

.NET 4.0 Generics
Beginner's Guide

Enhance the type safety of your code and create applications
easily using Generics in the .NET 4.0 Framework

Sudipta Mukherjee

 BIRMINGHAM - MUMBAI

http://www.packtpub.com/authors/profiles/sudipta-mukherjee

.NET 4.0 Generics
Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2012

Production Reference: 1190112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-078-2

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Sudipta Mukherjee

Reviewers
Atul Gupta

WEI CHUNG, LOW

Antonio Radesca

Acquisition Editor
David Barnes

Lead Technical Editor
Meeta Rajani

Technical Editors
Veronica Fernandes

Copy Editor
Laxmi Subramanian

Project Coordinator
Vishal Bodwani

Proofreader
Joanna McMahon

Indexer
Monica Ajmera Mehta

Rekha Nair

Graphics
Manu Joseph

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

Foreword

It is my pleasure to write the foreword to a book which will introduce you to the world of
generic programming with C# and other .NET languages. You will be able to learn a lot from
this book, as it introduces you to the elegant power of generic programming in C#. Through
it, you will become a better C# programmer, and a better programmer in all future languages
you might choose to use.

It is now almost 10 years since .NET Generics was first described in publications from
Microsoft Research, Cambridge, a project I was able to lead and contribute to, and six
years since it was released in product form in C# 2.0. In this foreword, I would like to
take a moment to review the importance of .NET Generics in the history of programming
languages, and the way it continues to inspire a new generation of programmers.

When we began the design of C# and .NET Generics, generic programming was not new.
However, it was considered to be outside the mainstream, and attempts to change that
with C++ templates and proposals for Java Generics were proving highly problematic for
practitioners. At Microsoft Research, we pride ourselves on solving problems at their core.
The three defining core features of .NET Generics as we designed them were efficient
generics over value types with code generation and sharing managed by the virtual machine,
reified run-time types, and language neutrality.

These technical features are now widely acknowledged to represent the "right" fundamental
design choices for programming language infrastructure. They are not easy to design or
build, and they are not easy to deliver, and when Microsoft Research embarked on this
project, we believe we put the .NET platform many years ahead of its rivals. The entire credit
goes to Microsoft and people such as Bill Gates, Eric Rudder, and Anders Hejlsberg for taking
the plunge to push this into our range of programming languages. However, without the
prototyping, research, engineering, and incessant advocacy by Microsoft Research, C# and
.NET Generics would never be in their current form.

Let's take some time to examine why this was important. First, .NET Generics represents
the moment where strongly typed and functional programming entered the mainstream.
.NET Generics enabled C# to become more functional (through LINQ, Lambdas, and generic
collections), and it enabled a new class of strongly typed, fully functional .NET languages
(such as F#) to thrive. Further, .NET Generics also enabled new key programming techniques,
such as Async programming in F# 2.0 and C# 5.0, and Rx programming for reactive systems.
Even though you may not realize it, you'll have learned a lot of functional programming by
the end of this book.

Next, .NET Generics categorically proved that strongly typed object-oriented programming
can integrate seamlessly with generic programming. It is hard to describe the extent to which
.NET Generics managed to defeat the "object fundamentalists" of the 1990s (who want
a world where there is nothing but classes). These people, many still occupying powerful
positions in the software industry, seemed satisfied with a world where programmers are
less productive, and programs less efficient, in the name of orthodoxy. Today, no practicing
programmer or language designer with experience of .NET Generics would design a strongly
typed programming language that does not include Generics. Further, almost every .NET
API now features the use of .NET Generics, and it has become an essential weapon in the
programmer's toolkit for solving many problems.

Finally, and for me most importantly, .NET Generics represents the victory of pragmatic
beauty over pragmatic ugliness. In the eyes of many, alternative solutions to the problem
of generic programming such as Java's "erasure" of Generics are simply unpleasant "hacks".
This leads to reduced productivity when using those languages. In contrast, .NET Generics
is perhaps the most smoothly integrated advanced programming language feature ever
constructed. It integrates with reflection, .NET NGEN pre-compilation, debugging, and run-
time code generation. I've had many people e-mail me to say that .NET Generics is their
favorite programming language feature. That is what language research is all about.

I trust you will learn a great deal from this book, and enjoy the productivity that comes from
C#, and .NET languages such as F#.

Dr. Don Syme
Principal Researcher,
Microsoft Research, Cambridge, U.K.

Generic types are more than just lists of T. Functional programmers have known this for a
long time. C++ programmers who use templates knew this too. But 10 years ago when Don
Syme and I first designed and prototyped the Generics feature of the .NET run-time, most
mainstream developers were constrained by the rudimentary type systems of languages
such as Visual Basic and Java, writing type-generic code only by resorting to casting tricks
or worse. In that space, it's hard to conceive of myriad uses of generic types beyond lists
and simple collections, and it's fair to say that there was some resistance to our design!
Fortunately, some forward thinkers in Microsoft's .NET run-time team regarded Generics
in managed languages as more than an academic indulgence, and committed substantial
resources to completing a first-class implementation of Generics that is deeply embedded in
the run-time languages and tools.

We've come a long way in 10 years! Managed code frameworks make liberal use of generic
types, ranging from obvious collection types such as List and Dictionary, through `action'
types such as Func and IEnumerable, to more specialized use of Generics such as Lazy
initialization. Blogs and online forums are full of discussions on sophisticated topics such as
variance and circular constraints. And if it weren't for Generics, it's hard to see how newer
language features such as LINQ, or even complete languages such as F#, could have got off
the ground.

Coming back, Generics really does start with List<T>, and this book sensibly begins from
there. It then takes a leisurely tour around the zoo of generic types in the .NET Framework
and beyond, to Power Collections and C5. The style is very much one of exploration: the
reader is invited to experiment with Generics, prodding and poking a generic type through
its methods and properties, and thereby understand the type and solve problems by using it.
As someone whose background is in functional programming, in which the initial experience
is very much like experimenting with a calculator, I find this very appealing. I hope you like it
as much as I do.

Dr. Andrew Kennedy
Researcher,
Microsoft Research, Cambridge, U.K.

About the Author

Sudipta Mukherjee was born in Kolkata and migrated to Bangalore, the IT capital of India,
to assume the position of a Senior Research Engineer in a renowned research lab. He is an
Electronics Engineer by education and a Computer Engineer/Scientist by profession and
passion. He graduated in 2004 with a degree in Electronics and Communication Engineering.
He has been working with .NET Generics since they first appeared in the .NET Framework 2.0.

He has a keen interest in data structure, algorithms, text processing, natural language
processing ,programming language, tools development, and game development.

His first book on data structure using the C programming language has been well received.
Parts of the book can be read on Google Books at http://goo.gl/pttSh. The book was
also translated into Simplified Chinese available on Amazon at http://goo.gl/lc536.

He is an active blogger and an open source enthusiast. He mainly blogs about programming
and related concepts at sudipta.posterous.com. Inspired by several string processing
methods in other languages, he created an open source string processing framework for
.NET, available for free at stringdefs.codeplex.com.

He lives in Bangalore with his wife. He can be reached via e-mail at sudipto80@yahoo.com
and via Twitter at @samthecoder.

http://goo.gl/pttSh
http://goo.gl/lc536
file://192.168.0.200/Current-Titles/03_Explorer/0782OT_.NET%20Generics%20Beginner%27s%20Guide/Front%20Matter/sudipta.posterous.com
file://192.168.0.200/Current-Titles/03_Explorer/0782OT_.NET%20Generics%20Beginner%27s%20Guide/Front%20Matter/stringdefs.codeplex.com
mailto:sudipto80@yahoo.com

Acknowledgement

Books like this cannot be brought to life by the author alone. I want to take this opportunity
to thank all the people who were involved in this book in any way.

First of all, I want to thank Microsoft Research for bringing Generics into the .NET
Framework. Great work guys. I have used STL in C++ and Collections in Java. But I can say
without being biased that Generics in .NET is the smartest implementation of generic
programming paradigm that I have ever come across. Without that, I wouldn't have anything
to write about.

I owe a big "Thank You" to the Senior Acquisition Editor and Publisher David Barnes at Packt
Publishing for offering me this opportunity to write for them. I want to thank Vishal Bodwani
and Meeta Rajani, also from Packt Publishing, for their great support. Everytime I missed a
deadline, they helped me get back on track. Thanks for bearing with me. Last but not the
least, I want to thank my Technical Editors Snehal and Veronica who painstakingly corrected
all the mistakes, did all the formatting, without which the book would not have been
possible. Thanks a lot.

I have no words to express my gratitude towards Don and Andrew for taking time off to read
the manuscript and their kind words. Thank you Don. Thank you Andrew.

I want to thank all the reviewers of the book. Thanks for all your great feedback. It really
made the book better.

My wife, Mou, motivated me to write this book. She stood by me when I needed her
throughout all these months. Thank you sweetheart. Last but not the least, I can't thank
my mom Dipali and dad Subrata enough for finding the love of my life and always being
supportive. Thank you mom. Thank you dad.

About the Reviewers

Atul Gupta, is currently a Principal Technology Architect at Infosys' Microsoft Technology
Center. He also has close to 15 years of experience working on Microsoft technologies.
His expertise spans user interface technologies, and he currently focuses on Windows
Presentation Foundation (WPF) and Silverlight technologies. Other technologies of interest
to him are Touch (Windows 7), Deepzoom, Pivot, Surface, and Windows Phone 7.

He recently co-authored the book "ASP.NET 4 Social Networking", Packt Publishing (http://
www.packtpub.com/asp-net-4-social-networking/book). His prior interest areas
were COM, DCOM, C, VC++, ADO.NET, ASP.NET, AJAX, and ASP.NET MVC.

He has also authored papers for industry publications and websites, some of which are
available on Infosys' Technology Showcase (http://www.infosys.com/microsoft/
resource-center/pages/technology-showcase.aspx). Along with colleagues from
Infosys, Atul is also an active blogger (http://www.infosysblogs.com/microsoft).
Being actively involved in professional Microsoft online communities and developer forums,
Atul has received Microsoft's Most Valuable Professional award for multiple years in a row.

WEI CHUNG, LOW, a Technical Lead in BizTalk and .NET, and a MCT, MCPD, MCITP, MCTS,
and MCSD.NET, works with ResMed (NYSE: RMD), at its Kuala Lumpur, Malaysia campus. He
is also a member of PMI, certified as a PMP. He started working on Microsoft .NET very early
on and has been involved in development, consultation, and corporate training in the areas
of business intelligence, system integration, and virtualization. He has been working for the
Bursa Malaysia (formerly Kuala Lumpur Stock Exchange) and Shell IT International previously,
which prepared him with rich integration experience across different platforms.

He strongly believes that great system implementation delivers precious value to the
business, and integration of various systems across different platforms shall always be a part
of it, just as people from different cultures and diversities are able to live in harmony in most
of the major cities.

Antonio Radesca has over 15 years of programming experience. He has a degree in
Computer Science and is interested in architectures, programming languages, and enterprise
development. He has worked at some of the most important Italian companies, especially
at Microsoft .NET Framework as a Developer and an Architect. His expertise spans .NET
programming to mobile development on iOS, Android, and Windows Phone.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Why Generics? 7

An analogy 8
Reason 1: Generics can save you a lot of typing 8
Reason 2: Generics can save you type safety woes, big time 10

What's the problem with this approach? 12
Reason 3: Generics leads to faster code 14
Reason 4: Generics is now ubiquitous in the .NET ecosystem 15

Setting up the environment 15
Summary 17

Chapter 2: Lists 19
Why bother learning about generic lists? 20
Types of generic lists 20
Checking whether a sequence is a palindrome or not 22
Time for action – creating the generic stack as the buffer 24
Time for action – completing the rest of the method 26
Designing a generic anagram finder 28
Time for action – creating the method 29
Life is full of priorities, let's bring some order there 32
Time for action – creating the data structure for the prioritized shopping list 33
Time for action – let's add some gadgets to the list and see them 34
Time for action – let's strike off the gadgets with top-most priority
after we have bought them 37
Time for action – let's create an appointment list 40
Live sorting and statistics for online bidding 41
Time for action – let's create a custom class for live sorting 42
Why did we have three LinkedList<T> as part of the data structure? 47
An attempt to answer questions asked by your boss 47

Table of Contents

[ii]

Time for action – associating products with live sorted bid amounts 47
Time for action – finding common values across different bidding amount lists 50
You will win every scrabble game from now on 52
Time for action – creating the method to find the character histogram of a word 52
Time for action – checking whether a word can be formed 53
Time for action – let's see whether it works 54
Trying to fix an appointment with a doctor? 56
Time for action – creating a set of dates of the doctors' availability 57
Time for action – finding out when both doctors shall be present 58
Revisiting the anagram problem 60
Time for action – re-creating the anagram finder 60
Lists under the hood 64
Summary 65

Chapter 3: Dictionaries 67
Types of generic associative structures 68
Creating a tag cloud generator using dictionary 69
Time for action – creating the word histogram 69
Creating a bubble wrap popper game 73
Time for action – creating the game console 74
Look how easy it was! 77
How did we decide we need a dictionary and not a list? 78
Let's build a generic autocomplete service 79
Time for action – creating a custom dictionary for autocomplete 79
Time for action – creating a class for autocomplete 82
The most common pitfall. Don't fall there! 88
Let's play some piano 88
Time for action – creating the keys of the piano 89
How are we recording the key strokes? 94
Time for action – switching on recording and playing recorded keystrokes 95

How it works? 96
C# Dictionaries can help detect cancer. Let's see how! 97
Time for action – creating the KNN API 97
Time for action – getting the patient records 102
Time for action – creating the helper class to read a delimited file 103
Time for action – let's see how to use the predictor 104
Tuples are great for many occasions including games 105
Time for action – putting it all together 106
Why have we used Tuples? 113
How did we figure out whether the game is over or not? 115
Summary 116

Table of Contents

[iii]

Chapter 4: LINQ to Objects 117
What makes LINQ? 118

Extension methods 118
Time for action – creating an Extension method 119
Time for action – consuming our new Extension method 120

Check out these guidelines for when not to use Extension methods 122
Object initializers 122
Collection initializers 123
Implicitly typed local variables 124
Anonymous types 124
Lambda expressions 125
Functors 125
Predicates 127
Actions 127

Putting it all together, LINQ Standard Query Operators 128
Time for action – getting the LINQPad 129

Restriction operators 131
Where() 131

Time for action – finding all names with *am* 131
Time for action – finding all vowels 132
Time for action – finding all running processes matching a Regex 133
Time for action – playing with the indexed version of Where() 134
Time for action – learn how to go about creating a Where() clause 135

Projection operators 136
Select() 137

Time for action – let's say "Hello" to your buddies 137
Making use of the overloaded indexed version of Select() 138

Time for action – radio "Lucky Caller" announcement 138
SelectMany() 140

Time for action – flattening a dictionary 140
Partitioning operators 141

Take() 141
Time for action – leaving the first few elements 142

TakeWhile() 143
Time for action – picking conditionally 143

Skip() 145
Time for action – skipping save looping 145

SkipWhile() 146
Ordering operators 147

Reverse() 147
Time for action – reversing word-by-word 147
Time for action – checking whether a given string is a palindrome or not 148

OrderBy() 149

Table of Contents

[iv]

Time for action – sorting names alphabetically 149
Time for action – sorting 2D points by their co-ordinates 151

OrderByDescending() 152
ThenBy() 152

Time for action – sorting a list of fruits 152
What's the difference between a sequence of OrderBy().OrderBy() and OrderBy().ThenBy()? 154
ThenByDescending() 154

Grouping operator 154
GroupBy() 154

Time for action – indexing an array of strings 154
Time for action – grouping by length 156

Set operators 158
Intersect() 158

Time for action – finding common names from two names' lists 159
Union() 160

Time for action – finding all names from the list, removing duplicates 161
Concat() 162

Time for action – pulling it all together including duplicates 162
Except() 162

Time for action – finding all names that appear mutually exclusively 163
Distinct() 164

Time for action – removing duplicate song IDs from the list 165
Conversion operators 166

ToArray() 167
Time for action – making sure it works! 167

ToList() 168
Time for action – making a list out of IEnumerable<T> 168

ToDictionary() 169
Time for action – tagging names 169

ToLookup() 171
Time for action – one-to-many mapping 171

Element operators 172
First() 172

Time for action – finding the first element that 172
satisfies a condition 172

How First() is different from Single()? 173
FirstOrDefault() 173

Time for action – getting acquainted with FirstOrDefault() 173
Last() 174
LastOrDefault() 174
SequenceEquals() 174

Time for action – checking whether a sequence is palindromic 174
ElementAt() 175

Time for action – understanding ElementAt() 176
ElementAtOrDefault() 177

Table of Contents

[v]

DefaultIfEmpty() 177
Time for action – check out DefaultIfEmpty() 178

Generation operators 178
Range() 178

Time for action – generating arithmetic progression ranges 179
Time for action – running a filter on a range 179

Repeat() 180
Time for action – let's go round and round with Repeat() 180

Quantifier operators 181
Single() 181

Time for action – checking whether there is only one item matching this pattern 182
SingleOrDefault() 183

Time for action – set to default if there is more than one matching elements 183
Any() 184

Time for action – checking Any() 185
All() 186

Time for action – how to check whether all items match 186
a condition 186

Merging operators 187
Zip() 187

Summary 188
Chapter 5: Observable Collections 189

Active change/Statistical change 190
Passive change/Non-statistical change 191
Data sensitive change 191
Time for action – creating a simple math question monitor 193
Time for action – creating the collections to hold questions 194
Time for action – attaching the event to monitor the collections 195
Time for action – dealing with the change as it happens 197
Time for action – dealing with the change as it happens 199
Time for action – putting it all together 200
Time for action – creating a Twitter browser 201
Time for action – creating the interface 202
Time for action – creating the TweetViewer user control design 203
Time for action – gluing the TweetViewer control 205
Time for action – putting everything together 208
Time for action – dealing with the change in the list of names in the first tab 209
Time for action – a few things to beware of at the form load 210
Time for action – things to do when names get added or deleted 211
Time for action – sharing the load and creating a task for each BackgroundWorker 213
Time for action – a sample run of the application 216
Summary 219

Table of Contents

[vi]

Chapter 6: Concurrent Collections 221
Creating and running asynchronous tasks 222

Pattern 1: Creating and starting a new asynchronous task 222
Pattern 2: Creating a task and starting it off a little later 222
Pattern 3: Waiting for all running tasks to complete 222
Pattern 4: Waiting for any particular task 222
Pattern 5: Starting a task with an initial parameter 222

Simulating a survey (which is, of course, simultaneous by nature) 223
Time for action – creating the blocks 223
Devising a data structure for finding the most in-demand item 227
Time for action – creating the concurrent move-to-front list 228
Time for action – simulating a bank queue with multiple tellers 234
Time for action – making our bank queue simulator more useful 239
Be a smart consumer, don't wait till you have it all 241
Exploring data structure mapping 242
Summary 243

Chapter 7: Power Collections 245
Setting up the environment 246
BinarySearch() 248
Time for action – finding a name from a list of names 248
CartesianProduct() 249
Time for action – generating names of all the 52 playing cards 249
RandomShuffle() 250
Time for action – randomly shuffling the deck 250
NCopiesOf() 252
Time for action – creating random numbers of any given length 252
Time for action – creating a custom random number generator 253
ForEach() 256
Time for action – creating a few random numbers of given any length 256
Rotate() and RotateInPlace() 257
Time for action – rotating a word 258
Time for action – creating a word guessing game 258
RandomSubset() 262
Time for action – picking a set of random elements 262
Reverse() 263
Time for action – reversing any collection 263
EqualCollections() 264
Time for action – revisiting the palindrome problem 264
DisjointSets() 265
Time for action – checking for common stuff 265

Table of Contents

[vii]

Time for action – finding anagrams the easiest way 266
Creating an efficient arbitrary floating point representation 267
Time for action – creating a huge number API 267
Creating an API for customizable default values 273
Time for action – creating a default value API 273
Mapping data structure 277
Algorithm conversion strategy 277
Summary 278

Chapter 8: C5 Collections 279
Setting up the environment 281
Time for action – cloning Gender Genie! 281
Time for action – revisiting the anagram problem 287
Time for action – Google Sets idea prototype 288
Time for action – finding the most sought-after item 294
Sorting algorithms 299

Pattern 1: Sorting an array of integers 300
Pattern 2: Partially sorting an array—say, sort first five numbers of a long array 300
Pattern 3: Sorting a list of string objects 301

Summary 302
Chapter 9: Patterns, Practices, and Performance 303

Generic container patterns 304
How these are organized 304

Pattern 1: One-to-one mapping 304
Pattern 2: One-to-many unique value mapping 305
Pattern 3: One-to-many value mapping 306
Pattern 4: Many-to-many mapping 307

A special Tuple<> pattern 308
Time for action – refactoring deeply nested if-else blocks 310
Best practices when using Generics 312
Selecting a generic collection 314
Best practices when creating custom generic collections 315
Performance analysis 317

Lists 317
Dictionaries/associative containers 318
Sets 318

How would we do this investigation? 318
Benchmarking experiment 1 319
Benchmarking experiment 2 324
Benchmarking experiment 3 328
Benchmarking experiment 4 330
Benchmarking experiment 5 334

Table of Contents

[viii]

Benchmarking experiment 6 336
Benchmarking experiment 7 340
Benchmarking experiment 8 344
Benchmarking experiment 9 345
Summary 348

Appendix A: Performance Cheat Sheet 349
Parameters to consider 353

Appendix B: Migration Cheat Sheet 357
Appendix C: Pop Quiz Answers 361

Chapter 2 361
Lists 361

Chapter 3 361
Dictionaries 361

Chapter 4 362
LINQ to Objects 362

Index 363

Preface
Thanks for picking up this book. This is an example-driven book. You will learn about
several generic containers and generic algorithms available in the .NET Framework and a
couple of other majorly accepted APIs such as Power Collections and C5 by building several
applications and programs.

Towards the end, several benchmarkings have been carried out to identify the best container
for the job at hand.

What this book covers
Chapter 1, Why Generics?, introduces .NET Generics. We will examine the need for the
invention of Generics in the .NET Framework. If you start with a feel of "Why should I learn
Generics?", you will end with a feeling of "Why didn't I till now?"

Chapter 2, Lists, introduces you to several kinds of lists that .NET Generics has to offer. There
are simple lists and associative lists. You shall see how simple lists can deliver amazing results
avoiding any typecasting woes and boosting performance at the same time.

Chapter 3, Dictionaries, explains the need for associative containers and introduces you to
the associative containers that .NET has to offer. If you need to keep track of one or multiple
dependent variables while one independent variable changes, you need a dictionary.
For example, say you want to build a spell check or an autocomplete service, you need a
dictionary. This chapter will walk you through this. Along the way, you will pick up some very
important concepts.

Chapter 4, LINQ to Objects, explains LINQ to objects using extension methods. LINQ or
Language Integrated Query is a syntax that allows us to query collections unanimously. In this
chapter, we will learn about some standard LINQ Standard Query Operators (LSQO) and then
use them in unison to orchestrate an elegant query for any custom need.

Preface

[2]

Chapter 5, Observable Collections, introduces observable collections. Observing events on
collections has been inherently difficult. That's going to change forever, thanks to observable
collections. You can now monitor your collections for any change; whether some elements
are added to the collection, some of them are deleted, change locations, and so on. In this
chapter, you will learn about these collections.

Chapter 6, Concurrent Collections, covers concurrent collections that appeared in .NET
4.0. Multi-threaded applications are ubiquitous and that's the new expectation of our
generation. We are always busy and impatient, trying to get a lot of things done at once. So
concurrency is here and it is here to stay for a long time. Historically, there was no inbuilt
support for concurrency in generic collections. Programmers had to ensure concurrency
through primitive thread locking. You can still do so, but you now have an option to use the
concurrent version of generic collections that support concurrency natively. This greatly
simplifies the code. In this chapter, you will learn how to use them to build some useful
applications such as simulating a survey engine.

Chapter 7, Power Collections, introduces several generic algorithms in PowerCollections
and some handy generic containers. This collection API came from Wintellect (www.
wintellect.com) at the time when .NET Generics was not big and had some very useful
collections. However, now .NET Generics has grown to support all those types and even
more. So that makes most of the containers defined in PowerCollections outdated.
However, there are a lot of good general purpose generic algorithms that you will need but
which are missing from the .NET Generics API. That's the reason this chapter is included.
In this chapter, you will see how these generic algorithms can be used with any generic
container seamlessly.

Chapter 8, C5 Collections, introduces the C5 API. If you come from a Java background and are
wondering where your hash and tree-based data structures, are this is the chapter to turn
to. However, from the usage perspective, all the containers available in C5 can be augmented
with generic containers available in the .NET Framework. You are free to use them. This API
is also home to several great generic algorithms that make life a lot easier. In this chapter,
you will walk through the different collections and algorithms that C5 offers.

Chapter 9, Patterns, Practices, and Performance, covers some best practices when dealing
with Generics and introduces the benchmarking strategy. In this chapter, we will use
benchmarking code to see how different generic containers perform and then declare
a winner in that field. For example, benchmarking shows that if you need a set, then
HashSet<T> in the .NET Framework is the fastest you can get.

Appendix A, Performance Cheat Sheet, is a cheat sheet with all the performance measures
for all containers. Keeping this handy would be extremely useful when you want to decide
which container to use for the job at hand.

Preface

[3]

Appendix B, Migration Cheat Sheet, will show you how to migrate code from STL/JCF/
PowerCollections/.NET 1.0 to the latest .NET Framework-compliant code. Migration will
never be easier. Using this cheat sheet, it will be a no brainer. This is great for seasoned C++,
Java, or .NET developers who are looking for a quick reference to .NET Generics in the
latest framework.

What you need for this book
You will need the following software to use this book:

 � Visual Studio 2010 (any version will do, I have used the Ultimate Trial version)

 � LINQPad

Instructions to download this software are given in the respective chapters where they
are introduced.

Who this book is for
This book is for you, if you want to know what .NET Generics is all about and how it can help
solve real-world problems. It is assumed that readers are familiar with C# program constructs
such as variable declaration, looping, branching, and so on. No prior knowledge in .NET
Generics or generic programming is required.

This book also offers handy migration tips from other generic APIs available in other
languages, such as STL in C++ or JCF in Java. So if you are trying to migrate your code to the
.NET platform from any of these, then this book will be helpful.

Last but not the least, this book ends with generic patterns, best practices, and performance
analysis for several generic containers. So, if you are an architect or senior software engineer
and have to define coding standards, this will be very handy as a showcase of proofs to your
design decisions.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Preface

[4]

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short, multiple choice questions intended to help you test your own
understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Suppose, I want to maintain a list of my students,
then we can do that by using ArrayList to store a list of such Student objects."

A block of code is set as follows:

private T[] Sort<T>(T[] inputArray)
{
 //Sort input array in-place
 //and return the sorted array
 return inputArray;
}

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Enumerable.Range(1, 100).Reverse().ToList()
 .ForEach(n => nums.AddLast(n));

Any command-line input or output is written as follows:

Argument 1: cannot convert from 'int[]' to 'float[]'

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Then go to the File menu to
create a console project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[6]

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Why Generics?

Thanks for picking up the book! This means you care for Generics. This is similar
to dropping a plastic bag in favor of our lonely planet.

We are living in an interesting era, where more and more applications are data
driven. To store these different kinds of data, we need several data structures.
Although the actual piece of data is different, that doesn't always necessarily
mean that the type of data is different. For example, consider the following
situations:

Let's say, we have to write an application to pull in tweets and Facebook wall
updates for given user IDs. Although these two result sets will have different
features, they can be stored in a similar list of items. The list is a generic list that
can be programmed to store items of a given type, at compile time, to ensure
type safety. This is also known as parametric polymorphism.

A cat and a dog shouldn't
share a bed. Neither
should integers and floats.

Why Generics?

[8]

In this introductory chapter, I shall give you a few reasons why Generics is important.

An analogy
Here is an interesting analogy. Assume that there is a model hand pattern:

If we fill the pattern with clay, we get a clay-modeled hand. If we fill it with bronze, we get
a hand model replica made of bronze. Although the material in these two hand models are
very different, they share the same pattern (or they were created using the same algorithm,
if you would agree to that term, in a broader sense).

Reason 1: Generics can save you a lot of typing
Extrapolating the algorithm part, let's say we have to implement some sorting algorithm;
however, data types can vary for the input. To solve this, you can use overloading, as follows:

//Overloaded sort methods
private int[] Sort(int[] inputArray)
{
 //Sort input array in-place
 //and return the sorted array
 return inputArray;
}
private float[] Sort(float[] inputArray)
{
 //Sort input array in-place
 //and return the sorted array
 return inputArray;
}

Chapter 1

[9]

However, you have to write the same code for all numeric data types supported by .NET.
That's bad. Wouldn't it be cool if the compiler could somehow be instructed at compile time
to yield the right version for the given data type at runtime? That's what Generics is about.
Instead of writing the same method for all data types, you can create one single method with
a symbolic data type. This will instruct the compiler to yield a specific code for the specific
data type at runtime, as follows:

private T[] Sort<T>(T[] inputArray)
{
 //Sort input array in-place
 //and return the sorted array
 return inputArray;
}

T is short for Type. If you replace T with anything, it will still compile; because it's the
symbolic name for the generic type that will get replaced with a real type in the .NET type
system at runtime.

So once we have this method, we can call it as follows:

int[] inputArray = { 1, 2, 0, 3 };
inputArray = Sort<int>(inputArray);

However, if you hover your mouse pointer right after the first brace ((), you can see in the
tooltip, the expected type is already int[], as shown in the following screenshot:

That's the beauty of Generics. As we had mentioned int inside < and >, the compiler now
knows for sure that it should expect only an int[] as the argument to the Sort<T> ()
method.

However, if you change int to float, you will see that the expectation of the compiler also
changes. It then expects a float[] as the argument, as shown:

Why Generics?

[10]

Now if you think you can fool the compiler by passing an integer array while it is asking for
a float, you are wrong. That's blocked by compiler-time type checking. If you try something
similar to the following:

You will get the following compiler error:

Argument 1: cannot convert from 'int[]' to 'float[]'

This means that Generics ensures strong type safety and is an integral part of the .NET
framework, which is type safe.

Reason 2: Generics can save you type safety woes, big time
The previous example was about a sorting algorithm that doesn't change with data type.
There are other things that become easier while dealing with Generics.

There are broadly two types of operations that can be performed on a list of elements:

1. Location centric operations

2. Data centric operations

Adding some elements at the front and deleting elements at an index are a couple of
examples of location-centric operations on a list of data. In such operations, the user doesn't
need to know about the data. It's just some memory manipulation at best.

However, if the request is to delete every odd number from a list of integers, then that's a
data-centric operation. To be able to successfully process this request, the method has to
know how to determine whether an integer is odd or not. This might sound trivial for an
integer; however, the point is the logic of determining whether an element is a candidate for
deletion or not, is not readily known to the compiler. It has to be delegated.

Before Generics appeared in .NET 2.0, people were using (and unfortunately these are still in
heavy use) non-generic collections that are capable of storing a list of objects.

As an object sits at the top of the hierarchy in the .NET object model, this opens floodgates.
If such a list exists and is exposed, people can put in just about anything in that list and the
compiler won't complain a bit, because to the compiler everything is fine as they are all
objects.

Chapter 1

[11]

So, if a loosely typed collection such as ArrayList is used to store objects of type T, then for
any data-centric operation, these must be down-casted to T again. Now, if somehow an entry
that is not T, is put into the list, then this down-casting will result in an exception at runtime.

Suppose, I want to maintain a list of my students, then we can do that by using ArrayList
to store a list of such Student objects:

class Student
{
 public char Grade
 {
 get; set;
 }

 public int Roll
 {
 get; set;
 }

 public string Name
 {
 get; set;
 }
}

//List of students
ArrayList studentList = new ArrayList();

Student newStudent = new Student();
newStudent.Name = "Dorothy";
newStudent.Roll = 1;
newStudent.Grade = 'A';

studentList.Add(newStudent);

newStudent = new Student();
newStudent.Name = "Sam";
newStudent.Roll = 2;
newStudent.Grade ='B';

studentList.Add(newStudent);

foreach (Object s in studentList)
{
 //Type-casting. If s is anything other than a student

Why Generics?

[12]

 //or a derived class, this line will throw an exception.
 //This is a data centric operation.
 Student currentStudent = (Student)s;
 Console.WriteLine("Roll # " + currentStudent.Roll + " " +
 currentStudent.Name + " Scored a " +
 curr entStudent.Grade);
}

What's the problem with this approach?
All this might look kind of okay, because we have been taking great care not to put anything
else in the list other than Student objects. So, while we de-reference them after boxing, we
don't see any problem. However, as the ArrayList can take any object as the argument, we
could, by mistake, write something similar to the following:

studentList.Add("Generics"); //Fooling the compiler

As ArrayList is a loosely typed collection, it doesn't ensure compile-time type checking.
So, this code won't generate any compile-time warning, and eventually it will throw the
following exception at runtime when we try to de-reference this, to put in a Student object.

Then, it will throw an InvalidCastException:

What the exception in the preceding screenshot actually tells us is that Generics is a string
and it can't cast that to Student, for the obvious reason that the compiler has no clue how
to convert a string to a Student object.

Unfortunately, this only gets noticed by the compiler during runtime. With Generics, we can
catch this sort of error early on at compile time.

Chapter 1

[13]

Following is the generic code to maintain that list:

//Creating a generic list of type "Student".
//This is a strongly-typed-collection of type "Student".
//So nothing, except Student or derived class objects from Student
//can be put in this list myStudents
List<Student> myStudents = new List<Student>();

//Adding a couple of students to the list
Student newStudent = new Student();
newStudent.Name = "Dorothy";
newStudent.Roll = 1;
newStudent.Grade = 'A';

myStudents.Add(newStudent);

newStudent = new Student();
newStudent.Name = "Sam";
newStudent.Roll = 2;
newStudent.Grade = 'B';

myStudents.Add(newStudent);

//Looping through the list of students
foreach (Student currentStudent in myStudents)
{
 //There is no need to type cast. Because compiler
 //already knows that everything inside this list
 //is a Student.
 Console.WriteLine("Roll # " + currentStudent.Roll + " " +
 currentStudent.Name + " Scored a " +
 currentStudent.Grade);
}

The reasons mentioned earlier are the basic benefits of Generics. Also with Generics,
language features such as LINQ and completely new languages such as F# came into
existence. So, this is important. I hope you are convinced that Generics is a great
programming tool and you are ready to learn it.

Why Generics?

[14]

Reason 3: Generics leads to faster code
In the .NET Framework, everything is an object so it's okay to throw in anything to the non-
generic loosely typed collection such as ArrayList, as shown in the previous example. This
means we have to box (up-cast to object for storing things in the Arraylist; this process is
implicit) and unbox (down-cast the object to the desired object type). This leads to
slower code.

Here is the result of an experiment. I created two lists, one ArrayList and one List<int>
to store integers:

And following is the data that drove the preceding graph:

ArrayList List<T>

1323 185

1303 169

1327 172

1340 169

1302 172

The previous table mentions the total time taken in milliseconds to add 10,000,000 elements
to the list. Clearly, generic collection is about seven times faster.

Chapter 1

[15]

Reason 4: Generics is now ubiquitous in the .NET ecosystem
Look around. If you care to develop any non-trivial application, you are better off using some
of the APIs built for the specific job at hand. Most of the APIs available rely heavily on strong
typing and they achieve this through Generics. We shall discuss some of these APIs (LINQ,
PowerCollections, C5) that are being predominantly used by the .NET community in
this book.

So far, I have been giving you reasons to learn Generics. At this point, I am sure, you are
ready to experiment with .NET Generics. Please check out the instructions in the next section
to install the necessary software if you don't have it already.

Setting up the environment
If you are already running any 2010 version of Visual Studio that lets you create C# windows
and console projects, you don't have to do anything and you can skip this section.

You can download and install the Visual Studio Trial from http://www.microsoft.com/
download/en/details.aspx?displaylang=en&id=12752.

Once you are done, you should see the following in your program menu:

After this, start the program highlighted in the preceding screenshot Microsoft Visual
Studio 2010.

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=12752
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=12752

Why Generics?

[16]

Then go to the File menu to create a console project:

Now, once that is created, make sure the following namespaces are available:

If these are available, you have done the right setup. Congratulations!

Chapter 1

[17]

Summary
My objective for this chapter was to make sure you get why Generics is important. Following
are the points again in bullets:

 � It ensures compile-time type checking, so type safety is ensured.

 � It can yield the right code for the data type thrown at it at runtime, thus saving us a
lot of typing.

 � It is very fast (about seven times) compared to its non-generic cousins for value
types.

 � It is everywhere in the .NET ecosystem. API/framework developers trust the element
of least surprise and they know people are familiar with Generics and their syntax.
So they try to make sure their APIs also seem familiar to the users.

In the end, we did an initial setup of the environment; so we are ready to build and run
applications using .NET Generics. From the next chapter, we shall learn about .NET Generic
containers and classes. In the next chapter, we shall discuss the Generic container List<T>
that will let you store any type of data in a type safe way. Now that you know that's
important, let's go there.

2
Lists

Lists are everywhere, starting from the laundry list and grocery list to the
checklist on your smartphone's task manager. There are two types of lists.
Simple lists, which just store some items disregarding the order allowing
duplicates; and other types which don't allow duplicates. These second types
of lists which don't allow duplicates are called sets in mathematics. The other
broad category of list is associative list, where each element in some list gets
mapped to another element in another list.

In this chapter, we shall learn about these generic containers and related methods. We shall
learn when to use which list-based container depending on the situation.

Reading this chapter and following the exercises you will learn the following:

 � Why bother learning about generic lists?

 � Types of generic lists and how to use them

Don't forget the milk, honey!

