is expected to possess many merits for solid-state lighting and display applications and can show good charge-transfer properties as compared to the neutral species.³⁰ In spite of the impressive scope that charged complexes can offer in the OLED

Ir-27

industry, the poor sublimability of charged Ir(III) dopant and its inferior compatibility with common hydrophobic polymer host tends to hinder their widespread practical applications. Interestingly, cationic **Ir-34** coordinated by the HT groups can be vacuum sublimed without significant decomposition to make evaporated orange-emitting OLEDs successfully. Efficient yellow OLEDs doped with 5 wt.% **Ir-34** can be fabricated, showing peak efficiencies of 6.5%, 19.7 cd A^{-1} and 18.4 lm W^{-1} with EL peak maximum at 565 nm. The

Ir-35

Ir-36

work provides a good platform for developing vacuum-sublimable charged metallophosphors for the design of highly efficient OLEDs and light-emitting electrochemical cells (LECs).

New yellow or yellow-orange Ir(III) triplet emitters with minimised T-T annihilation were reported by Wong and coworkers by functionalisation at the 9-position of fluorene ring. Complexes Ir-35 and Ir-36 with two sterically bulky triphenylamine moieties have sufficiently high glass-transition temperature to avoid crystallisation and also prevent close contact between dopant molecules.³¹ Both amorphous molecules have the potential of facilitating HI, alleviating the T-T annihilation problem at high current density and hence fabricating simple solution-processible OLEDs even with the use of a smallmolecule host only, which makes them good multifunctional phosphorescent materials. Remarkably, efficient and stable OLEDs can be obtained using the configuration of ITO/PEDOT:PSS/x% Ir-35 or Ir-36:CBP/BCP/Alq₃/LiF/Al without the need for a HT layer (BCP: 2,9-dimethyl-4,7-diphenyl-1,10phenanthroline: Alq₃: tris(8-hydroxyquinolinato)aluminium). The best orange-emitting devices made from Ir-35 (or Ir-36) achieved L_{max} of 25 660 (20 100) cd m⁻² at 24 (25) V, maximum η_{ext} of 4.63 (6.43)%, η_{L} of 15.07 (20.42) cd A^{-1} and η_P of 2.36 (3.05) lm W^{-1} . Thanks to the sterically bulky nature of the structure, the roll-off of η_{ext} is only gentle with increasing current density even at the higher doping level. Another way to suppress T-T annihilation and concentration quenching and to improve the film quality is to use a 3dimensional spirobifluorene core as the cyclometallating ligands, as reported by Chen and his coworkers.³² Three yellow OLEDs derived from Ir-37 to Ir-39 were fabricated by doping the complexes at the concentration of 10 wt.% into the polymeric host material consisting of poly(N-vinylcarbazole) (PVK) and 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole (PBD), showing satisfactory device performance. Complex Ir-37 achieved a peak efficiency of 36.4

cd A^{-1} (η_{ext} of 10.1%) at 198 cd m⁻² with $\lambda_{EL} = 555$ nm. Extending the electronic conjugation in **Ir-39** shifts the λ_{EL} to 560 nm. The η_{ext} did not decrease obviously with increasing current density, which confirms that the T–T annihilation was largely suppressed by the complexes.

Ir(III) complexes bearing polyphenylene dendritic ligands Ir-40 to Ir-42 through simple synthesis and purification procedures are another way to prevent molecular aggregation or $\pi - \pi$ stacking that can show highly efficient EL using solution-processing device fabrication.³³ The emission wavelengths of the materials could be effectively tuned from 549 nm to 582 nm by changing the conjugation of the ligands through incorporating additional aromatic segment (*e.g.* phenyl or fluorenyl group) onto the basic dendritic ligand. The best device performance was achieved by using Ir-41 as the dopant with the configuration of ITO/PEDOT:PSS (50 nm)/PVK:PBD (40 wt.%):Ir complex (6 wt.%) (70 nm)/ BCP (12 nm)/ Alq₃ (20 nm) / Mg:Ag (150 nm) that gave peak $\eta_{\rm L}$ of 34.0 cd A⁻¹ and $\eta_{\rm ext}$ of 10.3%. The efficiencies can be further improved to 46.3 cd A⁻¹ and 13.9% if TPBI was used as the charge-blocking layer.

Another approach to achieve yellow EL with functional features such as electron transport (ET) and hole blocking (HB) was achieved using ligand consisting of benzoimidazole unit in the Ir(III) complex (Ir-43). The complex emits at $\lambda_{\rm EL} = 568$ nm, $L_{\rm max}$ of 21 105 cd m⁻², $\eta_{\rm ext}$ of 7.3%, $\eta_{\rm L}$ of 21 cd A⁻¹

and η_P of 4.7 lm W⁻¹ at a current density of 100 mA cm⁻², which compare favourably well with those of the green-emitting [(ppy)₂Ir(acac)] ($\lambda_{EL} = 525$ nm).^{7e}

Many research groups have extensively investigated the use of carbazole in the development of new organic electronics materials. Many carbazole-based organic oligomers are high-mobility HT materials that are characterised by tunable and high-energy triplet levels, and they are widely used as the host materials for different metal-organic guests emitting a wide spectrum of visible colours.³⁴ The robust Ir-carbazolyl complexes have been recognised for their prominent role in ensuring high EL efficiency by elevating the HOMO levels and hence enhancing the HI/HT or hole-trapping features, enhancing the morphological stability as well as EL efficiencies as compared to the ppy and 1-phenylisoquinolinato (piq) congeners.³⁵ With the bulky, inductively electronwithdrawing CF₃ group on the pyridyl ring in Ir-44, an interesting orange electrophosphor ($\lambda_{EL} = 556$ nm) was produced that can afford well-performed devices with the highest efficiencies at 40.2 cd A^{-1} , corresponding to η_{ext} of 12.4% and $\eta_{\rm P}$ of 24.0 lm W⁻¹. On the other hand, by simply changing the carbazole substitution position from C-3 to C-2 in Ir-45,³⁶ marked changes can be seen in the EL properties, including a redshift of 85 nm in the emission wavelength and a change of the CIE coordinates from green (0.22, 0.60) for C-3 to orange (0.58, 0.39) for C-2. If the carbazole unit is not directly bonded to the metal centre (Ir-46), blueshifts of PL and EL spectra were observed that gave rise to yellow emission only.³⁷

A multifunctional carbazole-based Ir(III) complex Ir-47 was reported by Tang *et al.*³⁸ that contains both a HT carbazole group and an ET oxadiazole group as the main components. This approach was expected to be beneficial to improve the EL performance. Polymer light-emitting diodes (PLEDs) based on a structure of ITO/PEDOT:PSS/PVK:PBD:Ir-47/TPBI/CsF/Al were fabricated by solution-processed technology and the resulting EL spectra showed the emission of both monomers and exciplexes. The PLED doped with Ir-47 at 4 wt.% doping concentration shows the optimal data at L_{max} of 7746 cd cm⁻²,

maximum $\eta_{\rm L}$ of 14.0 cd A⁻¹ and $\eta_{\rm ext}$ of 5.8% with the CIE coordinates of (0.48, 0.50).

If arylamine groups are linked to 2-phenylpyridine backbone in the Ir complexes (**Ir-48 to Ir-49**),³⁹ their HOMO levels are shown to be higher compared to [Ir(ppy)₂(acac)], therefore an improved HT stability was confirmed. Their EL lies in the orange region of CIE diagram. Due to the increased π -conjugated system of the ligands, the peak emission wavelength of **Ir-49** ($\lambda_{\rm EL} = 589$ nm; CIE = (0.58, 0.45)) shows a slight redshift as compared to that of **Ir-48** ($\lambda_{\rm EL} = 581$ nm; CIE = (0.54, 0.45)).

The highly amorphous and soluble heteroleptic Ir(III) complex Ir-50 also experiences a redshift in emission wavelength relative to $[Ir(ppy)_3]$ because of the longer conjugation length.⁴⁰ The authors believe that there is an efficient interligand energy transfer within the Ir complex. However, a decreased phosphorescence quantum yield (Φ_P) was observed, probably due to the

Ir-47

reduced triplet energy of the ligand. The best device performance was obtained with **Ir-50** doped in PVK, which was found to have a L_{max} above 15 000 cd m⁻² and a peak η_{L} of 21 cd A⁻¹.

Three phosphorescent dendrimers (**Ir-51** to **Ir-53**) with an Ir(III) complex core and oligocarbazole- or oligofluorene-substituted ligands were reported by Lu and coworkers.⁴¹ Hyperbranched oligocarbazoles or oligofluorenes were attached to the Ir(III) complex core to minimise the interaction between the phosphorescent cores that also functioned as the charge-transporting host for the Ir complex core. The structures of the oligocarbazole were designed to maintain high triplet energy of the ligands so that phosphorescence quenching in the resulting dendrimers can be avoided, while the oligofluorene in **Ir-53**

16

resulted in the unwanted phosphorescence quenching. A strong blue emission from the oligofluorene-substituted ligands besides the emission from the Ir chromophore was observed in **Ir-53** due to the inefficient energy transfer from the oligofluorene-substituted ligands to the Ir(III) complex core. On the contrary, negligible blue emission associated with the oligocarbazole was observed from **Ir-51** and **Ir-52**. Higher PL efficiencies of both of them resulted in better device performance than **Ir-53**. The best performance was obtained from **Ir-52**-based electrophosphorescent OLED with a L_{max} of 13 060 cd m⁻² and a peak η_{L} of 4.3 cd A⁻¹, owing to its high PL efficiency and efficient energy transfer between the Ir(III) complex core and the ligands.

1.3 Platinum(II) Complexes

To date, numerous Pt(II) complexes have been used for yellow or orange EL devices. The main striking difference of Pt(II) complexes from the Ir(III) congeners lies in the fact that the emission of the resulting OLEDs may arise from a combination of their own emission as well as the excimeric component in the visible spectrum for the Pt(II) species. Modification of the aryl or pyridyl rings on the Pt(II) ion not only shifts the EL maximum but also makes the white-colour emission possible. This can minimise the complexity of device fabrication in achieving a good white colour balance using multiple emitters instead. Hence, well-balanced EL spectra can easily be obtained in WOLEDs with Pt(II) complexes by employing only one, or at most two dopants showing emission bands of the excimer or exciplex.

There are several types of Pt(II) complexes commonly applied for EL devices. The most common one involves cyclometallated Pt(II) complexes chelated with aromatic pyridyl ligands or similar derivatives and acac as the ancillary ligand. Complexes **Pt-1** and **Pt-2** bearing 2-phenylbenzothiazolate with different substituents were reported by Chen and coworkers⁴² For complex **Pt-2** containing the electron-withdrawing fluoro group, it underwent ipsochromic shifts of the PL and EL emissions with respect to the unsubstituted **Pt-1**, inferring that the position occupied by the substituent in the ligand is dominated by the LUMO character. They emit tunable bright yellow-orange light at room temperature (548 and 540 nm for **Pt-1** and **Pt-2**, respectively), and show a bathochromatically shifted emission peak together with the excimer shoulder peak (625–630 nm) with increasing doping concentration. The device with **Pt-2** as the dopant shows relatively better EL performance (L_{max} of 11 320 cd m⁻² and η_L of 11.3 cd A⁻¹) than that for **Pt-1**.

Efficient fluorescent-based OLEDs were recently reported by using highly fluorescent indolizino[3,4,5-*ab*]isoindoles as the emitting layer.⁴³ Because of their attractive PL quantum yields that are critical for OLED application, Wudl and coworkers complexed this ligand with Pt(II) ion in Pt-3.⁴⁴ Pt-3 with 2-pyridin-2-ylindolizino[3,4,5-*ab*]isoindole (pin) was observed to have high quantum yield of 51% in DMSO at 546 nm, emitting mainly from a ligand-centred triplet π - π * state. Inappreciable degrees of charge-transfer character in

 $\begin{array}{l} R = n - C_8 H_{17} \\ n = 1 \\ n = 3 \end{array} \quad \begin{array}{l} \text{Ir-51} \\ \text{Ir-52} \end{array}$

 $R = n-C_8H_{17}$ Ir-53

this complex were confirmed by both the absorption and emission wavelength shifts with the polarity of the solvent used. It is a potential bifunctional emitter because of its relatively low oxidation potential (*ca.* 0.5 V) and this value is among some of the lowest values for other complexes reported.⁴⁵ It emits at 553 nm (CIE = 0.46, 0.49) with a FWHM of 63 nm without any aggregation in the EL spectrum.

A novel class of multicomponent neutral complexes Pt-4 to Pt-8 was nicely developed recently. Pt-4⁴⁶ and Pt-5⁴⁷ bearing carbazole and triphenylamine units exhibit improved thermal or glass-state durability. More importantly, their HI and HT abilities were also improved, catering for more efficient charge transport in their EL process. The introduction of electron-donating carbazole or triphenylamine moiety into the electron-deficient pyridine moiety is expected to increase the electronic conjugation and intramolecular donoracceptor charge-transfer character of the ligand, causing a redshift in their absorption and emission features as compared to that in [Pt(Fl-py)(acac)] (Fl- $\mathbf{p}\mathbf{v} = 2$ -(9.9-diethyl-2-fluorenyl)pyridyl).⁴⁷ The greater delocalisation over the aryl ligands also leads to a lesser extent of metal d-orbital mixing and gives a smaller HOMO-LUMO gap, so that both complexes emit in the orange region, while [Pt(Fl-py)acac] emits in the greenish-yellow region. Pt-4 showed the main emission at 548 nm with a broad shoulder at around 640 nm and revealed a clear aggregation phenomenon as the doping concentration increases. Therefore, the CIE coordinates would vary with a change of concentration and are located at x = 0.49, y = 0.51 at 6 wt.% doping concentration. A maximum η_{ext} of 0.40%, η_P of 0.19 lm W⁻¹ and η_L of 1.13 cd A^{-1} were achieved at 3 wt.% doping level. In contrast to many other devices based on similar Pt(II) emitters, however, the problem of aggregation becomes neglectable in Pt-5. The devices based on Pt-5 emit a strong pure orange light with stable CIE colour coordinates of (0.55, 0.45). The use of Pt-5 suggests a new avenue towards obtaining good colour purity of Pt-based OLEDs by eliminating such drawbacks as strong intramolecular interactions and poor emission colour purity of the cyclometallated $Pt(\beta$ -diketonato) complexes. The best device performance was achieved with the structure of ITO/NPB/5% Pt:mCP/TPBI/LiF/Al, leading to η_{ext} of 4.65%, η_{L} of 11.75 cd A⁻¹ and η_{n} of 5.27 lm W⁻¹. Much higher efficiencies were obtained if mCP was replaced by CBP, and a $L_{\rm max}$ of 4195 cd m⁻², $\eta_{\rm ext}$ of 6.64%, $\eta_{\rm L}$ of 15.41 cd A⁻¹ and $\eta_{\rm p}$ of 7.07 lm W⁻¹ were achieved. Simple WOLEDs were fabricated by the same research group using **Pt-5** and 9,10-di(2-naphthyl)anthracene (ADN) by replacing 1,3-bis(9*H*-carbazol-9-yl)benzene (mCP) or CBP with ADN. Although the preliminary results are not yet attractive, these single-colour EL devices based on **Pt-5** are good candidate for WOLED applications. A blueshift of the EL peak to 540 nm was observed in the yellow region if two triphenylamine groups are attached at the 9-position of fluorene in **Pt-6**.³¹ An encouraging performance with $L_{\rm max}$ of 16 070 cd m⁻² at 17 V, maximum $\eta_{\rm ext}$ of 3.36%, $\eta_{\rm L}$ of 9.55 cd A⁻¹ and $\eta_{\rm P}$ of 2.31 lm W⁻¹ was detected. T–T annihilation only plays its role at a much higher current density (360 ± 85 mA cm⁻²) at a high doping concentration and it is probably due to its long phosphorescence lifetime (8.2 µs at room temperature).

A novel trifunctional cyclometallated Pt(II) complex Pt-7 integrating the HT triarylamine, ET oxadiazole and EL metallated group into a single molecule was reported by Wong and coworkers.^{48,49} This metal chelate is thermally and morphologically stable with respect to sublimation during the device fabrication. It displays a bipolar character since the LUMO level is lower than the most widely used ET/HB material PBD and comparable to Alg₃, whereas the HOMO is also close to NPD, showing its good HT ability. This molecule was used to fabricate a bilayer vacuum-deposited device of ITO/ CuPc/Pt-7/Ca/Al in which Pt-7 acts as the neat emissive film without any ET. HT and EI layers. This device exhibited strong orange-vellow EL at 538 and 578 nm with the CIE coordinates at (0.52, 0.47). The multifunctional nature of Pt-7 renders it a suitable candidate to act as an efficient dopant-free electrophosphorescent emitter. Further enhancement of the charge transfer within the trifunctional molecule was observed in Pt-8, a molecule that incorporates a bulky electron-deficient boron moiety and HT arylamine donor as the cyclometallating chelate.⁵⁰ The OLEDs based on this emitter greatly improve the efficiencies by the boron functionality that increases the energy

Pt-4

Pt-5

separation between the emissive state and radiatively quenched d-d states, thus providing a large increase in Φ_P and emission brightness despite the large redshift in the emission profile. A remarkably high Φ_P was noted in both the solid ($\Phi_P = 0.46$) and solution ($\Phi_P = 0.91$) states. The highest device efficiency was detected using CBP as the host in the absence of any HB layer. Orange electrophosphorescence peaking at 580 nm (CIE = 0.51, 0.48) was achieved with maximum η_L and η_P of 35.0 cd A^{-1} and 36.6 lm W^{-1} and peak η_{ext} of 10.6%. The result is among the highest reported for a device using a triarylboron-based phosphorescent emitting layer and one of the highest reported using Pt(II) complexes in orange OLEDs.

A good design aimed at colour tuning and suppressing the self-aggregation of Pt(II) complexes is needed to exploit the full potential of Pt(II) emitters. A series of readily sublimable and thermally robust Pt(II) pyridyl azolate complexes (**Pt-9** and **Pt-10**) were prepared by Chang *et al.* that exhibited high structural tuning capability and flexibility at the ligand sites.⁵¹ The steric hindrance from *tert*-butyl and trifluoromethyl functionalities effectively

Pt-8

suppresses the self-quenching activities caused by the planar geometry of the Pt(II) complexes and maintains the amorphous property essential for device fabrication. Very bright emissions were observed at all doping concentrations for the multilaver devices with the configuration of ITO/NPB/CBP:Pt-9/BCP/ Alg₃/LiF/Al. Upon increasing doping concentration, there is an increase in current density and a large redshift in emission maximum. The EL emission shifted from 502 nm (blue-green) to 556 nm (yellow) as the dopant concentration rose from 6% to 100%. A broadening of the emission band was also observed. A similar redshift from 552 nm (vellow) to 616 nm (red) was apparent in the OLEDs fabricated with Pt-10 with increasing dopant concentration. For emitters such as Pt-9 that possess ${}^{3}MLCT/{}^{3}\pi-\pi$ states (MLCT = metal-to-ligand charge transfer), the best device performance was realised using a 6% doping level. The η_{ext} of 2.9%, η_{L} of 8.6 cd A⁻¹ at 20 mA cm⁻², and a luminance of 27 114 cd m⁻² at 15 V were realised. With the emitter **Pt-10** possessing ³MMLCT state (MMLCT = metal-metal-to-ligand charge transfer), the best device performance was achieved at 20% dopant level, along with the η_{ext} of 6.0% and η_{L} of 19.7 cd A⁻¹ both at 20 mA cm⁻². These promising results make them remarkable for colour-tuning applications in OLEDs by simply changing the doping concentration of the Pt(II) materials.

Research into the ligand design for EL materials has been dominated by Alq_3 due to its dual function as emissive and ET materials. Attempts to develop alternative quinolinato-substituted Pt(II) complexes Pt-11 and Pt-12 for EL applications were made by Che and coworkers.⁵² The complexes ligated by tetradentate auxiliaries bis(2'-phenol)-bipyridine and -phenanthroline

 $R_{1,2} = HC CH, X = Ph Pt-11$ $R_1 = R_2 = H, X = t-Bu Pt-12$

showed good thermal stability. Both complexes are highly luminescent in solution and display a structureless emission in CH₂Cl₂ at $\lambda_{PL} = 586$ and 595 nm, respectively, and the emission properties are influenced by solvent polarity. OLEDs based on 10% of **Pt-11** gave yellow EL and was dominated by its PL at $\lambda_{EL} = 588$ nm. Maximum L_{max} and η_P of 850 cd m⁻² and 0.26 lm W⁻¹ were obtained, respectively. Yellow emission (CIE 0.42, 0.56) was also generated for **Pt-12** when its dopant content was increased to 2% with optimal luminance of 4480 cd m⁻² and η_P of 0.51 lm W⁻¹.

Another family of Pt(II) complexes commonly used for OLED applications are those associated with C^N^N substituted tridentate chelates. They own moderate σ -donating and π -accepting abilities, thus satisfying the demand of the square planar Pt(II) coordination geometry to discourage the D_{2d} distortion that is likely to result in a nonradiative decay and makes them useful in materials design.⁵³ There are two pathways to fine tune the PL and EL properties of this kind of complexes, namely, modification of the substituent in the C^NN ligand (**Pt-13**)⁵⁴ or attachment of acetylide as the σ -donor ligand with different substituents at the fourth coordination site (Pt-14).⁵⁵ The donor-acceptor interaction can be strengthened by combining the electron-rich diphenylamine group with the electron-deficient pyridine moiety in Pt-13, which shifts the absorption and triplet emission maxima bathochromically to $\lambda_{PL} = 595$ nm. The optimal OLED using this complex shows an efficient orange emission with peak maximum at 588 nm and CIE coordinates of (0.570, 0.427) without any voltage-dependence problem. The device turned on at 4.0 V and a luminance of 9000 cd m^{-2} was achieved at 13 V. The peak $\eta_{\rm I}$ was shown to be about 11.3 cd A⁻¹ and the corresponding $\eta_{\rm ext}$ is 5.7%. Pt-14 with the *para*-substituted phenvlacetylene shows MLCT PL emission at 582 nm. This is in accordance with the strong σ -donating strength of the alkynyl ligand, which destabilises the $d\pi(Pt)$ HOMO to yield relatively low-energy MLCT 5d(Pt) $\rightarrow \pi^*(C^N^N)$ transitions. A L_{max} of 7800 cd m⁻² at

11 V and a maximum efficiency of 2.4 cd A^{-1} at 30 mA cm⁻² were obtained for an orange-emitting OLED ($\lambda_{EL} = 564$ nm) using **Pt-14** at the 4% doping level.

Che also exploited a novel series of naphthyl-substituted cyclometallated C^N^N-type Pt(II) complexes Pt-15 and Pt-16 that showed yellow or orange electrophosphorescence.⁵⁶ They are strongly emissive, with $\lambda_{\rm PI}$ depending on the nature of the substituent group R. They possess high thermal stabilities and can be easily sublimed in *vacuo* that render them suitable for application in OLEDs. The devices were fabricated with the architecture of ITO/NPB/Pt dve:CBP/BCP/LiF/Al. For the device containing dopant Pt-15, it emitted bright orange light and the EL spectrum showed a peak at 553 nm with a shoulder at 594 nm, and maximum $\eta_{ext} = 12.4\%$, $\eta_L = 32.3$ cd A⁻¹ and $\eta_P =$ 11.2 lm W^{-1} were achieved at a current density of 3.1 mA cm⁻², corresponding to a brightness of 1100 cd m⁻². The device exhibited a L_{max} of 21 700 cd m⁻² with excellent colour stability. A better performance was achieved for the device containing dopant Pt-16, and it emitted yellow light with a major peak at 540 nm accompanied by a shoulder peak of 580 nm. Maximum η_{ext} = 16.1%, $\eta_{\rm L} = 51.8$ cd A⁻¹ and $\eta_{\rm P} = 23.2$ lm W⁻¹ were achieved at a current density of 0.44 mA cm⁻², corresponding to a brightness of 230 cd m⁻². The device exhibited a maximum brightness of 23 500 cd m^{-2} at 16 V and nearly constant CIE coordinates of x = 0.44, y = 0.54.

Another similar class of Pt(II) complexes with O^N^N chelates Pt-17–Pt-21 were reported by the same group.⁵⁷ They are robust yellow emitters with good thermal stabilities. Excitation of Pt-17 to Pt-21 in DMF solutions resulted in a broad orange-red emission (593–618 nm) at room temperature but blueshifted EL emission bands were observed because of solvent relaxation and doping effects. Their EL maximum is independent of their doping concentration and the device performance follows a trend similar to those for the emission quantum yield and thermal stability (Pt-21 > Pt-19 > Pt-18 > Pt-20 ~ Pt-17). The complex Pt-21 with bulky *tert*-butyl group and fluoro substituent gave better performance with L_{max} of 37 000 cd m⁻² and $\eta_{\rm L} = 7.8$ cd A⁻¹.

R = t-Bu **Pt-16**

1.4 Other Metals

Besides Ir(III) and Pt(II) complexes, some other heavy-metal complexes also demonstrate yellow or orange EL bands. The Au(III) alkynyl-based complex Au-1 with strongly electron-releasing amino substituent was employed as a dopant in multilayer colour-tunable OLEDs.⁵⁸ The tunable colour of its EL (from 500 nm to 580 nm upon increasing the dopant concentration) is mainly attributed to the higher order and better packing of the molecules, leading to a stronger π -stacking of the C^N^N ligand and hence resulting in a dimeric or excimeric intraligand EL at the lower energy. Its optimal device gave a L_{max} of 10 000 cd m⁻², $\eta_{\text{L}} = 17.6$ cd A⁻¹, $\eta_{\text{P}} = 14.5$ lm W⁻¹ and $\eta_{\text{ext}} = 5.5\%$.

Osmium(II) complexes are also suitable for OLED applications and three orange OLEDs were reported by Shu *et al.* Due to the lower positive charge at the central Os(II) metal cation, the $Os^{2+/3+}$ oxidation is shifted to a lower potential in comparison to the $Ir^{3+/4+}$ couple of its isoelectronic Ir(III) complexes. Likewise, the lowest-energy excited state of Os(II) complexes should contain an increased proportion of the MLCT character. The increase of the MLCT participation may render a significant reduction of its radiative lifetime compared with the respective Ir(III) system and the cathodically shifted oxidation potential pushes up the energy level of HOMO and makes the

Au-1

neutral Os(II) complexes suitable to serve as the sites for direct charge trapping. In addition, the shortened radiative lifetime reduces the T-T annihilation in the devices, especially at high dopant concentration or higher driving voltage. The solution-processed PLEDs doped with Os-1 has the EL peak at 602 nm with $\eta_{ext} = 18.7\%$ and $\eta_L = 45$ cd A^{-1} and CIE coordinates of (0.58, 0.41).⁵⁹ This metallophosphor was also used in combination with a blue fluorescent emitter 4,4'-bis[2-{4-(N,N-diphenvlamino)phenvl}vinvl]biphenvl for the fabrication of WOLEDs. The CIE was recorded at x = 0.33, y =0.34 at 9.0 V. The short triplet excited state lifetime of Os-1 (ca. 1.0 µs) is beneficial to the remarkable colour stability. This doubly doped device exhibited a pure white-light emission having a high η_{ext} of 6.12% (13.2 cd A⁻¹), and a $L_{\rm max}$ of 11 306 cd m⁻². Charge-neutral complexes Os-2 and Os-3 can be used to make orange OLEDs using the solution-processing technique.⁶⁰ Their emissions appear in the longer-wavelength region and reveal significantly higher quantum yield (Os-2: $\lambda_{PL} = 584$ nm, $\Phi_P = 0.80$; Os-3: $\lambda_{PL} = 572$ nm, Φ_P = 0.90). Typical device configurations of ITO/PEDOT/PVK:PBD:Os dye/ TPBI/Mg:Ag/Ag were employed. Characteristic emission band at *ca.* 548 nm from Os-2 and blue emission from PVK/PBD host were totally suppressed, but this is not the case for the Os-3 based devices, which still presents a substantial amount of the PVK host emission at the 0.4 mol% dopant level. This implies complete Förster energy transfer from the host to the dopant sites in the former case. Increasing the doping concentration of Os-3 to 1.6 mol% resulted in complete energy transfer and improved the device performance. The maximum η_{ext} of the devices doped with 0.4 mol% of **Os-2** and **Os-3** are 11.7% $(40.4 \text{ cd A}^{-1} \text{ at } 2.1 \text{ mA cm}^{-2})$ and 11.7% (38.5 cd A⁻¹ at 2.2 mA cm⁻²); whereas the CIE coordinates are located at (0.45, 0.53) and (0.42, 0.52), respectively, and do not show much variation upon changing the applied voltage. By increasing the doping concentration of **Os-3** to 1.6 mol%, the peak η_{ext} reached 13.3% (48.9 cd A^{-1} at 6.3 mA cm⁻²) with a L_{max} of 28 816 cd m⁻² at 16 V (96 mA cm⁻²). The **Os-3**-based device exhibited prominent performance on $\eta_{\rm P}$, which reached as high as 16.8 Im W^{-1} and is 1.7 times higher than that of the Os-2-based device due to the significantly lowered driving voltage The use of Os(II) complexes as the active emitting materials in OLEDs should be a

valuable option for solid-state lighting applications because of the simple device architecture and the promise of low-cost manufacturability.

1.5 Concluding Remarks

With the aim of optimising the performance of OLEDs, research on the transition-metal complexes evidently still offers great prospects in terms of molecular design and materials properties. In this chapter, we present a library of heavy-metal complexes that can show yellow or orange EL features that are suitable for the development of highly efficient WOLEDs. It is clear that these results should spur new interest to the scientists in the future design and preparation of luminescent materials incorporating heavy transition elements. We are grappling with how to increase the efficiency of these devices (for both monochromatic and white OLEDs) and ensure that they can withstand wear and tear for practical use. We are looking forward these exciting and promising developments with substantial optimism.

Acknowledgements

The authors would like to thank all postgraduate students, postdoctoral associates and collaborators whose names appear in the references. This work was supported by a grant from the University Grants Committee of HKSAR, China (AoE/P-03/08), Hong Kong Research Grants Council (HKBU202709 and HKUST2/CRF/10) and Hong Kong Baptist University (FRG2/10-11/101).

References

- 1. E. Baranoff, J.-H. Yum, M. Grätzel and M. K. Nazeeruddin, J. Organomet. Chem., 2009, 694, 2661.
- 2. C. J. Humphreys, MRS Bull., 2008, 33, 459.
- (a) G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer and K. Leo, *Adv. Mater.*, 2007, **19**, 3672; (b) S.-J. Su, E. Gonmori, H. Sasabe and J. Kido, *Adv. Mater.*, 2008, **20**, 4189.
- (a) B. W. D'Andrade and S. R. Forrest, *Adv. Mater.*, 2004, 16, 1585; (b) A. Misra, P. Kumar, M. N. Kamalasanan and S. Chandra, *Semicond. Sci. Technol.*, 2006, 21, R35; (c) R. F Service, *Science*, 2005, 310, 1762.
- (a) S. C. Stinson, Chem. Eng. News, 2000, 78, 22; (b) B. Johnstone, Technol. Rev., 2001, 104, 80.
- S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, *Nature*, 2009, 459, 234.
- (a) L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura and F. Barigelletti, *Top. Curr. Chem.*, 2007, **281**, 143; (b) J. A. G. Williams, *Top. Curr. Chem.*, 2007, **281**, 205; (c) Y. Chi and P.-T. Chou, *Chem. Soc. Rev.*, 2010, **39**, 638;

(d) J. A. G. Williams, A. J. Wilkinson and V. L. Whittle, *Dalton Trans.*, 2008, 2081; (e) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest and M. E. Thompson, *J. Am. Chem. Soc.*, 2001, **123**, 4304.

- 8. M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature, 2000, 403, 750.
- G. Zhou, C.-L. Ho, W.-Y. Wong, Q. Wang, D. Ma, L. Wang, Z. Lin, T. B. Marder and A. Beeby, *Adv. Funct. Mater.*, 2008, 18, 499.
- S.-L. Lai, S.-L. Tao, M.-Y. Chan, M.-F. Lo, T.-W. Ng, S.-T. Lee, W.-M. Zhao and C.-S. Lee, J. Mater. Chem., 2011, 21, 4983.
- C.-L. Li, Y.-J. Su, Y.-T. Tao, P.-T. Chou, C.-H. Chien, C.-C. Cheng and R.-S. Liu, *Adv. Funct. Mater.*, 2005, 15, 387.
- J. Qiao, L. Duan, L. Tang, L. Wang and Y. Qiu, J. Mater. Chem., 2009, 19, 6573.
- W.-C. Chang, A. T. Hu, J.-P. Duan, D. K. Rayabarapu and C.-H. Cheng, J. Organomet. Chem., 2004, 689, 4882.
- 14. L. Chen, C. Yang, J. Qin, J. Gao and D. Ma, *Inorg. Chim. Acta*, 2006, **359**, 4207.
- 15. H.-W. Hong and T.-M. Chen, Mater. Chem. Phys., 2007, 101, 170.
- N. Rehmann, C. Ulbricht, A. Köhnen, P. Zacharias, M. C. Gather, D. Hertel, E. Holder, K. Meerholz and U. S. Schubert, *Adv. Mater.*, 2008, 20, 129.
- 17. D.-S. Leem, S. O. Jung, S.-O. Kim, J.-W. Park, J. W. Kim, Y.-S. Park, Y.-H. Kim, S.-K. Kwon and J.-J. Kim, *J. Mater. Chem.*, 2009, **19**, 8824.
- G. Zhang, F. Wu, X. Jiang, P. Sun and C.-H. Cheng, Synth. Met., 2010, 160, 1906.
- G. Ge, J. He, H. Guo, F. Wang and D. Zou, J. Organomet. Chem., 2009, 694, 3050.
- G. Ge, G. Zhang, H. Guo, Y. Chuai and D. Zou, *Inorg. Chim. Acta*, 2009, 362, 2231.
- T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou and Y. Wang, J. Mater. Chem., 2011, 21, 3551.
- 22. C.-H. Lin, Y. Chi, M.-W. Chung, Y.-J. Chen, K.-W. Wang, G.-H. Lee, P.-T. Chou, W.-Y. Hung and H.-C. Chiu, *Dalton Trans.*, 2011, **40**, 1132.
- X. Ren, M. E. Kondakova, D. J. Giesen, M. Rajeswaran, M. Madaras and W. C. Lenhart, *Inorg. Chem.*, 2010, 49, 1301.
- 24. H. J. Bolink, S. G. Santamaria, S. Sudhakar, C. Zhen and Z. Sellinger, *Chem. Commun.*, 2008, 618.
- J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J. Wang, S. Parker, R. Rohl, S. Bernhard and G. G. Malliaras, J. Am. Chem. Soc., 2004, 126, 2763.
- (a) D. Neher, Macromol. Rapid Commun., 2001, 22, 1365; (b) W.-Y. Wong, Coord. Chem. Rev., 2005, 249, 971.
- X.-M. Yu, G.-J. Zhou, C.-S. Lam, W.-Y. Wong, X.-L. Zhu, J.-X. Sun, M. Wong and H.-S. Kwok, *J. Organomet. Chem.*, 2008, 693, 1518.

- 28. C.-L. Ho, W.-Y. Wong, G.-J. Zhou, B. Yao, Z. Xie and L. Wang, *Adv. Funct. Mater.*, 2007, **17**, 2925.
- (a) W.-Y. Wong, G.-J. Zhou, X.-M. Yu, H.-S. Kwok and B.-Z. Tang, *Adv. Funct. Mater.*, 2006, 16, 838; (b) X.-M. Yu, H.-S. Kwok, W.-Y. Wong and G.-J. Zhou, *Chem. Mater.*, 2006, 18, 5097.
- W.-Y. Wong, G.-J. Zhou, X.-M. Yu, H.-S. Kwok and Z. Lin, *Adv. Funct. Mater.*, 2007, 17, 315.
- G.-J. Zhou, W.-Y. Wong, B. Yao, Z. Xie and L. Wang, J. Mater. Chem., 2008, 18, 1799.
- 32. J. H. Yao, C. Zhen, K. P. Loh and Z.-K. Chen, Tetrahedron, 2008, 10814.
- C. Huang, C.-G. Zhen, S. P. Su, Z.-K Chen, X. Liu, D.-C. Zou, Y.-R. Shi and K. P. Loh, J. Organomet. Chem., 2009, 694, 1317.
- (a) K. Brunner, A. van Dijken, H. Borner, J. J. A. M. Bastiaansen, N. M. M. Kiggen and B. M. W. Langeveld, J. Am. Chem. Soc., 2004, 126, 6035;
 (b) S.-J. Yeh, M.-F. Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho, S.-F. Hsu and C.-H. Chen, Adv. Mater., 2005, 17, 285;
 (c) M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu, F.-C. Fang, Y.-L. Liao, K.-T. Wong and C.-I. Wu, Adv. Mater., 2006, 18, 1216;
 (d) K. R. Justin Thomas, J. T. Lin, Y.-T. Tao and C.-W. Ko, J. Am. Chem. Soc., 2001, 123, 9404;
 (e) P. Strohriegl and J. V. Grazulevicius, Adv. Mater., 2003, 13, 445.
- (a) W.-Y. Wong, C.-L. Ho, Z.-Q. Gao, B.-X. Mi, C.-H. Chen, K.-W. Cheah and Z. Lin, *Angew. Chem., Int. Ed.*, 2006, **45**, 7800; (b) C.-L. Ho, W.-Y. Wong, Q. Wang, D. Ma, L. Wang and Z. Lin, *Adv. Funct. Mater.*, 2008, **18**, 928; (c) C.-L. Ho, M.-F. Lin, W.-Y. Wong, W.-K. Wong and C.-H. Chen, *Appl. Phys. Lett.*, 2008, **92**, 083301; (d) C.-L. Ho, W.-Y. Wong, Z.-Q. Gao, C.-H. Chen, K.-W. Cheah, B. Yao, Z. Xie, Q. Wang, D. Ma, L. Wang, X.-M. Yu, H.-S. Kwok and Z. Lin, *Adv. Funct. Mater.*, 2008, **18**, 319; (e) C.-L. Ho, Q. Wang, C.-S. Lam, W.-Y. Wong, D. Ma, L. Wang, Z.-Q. Gao, C.-H. Chen, K.-W. Cheah and Z. Lin, *Chem. Asian J.*, 2009, **4**, 89.
- S. Bettington, M. Tavasli, M. R. Bryce, A. Beeby, H. Al-Attar and A. P. Monkman, *Chem. Eur. J.*, 2007, 13, 1423.
- 37. Y. Tao, Q. Wang, C. Yang, K. Zhang, Q. Wang, T. Zou, J. Qin and D. Ma, J. Mater. Chem., 2008, 18, 4091.
- H. Tang, Y. Li, B. Chen, H. Wu, W. Yang and Y. Cao, *Opt. Mater.*, 2011, 33, 1291.
- D. Wang, J. Wang, H.-L. Fan, H.-F. Huang, Z.-Z. Chu, X.-C. Gao and D.-C. Zou, *Inorg. Chim. Acta*, 2011, 370, 340.
- 40. J. Lu, Q. Liu, J. Ding and Y. Tao, Synth. Met., 2008, 158, 95.
- Q.-D. Liu, J. Lu, J. Ding and Y. Tao, *Macromol. Chem. Phys.*, 2008, 209, 1931.
- 42. I. R. Lasker, S.-F. Hsu and T.-M Chen, Polyhedron 2005, 24, 881.
- (a) C. J. Tonzola, A. P. Kulkarni, A. P. Gifford, W. Kaminsky and S. A. Jenekhe, *Adv. Funct. Mater.*, 2007, 17, 863; (b) R. C. Chiechi, R. J. Tseng, F. Marchioni, Y. Yang and F. Wudl, *Adv. Mater.*, 2006, 18, 325.

- 44. T. Mitsumori, L. M. Campos, M. A. Garcia-Garibay, F. Wudl, H. Sato and Y. Sato, J. Mater. Chem., 2009, 19, 5826.
- 45. W. Lu, C. W. Chan, K. Cheung and C. M. Che, *Organometallics*, 2001, **20**, 2477.
- C.-L. Ho, W.-Y. Wong, B. Yao, Z. Xie, L. Wang and Z. Lin, J. Organomet. Chem., 2009, 694, 2735.
- 47. G.-J. Zhou, X.-Z. Wang, W.-Y. Wong, X.-M. Yu, H.-S. Kwok and Z. Lin, J. Organomet. Chem., 2007, 692, 3461.
- W.-Y. Wong, Z. He, S.-K. So, K.-L. Tong and Z. Lin, Organometallics, 2005, 24, 4079.
- Z. He, W.-Y. Wong, X. Yu, H.-S. Kwok and Z. Lin, *Inorg. Chem.*, 2006, 45, 10922.
- 50. Z. M. Hudson, M. G. Helander, Z.-H. Lu and S. Wang, *Chem. Commun.*, 2011, **47**, 755.
- S.-Y. Chang, J. Kavitha, S.-W. Li, C.-S. Hsu, Y. Chi, Y.-S. Yeh, P.-T. Chou, G.-H. Lee, A. J. Carty, Y.-T. Tao and C.-H. Chien, *Inorg. Chem.*, 2006, 45, 137.
- 52. Y.-Y. Lin, S.-C. Chan, M. C. W. Chan, Y.-J. Hou, N. Zhu, C.-M. Che, Y. Liu and Y. Wang, *Chem. Eur. J.*, 2003, **9**, 1264.
- (a) S.-W. Lai, M. C.-W. Chan, T.-C. Cheung, S.-M. Peng and C.-M. Che, *Inorg. Chem.*, 1999, **38**, 4046; (b) W. Lu, M. C. W. Chan, N. Zhu, C.-M. Che, C. Li and Z. Hui, *J. Am. Chem. Soc.*, 2004, **126**, 7639.
- D. Qiu, J. Wu, Z. Xie, Y. Cheng and L. Wang, J. Organomet. Chem., 2009, 694, 737.
- 55. W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, N. Zhu, S.-T. Lee and C.-M. Che, *Chem. Commun.*, 2002, 206.
- B.-P. Yan, C. C. C. Cheung, S. C. F. Kui, V. A. L. Roy, C.-M. Che and S.-J. Xu, *Appl. Phys. Lett.*, 2007, **91**, 063508.
- 57. C.-C. Kwok, H. M. Ngai, S.-C. Chan, I. H. T. Sham, C.-M. Che and N. Zhu, *Inorg. Chem.*, 2005, **44**, 4442.
- K. M.-C. Wong, X. Zhu, L.-L. Hung, N. Zhu, V. W.-W. Yam and H.-S. Kwok, *Chem. Commun.*, 2005, 2906.
- P.-I. Shih, C.-F. Shu, Y.-L. Tung and Y. Chi, *Appl. Phys. Lett.*, 2006, 88, 251110.
- Y.-M. Cheng, G.-H. Lee, P.-T. Chou, L.-S. Chen, Y. Chi, C.-H. Yang, Y.-H. Song, S.-Y. Chang, P.-I. Shih and C.-F. Shu, *Adv. Funct. Mater.*, 2008, 18, 183.

CHAPTER 2

Photochemically Degradable Polymers; Synthesis of Polymers with Metal–Metal Bonds Along the Backbone Using Click Chemistry

SARAH E. BRADY AND DAVID R. TYLER*

Department of Chemistry, University of Oregon, Eugene, Oregon, USA 97403 *E-mail: dtyler@uoregon.edu

2.1 Introduction

Photochemically degradable polymers^{1–6} fall into two general categories: polymers that are intended to degrade and those that are not intended to degrade. Among the former polymers are those used as photodegradable plastics⁷ and as photoresists.⁸ Virtually every other polymer is in the latter category because every polymer is eventually susceptible to some type of photochemical degradation. Mechanistic knowledge of photochemical degradation processes is helpful in designing new polymers that are intended to degrade and, conversely, in devising strategies to prevent unintended degradation. However, a major problem in designing polymers with specific degradation properties is that the photochemical degradation processes in polymers are mechanistically complicated.⁴ This is not to say that the mechanisms are not understood; in fact, many are understood in detail.

© The Royal Society of Chemistry 2012

RSC Polymer Chemistry Series No. 2

Molecular Design and Applications of Photofunctional Polymers and Materials Edited by Wai-Yeung Wong and Alaa S Abd-El-Aziz

Published by the Royal Society of Chemistry, www.rsc.org

Rather, the mechanisms are intricate, often involving multiple steps, crosslinking, and side reactions; this makes pinpointing the effects that various environmental and molecular parameters have on the degradation process difficult. For example, one formidable complication is that oxygen diffusion is the rate-limiting step in many photo-oxidative degradations.^{9,10} This adds to the intricacy of the analysis because oxygen diffusion rates are frequently timedependent.^{10,11}

To circumvent many of the experimental and mechanistic complexities in the photodegradation process and therefore make it less difficult to interpret data and obtain fundamental insights, we study model polymers with metal-metal bonds along the backbone of the polymer.^{12,13} Such polymers are photodegradable because the metal-metal bonds can be cleaved with visible light (eqn (2.1)) and the resulting metal radicals captured with an appropriate radical trap, typically a carbon-halogen bond or O_2 (Scheme 2.1).¹² By studying the photodegradation of these model polymers, we have been able to extract information without the mechanistic complications inherent in the degradation mechanisms of purely organic polymers. For example, metal radicals do not lead to crosslinking, so this complicating feature found in the degradation of other polymers can be avoided.¹² An additional advantage is that the metal-metal bond is a chromophore, and its distinctive absorption bands in the visible region can be used to monitor the photodegradation reactions by electronic absorption spectroscopy. The use of UV-vis methods to quantify and compare the various degradation rates is a time-saving technique because polymer degradation reactions are typically monitored by stress testing, molecular weight measurements, or attenuated total reflection (ATR) spectroscopy, all of which can be laborious and time consuming. The utility of the metal-metal bond-containing polymers in photodegradation studies has been demonstrated in previous investigations into the effects of mechanical stress,¹⁴ polymer morphology,¹⁵ and temperature¹⁶ on polymer photodegradation rates.

Scheme 2.1 Photochemical reactivity of a polymer with metal–metal bonds along its backbone.

In prior papers and reviews, we described metal-metal bond-containing polymers synthesized by step polymerization, chain polymerization, ADMET, and ROMP reactions.^{12,13} A recurring problem is that the polymers synthesized by these methods generally have low molecular weights. In order to increase the molecular weight of the polymers and to expand the repertoire of polymer types and morphologies available for study, we have been investigating the use of click chemistry to synthesize polymers. This chapter summarizes some recent work in our laboratory on photochemically degradable polymers synthesized by click reactions. It is important to point out that our research is not necessarily intended to arrive at new commercial photodegradable polymers. Rather, our objectives are to explore the photochemical decomposition mechanisms in various types of polymers (e.g., linear, dendrimers, star, comb, etc.) and to explore the effect of environmental and polymer properties on these degradation processes. With this knowledge, we and other workers will be able to design more suitable photodegradable polymers or more suitable light-stable polymers. Before discussing click polymerization reactions, an overview of the methods used to synthesize metal-metal bond-containing polymers is provided. The photochemistry of these polymers is also reviewed.

2.2 Functionalized Metal–Metal Bonded Dimers

Polymers with metal-metal bonds along the backbone have been synthesized using step polymerization, chain polymerization, ROMP, ADMET, and click methods. All of these methods require a functionalized metal-metal bonded dimer as a synthetic starting point, and in our laboratory, we use organometallic dimers with substituted cyclopentadienyl (Cp) rings as the starting materials in these polymerization reactions. A selection of these metal-metal bond-containing synthons is shown in Figure 2.1.¹³

The synthesis of the metal–metal dimers with substituted Cp ligands is challenging due to the weak bond energy of the metal–metal bond (BDE_{Mo-Mo} $\approx 134 \text{ kJ mol}^{-1}$; BDE_{w-w} $\approx 235 \text{ kJ mol}^{-1}$).¹³ Because the metal–metal bond is relatively weak, the Cp₂Mo₂(CO)₆ framework generally cannot withstand the harsh experimental conditions that are necessary to functionalize the Cp ligands. For that reason, it is necessary to synthesize the functionalized Cp ligands first and then coordinate these rings to the metals, followed by formation of the metal–metal bond. Two sample syntheses of metal–metal dimers with substituted Cp ligands are shown in Schemes 2.2 and 2.3.¹⁷ (This synthetic method is emphasized here because it stands in contrast to the methods typically used in the preparation of monomers used to prepare polyferrocenes, perhaps the best-known category of metal-containing poly-

Figure 2.1 Functionalized metal-metal dimers for use in various types of polymerization reactions.

mers. The ferrocene molecule is so robust that the Cp ligands are typically substituted with functional groups after assembly of the Cp₂Fe unit.^{18–20}).

Scheme 2.2 Synthetic route for the preparation of $[(\eta^5-C_5H_4(CH_2)_8CH=CH_2)Mo(CO)_3]_2$.

Scheme 2.3 Synthetic route for the preparation of [(Cp(CH₂)₃OH)Mo(CO)₃]₂.

2.3 Polymer Syntheses

Just as the comparatively weak metal–metal bonds pose problems for the synthesis of the functionalized-Cp dimers, they cause similar problems in the synthesis of the polymers. The relative weakness of the metal–metal bonds makes them more reactive than the bonds found in standard organic polymers; thus, under many standard polymerization reaction conditions, metal–metal bond cleavage would result. For example, reaction of $(Cp(CH_2)_2OH)_2Mo_2(CO)_6$ with a diacyl halide will typically not yield a high molecular weight polyester because acyl halides can react with metal–metal bonds to form a metal halide complex (eqn (2.2)).^{12,21}

In another example, it is well known that Lewis bases react with metal-metal bonded dimers to form disproportionation products ($Mo^{I}-Mo^{I} \rightarrow Mo^{0} + Mo^{II}$; eq 2.3).²² Thus, many condensation polymerizations, in which bases are used to neutralize acid condensates, cannot be used in the polymerization reactions involving the metal-metal dimers. To summarize, polymerization reactions that involve metal-metal bonded precursors must generally utilize non-nucleophilic and noncoordinating reagents and solvents, and they must operate under mild reaction conditions. Ideally, they must also be functional group specific. As discussed in the next section, one of the advantages of click chemistry is that these rather stringent reaction conditions are met, and consequently high molecular weight polymers can be obtained.

$$Cp_2Mo_2(CO)_6 + 2L \longrightarrow CpMo(CO)_3 + CpMo(CO)_2L_2^+ + CO$$
 (2.3)