

Software Testing using
Visual Studio 2012

Learn different testing techniques and features of
Visual Studio 2012 with detailed explanations and
real-time samples

Satheesh Kumar N

Subashni S

BIRMINGHAM - MUMBAI

Software Testing using Visual Studio 2012

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010

Second Edition: July 2013

Production Reference: 1190713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-954-0

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

Credits

Authors
Satheesh Kumar N

Subashni S

Reviewers
Ahmed Ilyas

Ken Tucker

Hulot

Kalyan

Acquisition Editor
Anthony Lowe

Lead Technical Editor
Mayur Hule

Technical Editors
Ruchita Bhansali

Krishnaveni Haridas

Pratik More

Anita Nayak

Larissa Pinto

Project Coordinator
Anugya Khurana

Proofreader
Dan McMahon

Indexer
Tejal Soni

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

About the Authors

Satheesh Kumar N holds a Bachelor’s degree in Computer Science engineering
and has around 17 years of experience in managing the software development life
cycle, developing live projects, and program management. He started his career by
developing software applications using Borland software products. He worked for
multiple organizations in India, the UAE, and the US. His main domain expertise is
in retail and he is currently working in Bangalore as a Program Delivery Manager for
the top retailer in UK. He is currently handling five agile scrum teams for delivering
the website features. His experience also includes implementation and customization
of Microsoft Dynamics for an automobile sales company in UAE. He works with the
latest Microsoft technologies and has published many articles on LINQ and other
features of .NET. He is a certified PMP (Project Management Professional).

He has also authored Software Testing using Visual Studio Team System 2008 and
Software Testing using Visual Studio 2010 for Packt Publishing.

I would like to thank my wife for helping me in co-authoring and
supporting me in all the ways to complete this book. I would also
like to thank my family members and friends for their continuous
support in my career and success.

Subashni S holds a Bachelor’s Degree in Computer Science engineering and
has around 15 years of experience in software development and testing life cycle,
project, and program management. She is a certified PMP (Project Management
Professional), CSTM (Certified Software Test Manager), and ITIL V3 Foundation
certified. She started her career as a DBA in Oracle 8i technology, and later
developed many software applications using Borland software products for a
multinational company based in Chennai, and then moved to Bangalore. She is
presently working for a multinational company, in the area of Project Management
for developing and testing projects. She is also currently working for one of the top
multinational companies headquartered at Austin, Texas.

She has also authored Software Testing using Visual Studio Team System 2008 and
Software Testing using Visual Studio 2010 for Packt Publishing.

I would like to thank my husband for helping me in co-authoring
and supporting me in all the ways to complete this book. I would
also like to thank my other family members and friends for their
continuous support in my career and success.

About the Reviewers

Ahmed Ilyas has a BENG degree from Napier University in Edinburgh, Scotland,
where he majored in software development. He has 15 years of professional
experience in software development.

After leaving Microsoft, he has ventured into setting up his consultancy company
offering the best possible solutions for a magnitude of industries and providing
real world answers to those problems, and only uses the Microsoft stack to build
these technologies and be able to bring in the best practices, patterns, and software
to his client base to enable long-term stability and compliance in the ever-changing
software industry. He has also tried to improve software developers around the
globe, pushing the limits in technology.

This went on to being awarded three times the MVP in C# by Microsoft for
“providing excellence and independent real world solutions to problems that
developers face.”

With the breadth and depth of the knowledge he has obtained not only from his
research, but also with the valuable wealth of information and research at Microsoft,
the motivation and inspirations come from this, with 90 percent of the world using at
least one form of Microsoft technology.

Ahmed Ilyas has worked for a number of clients and employers. With the great
reputation that he has, this has resulted in having a large client base for his
consultancy company, Sandler Ltd (UK) which includes clients from different
industries, from media to medical and beyond. Some clients have included him on
their “approved contractors/consultants” list which include ICS Solution Ltd and
has been placed on their “DreamTeam” portal and also CODE Consulting/EPS
Software (www.codemag.com) (based in USA).

Ahmed Ilyas has also been involved in the past in reviewing books for Packt
Publishing and wish to thank them for the great opportunity once again.

I would like to thank the author/publisher of this book for giving
me the great honor and privilege in reviewing the book. I would also
like to thank my client base and especially Microsoft Corporation
and my colleagues over there for enabling me to become a reputable
leader as a software developer in the industry, which is my passion.

Ken Tucker is a Microsoft MVP from 2003-2013. He has also worked for Seaworld
Parks and Entertainment.

I would like to thank my wife Alice-Marie.

Carlos Hulot has been working in the IT area for more than 20 years in different
capabilities, from software development, project management to IT marketing,
product development and management. Carlos has worked for multinational
companies such as Royal Philips Electronics, PricewaterhouseCoopers, and Microsoft.
Currently Carlos is working as an independent IT consultant. Carlos is a Computer
Science lecturer in two Brazilian universities. Carlos holds a Ph.D. in Computer
Science and Electronics from the University of Southampton, UK, and a B.Sc. in
Physics from University of São Paulo, Brazil.

Kalyan Bandarupalli is currently working in Oxford University, UK. His
professional career started as a software engineer and then senior software developer
and software architect. He is a senior consultant, who uses Microsoft technologies
to develop applications. Since 2003, he has been working as a Microsoft technology
developer.

He was far more concerned about the technical implementation of software, but
in the past few years focus has changed to more architectural implementation of
software. He recently (June 2008) started a blog (www.techbubbles.com), because
he wanted to share his learning experience to help other people learn about new
technologies in Microsoft software. This blog helps IT professionals and developers
around the world to develop applications using Microsoft technologies.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read, and search across Packt’s entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface 1
Chapter 1: Visual Studio 2012 Test Types 7

Software testing in Visual Studio 2012 8
Testing as part of software development life cycle 9
Types of testing 11

Unit testing 12
Manual testing 14
Exploratory testing 15
Web performance tests 16
Coded UI test 17
Load testing 18
Ordered test 20
Generic test 21

Test management in Visual Studio 2012 21
Introduction to testing tools 22

Test Explorer 25
Code coverage results 28

Microsoft Test Manager 28
Connecting to Team Project 29
Test Plans, Suites, and test cases 30
Defining test cases 31
Lab Center 32

Summary 33
Chapter 2: Test Plan, Test Suite, and Manual Testing 35

Test Plan 36
Test Suite and its types 41

Static Test Suites 42
Query-based Test Suites 44
Requirement-based Test Suites 45

Table of Contents

[ii]

Running manual tests 47
Action recording 56

Shared steps and action recording for shared steps 59
Creating shared steps 59
Action recording for shared steps 62

Adding parameters to manual tests 62
Summary 66

Chapter 3: Automated Tests 67
Coded UI tests from action recordings 68

Files generated for coded UI test 73
CodedUITest1.cs 73
UIMap.Designer.cs 74
UIMap.cs 75
UiMap.uitest 76

Data-driven coded UI test 80
Adding controls and validation to coded UI test 82

Summary 88
Chapter 4: Unit Testing 89

Creating unit tests 90
Assert statements 93

Types of Assert statements 94
Assert 94
StringAsserts 107
CollectionAssert 111
AssertFailedException 119
UnitTestAssertionException 120
ExpectedExceptionAttribute 120

Unit Tests and Generics 123
Data-driven unit testing 126
Unit Testing using Fakes 132

Stubs 132
Shims 137
Difference between Stubs and Shims 137

Code coverage unit test 138
Blocks and lines 140
Excluding elements 141

Summary 142
Chapter 5: Web Performance Test 143

Creating the web performance test 145
Recording a test 146

Adding comments 152
Cleaning the recorded tests 153

Table of Contents

[iii]

Copying the requests 153
Adding loops 153

Web performance test editor 158
Web test properties 160
Web test request properties 161
Other request properties 164

Form POST parameters 164
QueryString parameters 165
Extraction rules 166
Validation rules 171
Transactions 174

Conditional rules 176
Toolbar properties 181

Add data source 181
Setting credentials 184
Add recording 185
Parameterize web server 186
Adding a web test plugin 189

Debugging and running the web test 191
Settings in the .testsettings file 192

General 192
Roles 194
Data and Diagnostics 195
Deployment 197
Setup and Cleanup Scripts 198
Hosts 199
Test Timeouts 199
Unit test 200
Web test 201

Running the test 203
Web Browser 204
Request 204
Response 205
Context 205
Details 206

Summary 207
Chapter 6: Advanced Web Testing 209

Dynamic parameters in web testing 210
Coded web test 212

Generating code from a recorded test 213
Transactions in coded tests 218
Custom code 219
Adding a comment 219
Running the coded web test 220

Debugging coded web test 222

Table of Contents

[iv]

Custom rules 224
Extraction rules 224
Validation rules 228

Summary 232
Chapter 7: Load Testing 233

Creating a Load Test 234
Load Test Wizard 236

Specifying a scenario 239
Counter sets 248
Run settings 250

Editing Load Tests 262
Adding context parameters 267

Storing results in the central result store 268
Running the Load Test 270
Analyzing and exporting Test Results 272

Graphical view 272
Summary view 275
Tables view 277
Detail view 279
Exporting to Microsoft Excel 280

Using Test Controller and Test Agents 288
Test Controller and Test Agent configuration 289

Summary 296
Chapter 8: Ordered and Generic Tests 297

Ordered tests 298
Creating an ordered test 298
Executing an ordered test 300

Generic tests 301
Creating a generic test 302
The summary results file 304

Summary 308
Chapter 9: Managing and Configuring Tests 309

Using Test settings 310
The General option 311
The Roles option 312
Data and Diagnostics 313
The Deployment section 316
Setup and Cleanup Scripts 317
The Hosts option 318
The Test Timeouts option 319
The Unit Test option 320

Editing the Test Run configuration file 322

Table of Contents

[v]

The Web Test option 324
Configuring unit tests using the .runsettings file 325

Summary 326
Chapter 10: The Command Line 327

VSTest.Console utility 327
Running tests using VSTest.Console 328

The /Tests option 329
The /ListTests option 329

MSTest utility 330
Running a test from the command line 332

The /testcontainer option 332
The /testmetadata option 333
The /test option 334
The /unique option 335
The /noisolation option 336
The /testsettings option 336
The /resultsfile option 337
The /noresults option 337
The /nologo option 338
The /detail option 338

Publishing Test Results 339
The /publish option 339
The /publishbuild option 339
The /flavour option 340
The /platform option 340
The /publishresultsfile option 341

TCM command line utility 344
Importing tests to a Test Plan 345
Running tests in a Test Plan 349

Summary 352
Chapter 11: Working with Test Results 353

Test Runs and Test Results 354
Test as part of the Team Foundation Server build 358
Building reports and Test Results 363

Creating a work item from the result 365
Summary 367

Chapter 12: Exploratory Testing and Reporting 369
Exploratory testing 371
Reports using Team Foundation Server 379

Bug status report 379
Test case readiness report 379
Status on all iterations 380
Other out-of-the-box reports 380

Creating a report definition using Visual Studio 2012 382
Summary 390

Chapter 13: Test and Lab Center 391
Connecting to Team Project 392
Testing Center 394

Testing Center – Plan tab 395
Testing Center – Test tab 399
Testing Center – Track tab 402
Testing Center – Organize tab 405

Lab Center 408
Environments 408
Deployed environments 410

Summary 413
Index 415

Preface
The Microsoft Visual Studio 2012 suite contains several features to support the
needs of developers, testers, architects, and managers to simplify the development
process. Visual Studio 2012 provides different editions of the product such as
Professional, Premium, and Ultimate with different set of tools and features. Visual
Studio 2012 is tightly integrated with Team Foundation Server, a central repository
and configuration management system that provides version control, process
guidance and templates, automated builds, automated tests, bug tracking, work item
tracking, reporting, and support of the Lab Center and Test Center configurations.
The Microsoft Test Manager 2012 is a standalone tool used to organize Test Plans,
Manage test cases, and executing manual test cases.

Software Testing using Visual Studio 2012 helps software developers to get familiarized
with the Visual Studio tools and techniques to create automated unit tests, and to
use automated user interface testing, code analysis and profiling to find out more
about the performance and quality of the code. Testers benefit from learning more
about the usage of Testing tools, test case management techniques, working with
Test Results, and using Test Center and Lab center. This book also covers different
types of testing such as web performance test, load test, executing the manual test
cases, recording user actions, re-running tests using recording, test case execution,
capturing defects, and linking defects with requirements. Testers also get a high level
overview on using Lab Center for creating virtual environments for testing multiple
users and multiple location scenarios.

Visual Studio 2012 provides user interface tools such as Test Explorer, Test Results,
and Test Configuration to create, execute, and maintain the tests and Test Results in
integration with Team Foundation Server. This book provides detailed information
on all of the tools used for testing the application during the development and testing
phases of the project life cycle.

Preface

[2]

What this book covers
Chapter 1, Visual Studio 2012 Test Types, provides an overview of different types of
testing which helps testing the software applications through different phases of
software development. This chapter also introduces the tools and techniques in Visual
Studio 2012 for different testing types, Microsoft Test Manager 2012, and its features.

Chapter 2, Test Plan, Test Suite, and Manual Testing, explains the steps involved in
creating and managing the Test Plan, Test cases and Test Suite using Test Center in
Test Manager. This chapter also explains how to create manual tests by recording the
user actions and running the test with data inputs. Sharing the test recording across
multiple tests is also covered in this chapter.

Chapter 3, Automated Tests, provides a step-by-step approach to creating Coded UI
test from user action recordings. It also explains the steps to execute the coded UI
test through data source and adding validation and custom rules to the test.

Chapter 4, Unit Testing, explains the detailed steps involved in creating unit test
classes and methods for the code. Different type of assert methods and parameters
for testing the code, passing set of data from a data source and testing the code also
explained in detail. The mocking framework used for isolating the code and testing
it with the help of Shims and Stubs is also explained in detail.

Chapter 5, Web Performance Test, explains the basic way of web testing by recording the
user actions and creating a test out of it. Running the test using a data source, adding
parameters to the web tests, adding validation and extraction rules, adding looping
and branching mechanism to the recorded tests, and here configuring the settings
required for the Test Runs are some of the features explained as part of this chapter.

Chapter 6, Advanced Web Testing, explains the way of generating code out of the
recorded web tests explained in Chapter 5, Web Performance Test using the Generate
Code option. This is very much useful for customizing the test through the code,
adding additional logic to the test, adding custom validation and extraction rules.

Chapter 7, Load Testing, helps in simulating various numbers of users, network
bandwidths, combination of different web browsers, and different configurations.
In the case of web applications it is always necessary to test the stability and
performance of the application under huge data load and concurrent users. This
chapter explains the steps involved in simulating the real world scenario by using
Controllers and Agents. The details of analyzing and exporting the load Test Results
are also explained in this chapter.

Preface

[3]

Chapter 8, Ordered and Generic Tests, explains the way of testing the existing third
party tool or service which can also be run using the command line. Visual Studio
2012 provides a feature called ordered test to group all or some of these tests and
then execute the tests in the same order. The main advantage of creating the ordered
test is to execute multiple tests in an order based on the dependencies. Generic tests
are just like any other tests except that it is used for testing an existing third party
tool or service.

Chapter 9, Managing and Configuring Tests, explains the details of the test settings
file and the tools used for managing tests. The configuration includes deployment
details, setup and cleaning scripts, collecting data diagnostics information, unit test
and web test settings.

Chapter 10, The Command Line, explains the command line tools such as VSTest.
Console, MSTest, and TCM used for running the test with different options, then
collecting the output and publishing the results. Each of these commands is used for
specific purposes including backwards compatibility.

Chapter 11, Working with Test Results, explains the process of running the tests and
publishing the Test Results to the Team Project. Also covered in detail is to integrate
the tests as part of Team Foundation Server builds, Build reports and Test Results,
Creating work items from Test Results, and publishing the Test Results.

Chapter 12, Exploratory Testing and Reporting, explains the details of testing which
happens without any test cases and scripts and by only exploring the application
manually. This chapter also explains the details of accessing the Test Results and
publishing Test Results and reporting the same in a specific format. Accessing different
types of testing reports and creating new test reports are also explained in this chapter.

Chapter 13, Test and Lab Center, is useful for creating and organizing Test Plans
and test cases. Test plans can be associated to the requirements using Test Center.
The Lab Center helps in creating and configuring different virtual/physical
environments for the Test Runs, Test Settings such as defining the roles and
configuring the data and diagnostics information for the selected roles, configuring
the Test Controllers required for the test, and configuring the test library to store the
environment information.

Preface

[4]

What you need for this book
This book requires a basic knowledge on any of the versions of Visual Studio and
Team Foundation Server. The reader must be familiar with the Visual Studio IDE
and have basic knowledge of C#. The following tools are required in order to use the
code samples of the chapters in this book:

• Visual Studio 2012 Ultimate
• SQL Server Express (OR) SQL Server 2008 or higher version
• Team Foundation Server 2010/2012
• SQL Server Reporting services

Who this book is for
If you are a software developer, a tester or an architect who wishes to master the
amazing range of features offered by Visual Studio 2012 for testing your software
applications – then this book is for you.

This book assumes that you have a basic knowledge of testing software applications
and have good work experience of using Visual Studio IDE.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: “All the methods and classes generated
for the unit testing are inherited from the Microsoft.VisualStudio.TestTools.
UnitTesting namespace.”

A block of code is set as follows:

[DataSource(“Microsoft.VisualStudio.TestTools.DataSource.CSV”,
“|DataDirectory|\\data.csv”, “data#csv”, DataAccessMethod.Sequential),

DeploymentItem(“data.csv”), TestMethod]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: “The Test
Runs window displays all the tests based on the results availability at the location”.

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Visual Studio 2012
Test Types

Software testing is one of the most important phases of the software development
life cycle (SDLC). Delivery of the software product is based on following good
SDLC practices of analysis, design, coding, testing, and by all means meeting
the customer requirements. The quality of the product is measured by verifying
and validating the product based on the defined functional and non-functional
requirements for product. The testing tools and techniques play an important role in
simulating the real-life scenarios and the user load required for verifying the stability
and reliability of the product. For example, testing a web application with 1,000
concurrent users is a very time consuming and tedious task, if we do it manually
considering the required resources. But the testing tools that are part of Visual Studio
2012 can simulate such scenarios and test it with limited resources and without
manual intervention during testing. Visual Studio 2012 provides tools to conduct
different types of testing, such as Unit testing, Load testing, Web testing, Ordered
testing, Generic testing, and Exploratory testing.

This chapter covers the following topics and provides a high-level overview of the
testing tools and techniques supported by Visual Studio 2012:

• Testing as part of the software development life cycle
• Types of testing
• Test management in Visual Studio 2012
• Testing tools in Visual Studio 2012

Visual Studio 2012 Test Types

[8]

Software testing in Visual Studio 2012
Before getting into the details of how to perform testing using Visual Studio 2012, let
us familiarize different tools provided by Visual Studio 2012 and its usage. Visual
Studio provides tools for testing as well as test management such as the Test List
Editor and the Test View. The Test Projects and the actual test files are maintained in
Team Foundation Server (TFS) for managing the version control of the source and
history of changes.

The other aspect of this chapter is exploring the different file types generated in
Visual Studio during testing. Most of these files are in the XML format, which are
created automatically whenever a new test is created.

For readers new to Visual Studio, there is a brief overview on each window we are
going to deal with throughout all or most of the chapters in this book. While we go
through the windows and their purposes, we can check the Integrated Development
Environment (IDE) and the tools integration with Visual Studio 2012.

Microsoft Visual Studio 2012 has different editions tailored to the needs. You need
to have the respective edition as prerequisite to use any of the testing features
explained in this book. The following table shows supported edition of Visual Studio
2012 for the testing features.

Testing
features

Ultimate
with MSDN

Premium
with MSDN

Test
Professional
with MSDN

Professional
with MSDN

Professional

Unit testing Yes Yes Yes Yes
Coded UI
test

Yes Yes

Code
coverage

Yes Yes

Manual
testing

Yes Yes Yes

Exploratory
testing

Yes Yes Yes

Test case
management

Yes Yes Yes

Chapter 1

[9]

Testing
features

Ultimate
with MSDN

Premium
with MSDN

Test
Professional
with MSDN

Professional
with MSDN

Professional

Web
performance
testing

Yes

Load testing Yes
Lab
management

Yes Yes Yes

Microsoft Test Manager 2012 (MTM) is a standalone product from Microsoft, which
integrates with Team Foundation Server for test management. MTM is used in creating
and managing multiple Test Plans, cloning Test Plans, creating Test Suites, creating
manual test steps and test cases, and maintaining the same. MTM also provides
various reports for Test Plan results. In 2012 version, MTM has the new feature of
exploratory testing, maintaining records, and test steps during exploratory testing.

Lab environments can be created in MTM using the controller and agents. This is
required when running load tests with multiple agents.

Testing as part of software development
life cycle
The main objective of testing is to find the early defects in the SDLC. If the defect
is found early, then the cost will be lower than when the defect is found during
the production or in the implementation stages. Moreover, testing is carried out to
assure the quality and reliability of the software. In order to find the defect as soon
as possible, the testing activities should start early, that is, in the Requirement phase
of SDLC and continues till the end of the SDLC. The testing team should create the
test cases based on the defined requirements.

The Coding phase of the SDLC includes various testing activities to validate and
verify the functionality based on the design and the developer's code for the design.
The developers themselves conduct the tests. In case of Test driven development,
the test scripts and test scenarios are created first based on the requirement and the
code is developed.

Visual Studio 2012 Test Types

[10]

As soon as the developer completes the coding, the developer conducts the
unit testing

• Unit testing: This is the first level of testing in the SDLC. The developer takes
the smallest piece or unit of testable code and determines whether the code
behaves exactly as expected. In object-oriented programming, the smallest
unit is a method which belongs to a class. The method usually has one or few
inputs and one output. Frameworks, drivers, Stubs and mock, or fake objects
are used to assist in unit testing.
Once the coding is complete for the agreed requirements, all the units are
integrated and the product is built as a single package. Then the other phases
or forms of testing are executed.

• Integration testing: This type of testing is carried out between two or more
modules or functions along with the intent of finding interface defects
between them. This testing is completed as a part of unit or functional
testing, and sometimes becomes its own standalone test phase. On a larger
level, integration testing can involve putting together groups of modules and
functions with the goal of completing and verifying that the system meets
the system requirements. Defects found are logged and fixed later by the
developers. There are different ways of integration testing such as top-down
and bottom-up , which are as follows:

 ° Top-down approach: This is the incremental testing technique which
begins with the top level modules followed by low-level modules.
The top-down approach helps in early detection of design errors
which helps in saving development cost and time as the design errors
can be fixed before implementation.

 ° Bottom-up approach: This is exact opposite to the top-down
approach. In this case the low level functionalities are tested and
integrated first and then followed by the high level functionalities.

 ° Umbrella approach: This approach uses both the top-down
and bottom-up patterns. The inputs for functions are integrated
in bottom-up approach and then the outputs for functions are
integrated in the top-down approach.

Chapter 1

[11]

• System testing: This type of testing is used for comparing or verifying
the specifications against the developed system. The system test design is
derived from the design documents and is used in this phase for planning
and executing the tests. System testing is conducted after all the modules
are integrated and completed with Integration testing. To avoid repeating
the same process during multiple cycles of system testing, the tests are
automated using automation testing tools. Once all the modules are
integrated, several errors may arise because of dependencies and various
other factors. The defects are usually maintained using a defect tracking
tool and the development team prioritizes and fixes the defects. There are
different types of testing followed under system testing, but they differ from
organization to organization. Here are the common types of tests widely
followed in the industry:

 ° Sanity testing: Whenever there are some defect fixes to the existing
product and because of that a new build is created, sanity test is
conducted on that build instead of performing full testing on the
software. Sanity test is conducted to make sure that the existing
functionality of the product is not impacted or broken because of
the defect fixes.

 ° Regression testing: The main objective of this type is to determine
if defect fixes or any other changes have been successful and have
not introduced any new defects. This is also to verify if the existing
functionalities are not affected.

Types of testing
Visual Studio provides a range of testing types and tools for testing software
applications. The following are some of those types:

• Unit test
• Manual test
• Exploratory test
• Web test
• Coded UI test
• Load test
• Ordered test
• Generic test

Visual Studio 2012 Test Types

[12]

The unit testing tool is integrated along with Visual Studio and developers can use
any of the Visual Studio supported language to write the unit testing. The manual
test and exploratory test can be used during regression and is integrated with the
Test Manager tool to track the test cases and defects when the test is conducted.
Web Test and Coded UI Test in Visual Studio is used for system testing to record
and playback the test steps. The load test tool is used during system testing cycle
for testing performance and stability of the application with user load, and is
integrated with Test Manager. The Generic test is again a part of the system
testing to test the third-party components and the ordered test is to enable the
testing order during Test Runs.

For all of the above testing types, Visual Studio provides tools to manage, order the
listing, and execute tests. The next few sections provide details of these testing tools
and the supporting tools for managing testing in Visual Studio 2012.

Unit testing
Unit testing is one of the earliest phases of testing the application. In this phase the
developers have to make sure that the unit of testable code delivers the expected
output. It is extremely important to run unit tests to catch defects in the early stage
of the software development cycle. The main goal of the unit testing is to isolate
each piece of the code or individual functionality and test if individual method
is returning the expected result for different sets of parameter values.

A unit test is a functional class method test by calling a method with the appropriate
parameters, exercises it and compares the results with the expected outcome to
ensure the correctness of the implemented code. Visual Studio 2012 has great
support for unit testing through the integrated automated unit test framework,
which enables developers to create and execute unit tests.

Visual Studio generates the test methods and the base code for the test methods.
It is the responsibility of the developer to modify the generated test methods and
customize the code for actual testing. The code file contains several attributes to
identify the Test Class, Test Method, and Test Project. These attributes are assigned
when the unit test code is created for the original source code. Here is the sample of
the unit test code:

Chapter 1

[13]

Once a unit test is created for a testable unit of code, the developers can use it with
multiple combinations of input parameters to make sure the actual result is as per
the expected result.

All the methods and classes generated for the unit testing are inherited from
the Microsoft.VisualStudio.TestTools.UnitTesting namespace. This
namespace is only used when the default Visual Studio integrated testing tool is
used. This namespace contains many classes and attributes to provide enough
information for the test engine to determine data source, test execution, execution
order, deployment, and results.

Visual Studio also provides the flexibility to integrate unit testing tools such as Unit
and XUnit for which the adapters need to be installed. After installing the tool, the
respective namespaces can be used for generating calls and unit testing methods.

Visual Studio 2012 Test Types

[14]

Manual testing
Manual testing is the oldest and simplest type of testing, but yet very crucial for
software testing. The tester would be writing the test cases based on the functional
and non-functional requirements and then test the application based on each written
test case. It helps us to validate whether the application meets various standards
defined for effective and efficient accessibility and usage.

Manual testing can be an alternative in the following scenarios:

• The tests are more complex or too difficult to convert into automated tests.
• There is not enough time to automate the tests.
• Automated tests would be time consuming to create and run.
• There are not enough skilled resources to automate the tests.

The tested code hasn't stabilized sufficiently for cost effective automation.

We can create manual tests by using Visual Studio 2012 very easily. A very
important step in manual testing is to document all the test steps required for the
scenario with supporting information in a separate file. Once all the test cases are
created, we should add the test cases to the Test Plan in order to run the test and
gather the Test Result every time we run the test. The Microsoft Test Manager tool
helps us in adding or editing the test cases to the Test Plan. The manual testing
features supported by Visual Studio 2012 are as follows:

• Running the manual test multiple times with different data by
changing parameters.

• Create multiple test cases using an existing test case and then
customize or modify the test.

• Sharing test steps between multiple test cases.
• Remove the test cases from the test if no longer required.
• Adding or copying test steps from Microsoft Excel or Microsoft

Word or from any other supported tool.
• Including multiple lines and rich text in manual test steps.

There are a lot of other manual testing features supported in Visual Studio
2012. We will see those features explained in Chapter 2, Test Plan, Test Suite,
and Manual Testing.

Chapter 1

[15]

Exploratory testing
Exploratory testing is an open approach to testing without any process and test
cases. The only known fact is the user story. The objective of this testing is to test
the existing application or feature, and to find any improvements required, defects,
broken links, and familiarize with the existing system. This type of testing has been
followed for many years, but there was no tool to support the testing and capture
the defects and steps. It was a tedious process to document the steps and capture
supporting screenshots.

The Microsoft Test Manager (MTM) has the new feature to perform the exploratory
testing and capture the screenshots, test steps, test case, comments, attachments, and
defects automatically. The testing actions are stored as test cases so that it is easy
while retesting.

To start exploratory testing, open the MTM and navigate to Testing Center | Test |
 Do Exploratory Testing. Now by selecting a work item requirement and then
clicking on Explore work item will associate the recording of the test with the work
item. Any test cases or defects created during Exploratory session will automatically
get linked to the work item. The following screenshot shows a sample Exploratory
testing session started for a work item:

Visual Studio 2012 Test Types

[16]

During Exploratory testing, all actions performed on the screen are recorded except
the actions performed in MTM and Office applications. To change this setting,
configure the settings in the Test Plan properties.

A detailed walk-through the Exploratory testing is covered in Chapter 12, Exploratory
Testing and Reporting which talks about Exploratory testing and reporting.

Web performance tests
Web performance tests are used for testing the functionality and performance of
the web page, web application, website, web services, and a combination of all of
these. Web tests can be created by recording the HTTP requests and events during
user interaction with the web application. The recording also captures the web
page redirects, validations, view state information, authentication, and all the other
activities. All these are possible through manually building the web tests using Web
test. Visual Studio 2012 provides Web performance test features, which capture all
HTTP requests and events while recording user interaction and generating the test.

There are different validation rules and extraction rules used in Web performance
tests. The validation rules are used for validating the form field names, texts, and
tags in the requested web page. We can validate the results or values against the
expected result as per the business needs. These validation rules are also used for
checking the processing time taken for the HTTP request.

Extraction rules in Web performance tests are used for collecting data from the web
pages during requests and responses. The collection of these data will help us in
testing the functionality and expected result from the response.

Providing sufficient data for the test methods is very important for the success of
automated testing. Similarly for web tests we need to have a data source from which
the data will be populated to the test methods and the web pages will be tested.
The data source could be a database or a spread sheet or an XML data source or any
other form of data source. There is a data binding mechanism in Web tests which
takes care of fetching data from the source and provides the data to the test methods.
For example, a reporting page in a web application definitely needs more data to test
it successfully. This is also called the data-driven web test.

Chapter 1

[17]

Web tests can be classified into Simple Web test and Coded Web test. Both of these
are supported by Visual Studio.

• Simple Web tests: This includes generating and executing the test as per the
recording with a valid flow of events. Once the test is started, there won't be
any intervention and it won't be conditional.

• Coded Web tests: This is more complex, but provides a lot of flexibility.
These types of tests are used for conditional execution based on certain
values. Coded Web tests can be created manually or generated from a
web test recording and languages such as C# or VB.NET can be chosen
while generating the code. The generated code can be customized to better
control the flow of test events. A coded Web test is a powerful and highly
customizable test for the web requests.

Coded UI Test
Coded UI Tests (CUIT) are the automated way of testing the application user
interface. In any UI intensive application, the functionality of the application is
verified manually through UI and this happens after the development. Next time
there is any change to any of the backend functionality, the application should be
retested again. CUIT helps us in saving time spent testing through UI multiple
times manually. CUIT Builder helps us in recording the UI test step actions and
then generates code out of it. After the test is created, we can modify the code and
customize the actions and data values captured during recording.

A Coded UI Test generates several supporting files as part of the testing. The UIMap
object represents the controls, windows, and assertions. Using these objects and
methods we can perform actions to automate the test. The coded UI Test supporting
files are as follows:

• CodedUITest.cs: This file contains the test class, test methods, and assertions.
• UIMap.uitest: This is the XML model for UIMap class, which contains the

windows, controls, properties, methods, and assertions.
• UIMap.Designer.cs: This contains the code for the UIMap.uitest XML file.
• UIMap.cs: All customization code for the UI Map would go into this file.

Visual Studio 2012 Test Types

[18]

The following screenshot shows the Coded UI Test with the default files created for
the test:

Load testing
Load testing is a method of testing, which is used to identify the performance of
the application under maximum workload. In case of a desktop or a standalone
application, the user load is predictable, and thus easy to tune the performance, but
in case of a multiuser application or a web application, it is required to determine the
application behavior under normal and peak load conditions.

Chapter 1

[19]

Visual Studio provides a load test feature, which helps in creating and executing
load test with multiple scenarios. The following are the parameters set using the
load test wizard:

• Load Test Pattern: This defines the number of users and the user load pattern
to be followed during the test.

• Test Mix Model: This defines the model to be followed either by number of
tests or by number of virtual users, or based on the user pace or by order.

• Test Mix: This includes the tests to be part of the load tests.
• Browser Mix and Network Mix: These define the possible browsers and the

networks to follow while testing.
• Counter Sets: This defines the performance counters to collect from the load

Test Agents and the system.
• Run settings: This defines the duration of the Test Run.

If the application is a public-facing website or one with a huge customer base, then it
is better to perform load tests with real or expected scenarios. The Visual Studio load
test makes use of the Web test recording or the unit test during load Test Run.

The load test is always driven by the collection of Web and Unit tests. A web test
is used to simulate the scenario of concurrent users using the website and making
multiple HTTP requests. The load can be configured to start with a minimum
number of virtual users and then gradually increase the user count to check the
performance at multiple stages of user load until it reaches the peak user load.

A unit test can be included as part of the load test in case of testing the performance
of a service or individual method to find out the servicing capacity and threshold
for client requests. One good example would be to test the data access service
component that calls stored procedure from the backend database and returns the
results to the client application.

The load test captures the results of individual tests within the Test Run. This helps
us to identify the failed tests and debug and analyze them later. The results of all
load tests can be saved in a repository to compare the set of results and then take
necessary measures to improve performance.

Visual Studio has the Load test analyzer to provide the summary and details of Test
Runs from the load Test Result.

Load testing properties, working with tests, and analyzing the load Test Results are
explained in detail later in this book in Chapter 7, Load Testing.

Visual Studio 2012 Test Types

[20]

Ordered test
Ordered test is just a container which holds the order in which a sequence of tests
should be executed. All required tests should be ready and available to get added to
the ordered test. Each test is independent and there is no dependency here. It is just
the sequence of execution that is maintained in the ordered tests.

Test execution and results follow the sequence defined in the ordered test. The result
of individual test is maintained in the repository. We can check the results anytime
and analyze it.

Reordering the tests, adding new tests, and removing an existing test from the order
are all possible through the Ordered Test Editor in Visual Studio.

Chapter 1

[21]

An ordered test is the best way of controlling and running several tests in a
defined order.

Generic test
Generic test is useful in testing an existing executable file. It's the process of
wrapping the executable file as a generic test and then executing it. This type of
testing is very useful when testing a third party component without the source code.
If the executable requires any additional files for testing, the same can be added as
deployment files to the generic test. The test can be run using the Test Explorer or
a command-line command.

By using Visual Studio, we can collect the Test Results and gather code coverage
data too. We can manage and run the generic tests in Visual Studio just like other
tests. In fact, the Test Result output can be published to the Team Foundation Server
to link it with the code built used for testing.

Test management in Visual Studio 2012
Visual Studio has great testing features and management tools for testing. These
features are greatly improved from previous versions of Visual Studio. The Test
Impact View is the new test management tool added to the existing tools, such as
Test View, Test List Editor, Test Results, Code Coverage Results, and Test Runs
from the main IDE.

Visual Studio 2012 Test Types

[22]

Introduction to testing tools
Visual Studio provides tools to create, run, debug, and view results of your tests.
The following screenshot is the overview of the tools and windows provided by
Visual Studio for viewing the test and output details:

Let us create a new Test Project using Visual Studio 2012 and then test a sample
project to get to know about the tools and features:

Chapter 1

[23]

Open Visual Studio 2012 and create a new solution. Let's not get into the details of
sample application, AddNumbers, but create the Test Project and look at the features
of the tools and windows. The application referred throughout this chapter is a very
simple application for adding two numbers and showing the result.

Now in a similar way to adding the projects and code files to the solution, create the
Test Project and test files and add the Test Project to the solution.

Select the solution and add a project using the shortcut menu options Add | New
Project.... Then select the project type as Test from the list of project types under the
language. Next select a template from the list. Visual Studio 2012 has three templates
as follows:

For the sample testing application, select the second option, Unit Test Project. This
option creates the project and also adds the unit test to the project.

Visual Studio 2012 Test Types

[24]

The first option creates a Coded UI Test to capture the UI actions and controls,
and automate the testing by generating and customizing the code. The last option
is to record the user actions and re-run the recording to test with validations and
verification rules, use the recording to test the performance and stability of the
system under multiple user load.

The Context menu from the project has the option to choose new tests. The menu
provides six different options for creating and adding the tests. The following is the file
extension for each of the Visual Studio test types shown in the preceding screenshot:

• .vb or .cs: This extension is for all types of Unit Test and Coded UI Test.
• .generictest: This extension is for the Generic Test type.
• .loadtest: This extension is for the Load Test type.
• .webtest: This extension is for the Web Performance Test type.

Chapter 1

[25]

After selecting the test type, the test file gets created and added to the project with a
default name and extension. Open the properties and change the name as required.

The next step is to use the Test Explorer window to view and run the tests that
are created.

Test Explorer
The Test Explorer window helps us to run tests from multiple projects in a solution.
On building the Test Projects, the tests in each project appear in the Test Explorer
window. To open Test Explorer, navigate to Test | Windows | Test Explorer.
The tests are grouped into four different categories in Test Explorer, such as
Failed Tests, Passed Tests, Skipped Tests, and Not Run Tests as shown in the
following screenshot:

Visual Studio 2012 Test Types

[26]

The Test Explorer window has the following options to run the tests:

• Choose Run All... to run all the tests in the solution
• Choose Run… and then a group to run all the tests under that group
• Select an individual test, open the Context menu, and then select Run

Selected Tests to run only the selected tests

Chapter 1

[27]

To view the details of the Test Run, select the test in the Test Explorer window.
The Details pane displays the details as follows:

• Source: This is the source file name and the line number of the
test method.

• Status: This is the test status whether it has passed or failed.
• Message: If the test is failed, the detailed message of the failure is

also displayed.
• Elapsed time: This is the time that the method took to run.
• StackTrace: This is the stack trace information for the failed test.

Visual Studio 2012 Test Types

[28]

At any time if you double-click on the Test option or select Test and choose Open
Test, Visual Studio opens the source code of the selected test. This is very helpful
when starting to debug the code.

Code coverage results
Visual Studio provides this code coverage feature to find out the percentage of
code that is covered by the test execution. Through this window we can find out
the number of lines covered by the test in each method.

Select the test from the Test Explorer window, and then right-click on the test and
select Analyze Code Coverage for Selected Tests, or you can open the same by
navigating to Test | Windows | Code Coverage Results from the Menu option.
The following screenshot shows the code coverage results for the selected test. The
result window provides information such as number of code blocks not covered
by the test, percentage of code blocks not covered, covered code blocks, and the
percentage of covered code blocks from the selected assembly:

Microsoft Test Manager
This is the new standalone product introduced, but this is not a part of Visual
Studio 2012 Premium. It is a part of Visual Studio Test Professional and Visual
Studio Ultimate. This is the functional testing tool, which provides the ability to
create and execute manual tests and collect the results. This tool works without
Visual Studio but does require a connection to the Team Foundation Server and
the Team Project.

