

Direct3D Rendering
Cookbook

50 practical recipes to guide you through the advanced
rendering techniques in Direct3D to help bring your 3D
graphics project to life

Justin Stenning

BIRMINGHAM - MUMBAI

Direct3D Rendering Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1130114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-710-1

www.packtpub.com

Cover Image by Justin Stenning (justin.stenning@gmail.com)

Credits

Author
Justin Stenning

Reviewers
Julian Amann

Stephan Hodes

Brian Klamik

Todd J. Seiler

Chuck Walbourn

Vinjn Zhang

Acquisition Editor
James Jones

Lead Technical Editor
Priya Singh

Technical Editors
Iram Malik

Shali Sasidharan

Anand Singh

Copy Editors
Roshni Banerjee

Gladson Monteiro

Adithi Shetty

Project Coordinator
Wendell Palmer

Proofreaders
Amy Johnson

Lindsey Thomas

Mario Cecere

Indexers
Hemangini Bari

Monica Ajmera Mehta

Rekha Nair

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Justin Stenning, a software enthusiast since DOS was king, has been working as
a software engineer since he was 20. He has been the technical lead on a range of
projects, from enterprise content management and software integrations to mobile apps,
mapping, and biosecurity management systems. Justin has been involved in a number
of open source projects, including capturing images from fullscreen Direct3D games and
displaying in-game overlays, and enjoys giving a portion of his spare time to the open source
community. Justin completed his Bachelor of Information Technology at Central Queensland
University, Rockhampton. When not coding or gaming, he thinks about coding or gaming,
or rides his motorbike. Justin lives with his awesome wife, and his cheeky and quirky
children in Central Victoria, Australia.

To Lee, thanks for keeping things running smoothly using your special
skill of getting stuff done and of course for your awesomeness. To the
kids, yes, I will now be able to play more Minecraft and Terraria with you.

I would like to thank Michael for taking a punt on me all those years ago
and mentoring me in the art of coding.

I would also like to thank the SharpDX open source project for
producing a great interface to Direct3D from the managed code,
and Blendswap.com and its contributors for providing such a great
service to the Blender community.

Thank you to the reviewers who provided great feedback and
suggestions throughout.

Lastly, a big thank you to James, Priya, Wendell, and all the folks at
Packt Publishing who have made this book possible.

About the Reviewers

Julian Amann started working with DirectX 13 years ago, as a teenager. He received his
master's degree in Computer Science from the Technische Universität München (Germany)
in 2011. He has worked as a research assistant at the Chair of Computer Graphics at
Bauhaus-Universität Weimar, where he did his research on image quality algorithms and
has also been involved in teaching computer graphics. Currently, Julian works at the Chair
of Computational Modeling and Simulation (CMS) at the Technische Universität München.
He is writing his PhD thesis about product data models for infrastructure projects in the field
of Civil Engineering. In his spare time, Julian enjoys programming computer-graphics-related
applications and blogging at vertexwahn.de.

Stephan Hodes has been working as a software engineer in the games industry
for 15 years while GPUs made the transition from fixed function pipeline to a programmable
shader hardware. During this time, he worked on a number of games released for PC as well
as Xbox 360 and PS3.

Since he joined AMD as a Developer Relations Engineer in 2011, he has been working with a
number of European developers on optimizing their technology to take full advantage of the
processing power that the latest GPU hardware provides. He is currently living with his wife
and son in Berlin, Germany.

Brian Klamik has worked as a software design engineer at Microsoft Corporation
for 15 years. Nearly all of this time was spent evolving the Direct3D API in Windows by
working together with the graphics hardware partners and industry’s leading application
developers. He enjoys educating developers about using Direct3D optimally, as well as
enjoying the results of their labor.

Todd J. Seiler works in the CAD/CAM dental industry as a Graphics Software Engineer
at E4D Technologies in Dallas, TX. He has worked as a Software Development Engineer in
Test on Games for Windows LIVE at Microsoft, and he has also worked in the mobile game
development industry. He has a B.S. in Computer Graphics and Interactive Media from the
University of Dubuque in Dubuque, IA with a minor in Computer Information Systems.
He also has a B.S. in Real-time Interactive Simulations from DigiPen Institute of
Technology in Redmond, WA, with minors in Mathematics and Physics.

In his spare time, he plays video games, studies Catholic apologetics and theology,
writes books and articles, and toys with new technology when he can. He periodically
blogs about random things at http://www.toddseiler.com.

Chuck Walbourn, a software design engineer at Microsoft Corporation, has been
working on games for the Windows platform since the early days of DirectX and Windows 95.
He entered the gaming industry by starting his own development house during the mid-90s
in Austin. He shipped several Windows titles for Interactive Magic and Electronic Arts, and he
developed the content tools pipeline for Microsoft Game Studios Xbox titled as Voodoo Vince.
Chuck worked for many years in the game developer relations groups at Microsoft, presenting
at GDC, Gamefest, X-Fest, and other events. He was the lead developer on the DirectX SDK
(June 2010) release. He currently works in the Xbox platform group at Microsoft, where
he supports game developers working on the Microsoft platforms through the Games for
Windows and the DirectX SDK blog, the DirectX Tool Kit and DirectXTex libraries on CodePlex,
and other projects. Chuck holds a bachelor’s degree and a master’s degree in Computer
Science from the University of Texas, Austin.

Vinjn Zhang is an enthusiastic software engineer. His interest in programming includes
game development, graphics shader writing, human-computer interaction, and computer
vision. He has translated two technical books into Chinese, one for the processing language
and other for OpenCV.

Vinjn Zhang has worked for several game production companies, including Ubisoft and 2K
Games. He currently works as a GPU architect in NVIDIA, where he gets the chance to see the
secrets of GPU. Besides his daily work, he is an active GitHub user who turns projects into
open source; even his blog is an open source available at http://vinjn.github.io/.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started with Direct3D	 7

Introduction	 7
Introducing Direct3D 11.1 and 11.2	 22
Building a Direct3D 11 application with C# and SharpDX	 24
Initializing a Direct3D 11.1/11.2 device and swap chain	 32
Debugging your Direct3D application	 38

Chapter 2: Rendering with Direct3D	 45
Introduction	 45
Using the sample rendering framework	 46
Creating device-dependent resources	 51
Creating size-dependent resources	 53
Creating a Direct3D renderer class	 59
Rendering primitives	 61
Applying multisample anti-aliasing	 82
Implementing texture sampling	 83

Chapter 3: Rendering Meshes	 91
Introduction	 91
Rendering a cube and sphere	 92
Preparing the vertex and constant buffers for materials and lighting	 99
Adding material and lighting	 109
Using a right-handed coordinate system	 119
Loading a static mesh from a file	 121

ii

Table of Contents

Chapter 4: Animating Meshes with Vertex Skinning	 131
Introduction	 131
Preparing the vertex shader and buffers for vertex skinning	 131
Loading bones in the mesh renderer	 139
Animating bones	 147

Chapter 5: Applying Hardware Tessellation	 155
Introduction	 155
Preparing the vertex shader and buffers for tessellation	 156
Tessellating a triangle and quad	 158
Tessellating bicubic Bezier surfaces	 171
Refining meshes with Phong tessellation	 179
Optimizing tessellation through back-face culling and dynamic
Level-of-Detail	 185

Chapter 6: Adding Surface Detail with Normal and
Displacement Mapping	 191

Introduction	 191
Referencing multiple textures in a material	 192
Adding surface detail with normal mapping	 194
Adding surface detail with displacement mapping	 204
Implementing displacement decals	 212
Optimizing tessellation based on displacement decal
(displacement adaptive tessellation)	 220

Chapter 7: Performing Image Processing Techniques	 223
Introduction	 223
Running a compute shader – desaturation (grayscale)	 224
Adjusting the contrast and brightness	 231
Implementing box blur using separable convolution filters	 234
Implementing a Gaussian blur filter	 243
Detecting edges with the Sobel edge-detection filter	 246
Calculating an image's luminance histogram	 250

Chapter 8: Incorporating Physics and Simulations	 257
Introduction	 257
Using a physics engine	 257
Simulating ocean waves	 266
Rendering particles	 274

iii

Table of Contents

Chapter 9: Rendering on Multiple Threads and Deferred Contexts	 295
Introduction	 295
Benchmarking multithreaded rendering	 296
Implementing multithreaded dynamic cubic environment mapping	 305
Implementing dual paraboloid environment mapping	 322

Chapter 10: Implementing Deferred Rendering	 333
Introduction	 333
Filling the G-Buffer	 334
Implementing a screen-aligned quad renderer	 346
Reading the G-Buffer	 352
Adding multiple lights	 357
Incorporating multisample anti-aliasing	 373

Chapter 11: Integrating Direct3D with XAML and Windows 8.1	 379
Introduction	 379
Preparing the swap chain for a Windows Store app	 380
Rendering to a CoreWindow	 384
Rendering to an XAML SwapChainPanel	 390
Loading and compiling resources asynchronously	 397

Appendix: Further Reading	 403
Index	 407

iv

Table of Contents

Preface
The latest 3D graphics cards bring us amazing visuals in the latest games, from Indie
to AAA titles. This is made possible on Microsoft platforms including PC, Xbox consoles,
and mobile devices thanks to Direct3D—a component of the DirectX API dedicated to
exposing 3D graphics hardware to programmers. Microsoft DirectX is the graphics technology
powering today's hottest games on Microsoft platforms. DirectX 11 features hardware
tessellation for rich geometric detail, compute shaders for custom graphics effects,
and improved multithreading for better hardware utilization. With it comes a number of
fundamental game changing improvements to the way in which we render 3D graphics.

The last decade has also seen the rise of General-Purpose computation on Graphics
Processing Units (GPGPU), exposing the massively parallel computing power of Graphics
Processing Units (GPUs) to programmers for scientific or technical computing. Some uses
include implementing Artificial Intelligence (AI), advanced postprocessing and physics
within games, powering complex scientific modeling, or contributing to large scale distributed
computing projects.

Direct3D and related DirectX graphics APIs continue to be an important part of the Microsoft
technology stack. Remaining an integral part of their graphics strategy on all platforms, the
library advances in leaps and bounds with each new release, opening further opportunities
for developers to exploit. With the release of the third generation Xbox console—the Xbox
One—and the latest games embracing the recent DirectX 11 changes in 11.1 and 11.2,
we will continue to see Direct3D be a leading 3D graphics API.

Direct3D Rendering Cookbook is a practical, example-driven, technical cookbook with
numerous Direct3D 11.1 and 11.2 rendering techniques supported by illustrations,
example images, strong sample code, and concise explanations.

Preface

2

What this book covers
Chapter 1, Getting Started with Direct3D, reviews the components of Direct3D and the
graphics pipeline, explores the latest features in DirectX 11.1 and 11.2, and looks at
how to build and debug Direct3D applications with C# and SharpDX.

Chapter 2, Rendering with Direct3D, introduces a simple rendering framework,
teaches how to render primitive shapes, and compiles HLSL shaders and use textures.

Chapter 3, Rendering Meshes, explores rendering more complex objects and demonstrates
how to use the Visual Studio graphics content pipeline to compile and render 3D assets.

Chapter 4, Animating Meshes with Vertex Skinning, teaches how to implement vertex
skinning for the animation of 3D models.

Chapter 5, Applying Hardware Tessellation, covers tessellating primitive shapes,
parametric surfaces, mesh subdivision/refinement, and techniques for optimizing
tessellation performance.

Chapter 6, Adding Surface Detail with Normal and Displacement Mapping, teaches how
to combine tessellation with normal and displacement mapping to increase surface detail.
Displacement decals are explored and then optimized for performance with displacement
adaptive tessellation.

Chapter 7, Performing Image Processing Techniques, describes how to use compute shaders
to implement a number of image-processing techniques often used within postprocessing.

Chapter 8, Incorporating Physics and Simulations, explores implementing physics,
simulating ocean waves, and rendering particles.

Chapter 9, Rendering on Multiple Threads and Deferred Contexts, benchmarks
multithreaded rendering and explores the impact of multithreading on two common
environment-mapping techniques.

Chapter 10, Implementing Deferred Rendering, provides insight into the techniques
necessary to implement deferred rendering solutions.

Chapter 11, Integrating Direct3D with XAML and Windows 8.1, covers how to implement
Direct3D Windows Store apps and optionally integrate with XAML based UIs and effects.
Loading and compiling resources within Windows 8.1 is also explored.

Appendix, Further Reading, includes all the references and papers that can be referred for
gathering more details and information related to the topics covered in the book.

Preface

3

What you need for this book
To complete the recipes in this book, it is necessary that you have a graphics card that
supports a minimum of DirectX 11.1.

It is recommended that you have the following software:

ff Windows 8.1

ff Microsoft Visual Studio 2013 Express (or higher edition)

ff Microsoft .NET Framework 4.5

ff Windows Software Development Kit (SDK) for Windows 8.1

ff SharpDX 2.5.1 or higher—http://sharpdx.org/news/

Other resources and libraries are indicated in individual recipes.

For those running Windows 7 or Windows 8, you will require a minimum of the following
software. Please note that although some portions of Chapter 11, Integrating Direct3D
with XAML and Windows 8.1, can be adapted to Windows 8, you will not be able to
complete the final chapter in its entirety as it is specific to Windows 8.1.

ff Microsoft Visual Studio 2012 or 2013 Express (or higher edition)

ff Microsoft .NET Framework 4.5

ff Windows 8 or Windows 7 with Platform Update for SP1*

ff Windows Software development Kit (SDK) for Windows 8

ff SharpDX 2.5.1 or higher—http://sharpdx.org/news/

Other resources and libraries as indicated in individual recipes.

Chapter 11, Integrating Direct3D with XAML and Windows 8.1,
is not compatible with Windows 7, and the Rendering to a XAML
SwapChainPanel recipe requires a minimum of Windows 8.1.

Preface

4

Who this book is for
Direct3D Rendering Cookbook is for C# .NET developers who want to learn the advanced
rendering techniques made possible with DirectX 11.1 and 11.2. It is expected that the
reader has at least a cursory knowledge of graphics programming, and although some
knowledge of Direct3D 10+ is helpful, it is not necessary. An understanding of vector
and matrix algebra is recommended.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: A command list is represented by the
ID3D11CommandList interface in unmanaged C++ and the Direct3D11.CommandList
class in managed C# with SharpDX.

A block of code is set as follows:

 SharpDX.Direct3D.FeatureLevel.Level_11_1,
 SharpDX.Direct3D.FeatureLevel.Level_11_0,
 SharpDX.Direct3D.FeatureLevel.Level_10_1,
 SharpDX.Direct3D.FeatureLevel.Level_10_0,

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 // Create the device and swapchain
 Device.CreateWithSwapChain(
 SharpDX.Direct3D.DriverType.Hardware,
 DeviceCreationFlags.None,

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "These are accessible
by navigating to the DEBUG/Graphics menu".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

5

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the output.
You can download this file from: https://www.packtpub.com/sites/default/files/
downloads/7101OT_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website,
or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

6

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Getting Started with

Direct3D

In this chapter, we will cover the following topics:

ff Components of Direct3D

ff Stages of the programmable pipeline

ff Introducing Direct3D 11.1 and 11.2

ff Building a Direct3D 11 application with C# and SharpDX

ff Initializing a Direct3D 11.1/11.2 device and swap chain

ff Debugging your Direct3D application

Introduction
Direct3D is the component of the DirectX API dedicated to exposing 3D graphics hardware to
programmers on Microsoft platforms including PC, console, and mobile devices. It is a native
API allowing you to create not only 3D graphics for games, scientific and general applications,
but also to utilize the underlying hardware for General-purpose computing on graphics
processing units (GPGPU).

Programming with Direct3D can be a daunting task, and although the differences between
the unmanaged C++ API and the managed .NET SharpDX API (from now on referred to as the
unmanaged and managed APIs respectively) are subtle, we will briefly highlight some of these
while also gaining an understanding of the graphics pipeline.

We will then learn how to get started with programming for Direct3D using C# and SharpDX
along with some useful debugging techniques.

Getting Started with Direct3D

8

Components of Direct3D
Direct3D is a part of the larger DirectX API comprised of many components that sits between
applications and the graphics hardware drivers. Everything in Direct3D begins with the device
and you create resources and interact with the graphics pipeline through various Component
Object Model (COM) interfaces from there.

Device
The main role of the device is to enumerate the capabilities of the display adapter(s) and to
create resources. Applications will typically only have a single device instantiated and must
have at least one device to use the features of Direct3D.

Unlike previous versions of Direct3D, in Direct3D 11 the device is thread-safe. This means
that resources can be created from any thread.

The device is accessed through the following interfaces/classes:

ff Managed: Direct3D11.Device (Direct3D 11), Direct3D11.Device1 (Direct3D
11.1), and Direct3D11.Device2 (Direct3D 11.2)

ff Unmanaged: ID3D11Device, ID3D11Device1, and ID3D11Device2

Each subsequent version of the COM interface descends from the previous
version; therefore, if you start with a Direct3D 11 device instance and
query the interface for the Direct3D 11.2 implementation, you will still have
access to the Direct3D 11 methods with the resulting device reference.

One important difference between the unmanaged and managed version of the APIs used
throughout this book is that when creating resources on a device with the managed API,
the appropriate class constructor is used with the first parameter passed in being a device
instance, whereas the unmanaged API uses a Create method on the device interface.

For example, creating a new blend state would look like the following for the managed C# API:

var blendState = new BlendState(device, desc);

And like this for the unmanaged C++ API:

ID3D11BlendState* blendState;
HRESULT r = device->CreateBlendState(&desc, &blendState);

Chapter 1

9

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Further, a number of the managed classes use overloaded constructors and methods
that only support valid parameter combinations, relying less on a programmer's deep
understanding of the Direct3D API.

With Direct3D 11, Microsoft introduced Direct3D feature levels to manage the differences
between video cards. The feature levels define a matrix of Direct3D features that are
mandatory or optional for hardware devices to implement in order to meet the requirements
for a specific feature level. The minimum feature level required for an application can be
specified when creating a device instance, and the maximum feature level supported by the
hardware device is available on the Device.FeatureLevel property. More information
on feature levels and the features available at each level can be found at http://msdn.
microsoft.com/en-us/library/windows/desktop/ff476876(v=vs.85).aspx.

Device context
The device context encapsulates all rendering functions. These include setting the pipeline
state and generating rendering commands with resources created on the device.

Two types of device context exist in Direct3D 11, the immediate context and deferred context.
These implement immediate rendering and deferred rendering respectively.

The interfaces/classes for both context types are:

ff Managed: Direct3D11.DeviceContext, Direct3D11.DeviceContext1,
and Direct3D11.DeviceContext2

ff Unmanaged: ID3D11DeviceContext, ID3D11DeviceContext1, and
ID3D11DeviceContext2

Immediate context
The immediate context provides access to data on the GPU and the ability to execute/playback
command lists immediately against the device. Each device has a single immediate context
and only one thread may access the context at the same time; however, multiple threads can
interact with the immediate context provided appropriate thread synchronization is in place.

All commands to the underlying device eventually must pass through the immediate context
if they are to be executed.

Getting Started with Direct3D

10

The immediate context is available on the device through the following methods/properties:

ff Managed: Device.ImmediateContext, Device1.ImmediateContext1,
and Device2.ImmediateContext2

ff Unmanaged: ID3D11Device::GetImmediateContext, ID3D11Device1::GetI
mmediateContext1, and ID3D11Device2::GetImmediateContext2

Deferred context
The same rendering methods are available on a deferred context as for an immediate context;
however, the commands are added to a queue called a command list for later execution upon
the immediate context.

Using deferred contexts results in some additional overhead, and only begins to see benefits
when parallelizing CPU-intensive tasks. For example, rendering the same simple scene for the
six sides of a cubic environment map will not immediately see any performance benefits,
and in fact will increase the time it takes to render a frame as compared to using the
immediate context directly. However, render the same scene again with enough CPU load
and it is possible to see some improvements over rendering directly on the immediate
context. The usage of deferred contexts is no substitute for a well written engine and
needs to be carefully evaluated to be correctly taken advantage of.

Multiple deferred context instances can be created and accessed from multiple threads;
however, each may only be accessed by one thread at a time. For example, with the
deferred contexts A and B, we can access both at the exact same time from threads 1
and 2 provided that thread 1 is only accessing deferred context A and thread 2 is only
accessing deferred context B (or vice versa). Any sharing of contexts between threads
requires thread synchronization.

The resulting command lists are not executed against the device until they are played back
by an immediate context.

If a device is created with the single-threaded device creation
flag, an error will occur if you attempt to create a deferred
context. The result of accessing Direct3D interfaces from
multiple threads is also undefined.

A deferred context is created with:

ff Managed: new DeviceContext(device)

ff Unmanaged: ID3D11Device::CreateDeferredContext

Chapter 1

11

Command lists
A command list stores a queue of Direct3D API commands for deferred execution or
merging into another deferred context. They facilitate the efficient playback of a number
of API commands queued from a device context.

A command list is represented by the ID3D11CommandList interface in unmanaged
C++ and the Direct3D11.CommandList class in managed C# with SharpDX. They are
created using:

ff Managed: DeviceContext.FinishCommandList

ff Unmanaged: ID3D11DeviceContext::FinishCommandList

Command lists are played back on the immediate context using:

ff Managed: DeviceContext.ExecuteCommandList

ff Unmanaged: ID3D11DeviceContext::ExecuteCommandList

Trying to execute a command list on a deferred context or trying to
create a command list from an immediate context will result in an error.

Swap chains
A swap chain facilitates the creation of one or more back buffers. These buffers are used to
store rendered data before being presented to an output display device. The swap chain takes
care of the low-level presentation of this data and with Direct3D 11.1, supports stereoscopic
3D display behavior (left and right eye for 3D glasses/displays).

If the output of rendering is to be sent to an output connected to the current adapter, a swap
chain is required.

Swap chains are part of the DirectX Graphics Infrastructure (DXGI) API, which is responsible
for enumerating graphics adapters, display modes, defining buffer formats, sharing resources
between processes, and finally (via the swap chain) presenting rendered frames to a window
or output device for display.

A swap chain is represented by the following types:

ff Managed: SharpDX.DXGI.SwapChain and SharpDX.DXGI.SwapChain1

ff Unmanaged: IDXGISwapChain and IDXGISwapChain1

Getting Started with Direct3D

12

States
A number of state types exist to control the behavior of some fixed function stages of
the pipeline and how samplers behave for shaders.

All shaders can accept several sampler states. The output merger can accept both,
a blend state and depth-stencil state, and the rasterizer accepts a rasterizer state.
The types used are shown in the following table.

Managed type (SharpDX.Direct3D11) Unmanaged type
BlendState ID3D11BlendState

BlendState1 ID3D11BlendState1

DepthStencilState ID3D11DepthStencilState

RasterizerState ID3D11RasterizerState

RasterizerState1 ID3D11RasterizerState1

SamplerState ID3D11SamplerState

Resources
A resource is any buffer or texture that is used as an input and/or output from the Direct3D
pipeline. A resource is consumed by creating one or more views to the resource and then
binding them to stages of the pipeline.

Textures
A texture resource is a collection of elements known as texture pixels or texels—which represent
the smallest unit of a texture that can be read or written to by the pipeline. A texel is generally
comprised of between one and four components depending on which format is being used for
the texture; for example, a format of Format.R32G32B32_Float is used to store three 32-bit
floating point numbers in each texel whereas a format of Format.R8G8_UInt represents two
8-bit unsigned integers per texel. There is a special case when dealing with compressed formats
(Format.BC) where the smallest unit consists of a block of 4 x 4 texels.

A texture resource can be created in a number of different formats as defined by the DXGI
format enumeration (SharpDX.DXGI.Format and DXGI_FORMAT for managed/unmanaged,
respectively). The format can be either applied at the time of creation, or specified when it is
bound by a resource view to the pipeline.

Hardware device drivers may support different combinations of formats for different purposes,
although there is a list of mandatory formats that the hardware must support depending on the
version of Direct3D. The device's CheckFormatSupport method can be used to determine
what resource type and usage a particular format supports on the current hardware.

Chapter 1

13

Textures do not just store image data. They are used for information,
such as height-maps, displacement-maps, or for any data structure that
needs to be read or written within a shader that can benefit from the
speed benefits of hardware support for textures and texture sampling.

Types of texture resources include:

ff 1D Textures and 1D Texture Arrays

ff 2D Textures and 2D Texture Arrays

ff 3D Textures (or volume textures)

ff Unordered access textures

ff Read/Write textures

The following table maps the managed to unmanaged types for the different textures.

Managed type (SharpDX.Direct3D11) Unmanaged type
Texture1D ID3D11Texture1D

Texture2D ID3D11Texture2D

Texture3D ID3D11Texture3D

Arrays of 1D and 2D textures are configured with the subresource data associated with the
description of the texture passed into the appropriate constructor. A common use for texture
arrays is supporting Multiple Render Targets (MRT).

Resource views
Before a resource can be used within a stage of the pipeline it must first have a view.
This view describes to the pipeline stages what format to expect the resource in and what
region of the resource to access. The same resource can be bound to multiple stages of the
pipeline using the same view, or by creating multiple resource views.

It is important to note that although a resource can be bound to multiple stages of the pipeline,
there may be restrictions on whether the same resource can be bound for input and output at
the same time. As an example, a Render Target View (RTV) and Shader Resource View (SRV)
for the same resource both cannot be bound to the pipeline at the same time. When a conflict
arises the read-only resource view will be automatically unbound from the pipeline, and if the
debug layer is enabled, a warning message will be output to the debug output.

Getting Started with Direct3D

14

Using resources created with a typeless format, allows the same underlying resource to be
represented by multiple resource views, where the compatible resolved format is defined
by the view. For example, using a resource with both a Depth Stencil View (DSV) and SRV
requires that the underlying resource be created with a format like Format.R32G8X24_
Typeless. The SRV then specifies a format of Format.R32_Float_X8X24_Typeless,
and finally the DSV is created with a format of Format.D32_Float_S8X24_UInt.

Some types of buffers can be provided to certain stages of the pipeline without a resource
view, generally when the structure and format of the buffer is defined in some other way,
for example, using state objects or structures within shader files.

Types of resource views include:

ff Depth Stencil View (DSV),

ff Render Target View (RTV),

ff Shader Resource View (SRV)

ff Unordered Access View (UAV)

ff Video decoder output view

ff Video processor input view

ff Video processor output view

The following table shows the managed and unmanaged types for the different
resource views.

Managed type (SharpDX.Direct3D11) Unmanaged type
DepthStencilView ID3D11DepthStencilView

RenderTargetView ID3D11RenderTargetView

ShaderResourceView ID3D11ShaderResourceView

UnorderedAccessView ID3D11UnorderedAccessView

VideoDecoderOutputView ID3D11VideoDecoderOutputView

VideoProcessorInputView ID3D11VideoProcessorInputView

VideoProcessorOutputView ID3D11VideoProcessorOutputView

Buffers
A buffer resource is used to provide structured and unstructured data to stages of in the
graphics pipeline.

Chapter 1

15

Types of buffer resources include:

ff Vertex buffer

ff Index buffer

ff Constant buffer

ff Unordered access buffers

�� Byte address buffer

�� Structured buffer

�� Read/Write buffers

�� Append/Consume structured buffers

All buffers are represented by the SharpDX.Direct3D11.Buffer class (ID3D11Buffer
for the unmanaged API). The usage is defined by how and where it is bound to the pipeline.
The following table shows the binding flags for different buffers:

Buffer type Managed BindFlags flags Unmanaged D3D11_BIND_FLAG flags
Vertex buffer VertexBuffer D3D11_BIND_VERTEX_BUFFER

Index buffer IndexBuffer D3D11_BIND_INDEX_BUFFER

Constant buffer ConstantBuffer D3D11_BIND_CONSTANT_BUFFER

Unordered access
buffers

UnorderedAccess D3D11_BIND_UNORDERED_ACCESS

Unordered access buffers are further categorized into the following types using an additional
option/miscellaneous flag within the buffer description as shown in the following table:

Buffer type Managed
ResourceOptionFlags flags

Unmanaged D3D11_RESOURCE_
MISC_FLAG flags

Byte address buffer BufferAllowRawViews D3D11_RESOURCE_MISC_BUFFER_
ALLOW_RAW_VIEWS

Structured buffer BufferStructured D3D11_RESOURCE_MISC_BUFFER_
STRUCTURED

Read/Write buffers Either use Byte address buffer / Structured buffer and then use
RWBuffer or RWStructuredBuffer<MyStruct> instead of
Buffer and StructuredBuffer<MyStruct> in HLSL.

Append/Consume
buffers

A structured buffer and then use AppendStructuredBuffer
or ConsumeStructuredBuffer in HLSL. Use
UnorderedAccessViewBufferFlags.Append when
creating the UAV.

Getting Started with Direct3D

16

Shaders and High Level Shader Language
The graphics pipeline is made up of fixed function and programmable stages.
The programmable stages are referred to as shaders, and are programmed using small
High Level Shader Language (HLSL) programs. The HLSL is implemented with a series
of shader models, each building upon the previous version. Each shader model version
supports a set of shader profiles, which represent the target pipeline stage to compile a
shader. Direct3D 11 introduces Shader Model 5 (SM5), a superset of Shader Model 4 (SM4).

An example shader profile is ps_5_0, which indicates a shader program is for use in the pixel
shader stage and requires SM5.

Stages of the programmable pipeline
All Direct3D operations take place via one of the two pipelines, known as pipelines for
the fact that information flows in one direction from one stage to the next. For all drawing
operations, the graphics pipeline is used (also known as drawing pipeline or rendering
pipeline). To run compute shaders, the dispatch pipeline is used (aka DirectCompute
pipeline or compute shader pipeline).

Although these two pipelines are conceptually separate. They cannot be active at the same
time. Context switching between the two pipelines also incurs additional overhead so each
pipeline should be used in blocks—for example, run any compute shaders to prepare data,
perform all rendering, and finally post processing.

Methods related to stages of the pipeline are found on the device context. For the managed
API, each stage is grouped into a property named after the pipeline stage. For example, for the
vertex shader stage, deviceContext.VertexShader.SetShaderResources, whereas
the unmanaged API groups the methods by a stage acronym directly on the device context,
for example, deviceContext->VSSetShaderResources, where VS represents the vertex
shader stage.

The graphics pipeline
The graphics pipeline is comprised of nine distinct stages that are generally used to create 2D
raster representations of 3D scenes, that is, take our 3D model and turn it into what we see
on the display. Four of these stages are fixed function and the remaining five programmable
stages are called shaders (the following diagram shows the programmable stages as a circle).
The output of each stage is taken as input into the next along with bound resources or in the
case of the last stage, Output Merger (OM), the output is sent to one or more render targets.
Not all of the stages are mandatory and keeping the number of stages involved to a minimum
will generally result in faster rendering.

Chapter 1

17

Optional tessellation support is provided by the three tessellation stages (two programmable
and one fixed function): the hull shader, tessellator, and domain shader. The tessellation
stages require a Direct3D feature level of 11.0 or later.

As of Direct3D 11.1, each programmable stage is able to read/write to an Unordered
Access View (UAV). A UAV is a view of a buffer or texture resource that has been created
with the BindFlags.UnorderedAccess flag (D3D11_BIND_UNORDERED_ACCESS from
the D3D11_BIND_FLAG enumeration).

M
em

ory R
esources (B

uffers, C
onstant B

uffers, Textures)

U
nordered Access R

esources
(R

ead/W
rite from

 any shader stage is new
 to D

irect3D
 11.1)

R
ender

Targets

(O
M

)
O

utput
M

erger
S

tage

(PS
)

Pixel
S

hader
S

tage

(S
O

)
S

tream
O

utput
S

tage

(R
S

)
R

asterizer
S

tage

(D
S

)
D

om
ain

S
hader

S
tage

(TS
)

Tessellator
S

tage

(H
S

)
H

ull
S

hader
S

tage

(VS
)

Vertex
S

hader
S

tage

(IA)
Input

Assem
bler

S
tage

(G
S

)
G

eom
etry

S
hader

S
tage

Direct3D Graphics Pipeline

Getting Started with Direct3D

18

Input Assembler (IA) stage
The IA stage reads primitive data (points, lines, and/or triangles) from buffers and assembles
them into primitives for use in subsequent stages.

Usually one or more vertex buffers, and optionally an index buffer, are provided as input.
An input layout tells the input assembler what structure to expect the vertex buffer in.

The vertex buffer itself is also optional, where a vertex shader only has a vertex ID as
input (using the SV_VertexID shader system value input semantic) and then can either
generate the vertex data procedurally or retrieve it from a resource using the vertex ID
as an index. In this instance, the input assembler is not provided with an input layout or
vertex buffer, and simply receives the number of vertices that will be drawn. For more
information, see http://msdn.microsoft.com/en-us/library/windows/desktop/
bb232912(v=vs.85).aspx.

Device context commands that act upon the input assembler directly are found on
the DeviceContext.InputAssembler property, for example, DeviceContext.
InputAssembler.SetVertexBuffers, or for unmanaged begin with IA, for example,
ID3D11DeviceContext::IASetVertexBuffers.

Vertex Shader (VS) stage
The vertex shader allows per-vertex operations to be performed upon the vertices provided
by the input assembler. Operations include manipulating per-vertex properties such as
position, color, texture coordinate, and a vertex's normal.

A vertex can be comprised of up to sixteen 32-bit vectors (up to four components each).
A minimal vertex usually consists of position, color, and the normal vector. In order to support
larger sets of data or as an alternative to using a vertex buffer, the vertex shader can also
retrieve data from a texture or UAV.

A vertex shader is required; even if no transform is needed, a shader must be provided that
simply returns vertices without modifications.

Device context commands that are used to control the vertex shader stage are grouped within
the DeviceContext.VertexShader property or for unmanaged begin with VS, for example,
DeviceContext.VertexShader.SetShaderResources and ID3D11DeviceContext:
:VSSetShaderResources, respectively.

Hull Shader (HS) stage
The hull shader is the first stage of the three optional stages that together support hardware
accelerated tessellation. The hull shader outputs control points and patches constant
data that controls the fixed function tessellator stage. The shader also performs culling by
excluding patches that do not require tessellation (by applying a tessellation factor of zero).

Chapter 1

19

Unlike other shaders, the hull shader consists of two HLSL functions: the patch constant
function, and hull shader function.

This shader stage requires that the IA stage has one of the patch list topologies set as
its active primitive topology (for example, SharpDX.Direct3D.PrimitiveTopology.
PatchListWith3ControlPoints for managed and D3D11_PRIMITIVE_TOPOLOGY_3_
CONTROL_POINT_PATCHLIST for unmanaged).

Device context commands that control the hull shader stage are grouped within the
DeviceContext.HullShader property or for unmanaged device begin with HS.

Tessellator stage
The tessellator stage is the second stage of the optional tessellation stages. This fixed
function stage subdivides a quad, triangle, or line into smaller objects. The tessellation
factor and type of division is controlled by the output of the hull shader stage.

Unlike all other fixed function stages the tessellator stage does not include any direct method
of controlling its state. All required information is provided within the output of the hull shader
stage and implied through the choice of primitive topology and configuration of the hull and
domain shaders.

Domain Shader (DS) stage
The domain shader is the third and final stage of the optional tessellation stages.
This programmable stage calculates the final vertex position of a subdivided point
generated during tessellation.

The types of operations that take place within this shader stage are often fairly similar
to a vertex shader when not using the tessellation stages.

Device context commands that control the domain shader stage are grouped by the
DeviceContext.DomainShader property, or for unmanaged begin with DS.

Geometry Shader (GS) stage
The optional geometry shader stage runs shader code that takes an entire primitive or
primitive with adjacency as input. The shader is able to generate new vertices on output
(triangle strip, line strip, or point list).

The geometry shader stage is unique in that its output can go
to the rasterizer stage and/or be sent to a vertex buffer via the
stream output stage (SO).

Getting Started with Direct3D

20

It is critical for performance that the amount of data sent into and out of the geometry
shader is kept to a minimum. The geometry shader stage has the potential to slow down
the rendering performance quite significantly.

Uses of the geometry shader might include rendering multiple faces of environment maps
in a single pass (refer to Chapter 9, Rendering on Multiple Threads and Deferred Contexts),
and point sprites/billboarding (commonly used in particle systems). Prior to Direct3D 11,
the geometry shader could be used to implement tessellation.

Device context commands that control the geometry shader stages are grouped in the
GeometryShader property, or for unmanaged begin with GS.

Stream Output (SO) stage
The stream output stage is an optional fixed function stage that is used to output geometry
from the geometry shader into vertex buffers for re-use or further processing in another pass
through the pipeline.

There are only two commands on the device context that control the stream output stage
found on the StreamOutput property of the device content: GetTargets and SetTargets
(unmanaged SOGetTargets and SOSetTargets).

Rasterizer stage (RS)
The rasterizer stage is a fixed function stage that converts the vector graphics (points,
lines, and triangles) into raster graphics (pixels). This stage performs view frustum clipping,
back-face culling, early depth/stencil tests, perspective divide (to convert our vertices from
clip-space coordinates to normalized device coordinates), and maps vertices to the viewport.
If a pixel shader is specified, this will be called by the rasterizer for each pixel, with the result
of interpolating per-vertex values across each primitive passed as the pixel shader input.

There are additional interpolation modifiers that can be applied to the pixel shader input
structure that tell the rasterizer stage the method of interpolation that should be used for
each property (for more information see Interpolation Modifiers introduced in Shader Model
4 on MSDN at http://msdn.microsoft.com/en-us/library/windows/desktop/
bb509668(v=vs.85).aspx#Remarks).

When using multisampling, the rasterizer stage can provide an additional coverage mask
to the pixel shader that indicates which samples are covered by the pixel. This is provided
within the SV_Coverage system-value input semantic. If the pixel shader specifies the SV_
SampleIndex input semantic, instead of being called once per pixel by the rasterizer, it will
be called once per sample per pixel (that is, a 4xMSAA render target would result in four calls
to the pixel shader for each pixel).

Device context commands that control the rasterizer stage state are grouped in the
Rasterizer property of the device context or for unmanaged begin with RS.

Chapter 1

21

Pixel Shader (PS) stage
The final programmable stage is the pixel shader. This stage executes a shader program that
performs per-pixel operations to determine the final color of each pixel. Operations that take
place here include per-pixel lighting and post processing.

Device context commands that control the pixel shader stage are grouped by the
PixelShader property or begin with PS for the unmanaged API.

Output Merger (OM) stage
The final stage of the graphics pipeline is the output merger stage. This fixed function stage
generates the final rendered pixel color. You can bind a depth-stencil state to control z-buffering,
and bind a blend state to control blending of pixel shader output with the render target.

Device context commands that control the state of the output merger stage are grouped by
the OutputMerger property or for unmanaged begin with OM.

The dispatch pipeline
The dispatch pipeline is where compute shaders are executed. There is only one stage in this
pipeline, the compute shader stage. The dispatch pipeline and graphics pipeline cannot run
at the same time and there is an additional context change cost when switching between the
two, therefore calls to the dispatch pipeline should be grouped together where possible.

Memory Resources (Buffers,
Constant Buffers, Textures)

Unordered Access Resources

(CS)
Compute
Shader
Stage

Direct3D Dispatch/DirectCompute Pipeline

Getting Started with Direct3D

22

Compute Shader (CS) stage
The compute shader (also known as DirectCompute) is an optional programmable stage that
executes a shader program upon multiple threads, optionally passing in a dispatch thread
identifier (SV_DispatchThreadID) and up to three thread group identifier values as input
(SV_GroupIndex, SV_GroupID, and SV_GroupThreadID). This shader supports a whole
range of uses including post processing, physics simulation, AI, and GPGPU tasks.

Compute shader support is mandatory for hardware devices from feature level 11_0 onwards,
and optionally available on hardware for feature levels 10_0 and 10_1.

The thread identifier is generally used as an index into a resource to perform an operation.
The same shader program is run upon many thousands of threads at the same time,
usually with each reading and/or writing to an element of a UAV resource.

Device context commands that control the compute shader stage are grouped in the
ComputeShader property or begin with CS in the unmanaged API.

After the compute shader is prepared, it is executed by calling the Dispatch command
on the device context, passing in the number of thread groups to use.

Introducing Direct3D 11.1 and 11.2
With the release of Windows 8 came a minor release of Direct3D, Version 11.1 and the
DXGI API, Version 1.2. A number of features that do not require Windows Display Driver
Model (WDDM) 1.2 were later made available for Windows 7 and Windows Server 2008
R2 with the Platform Update for Windows 7 SP1 and Windows Server 2008 R2 SP1.

Now with the release of Windows 8.1 in October 2013 and the arrival of the Xbox One
not long after, Microsoft has provided another minor release of Direct3D, Version 11.2
and DXGI Version 1.3. These further updates are not available on previous versions of
Windows 7 or Windows 8.

Direct3D 11.1 and DXGI 1.2 features
Direct3D 11.1 introduces a number of enhancements and additional features, including:

ff Unordered Access Views (UAVs) can now be used in any shader stage, not just the
pixel and compute shaders

ff A larger number of UAVs can be used when you bind resources to the output
merger stage

ff Support for reducing memory bandwidth and power consumption (HLSL minimum
precision and swap chain dirty regions and scroll present parameters)

Chapter 1

23

ff Shader tracing and compiler enhancements

ff Direct3D device sharing

ff Create larger constant buffers than a shader can access (by binding a subset
of a constant buffer)

ff Support logical operations in a render target with new blend state options

ff Create SRV/RTV and UAVs to video resources so that Direct3D shaders can
process video resources

ff Ability to use Direct3D in Session 0 processes (from background services)

ff Extended resource sharing for shared Texture2D resources

DXGI 1.2 enhancements include:

ff A new flip-model swap chain

ff Support for stereoscopic 3D displays

ff Restricting output to a specific display

ff Support for dirty rectangles and scrolled areas that can reduce memory bandwidth
and power consumption

ff Events for notification of application occlusion status (that is, knowing when
rendering is not necessary)

ff A new desktop duplication API that replaces the previous mirror drivers

ff Improved event-based synchronization to share resources

ff Additional debugging APIs

Direct3D 11.2 and DXGI 1.3 features
Direct3D 11.2 is a smaller incremental update by comparison and includes the
following enhancements:

ff HLSL compilation within Windows Store apps under Windows 8.1. This feature
was missing from Windows 8 Windows Store apps and now allows applications
to compile shaders at runtime for Windows Store apps.

ff HLSL shader linking, adding support for precompiled HLSL functions that can be
packaged into libraries and linked into shaders at runtime.

ff Support for tiled resources, large resources that use small amounts of physical
memory—suitable for large terrains.

ff Ability to annotate graphics commands, sending strings and an integer value
to Event Tracing for Windows (ETW).

Getting Started with Direct3D

24

DXGI 1.3 enhancements include:

ff Overlapping swap chains and scaling, for example, presenting a swap chain that
is rendered at a lower resolution, then up-scaling and overlapping with a UI swap
chain at the displays native resolution.

ff Trim device command, allowing memory to be released temporarily. Suitable for
when an application is being suspended and to reduce the chances that it will be
terminated to reclaim resources for other apps.

ff Ability to set the source size of the back buffer allowing the swap chain to be
resized (smaller) without recreating the swap chain resources.

ff Ability to implement more flexible and lower frame latencies by specifying the
maximum frame latency (number of frames that can be queued at one time) and
retrieving a wait handle to use with WaitForSingleObjectEx before commencing the
next frame's drawing commands.

Building a Direct3D 11 application with C#
and SharpDX

In this recipe we will prepare a blank project that contains the appropriate SharpDX
references and a minimal rendering loop. The project will initialize necessary Direct3D
objects and then provide a basic rendering loop that sets the color of the rendering
surface to Color.LightBlue.

Getting ready
Make sure you have Visual Studio 2012 Express for Windows Desktop or Professional
and higher installed. Download the SharpDX binary package and have it at hand.

To simplify the recipes in this book, lets put all our projects in a single solution:

1.	 Create a new Blank Solution in Visual Studio by navigating to File | New |
Project… (Ctrl + Shift + N), search for and select Blank Solution by typing
that in the search box at the top right of the New Project form (Ctrl + E).

2.	 Enter a solution name and location and click on Ok.

The recipes in this book will assume that the solution has
been named D3DRendering.sln and that it is located
in C:\Projects\D3DRendering.

Chapter 1

25

3.	 You should now have a new Blank Solution at C:\Projects\D3DRendering\
D3DRendering.sln.

4.	 Extract the contents of the SharpDX package into C:\Projects\D3DRendering\
External. The C:\Projects\D3DRendering\External\Bin folder should
now exist among others.

How to do it…
With the solution open, let's create a new project:

1.	 Add a new Windows Form Application project to the solution with .NET
Framework 4.5 selected.

2.	 We will name the project Ch01_01EmptyProject.

3.	 Add the SharpDX references to the project by selecting the project in the solution
explorer and then navigate to PROJECT | Add Reference from the main menu.
Now click on the Browse option on the left and click on the Browse... button in
Reference Manager.

4.	 For a Direct3D 11.1 project compatible with Windows 7, Windows 8, and Windows
8.1, navigate to C:\Projects\D3DRendering\External\Bin\DirectX11_1-
net40 and select SharpDX.dll, SharpDX.DXGI.dll, and SharpDX.Direct3D11.dll.

5.	 For a Direct3D 11.2 project compatible only with Windows 8.1, navigate to C:\
Projects\D3DRendering\External\Bin\DirectX11_2-net40 and add the
same references located there.

SharpDX.dll, SharpDX.DXGI.dll, and SharpDX.Direct3D11.dll are the minimum
references required to create Direct3D 11 applications with SharpDX.

6.	 Click on Ok in Reference Manager to accept the changes.

7.	 Add the following using directives to Program.cs:
using SharpDX;
using SharpDX.Windows;
using SharpDX.DXGI;
using SharpDX.Direct3D11;
// Resolve name conflicts by explicitly stating the class to use:
using Device = SharpDX.Direct3D11.Device;

Getting Started with Direct3D

26

8.	 In the same source file, replace the Main() function with the following code to
initialize our Direct3D device and swap chain.
[STAThread]
static void Main()
{
 #region Direct3D Initialization
 // Create the window to render to
 Form1 form = new Form1();
 form.Text = "D3DRendering - EmptyProject";
 form.Width = 640;
 form.Height = 480;

 // Declare the device and swapChain vars
 Device device;
 SwapChain swapChain;

 // Create the device and swapchain
 Device.CreateWithSwapChain(
 SharpDX.Direct3D.DriverType.Hardware,
 DeviceCreationFlags.None,
 new [] {
 SharpDX.Direct3D.FeatureLevel.Level_11_1,
 SharpDX.Direct3D.FeatureLevel.Level_11_0,
 SharpDX.Direct3D.FeatureLevel.Level_10_1,
 SharpDX.Direct3D.FeatureLevel.Level_10_0,
 },
 new SwapChainDescription()
 {
 ModeDescription =
 new ModeDescription(
 form.ClientSize.Width,
 form.ClientSize.Height,
 new Rational(60, 1),
 Format.R8G8B8A8_UNorm
),
 SampleDescription = new SampleDescription(1,0),
 Usage = SharpDX.DXGI.Usage.BackBuffer | Usage.
RenderTargetOutput,
 BufferCount = 1,
 Flags = SwapChainFlags.None,
 IsWindowed = true,

Chapter 1

27

 OutputHandle = form.Handle,
 SwapEffect = SwapEffect.Discard,
 },
 out device, out swapChain
);

// Create references for backBuffer and renderTargetView
 var backBuffer = Texture2D.FromSwapChain<Texture2D>(swapChain,
0);
 var renderTargetView = new RenderTargetView(device,
backBuffer);

 #endregion

...
}

9.	 Within the same Main() function, we now create a simple render loop using
a SharpDX utility class SharpDX.Windows.RenderLoop that clears the render
target with a light blue color.
#region Render loop
// Create and run the render loop
RenderLoop.Run(form, () =>
{
 // Clear the render target with light blue
 device.ImmediateContext.ClearRenderTargetView(
 renderTargetView,
 Color.LightBlue);
 // Execute rendering commands here...

 // Present the frame
 swapChain.Present(0, PresentFlags.None);
});
#endregion

10.	 And finally, after the render loop we have our code to clean up the Direct3D
COM references.
#region Direct3D Cleanup
// Release the device and any other resources created
renderTargetView.Dispose();
backBuffer.Dispose();
device.Dispose();
swapChain.Dispose();
#endregion

Getting Started with Direct3D

28

11.	 Start debugging the project (F5). If all is well, the application will run and show a
window like the following screenshot. Nothing very exciting yet but we now have a
working device and swap chain.

Output from the empty project

How it works…
We've created a standard Windows Forms Application to simplify the example so
that the project can be built on Windows 7, Windows 8, and Windows 8.1.

Adding the SharpDX.dll reference to your project provides access to all the common
enumerations and structures that have been generated in SharpDX from the Direct3D
SDK header files, along with a number of base classes and helpers such as a matrix
implementation and the RenderLoop we have used. Adding the SharpDX.DXGI.dll
reference provides access to the DXGI API (where we get our SwapChain from), and finally
SharpDX.Direct3D11.dll provides us with access to the Direct3D 11 types.

The using directives added are fairly self-explanatory except perhaps the SharpDX.
Windows namespace. This contains the implementation for RenderLoop and also a
System.Windows.Form descendant that provides some helpful events for Direct3D
applications (for example, when to pause/resume rendering).

When adding the using directives, there are sometimes conflicts in type names between
namespaces. In this instance there is a definition for the Device class in the namespaces
SharpDX.DXGI and SharpDX.Direct3D11. Rather than having to always use fully qualified
type names, we can instead explicitly state which type should be used with a device using an
alias directive as we have done with:

using Device = SharpDX.Direct3D11.Device;

Our Direct3D recipes will typically be split into three stages:

ff Initialization: This is where we will create the Direct3D device and resources

ff Render loop: This is where we will execute our rendering commands and logic

ff Finalization: This is where we will cleanup and free any resources

The previous code listing has each of the key lines of code highlighted so that you can easily
follow along.

Chapter 1

29

Initialization
First is the creation of a window so that we have a valid handle to provide while creating the
SwapChain object. We then declare the device and swapChain variables that will store
the output of our call to the static method Device.CreateDeviceAndSwapChain.

The creation of the device and swap chain takes place next. This is the first highlighted line
in the code listing.

Here we are telling the API to create a Direct3D 11 device using the hardware
driver, with no specific flags (the native enumeration for DeviceCreationFlags is
D3D11_CREATE_DEVICE_FLAG) and to use the feature levels available between 11.1
and 10.0. Because we have not used the Device.CreateDeviceAndSwapChain override
that accepts a SharpDX.DXGI.Adapter object instance, the device will be constructed
using the first adapter found.

This is a common theme with the SharpDX constructors and method overrides, often
implementing default behavior or excluding invalid combinations of parameters to simplify
their usage, while still providing the option of more detailed control that is necessary with
such a complex API.

SwapChainDescription (natively DXGI_SWAP_CHAIN_DESC) is describing a back
buffer that is the same size as the window with a fullscreen refresh rate of 60 Hz. We have
specified a format of SharpDX.DXGI.Format.R8G8B8A8_UNorm, meaning each pixel
will be made up of 32-bits consisting of four 8-bit unsigned normalized values (for example,
values between 0.0-1.0 represent the range 0-255) representing Red, Green, Blue, and Alpha
respectively. UNorm refers to the fact that each of the values stored are normalized to 8-bit
values between 0.0 and 1.0, for example, a red component stored in an unsigned byte of 255
is 1 and 127 becomes 0.5. A texture format ending in _UInt on the other hand is storing
unsigned integer values, and _Float is using floating point values. Formats ending in _SRgb
store gamma-corrected values, the hardware will linearize these values when reading and
convert back to the sRGB format when writing out pixels.

The back buffer can only be created using a limited number of the available resource formats.
The feature level also impacts the formats that can be used. Supported back buffer formats
for feature level >= 11.0 are:

SharpDX.DXGI.Format.R8G8B8A8_UNorm

SharpDX.DXGI.Format.R8G8B8A8_UNorm_SRgb

SharpDX.DXGI.Format.B8G8R8A8_UNorm

SharpDX.DXGI.Format.B8G8R8A8_UNorm_SRgb

SharpDX.DXGI.Format.R16G16B16A16_Float

SharpDX.DXGI.Format.R10G10B10A2_UNorm

SharpDX.DXGI.Format.R10G10B10_Xr_Bias_A2_UNorm

Getting Started with Direct3D

30

We do not want to implement any multisampling of pixels at this time, so we have provided
the default sampler mode for no anti-aliasing, that is, one sample and a quality of zero: new
SampleDescription(1, 0).

The buffer usage flag is set to indicate that the buffer will be used as a back buffer and as a
render-target output resource. The bitwise OR operator can be applied to all flags in Direct3D.

The number of back buffers for the swap chain is set to one and there are no flags that
we need to add to modify the swap chain behavior.

With IsWindowed = true, we have indicated that the output will be windowed to begin
with and we have passed the handle of the form we created earlier for the output window.

The swap effect used is SwapEffect.Discard, which will result in the back buffer
contents being discarded after each swapChain.Present.

Windows Store apps must use a swap effect of SwapEffect.
FlipSequential, which in turn limits the valid resource formats
for the back buffer to one of the following:
SharpDX.DXGI.Format.R8G8B8A8_UNorm

SharpDX.DXGI.Format.B8G8R8A8_UNorm

SharpDX.DXGI.Format.R16G16B16A16_Float

With the device and swap chain initialized, we now retrieve a reference to the back buffer so
that we can create RenderTargetView. You can see here that we are not creating any new
objects. We are simply querying the existing objects for a reference to the applicable Direct3D
interfaces. We do still have to dispose of these correctly as the underlying COM reference
counters will have been incremented.

Render loop
The next highlighted piece of code is the SharpDX.Windows.RenderLoop.Run helper
function. This takes our form and delegate or Action as input, with delegate executed
within a loop. The loop takes care of all application messages, and will listen for any
application close events and exit the loop automatically, for example, if the form is closed.
The render loop blocks the thread so that any code located after the call to RenderLoop.Run
will not be executed until the loop has exited.

