

Unity 3.x Scripting

Write efficient, reusable scripts to build custom
characters, game environments, and control
enemy AI in your Unity game

Volodymyr Gerasimov

Devon Kraczla

BIRMINGHAM - MUMBAI

Unity 3.x Scripting

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2012

Production Reference: 1140612

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84969-230-4

www.packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

Credits

Authors
Volodymyr Gerasimov

Devon Kraczla

Reviewers
Peter Chan

Jeff Mundee

Acquisition Editor
Rashmi Phadnis

Lead Technical Editor
Hithesh Uchil

Technical Editor
Devdutt Kulkarni

Project Coordinator
Alka Nayak

Proofreader
Bernadette Watkins

Indexer
Monica Ajmera

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Volodymyr Gerasimov is a level designer and scripter. His major passion is
creating modifications for popular games, and developing small, indie projects, with
scripting as a main tool. He learned various scripting and programming languages at
The Art Institute of Vancouver. Introduced to Unity in 2010, he created and worked
on a number of projects, indie games, and prototypes. He has worked as Lead Level
Designer and Scripter, on the hack-and-slash action game, Splik and Blitz: Baked in
Blood, and has also worked on a couple of indie projects for iOS and PC. His latest,
finished project is the puzzle platformer game, Red Rolling Hood. Currently, he is
working at Best Way, as Producer of an action role-playing game.

I would like to thank all my friends and teachers who shared their
experience with me. They surrounded me with an aura of creativity
and art, which kept my passion burning, and my work going. I
would also like to thank all who will open this book, and be able
to learn something, create, and share.

Devon Kraczla is an independent game developer. Having an artistic background,
Devon came to the gaming industry to explore new ways to surprise people with his
creations. Over the last couple of years, having graduated from The Art Institute of
Vancouver, Devon has developed multiple, independent projects, both solo and with
other enthusiasts, and has worked on the award-winning Battlefield 3, as a member
of the motion capture team at EA Canada. In his games, Devon focuses on simple
and engaging game mechanics, covered with a unique art style that makes his games
appealing for hardcore and casual audiences alike. Currently, Devon is working on a
new project along with a large group of passionate developers.

I would like to thank my teachers and peers of The Art Institute of
Vancouver, for helping me pursue the endeavors that I sought after.
I would also like to thank my friends and family, outside of my
school life, who helped keep me sane, well, as sane as I can be, and
for being there when it mattered most. Prost!

About the Reviewer

Jeff Mundee is a game designer and instructor from New Brunswick, USA, who
moved to Vancouver, Canada, a decade ago to produce video games. Since then he
has worked on many game projects in various roles, from Motion Capture Specialist
at Electronic Arts, to Game Designer for Activision, and all sorts of independent
productions in between. He is currently working on a Unity-based game with Holy
Mountain Games. He also teaches classes at The Art Institute of Vancouver, about
game production using Unity, among other subjects.

I would like to thank Vlad and Devon for being leaders in a strong
graduating class, by taking the initiative to master Unity. I know
they will both go on to make great games.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads
related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can access, read and search across Packt’s entire library
of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Diving into Scripting	 5

Downloading and installing assets for this book	 5
Getting started with the game	 8
Available Character Controllers	 8
Interactive objects	 12

Triggers	 12
Buttons	 12

Base button script	 13
Activating platform status	 13

Explosion box	 15
The Update function	 15
The BOOM function	 16

Downloading the Detonator package	 17
Pressing the button	 19

Dynamic objects	 20
Moving boxes	 20
Triggered object	 23
Moving platform	 23
Moving the character with the platform	 25

Summary	 27
Chapter 2: Custom Character Controller	 29

Creating a controllable character	 29
Custom Character Controller	 31

Setting up the project	 32
Creating movement	 33

Manipulating character vector	 33
Register input from the user	 34
The Rigidbody component	 35

Table of Contents

[ii]

Jumping	 36
User input verification	 36
Raycasting	 38
Additional jump functionality	 40

Running	 42
Cameras	 42

Camera scripting	 42
Creating camera script	 43
Creating an enumeration list	 44
Writing functions	 44
Writing camera switching controls	 47
Character movement and camera positioning	 48
Updating camera type changing	 49
Influencing camera with a mouse	 50
Clamping angles	 51
Camera's late update	 53
Rotating character with a camera	 53

Animation controls	 55
Playing simple animations	 55

Start function versus Awake function	 56
Animation component and playing speed	 57
Animation scripting	 59
Walk, run, and idle animations	 61

Summary	 63
Chapter 3: Action Game Essentials	 65

Programming weapons and pickables	 65
Creating the base	 66
Programming the weapon	 68

The Shooting function	 71
Shooting cooldown	 72
Alternative shooting function	 73

Advanced animation system	 74
Working of an animation	 75

Animation mixing	 75
Animation script overview	 78

Weapon pickup	 80
Adding ammo and health pickups	 82
Creating a treasure chest	 85
Applying projectile fixes	 89
Tethering and soft body	 90

Tethering	 90
Creating a tether	 90

Creating assets	 92
Tether manager	 93

Table of Contents

[iii]

Creation of tether	 94
The StickySegment script	 98
Tether scripts overview	 101

Summary	 103
Chapter 4: Drag-and-Drop Inventory	 105

GUI basics	 105
GUI.Box	 106
GUI.Button	 106
GUI.Label	 107
GUI.TextField	 107
GUI.TextArea	 108
GUI.Toggle	 108
GUI.Toolbar and GUI.SelectionGrid	 109
GUI.HorizontalSlider and GUI.VerticalSlider	 110
GUI.HorizontalScrollBar and GUI.VerticalScrollBar	 110
GUI.BeginGroup and GUI.EndGroup	 111
GUI.BeginScrollView, GUI.EndScrollView, and ScrollTo	 111
Other GUI classes	 112

Drag-and-drop inventory	 112
Basics	 113
Inventory slots and draggable objects	 114
Working with GUI windows	 118
Inventory slots	 121
Patching the inventory	 126

Character customization	 127
3D character avatar	 128

Dealing with a camera	 128
Adjusting the camera	 130
Window dragging limits	 131

Customization	 132
Setting up items	 132
Adding items	 133
Modifying character	 135
Reloading and inventory	 141
Finishing adjustments	 142

Summary	 144
Chapter 5: Dynamic GUI	 145

Radial health display	 146
The Health script	 146
Health display script	 148
Revisiting the Health script	 151
Hooking up objects to Inspector	 152

Table of Contents

[iv]

Creating items	 153
The Change_Item script	 154

Setting up the code	 154
Changing items	 155
Addition and removal	 155
Displaying items	 156
Increment controls	 157

Creating the UseItem script 	 159
Revisiting the Change_Item script	 161
The PlayerStats script	 162
The TextManager script	 164
The textMesh script	 165
Revisiting the UseItem script	 167
Revisiting the Health script	 169

Creating armor	 169
The Armor script	 170
Revisiting the HealthBar script	 172
Revisiting the Health script	 173
Revisiting the UseItem script	 174

Creating the weapons	 174
The Change_Weapon script	 175
The UseWeapon script	 176
Revisiting PlayerStats	 178
Revisiting the textMesh script	 179

Scripting and displaying the score system	 180
The Score script	 180

Reading from the text file	 182
Writing to the text file	 183

The timer script	 184
Revisiting the textMesh script	 185

Displaying the objectives	 186
Revisiting TextManager	 186
Revisiting textMesh	 187
Hooking up HUD	 188
Game manager	 189
Health	 190
Item_Pic	 191
ItemMultiplier, highScoreDisplay, ObjectiveDisplay, scoreDisplay, and
weaponDisplay	 191
saveDisplay	 192
Weapon_Pic	 192

Table of Contents

[v]

Creating the targeting system	 193
Creating the Bezier equation script	 194
ArcBehaviour	 195
The moveObject script	 196
Hooking it up in the editor	 197

Summary	 197
Chapter 6: Game Master Controller	 199

Game manager theory	 200
Creating game managers	 200

Level streaming	 201
Mission creation	 204
Managing levels	 207
Save/load system	 208
Loading with checkpoints	 214

GameLoader	 217
Dynamic camera	 218
Audio	 218
Audio manager	 221
Summary	 222

Chapter 7: Introduction to AI Pathfinding and Behaviors	 223
Simple waypoint pathfinding	 224

Setting up the hierarchy	 225
Writing the waypoint display script	 225
Setting up the path arrays	 226
Creating the aiSimplePath script	 227

Declaring variables	 227
Starting up functions	 228
Traversing the path	 229
Shutting down the robot	 232
Hooking up the aiSimplePath script on Inspector	 233

Enemy statistics, shooting, and behaviors	 233
The enemyStats script	 233

Setting up variables	 234
Setting up functions	 234
Retrieving functions	 234
Manipulation functions	 234
Hooking up the enemyStats script on Inspector	 236

The Shoot script	 236
Setting up the script	 236
Writing shooting functionality	 237
Hooking up the Shoot script on Inspector	 239

Table of Contents

[vi]

The aiSimpleBehaviour script	 240
Setting up the script	 240
Behavior functions	 241
Additional functions	 247
Hooking up the aiSimpleBehaviour script on Inspector	 248

Returning to the aiSimplePath script	 249
Pursue functionality	 249
Revisiting the EnemyPath function	 250

The bulletCollision, ammoCollision, and AmmoInfo scripts	 252
Creating the bulletCollision script	 252

Hooking up the bulletCollision script on bullet's Inspector	 253
Creating the ammoCollision script	 254

Hooking up the ammoCollision script on enemy's Inspector	 255
Creating the AmmoInfo script	 255

Hooking up the AmmoInfo script on ammo's Inspector	 257
Summary	 258

Appendix: Object-oriented Programming in Unity	 259
Object-oriented programming – basics	 259

Encapsulation	 259
Classes	 260
Constructors	 260

Code	 260
Inheritance	 261

Preparations	 261
Code	 261

Polymorphism	 262
Code	 263

Nested classes	 263
Summary	 263

Index	 265

Preface
If you are an enthusiastic gamer who is ready to seriously get into game
development, this book will give you a great head start for your journey. We will
guide you through the step-by-step process of creating your first playable game
prototype, which you will be able to further extend into a full-scale game. This
book contains examples of the most important features that can be found in games,
and much more; it will help you to understand Unity better, and increase your
programming skills.

What this book covers
Chapter 1, Diving into Scripting, will teach you how to set up the project and take
advantage of built-in character controllers. We will talk about dynamic objects and
their collision, as well as investigate creating a moving platform and explosions.

Chapter 2, Custom Character Controller, will show you how to create your own
character controllers, camera rigs, and animation systems.

Chapter 3, Action Game Essentials, will introduce programming of basic gameplay
features, such as shooting, picking up items, and opening treasure boxes, as well
as soft bodies and tethering.

Chapter 4, Drag-and-Drop Inventory, will give you an example on how to create your
own inventory and character customization with the help of Unity GUI.

Chapter 5, Dynamic GUI, will take you step by step, through the creation of the HUD
and targeting system.

Chapter 6, Game Master Controller, will teach you how to design and program systems
to run and manage your game.

Preface

[2]

Chapter 7, Introduction to AI Pathfinding and Behaviors, will give you a sneak peek of AI
programming, and talk about the basic theory behind it.

Appendix, Object-oriented Programming in Unity, will cover some basics of
programming that will help you to continue learning.

What you need for this book
You need to be comfortable in an editor's environment, and have a very basic
knowledge of Unity's JavaScripts, or any other object-oriented programming language.

Who this book is for
This book is for passionate game developers, students who are preparing to make
their first project, or people who think they are ready to learn something new.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "After the Start function, we will create
the MoveButton function."

A block of code is set as follows:

function Update(){
if(tnt != null){
 If(trigObj.getComponent("Button").ReturnButtonStatus()){
 BOOM();
 }
 }
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To gain
access to the package data, open Unity and go to Assets | Import Package | Custom
Package..., as shown in the following screenshot".

Preface

[3]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Diving into Scripting
Welcome to advanced Unity scripting! In this book, we will cover interesting
information about scripting in Unity's built-in scripting language—JavaScript for
Unity. We believe that this book, and included material, has the fundamentals
needed to create a game that you always dreamed of creating.

In order to start working with this book, you need to have a basic understanding
of what Unity3D is; navigate freely inside Unity, and have basic knowledge of
JavaScript and object-oriented programming (OOP) in general.

In this chapter, we will:

•	 Set up a project and a third-person Character Controller
•	 Talk about dynamic objects and collision detection
•	 Create moving platform and explosion box

Downloading and installing assets for
this book
In Unity3D, there is the ability to download pre-made packages or import assets.
These packages/assets can be of 3D models in the form of raw art assets, game
objects, prefabs, particles, scripts, animations, sounds, and so on. Packages are
identified by having a .package extension.

In order for the reader to be able to follow along with the examples
in the book, get the greatest amount of experience, and practice out
scripting in Unity, pre-made packages have been made available for
the reader's convenience.

Diving into Scripting

[6]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

These packages are available for download on the book's website underneath the
Packages heading. There is only one package here and it is called Unity_Scripting.
unitypackage. The downloaded file will be a ZIP file.

Extract the data and put the package where you would like it to be in your Unity
project. To gain access to the package data, open Unity and go to Assets | Import
Package | Custom Package..., as shown in the following screenshot:

Chapter 1

[7]

Search for the location of your project and open your package. A small interface
comes up showing a list of all the assets on the left-hand side and a prompt
asking if you would like to install all assets. Click on All, as shown in the
following screenshot:

This will open up the Unity_Scripting package. The default path for the downloaded
assets is Standard Assets in the Unity project. If a Standard Assets folder does not
exist, it will create one and download your package into it.

Diving into Scripting

[8]

Congratulations, you have now downloaded and successfully installed the assets
required for this book. Now, let's start building!

Getting started with the game
From now on, we will start to script our own game and dive into uncharted depths
of JavaScript. The first chapter is dedicated to creating a simple platform game. We
will learn to use the built-in functionality of Unity to set up our character, and use
the Character Controller component to make that character move and be controlled
with our commands. Later in the chapter, we will get into creating a playground for
our character. We will also get into teaching him to move boxes around, script
moving platforms, create custom triggers, and make huge explosions.

Available Character Controllers
Now, let's get into the fun part and set up a controllable character. Let's open the
project that comes with the book and start coding.

There are two kinds of Character Controllers that are available with a Pro version
of Unity3D—3rd Person Controller and First Person Controller. Default Character
Controllers can be found in Project view | Standard Assets | Character Controllers,
as shown in the following screenshot. To use any of those Character Controllers, just
drag-and-drop them on a scene using the left mouse button. Now, we can click
Play and start the game, and see our character following orders when we press
control buttons.

Now, let's take a look at what these Character Controllers consist of.

Chapter 1

[9]

Character Controller is a default physics component that does all the necessary
collision calculations for us but, at the same time, doesn't follow rules of physics
and isn't affected by external forces. However, that doesn't mean that it can't push
Rigidbodies if scripted. In general, if we are trying to create a controllable humanoid
and don't wish bothering with tons of code, Character Controller will be our best
choice. If we are planning to create a character that is being influenced by external
forces (like physics) or interacting with objects that are influenced by physics, we
will see Character Controller becoming our worst enemy that will break game
functionality for no reason. Supplementary to Character Controller are pure physics
objects—Rigidbodies. They allow us to create almost anything that is physics related
and consist of many hard edges that we will go around in future chapters.

From now on, we will look into both Character Controllers separately and start
with First Person Controller. By dragging First Person Controller prefab on the
screen, we will see a simple cylinder with a camera icon above it. Let's take a look
at what's inside:

•	 Character Controller: This is attached to the cylinder with the camera icon
above it, at the very top of the list. To attach the Character Controller to the
object, select the object, go to Component at the top of the screen, and click
on Physics | Character Controller.

•	 Mouse Look (Script): This handles the camera rotation based on mouse
manipulations. This script is written in C# and is beyond this book's scope,
but it has a fair amount of description inside, which can be used to tweak
mouse controls. To attach a script, go to Component | Camera Control |
Mouse Look.

•	 Character Motor (Script): This is a script that is responsible for registering
all the inputs and controlling Movement, Jumping, Sliding, and so on.
It is available at Component | Character | Character Motor. Some of the
functionality can be tweaked from the Inspector view, but most of it has
been purposely hidden and is accessible only through scripts.

Diving into Scripting

[10]

•	 FPSInput Controller (Script): This works together with Character Motor
(Script). Its main purpose is to control the functionality of previous
scripts (Component | Character | FPSInput Controller).

Now that we are done with the First Person Controller, lets switch to 3rd Person
Controller. There are few things that make it stand apart. They are as follows:

•	 Animation: Unlike First Person Camera, we are expecting to visually
observe our character and watch it playing various types of animations. This
is what Animation does; we simply attach it to the object (Component |
Miscellaneous | Animation) and add baked animations to the animation
array. The rest is done through code and will be covered in future chapters.

Chapter 1

[11]

•	 Third Person Controller (Script) and Third Person Camera (Script): They
are self-explanatory. The first one controls character, registers inputs from
the keyboard, handles animation synchronization, and so on. The latter one
adjusts the camera according to character position and actions. Both scripts
can be found in Component | Scripts.

•	 Character Motor (Script): This is a script that is responsible for registering
all the inputs and controlling Movement, Jumping, Sliding, and so on.
It is available at Component | Character | Character Motor. Some of the
functionality can be tweaked from the Inspector view, but most of it has
been purposely hidden and is accessible only through scripts.

•	 FPSInput Controller (Script): It works together with Character Motor
(Script). Its main purpose is to control the functionality of previous
scripts (Component | Character | FPSInput Controller).

Diving into Scripting

[12]

Interactive objects
So, you want to interact with objects in the environment now? Interactive objects are
usually the objects, which the player has to interact with in order to continue their
progression through a level and/or environment. In deciding which interactive items
to include as examples, we have chosen to pick objects that show a variety of player
interactions. The following is an overview of the type of interactive objects, which
will be covered in this chapter:

•	 Buttons/plunger
•	 Explosion box
•	 Moving boxes
•	 Platform

The list of interactive items can be quite extensive but luckily, once you have thought
of the logic behind one, scripting another becomes easier. For a better understanding
of the preceding interactive objects, we can split them into two categories—Triggers
and Triggered Objects. TNT plunger, targets, buttons, levers, and volumes fall
under the Triggers category, whereas TNT box, triggered door, item required/event
door, breakable door, and raft fall under Triggered Objects. For more information
on other interactive items such as pickups, treasure chests, and weapons, see Chapter
3, Action Game Essentials. All assets for this chapter can be found in the History |
Resources | Chapter 1 folder.

Triggers
As stated previously, these objects are used to trigger events in the environment.
Through interacting with them, doors can be opened, non-interactive events can
be triggered, and enemies can be spawned. These are only a couple of examples of
the infinite number of tasks that can be done by interacting with a trigger. Here is a
breakdown of the mentioned triggers. Due to the limited number of pages, we will
dive right into the description and breakdown of code for each project.

Buttons
In our case, a button will be described as an object, which the character directly has
to interact with in order for it to be triggered. What we will write is a base script,
which when used triggers an event. This script, once written, will be used to open
a door and explode a box of TNT.

Chapter 1

[13]

Base button script
So let's script a button. Go grab the Button prefab from the Chapter 1 prefabs
folder and drag it into the Hierarchy view. Once that is done, there will be two
game objects in the prefab asset. In buttonTrigger, there is a default script on the
asset called Button.

In the Start function of this script, we want to get the initial position of the button.

Declare a variable for initial position, make its type a Vector3 and default it
to Vector3.zero. To get the position, have the variable equal to transform.
localPosition in the Start function:

var initPos : Vector3;
function Start(){
 initPos = transform.localPosition;
}

After the Start function, we will create the MoveButton function.

Activating platform status
This next function will move the button to the move position and set the activated
status for the platform.

Create a private variable for the button pressed, set its type as Boolean and default
it to false. Inside the MoveButton function, create an if statement. Have the if
statement check to see if the button pressed variable is equal to false. Inside the
if statement, we want to send the activation information to triggered object.

To send the information to the appropriate platform in the level, we will have to
create a new variable called Platform, or something along those lines, with the type
of gameObject and defaulted to null. In the MoveButton function, we need to call
the Activated function in the platform script (this script will be created later in this
chapter). The following is an example of what it could look like:

Platform.GetComponent(platform).Activated();

Now, we need to move the button to give visual indication to the player that the
button has been pressed. To get the move position, create another variable for
move position, set its type as a float and default its value to 0.1 (this value
can be adjusted later in the inspector).

var movePos : float = 0.1;

Diving into Scripting

[14]

To move the button from its current position to the new position, we will take the
local Z position of the button, subtract the move position value and apply it to the
current local position of the button (we will use the Z axis for the example due to
the world having Z as depth and the button being mounted on a wall).

The last thing to add to this if statement before we close it is to turn the button
pressed variable true. That's it for this script. We just need to add the collision check
function to the built-in Character Controller script and we will have functionality.

Inside of this function, we will do a name check to identify what object the character
has collided with. In order to get the name information from the collided object, we
have to access the name component, which is a property of gameObject. We will
then compare this to one that we want, which in this case is Button:

function OnControllerColliderHit (Hit : ControllerColliderHit){
 if (Hit.gameObject.name == "Button"){
 }
}

If the name matches what we want, we need to access the MoveButton function in the
Button script. To do this, use GetComponent to grab the Button script and access the
desired function. The following statement shows roughly what it should look like:

Hit.gameObject.GetComponent("Button").MoveButton();

Then in the if statement for the detonator plunger, we want to access the
GetPressed function in the Button script.

You have finished writing the base Button script. The following is a sample of what
that script could look like:

var initPos : Vector3;
var movePos : float = 0.1;
var Platform : Transform = null;
var isPressed : Boolean = false;
function Start(){
 initPos = transform.position;
}
function MoveButton(){
 if(!isPressed){
 Platform.GetComponent(platform).Activated();
 transform.position.z = transform.position.z - movePos;
 isPressed = true;
 }
}

Remember that this is a base script and much, much more functionality can be
scripted into it.

Chapter 1

[15]

Explosion box
It's time to make things explode. Let's script a little bit of explosion box. When the
player applies pressure to a detonator box, it triggers the explosion box, and the
explosion box explodes! There are just six steps to achieve that, as follows:

1.	 Prepare objects.
2.	 Write Update function.
3.	 Write BOOM function.
4.	 Download and install Detonator package.
5.	 Write functionality for button pressing.
6.	 Preparation.

In this section, we will handle the entire preparation of available resources.

Grab the Detonator_Box prefab out of the Chapter 1
prefabs folder and drag it into the Hierarchy view.

If you open the gameObject of the detonator box, you will see that it is made up of
two pieces—Detonator_Box and Explosion Box. We want to drag the Button script,
made in the last example, to the inspector of the Detonator_Plunger asset located
underneath the Detonator_Box group. As the plunger is essentially a button, and the
base Button script is generic, it can be used for many purposes, such as triggering
the explosion box to explode. This script will be the master control for the explosion
box as well as the detonator box. It will determine the explosion created when the
explosion box explodes, what object is used as the trigger, and the object triggered.
You will notice that the prefab parent of Detonator_Box has the TNT script in its
Inspector menu.

The Update function
The next function that we will write is the Update function. In this function, we will
do a check for getting the trigger object's pressed status.

First, we have to create a couple of variables—the first one for a trigger and the
second one for the explosion box. We want the trigger variable to be of Transform
type and defaulted to null and the tnt variable to be of a Transform type as well
and defaulted to null. Create an Update function. We will have an if statement to
make sure that the tnt variable has an object associated with it.

Diving into Scripting

[16]

To do the trigger check, we will have to write an if statement that gets the Button
script component from the trigger object. To do this, we will have to declare a new
variable, make it public and call it something along the lines of trigObj. We should
declare its type as gameObject, and default it to null.

The value we need for this statement is the return function located in the Button
script. To access this, we get the script component of the trigger object using
GetComponent. We then declare the script by the name that we wish to access
and then the name of the function which has the value to check. The following
is an example.

function Update(){
if(tnt != null){
 If(trigObj.getComponent("Button").ReturnButtonStatus()){
 BOOM();
 }
 }
}

As you can see, we have added the BOOM function in the name of the next function,
which we will be writing.

The BOOM function
The BOOM function will create an explosion at the location of the explosion box
and destroy the explosion box game object from the Hierarchy view. Before we do
anything, let's declare two more variables. The first variable is explosion and the
second one is collidedObj. Make sure that explosion is public, its type declaration
is Transform, and it is defaulted to null. The collidedObj variable should be
private, and the type declaration should be as a Collider array.

In the BOOM function, we want to create a collision sphere that will detect all colliders
within a given area from a given point. To accomplish this, we will use the Physics.
OverlapSphere function. Have the collidedObj variable equal to the Physics
function with the parameters of the tnt variables—position for position and
the size of the collision sphere set to 1. The following is an example of how it
should look:

collidedObj = Physics.OverlapSphere(tnt.transform.position, 1);

Chapter 1

[17]

After this, we need to go through the collidedObj array and for each object
in that array, create an explosion at its position and then destroy the object.
To do this use a for loop to loop through the array. Call Unity's built-in
creation function—Instantiate inside of the loop.

The Instantiate parameters are the explosion variables, Obj in the collidedObj
array position and then a rotation. The rotation of the current gameObject will
perform transform.rotation. The following is a sample:

for (var obj in collidedObj) {
 Instantiate(explosion, obj.transform.position, transform.
rotation);
}

Lastly, we will destroy the gameObject in the array. To do that, after the
instantiation code, type the following line:

 destroy(obj.gameObject);

Downloading the Detonator package
Now, return to the Inspector of Detonator_Box. Under the TNT script, you will see
the variables that were public. These variables are, for example, trigger, explosion,
and TNT.

In the trigger variable, drag your detonator trigger into it. For the explosion
variable, we are going to do something different. For the explosion, we will utilize
the Detonator package that can be downloaded off of Unity's website. You can find it
in the Support | Resources section at http://unity3d.com/support/resources/.

http://unity3d.com/support/resources/

