

Microsoft Exchange
Server 2013 PowerShell
Cookbook
Second Edition

Over 120 recipes to help manage and administrate
Exchange Server 2013 with PowerShell 3

Jonas Andersson

Mike Pfeiffer

BIRMINGHAM - MUMBAI

Microsoft Exchange Server 2013 PowerShell
Cookbook
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2011

Second Edition: May 2013

Production Reference: 1100513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-942-7

www.packtpub.com

Cover Image by David Gimenez (bilbaorocker@yahoo.co.uk)

Credits

Authors
Jonas Andersson

Mike Pfeiffer

Reviewers
Marcelo Vighi Fernandes

Anderson Patricio

Acquisition Editor
Andrew Duckworth

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Dennis John

Dominic Pereira

Nitee Shetty

Project Coordinator
Arshad Sopariwala

Proofreaders
Maria Gould

Paul Hindle

Indexer
Hemangini Bari

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Authors

Jonas Andersson is a devoted person who is constantly developing himself and his skills.
He started in the IT business in 2004 and worked at first in a support center where he got his
basic knowledge. In 2007 he started his career as a Microsoft infrastructure consultant and
from 2008 onwards his focus has been on Microsoft Exchange.

Even though his focus is on Microsoft Exchange, his interests include migrations, backup,
storage, and archiving. At the start of 2010, he was employed at a large outsourcing company
as a messaging specialist, specializing in Microsoft Exchange. His work includes designing,
implementing, and developing messaging solutions for enterprise customers.

His unique knowledge makes him a key figure in large and complex migration projects where
he works with design and implementation. Examples of these projects include migrations from
the IBM Domino mail platform to Microsoft Exchange 2007/2010 and Office 365, using Quest
Software with full coexistence between the systems for mail flow, directory synchronization,
and free busy lookups.

Apart from his daily job, he was active on TechNet forums, he also writes articles at his blog
(http://www.testlabs.se/blog), and Twitter and other social media.

As a reward for the work in the community he was been awarded the Microsoft Community
Contributor Award both 2011 and 2012.

http://www.testlabs.se/blog

Acknowledgement

Since this is my first book, it's been a great experience and a great honor to get the
opportunity to write an update of the great book that Mike Pfeiffer initially wrote for
Microsoft Exchange 2010.

I look forward to continuing these kinds of side-projects to my regular work.

There are a lot of people I would like to thank; firstly of course my family, which includes my
parents and my fiancée for the love and energy they keep on giving me. Besides my family
I want to thank Magnus Björk and Mike Pfeiffer for answering my e-mails when I needed to
verify things. I also want to thank Anderson Patricio and Marcelo Vighi for doing great work
with the technical review and giving me lots of great feedback.

I hope that you will enjoy the book and that its content will help you to develop your skills in
the area.

Mike Pfeiffer has been in the IT field for 15 years, and has been working on Exchange for
the majority of that time. He is a Microsoft Certified Master and a former Microsoft Exchange
MVP. These days he works at Microsoft as a Premier Field Engineer where he helps customers
deploy and maintain Microsoft Exchange and Lync Server solutions. You can find his writings
online at mikepfeiffer.net, where he occasionally blogs about Exchange, Lync, and
PowerShell-related topics.

About the Reviewers

Marcelo Vighi Fernandes has over 14 years of experience in the IT field, always focusing
on Microsoft Exchange Server, Active Directory, and other Microsoft Infrastructure solutions.
Currently he is working at SolarWinds Inc. as a Technical Sales Engineer in Brazil. Marcelo is a
well-known writer for a very important Exchange resource website in Portuguese where he and
others members of the community add content on a weekly basis. You can reach this site at
www.andersonpatricio.org.

He also contributes to many activities within the Exchange and cloud computing communities,
such as presentations, articles, tutorials, and he also has two blogs on Exchange Server and
cloud computing.

Anderson Patricio is an Exchange Server MVP and a messaging consultant based in
Toronto, Canada, designing and deploying solutions for clients located in North and South
America. He has been working with Exchange since Version 5 and he had the opportunity to
use PowerShell since its beta release (code name Monad at the time).

He contributes to the Microsoft communities in several ways. In English, his
blog, www.andersonpatricio.ca, is updated regularly with Exchange, PowerShell,
and Microsoft as its general content. In Portuguese, he has an Exchange resource site
(www.andersonpatricio.org) and he is also a TechEd presenter in South America
and also creator of a couple of Exchange trainings in the Brazilian Microsoft Virtual
Academy (MVA).

You can also follow him on Twitter at http://twitter.com/apatricio.

He has also been the reviewer of several books such as Windows PowerShell in Action,
Bruce Payette, Manning Publications; PowerShell in Practice, Richard Siddaway,
Manning Publications; and Microsoft Exchange 2010 PowerShell Cookbook,
Mike Pfeiffer, Packt Publishing.

http://www.andersonpatricio.org
http://www.andersonpatricio.ca
http://www.andersonpatricio.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: PowerShell Key Concepts	 7

Introduction	 8
Using the help system	 9
Understanding command syntax and parameters	 13
Understanding the pipeline	 17
Working with variables and objects	 20
Formatting output	 25
Working with arrays and hash tables	 28
Looping through items	 33
Creating and running scripts	 35
Using flow control statements	 39
Creating custom objects	 43
Creating PowerShell functions	 47
Setting up a profile	 51

Chapter 2: Exchange Management Shell Common Tasks	 55
Introduction	 55
Manually configuring remote PowerShell connections	 57
Using explicit credentials with PowerShell cmdlets	 61
Transferring files through remote shell connections	 62
Dealing with concurrent pipelines in remote PowerShell	 65
Managing domains or an entire forest using recipient scope	 67
Exporting reports to text and CSV files	 68
Sending SMTP e-mails through PowerShell	 72
Scheduling scripts to run at a later time	 75
Logging shell sessions to a transcript	 77
Automating tasks with the scripting agent	 78
Scripting an Exchange server installation	 81

ii

Table of Contents

Chapter 3: Managing Recipients	 85
Introduction	 86
Adding, modifying, and removing mailboxes	 87
Working with contacts	 91
Managing distribution groups	 93
Managing resource mailboxes	 95
Creating recipients in bulk using a CSV file	 97
Working with recipient filters	 101
Adding and removing recipient e-mail addresses	 104
Hiding recipients from address lists	 107
Configuring recipient moderation	 108
Configuring message delivery restrictions	 111
Managing automatic replies and out of office settings for a user	 113
Adding, modifying, and removing server-side inbox rules	 115
Managing mailbox folder permissions	 118
Importing user photos into Active Directory	 121

Chapter 4: Managing Mailboxes	 125
Introduction	 126
Reporting on the mailbox size	 127
Working with move requests and performing mailbox moves	 129
Mailbox move e-mail notification	 134
Importing and exporting mailboxes	 136
Deleting messages from mailboxes	 141
Managing disconnected mailboxes	 144
Generating mailbox folder reports	 148
Reporting on mailbox creation time	 151
Checking mailbox logon statistics	 153
Setting storage quotas for mailboxes	 154
Finding inactive mailboxes	 155
Detecting and fixing corrupt mailboxes	 157
Restoring deleted items from mailboxes	 160
Managing public folder mailboxes	 162
Reporting on public folder statistics	 164
Managing user access to public folders	 165

Chapter 5: Distribution Groups and Address Lists	 169
Introduction	 170
Reporting on distribution group membership	 170
Adding members to a distribution group from an external file	 172
Previewing dynamic distribution group membership	 174
Excluding hidden recipients from a dynamic distribution group	 176

iii

Table of Contents

Converting and upgrading distribution groups	 179
Allowing managers to modify group membership	 181
Removing disabled user accounts from distribution groups	 183
Working with distribution group naming policies	 185
Working with distribution group membership approval	 187
Creating address lists	 189
Exporting address list membership to a CSV file	 191
Configuring hierarchical address books	 193

Chapter 6: Mailbox Database Management	 197
Introduction	 197
Managing the mailbox databases	 198
Moving databases and logs to another location	 201
Configuring the mailbox database limits	 205
Reporting on mailbox database size	 207
Finding the total number of mailboxes in a database	 209
Determining the average mailbox size per database	 212
Reporting on database backup status	 214
Restoring data from a recovery database	 217

Chapter 7: Managing Client Access	 221
Introduction	 221
Managing ActiveSync, OWA, POP3, and IMAP4 mailbox settings	 223
Setting internal and external CAS URLs	 225
Managing Outlook Anywhere settings	 229
Blocking Outlook clients from connecting to Exchange	 231
Reporting on active OWA and RPC connections	 234
Controlling ActiveSync device access	 237
Reporting on ActiveSync devices	 239

Chapter 8: Managing Transport Service	 243
Introduction	 243
Managing connectors	 245
Configuring transport limits	 248
Allowing application servers to relay mail	 250
Managing transport rules and settings	 253
Creating a basic disclaimer	 260
Working with custom DSN messages	 261
Managing connectivity and protocol logs	 264
Searching message tracking logs	 269
Working with messages in transport queues	 273
Searching anti-spam agent logs	 278
Implementing a header firewall	 282

iv

Table of Contents

Chapter 9: High Availability	 285
Introduction	 285
Building a Windows NLB cluster for CAS servers	 287
Creating a Database Availability Group	 291
Adding mailbox servers to a Database Availability Group	 293
Configuring Database Availability Group network settings	 295
Adding mailbox copies to a Database Availability Group	 297
Activating mailbox database copies	 300
Working with lagged database copies	 302
Reseeding a database copy	 304
Using the automatic reseed feature	 305
Performing maintenance on Database Availability Group members	 309
Reporting on database status, redundancy, and replication	 312

Chapter 10: Exchange Security	 319
Introduction	 319
Granting users full access permissions to mailboxes	 320
Finding users with full access to mailboxes	 323
Sending e-mail messages as another user or group	 325
Working with Role Based Access Control (RBAC)	 326
Creating a custom RBAC role for administrators	 330
Creating a custom RBAC role for end users	 332
Troubleshooting Role Based Access Control	 336
Generating a certificate request	 338
Installing certificates and enabling services	 340
Importing certificates on multiple exchange servers	 342

Chapter 11: Compliance and Audit Logging	 347
Introduction	 347
Managing archive mailboxes	 349
Configuring archive mailbox quotas	 350
Creating retention tags and policies	 352
Applying retention policies to mailboxes	 357
Placing mailboxes on retention hold	 358
Placing mailboxes on in-place hold	 360
Performing a discovery search	 363
Enabling mailbox audit logging	 366
Generating mailbox audit log reports	 368
Configuring Administrator Audit Logging	 371
Searching the administrator audit logs	 373

v

Table of Contents

Chapter 12: Server Monitoring and Troubleshooting	 377
Introduction	 378
Managing and monitoring services	 379
Verifying server connectivity	 383
Working with event logs	 385
Reporting on disk usage	 388
Checking CPU utilization	 391
Monitoring memory utilization	 395
Reporting on Exchange Server uptime	 397
Troubleshooting the Mailbox role	 400
Troubleshooting the Client Access Server role	 402
Troubleshooting the Transport service	 405
Verifying certificate health	 406

Chapter 13: Scripting with the Exchange Web Services Managed API	 411
Introduction	 411
Getting connected to EWS	 413
Sending e-mail messages with EWS	 417
Working with impersonation	 422
Searching mailboxes	 427
Retrieving the headers of an e-mail message	 432
Deleting e-mail items from a mailbox	 437
Creating calendar items	 442
Exporting attachments from a mailbox	 447

Appendix A: Common Shell Information	 453
Exchange Management Shell reference	 453
Properties that can be used with the Filter parameter	 459
Properties that can be used with the RecipientFilter parameter	 462

Appendix B: Query Syntaxes	 465
Advanced Query Syntax	 465
Using the word phrase search	 466
Using a date range search	 468
Using the message type search	 469
Using the logical connector search	 470

Index	 471

Preface
This book is full of immediately usable task-based recipes for managing and maintaining
your Microsoft Exchange 2013 environment with Windows PowerShell 3.0 and the Exchange
Management Shell. The focus of this book is to show you how to automate routine tasks and
solve common problems. While the Exchange Management Shell literally provides hundreds
of cmdlets, we will not cover every single one of them individually. Instead, we'll focus on the
common, real world scenarios. You'll be able to leverage these recipes right away, allowing you
to get the job done quickly, and the techniques that you'll learn will allow you to write your own
amazing one-liners and scripts with ease.

What this book covers
Chapter 1, PowerShell Key Concepts, introduces several PowerShell core concepts such as
command syntax and parameters, working with the pipeline, and flow control with loops and
conditional logic. The topics covered in this chapter lay the foundation for the remaining code
samples in each chapter.

Chapter 2, Exchange Management Shell Command Tasks, covers day-to-day tasks and
general techniques for managing Exchange from the command line. The topics include
configuring manual remote shell connections, exporting reports to external files, sending
e-mail messages from scripts, and scheduling scripts to run with the Task Scheduler.

Chapter 3, Managing Recipients, demonstrates some of the most common recipient-related
management tasks, such as creating mailboxes, distribution groups, and contacts. You'll also
learn how to manage server-side inbox rules, out of office settings, and import user photos
into the Active Directory.

Chapter 4, Managing Mailboxes, shows you how to perform various mailbox management
tasks that include moving mailboxes, importing and exporting mailbox data, and the detection
and repair of corrupt mailboxes. In addition, you'll learn how to delete and restore items from
a mailbox, manage the new public folders, and generate some basic reports.

Preface

2

Chapter 5, Distribution Groups and Address Lists, takes you deeper into distribution group
management. The topics include distribution group reporting, distribution group naming
policies, and allowing end users to manage distribution group membership. You'll also learn
how to create address lists and hierarchal address books.

Chapter 6, Mailbox Database Management, shows how to set database settings and limits.
Report generation for mailbox database size, average mailbox size per database, and backup
status is also covered in this chapter.

Chapter 7, Managing Client Access, covers the managing of ActiveSync, OWA, POP, and IMAP.
It also covers the configuration of these components in Exchange 2013. We'll also take a look
at controlling connections from various clients, including ActiveSync devices.

Chapter 8, Managing Transport Service, explains the various methods used to control
mail flow within your Exchange organization. You'll learn how to create, send, and receive
connectors, allow application servers to relay mail, and manage transport queues.

Chapter 9, High Availability, covers the implementation and management tasks related to
Database Availability Groups (DAGs). Topics include creating DAGs, adding mailbox database
copies, and performing maintenance on DAG members. It also covers the new feature called
automatic reseed.

Chapter 10, Exchange Security, introduces the new Role Based Access Control (RBAC)
permissions model. You'll learn how to create custom RBAC roles for administrators and end
users, and also how to manage mailbox permissions and implement SSL certificates.

Chapter 11, Compliance and Audit Logging, covers the new compliance and auditing features
included in Exchange 2013. Topics such as archiving mailboxes and discovery search are
covered here, as well as administrator and mailbox audit logging.

Chapter 12, Server Monitoring and Troubleshooting, shows you how to monitor and report on
service availability and resource utilization using PowerShell core cmdlets and WMI. Event log
monitoring and Exchange server role troubleshooting tactics are also covered.

Chapter 13, Scripting with the Exchange Web Services Managed API, introduces advanced
scripting topics that leverage Exchange Web Services. In this chapter, you'll learn how to
write scripts and functions that go beyond the capabilities of the Exchange Management
Shell cmdlets.

Appendix A, Common Shell Information, is a reference for the variables, scripts, and the
filtering functions. These references will help you when writing scripts or running interactive.

Appendix B, Query Syntaxes, is a reference for the Advanced Query Syntax (AQS). Here are lots
of different examples that can be used in the real world.

Preface

3

What you need for this book
To complete the recipes in this book, you'll need the following:

ff PowerShell v3, which is already installed by default on Windows 8 and Windows
Server 2012.

ff A fully operational lab environment with an Active Directory forest and
Exchange organization.

ff Ideally, your Exchange Servers will run Windows Server 2012, but they can run
Windows Server 2008 R2, if needed.

ff You'll need to have at least one Microsoft Exchange 2013 server.

ff It is assumed that the account you are using is a member of the Organization
Management role group. The user account used to install Exchange 2013 is
automatically added to this group.

ff If possible, you'll want to run the commands, scripts, and functions in this book
from a client machine. The 64-bit version of Windows 8 with the Exchange 2013
Management Tools installed is a good choice. You can also run the tools on
Windows 7. Each client will need some additional prerequisites in order to
run the tools, see Microsoft's TechNet documentation for full details.

ff If you don't have a client machine, you can run the Exchange Management Shell from
an Exchange 2013 server.

ff Chapter 13 requires the Exchange Web Services Managed API version 2.0, which
can be downloaded from http://www.microsoft.com/en-us/download/
details.aspx?id=35371.

The code samples in this book should be run in a lab environment and fully tested before
deployed into production. If you don't have a lab environment setup, you can download the
software from http://technet.microsoft.com/en-us/exchange/. Then build the
servers on your preferred virtualization engine.

Who this book is for
This book is for messaging professionals who want to learn how to build real-world scripts
with Windows PowerShell 3.0 and the Exchange Management Shell. If you are a network or
systems administrator responsible for managing and maintaining the on-premise version of
Exchange Server 2013, then this book is for you.

The recipes in this Cookbook touch on each of the core Exchange 2013 server roles, and
require a working knowledge of the supporting technologies, such as Windows Server 2008,
2008 R2 or 2012, Active Directory, and DNS.

Preface

4

All of the topics in this book are focused on the on-premises version of Exchange 2013,
and we will not cover Microsoft's hosted version of Exchange Online through Office 365.
However, the concepts you'll learn in this book will allow you to hit the ground running with
that platform since it will give you an understanding of PowerShell's command syntax and
object-based nature.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can read
the content of an external file into the shell using the Get-Content cmdlet"

Commands and blocks of code are set as follows:

Get-Mailbox –ResultSize Unlimited | Out-File C:\report.txt

Commands like this can be invoked interactively in the shell, or from within a script
or function.

Most of the commands you'll be working with will be very long. In order for them to fit into the
pages of this book, we'll need to use line continuation. For example, here is a command that
creates a mailbox:

New-Mailbox -UserPrincipalName jsmith@contoso.com `
-FirstName John `
-LastName Smith `
-Alias jsmith `
-Database DB1 `
-Password $password

Notice that the last character on each line is the backtick (`) symbol, also referred to as the
grave accent. This is PowerShell's line continuation character. You can run this command as
is, but make sure there aren't any trailing spaces at the end of each line. You can also remove
the backticks and carriage returns and run the command on one line. Just ensure the spaces
between the parameters and arguments are maintained.

You'll also see long pipeline commands formatted like the following example:

Get-Mailbox -ResultSize Unlimited |
 Select-Object DisplayName,ServerName,Database |
 Export-Csv c:\mbreport.csv -NoTypeInformation

Preface

5

PowerShell uses the pipe character (|) to send object output from a command down the
pipeline so it can be used as input by another command. The pipe character does not need to
be escaped. You can enter the previous command as is, or you can format the command so
that everything is on one line.

Any command-line input or output that must be done interactively at the shell console is
written as follows:

[PS] C:\>Get-Mailbox administrator | ft ServerName,Database -Auto

ServerName Database

---------- --------

mbx1 DB01

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on the Exchange
Management Shell shortcut".

Warnings or important notes appear in a box like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

6

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
PowerShell Key

Concepts

In this chapter, we will cover the following:

ff Using the help system

ff Understanding command syntax and parameters

ff Understanding the pipeline

ff Working with variables and objects

ff Formatting output

ff Working with arrays and hash tables

ff Looping through items

ff Creating and running scripts

ff Using flow control statements

ff Creating custom objects

ff Creating PowerShell functions

ff Setting up a profile

PowerShell Key Concepts

8

Introduction
So, your organization has decided to move to Exchange Server 2013 to take advantage of
the many exciting new features such as integrated e-mail archiving, discovery capabilities,
and high availability functionality. Like it or not, you've realized that PowerShell is now an
integral part of Exchange Server management and you need to learn the basics to have a
point of reference for building your own scripts. That's what this book is all about. In this
chapter, we'll cover some core PowerShell concepts that will provide you with a foundation
of knowledge for using the remaining examples in this book. If you are already familiar with
PowerShell, you may want to use this chapter as a review or as a reference for later on after
you've started writing scripts.

If you're completely new to PowerShell, its concept may be familiar if you've worked with Unix
command shells. Like Unix-based shells, PowerShell allows you to string multiple commands
together on one line using a technique called pipelining. This means that the output of one
command becomes the input for another. But, unlike Unix shells that pass text output from
one command to another, PowerShell uses an object model based on the .NET Framework,
and objects are passed between commands in a pipeline, as opposed to plain text. From
an Exchange perspective, working with objects gives us the ability to access very detailed
information about servers, mailboxes, databases, and more. For example, every mailbox you
manage within the shell is an object with multiple properties, such as an e-mail address,
database location, or send and receive limits. The ability to access this type of information
through simple commands means that we can build powerful scripts that generate reports,
make configuration changes, and perform maintenance tasks with ease.

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log on to a workstation or server with the Exchange Management Tools installed.

2.	 You can connect using remote PowerShell if you for some reason don't have Exchange
Management Tools installed. Use the following command:
$Session = New-PSSession -ConfigurationName Microsoft.Exchange `

-ConnectionUri http://tlex01/PowerShell/ `

-Authentication Kerberos `

Import-PSSession $Session

3.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Microsoft Exchange Server 2013. Or if you're using Windows 2012 Server, it can be
found by pressing the Windows key.

4.	 Click on the Exchange Management Shell shortcut.

Chapter 1

9

Remember to start the Exchange Management Shell using Run As Admin
to avoid permission problems.
In the chapter, notice that in the examples of cmdlets, I have used the
back tick (`) character for breaking up long commands into multiple lines.
The purpose with this is to make it easier to read. The back ticks are not
required and should only be used if needed.

Using the help system
The Exchange Management Shell includes over 750 cmdlets (pronounced command-lets),
each with a set of multiple parameters. For instance, the New-Mailbox cmdlet accepts
more than 60 parameters, and the Set-Mailbox cmdlet has over 160 available parameters.
It's safe to say that even the most experienced PowerShell expert would be at a disadvantage
without a good help system. In this recipe, we'll take a look at how to get help in the Exchange
Management Shell.

How to do it...
To get help information for a cmdlet, type Get-Help, followed by the cmdlet name. For example,
to get help information about the Get-Mailbox cmdlet, run the following command:

Get-Help Get-Mailbox -full

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.
com. If you purchased this book elsewhere, you can visit http://
www.PacktPub.com/support and register to have the files
e-mailed directly to you.

How it works...
When running Get-Help for a cmdlet, a synopsis and description for the cmdlet will be displayed
in the shell. The Get-Help cmdlet is one of the best discovery tools to use in PowerShell. You
can use it when you're not quite sure how a cmdlet works or what parameters it provides.

You can use the following switch parameters to get specific information using the
Get-Help cmdlet:

ff Detailed: The detailed view provides parameter descriptions and examples, and uses
the following syntax:
Get-Help<cmdletname>-Detailed

PowerShell Key Concepts

10

ff Examples: You can view multiple examples of how to use a cmdlet by running the
following syntax:
Get-Help<cmdletname>-Examples

ff Full: Use the following syntax to view the complete contents of the help file for
a cmdlet:
Get-Help<cmdletname>-Full

Some parameters accept simple strings as input, while others require an actual object.
When creating a mailbox using the New-Mailbox cmdlet, you'll need to provide a secure
string object for the -Password parameter. You can determine the data type required for a
parameter using Get-Help:

You can see from the command output that we get several pieces of key information about
the -Password parameter. In addition to the required data type of <SecureString>, we
can see that this is a named parameter. It is required when running the New-Mailbox cmdlet
and it does not accept wildcard characters. You can use Get-Help when examining the
parameters for any cmdlet to determine whether or not they support these settings.

You could run Get-HelpNew-MailboxExamples to determine the syntax required to
create a secure string password object and how to use it to create a mailbox. This is also
covered in detail in the recipe entitled Adding, modifying, and removing mailboxes in
Chapter 3, Managing Recipients.

Chapter 1

11

There's more...
There will be times when you'll need to search for a cmdlet without knowing its full name. In
this case, there are a couple of commands you can use to find the cmdlets you are looking for.

To find all cmdlets that contain the word "mailbox", you can use a wildcard, as shown in the
following command:

Get-Command *Mailbox*

You can use the -Verb parameter to find all cmdlets starting with a particular verb:

Get-Command -Verb Set

To search for commands that use a particular noun, specify the name with the -Noun
parameter:

Get-Command -Noun Mailbox

The Get-Command cmdlet is a built-in PowerShell core cmdlet, and it will return commands
from both Windows PowerShell as well as the Exchange Management Shell. The Exchange
Management Shell also adds a special function called Get-Ex command that will return only
Exchange-specific commands.

In addition to getting cmdlet help for cmdlets, you can use GetHelp to view supplementary
help files that explain general PowerShell concepts that focus primarily on scripting. To display
the help file for a particular concept, type Get-Helpabout_ followed by the concept name.
For example, to view the help for the core PowerShell commands, type the following:

Get-Help about_Core_Commands

You can view the entire list of conceptual help files using the following command:

Get-Help about_*

Don't worry about trying to memorize all the Exchange or PowerShell cmdlet names. As long
as you can remember GetCommand and Get-Help, you can search for commands and figure
out the syntax to do just about anything.

Getting help with cmdlets and functions
One of the things that can be confusing at first is the distinction between cmdlets and
functions. When you launch the Exchange Management Shell, a remote PowerShell session is
initiated to an Exchange server and specific commands, called proxy functions, are imported
into your shell session. These proxy functions are essentially just blocks of code that have a
name, such as GetMailbox, and that correspond to the compiled cmdlets installed on the
server. This is true even if you have a single server and when you are running the shell locally
on a server.

PowerShell Key Concepts

12

When you run the Get-Mailbox function from the shell, data is passed between your
machine and the Exchange server through a remote PowerShell session. The Get-Mailbox
cmdlet is actually executing on the remote Exchange server, and the results are being passed
back to your machine. One of the benefits of this is that it allows you to run the cmdlets
remotely regardless of whether your servers are on-premise or in the cloud. Additionally, this
core change in the tool set is what allows Exchange 2010 and 2013 to implement its new
security model by allowing and restricting which cmdlets administrators and end users can
actually use through the shell or the web-based control panel.

We'll get into the details of all this throughout the remaining chapters in the book. The bottom
line is that, for now, you need to understand that, when you are working with the help system,
the Exchange 2013 cmdlets will show up as functions and not as cmdlets.

Consider the following command and the output:

Here we are running GetCommand against a PowerShell v3 core cmdlet. Notice that the
CmdletType shows that this is a Cmdlet.

Now try the same thing for the Get-Mailbox cmdlet:

As you can see, the CommandType for the Get-Mailbox cmdlet shows that it is actually a
Function. So, there are a couple of key points to take away from this. First, throughout the
course of this book, we will refer to the Exchange 2013 cmdlets as cmdlets, even though they
will show up as functions when running GetCommand. Second, keep in mind that you can run
Get-Help against any function name, such as Get-Mailbox, and you'll still get the help
file for that cmdlet. But if you are unsure of the exact name of a cmdlet, use Get-Command
to perform a wildcard search as an aid in the discovery process. Once you've determined
the name of the cmdlet you are looking for, you can run GetHelp against that cmdlet for
complete details on how to use it.

Chapter 1

13

Try using the help system before going to the Internet to find answers. You'll find that the
answers to most of your questions are already documented within the built-in cmdlet help.

See also
ff The Understanding command syntax and parameters recipe

ff The Manually configuring remote PowerShell connections recipe in Chapter 2,
Exchange Management Shell Common Tasks

ff The Working with Role Based Access Control (RBAC) recipe in Chapter 10,
Exchange Security

Understanding command syntax and
parameters

Windows PowerShell provides a large number of built-in cmdlets that perform specific
operations. The Exchange Management Shell adds an additional set of PowerShell cmdlets
used specifically for managing Exchange. We can also run these cmdlets interactively in the
shell, or through automated scripts. When executing a cmdlet, parameters can be used to
provide information, such as which mailbox or server to work with, or which attribute of those
objects should be modified. In this recipe, we'll take a look at basic PowerShell command
syntax and how parameters are used with cmdlets.

How to do it...
When running a PowerShell command, you type the cmdlet name, followed by any parameters
required. Parameter names are preceded by a hyphen (-) followed by the value of the
parameter. Let's start with a basic example. To get mailbox information for a user named
testuser, use the following command syntax:

Get-Mailbox –Identity testuser

Alternatively, the following syntax also works and provides the same output, because
the –Identity parameter is a positional parameter:

Get-Mailbox testuser

Most cmdlets support a number of parameters that can be used within a single command. We
can use the following command to modify two separate settings on the testuser mailbox:

Set-Mailbox testuser –MaxSendSize 5mb –MaxReceiveSize 5mb

PowerShell Key Concepts

14

How it works...
All cmdlets follow a standard verb-noun naming convention. For example, to get a list of
mailboxes you use the Get-Mailbox cmdlet. You can change the configuration of a mailbox
using the Set-Mailbox cmdlet. In both examples, the verb (Get or Set) is the action you
want to take on the noun (Mailbox). The verb is always separated from the noun using the
hyphen (-) character. With the exception of a few Exchange Management Shell cmdlets, the
noun is always singular.

Cmdlet names and parameters are not case sensitive. You can use a combination of upper
and lowercase letters to improve the readability of your scripts, but it is not required.

Parameter input is either optional or required, depending on the parameter and cmdlet you
are working with. You don't have to assign a value to the c parameter since it is not required
when running the Get-Mailbox cmdlet. If you simply run Get-Mailbox without any
arguments, the first 1,000 mailboxes in the organization will be returned.

If you are working in a large environment with more than
1,000 mailboxes, you can run the Get-Mailbox cmdlet
setting the -ResultSize parameter to Unlimited to
retrieve all of the mailboxes in your organization.

Notice that in the first two examples we ran Get-Mailbox for a single user. In the first
example, we used the -Identity parameter, but in the second example we did not. The
reason we don't need to explicitly use the -Identity parameter in the second example
is because it is a positional parameter. In this case, -Identity is in position 1, so the first
argument received by the cmdlet is automatically bound to this parameter. There can be a
number of positional parameters supported by a cmdlet, and they are numbered starting from
one. Other parameters that are not positional are known as named parameters, meaning we
need to use the parameter name to provide input for the value.

The -Identity parameter is included with most of the Exchange Management Shell
cmdlets, and it allows you to classify the object you want to take an action on.

The -Identity parameter used with the Exchange Management
Shell cmdlets can accept different value types. In addition to the
alias, the following values can be used: ADObjectID, Distinguished
name, Domain\Username, GUID, LegacyExchangeDN, SmtpAddress,
and User principal name (UPN).

Unlike the Get-Mailbox cmdlet, the -Identity parameter is required when you are
modifying objects, and we saw an example of this when running the Set-Mailbox cmdlet.
This is because the cmdlet needs to know which mailbox it should modify when the command
is executed. When you run a cmdlet without providing input for a required parameter, you will
be prompted to enter the information before execution.

Chapter 1

15

In order to determine whether a parameter is required, named, or
positional, supports wildcards, or accepts input from the pipeline,
you can use the Get-Help cmdlet which is covered in the next
recipe in this chapter.

Multiple data types are used for input depending on the parameter you are working with.
Some parameters accept string values, while others accept integers or Boolean values.
Boolean parameters are used when you need to set a parameter value to either true or false.
PowerShell provides built-in shell variables for each of these values using the $true and
$false automatic variables.

For a complete list of PowerShell v3 automatic variables, run Get-Help
about_automatic_variables. Also see Appendix A, Common Shell
Information, for a list of automatic variables added by the Exchange
Management Shell.

For example, you can enable or disable a send connector using the Set-SendConnector
cmdlet with the -Enabled parameter:

Set-SendConnector Internet -Enabled $false

Switch parameters don't require a value. Instead they are used to turn something on or off, or
to either enable or disable a feature or setting. One common example of when you might use
a switch parameter is when creating an archive mailbox for a user:

Enable-Mailbox testuser -Archive

PowerShell also provides a set of common parameters that can be used with every cmdlet.
Some of the common parameters, such as the risk mitigation parameters (-Confirm and
-Whatif), only work with cmdlets that make changes.

For a complete list of common parameters, run
Get-Helpabout_CommonParameters.

Risk mitigation parameters allow you to preview a change or confirm a change that may be
destructive. If you want to see what will happen when executing a command without actually
executing it, use the -WhatIfparameter:

PowerShell Key Concepts

16

When making a change, such as removing a mailbox, you'll be prompted for confirmation, as
shown in the following screenshot:

To suppress this confirmation set the -Confirm parameter to false:

Remove-Mailbox testuser -Confirm:$false

Notice here that when assigning the $false variable to the -Confirm parameter, we had
to use a colon immediately after the parameter name and then the Boolean value. This is
different to how we assigned this value earlier with the -Enabled parameter when using the
Set-SendConnector cmdlet. Remember that the -Confirm parameter always requires
this special syntax, and while most parameters that accept a Boolean value generally do not
require this, it depends on the cmdlet with which you are working. Fortunately, PowerShell has
a great built-in help system that we can use when we run into these inconsistencies. When in
doubt, use the help system, which is covered in detail in the next recipe.

Cmdlets and parameters support tab completion. You can start typing the first few characters
of a cmdlet or a parameter name and hit the tab key to automatically complete the name or
tab through a list of available names. This is very helpful in terms of discovery and can serve
as a bit of a time saver.

In addition, you only need to type enough characters of a parameter name to differentiate it
from another parameter name. The following command using a partial parameter name is
completely valid:

Set-Mailbox -id testuser –Office Sales

Here we've used id as a shortcut for the -Identity parameter. The cmdlet does not provide
any other parameters that start with id, so it automatically assumes you want to use the
-Identity parameter.

Another helpful feature that some parameters support is the use of wildcards. When running
the Get-Mailbox cmdlet, the -Identity parameter can be used with wildcards to return
multiple mailboxes that match a certain pattern:

Get-Mailbox -id t*

Chapter 1

17

In this example, all mailboxes starting with the letter "t" will be returned. Although this is fairly
straightforward, you can refer to the help system for details on using wildcard characters in
PowerShell by running Get-Help about_Wildcards.

There's more...
Parameter values containing a space need to be enclosed in either single or double
quotation marks. The following command would retrieve all of the mailboxes in the Sales
Users OU in Active Directory. Notice that since the OU name contains a space, it is enclosed
in single quotes:

Get-Mailbox -OrganizationalUnit 'contoso.com/Sales Users/Phoenix'

Use double quotes when you need to expand a variable within a string:

$City = 'Phoenix'

Get-Mailbox -OrganizationalUnit "contoso.com/Sales Users/$City"

You can see here that we first create a variable containing the name of the city, which
represents a sub OU under Sales Users. Next, we include the variable inside the string
used for the organizational unit when running the Get-Mailbox cmdlet. PowerShell
automatically expands the variable name inside the double quoted string where the value
should appear and all mailboxes inside the Phoenix OU are returned by the command.

Quoting rules are documented in detail in the PowerShell help system.
Run Get-Helpabout_Quoting_Rules for more information.

See also
ff The Using the help system recipe

ff The Working with variables and objects recipe

Understanding the pipeline
The single most important concept in PowerShell is the use of its flexible, object-based
pipeline. You may have used pipelines in Unix-based shells, or when working with the
cmd.exe command prompt. The concept of pipelines is similar to that of sending the
output from one command to another. But, instead of passing plain text, PowerShell works
with objects, and we can accomplish some very complex tasks in just a single line of code.
In this recipe, you'll learn how to use pipelines to string together multiple commands and
build powerful one-liners.

PowerShell Key Concepts

18

How to do it...
The following pipeline command would set the office location for every mailbox in the
DB1 database:

Get-Mailbox -Database DB1 | Set-Mailbox -Office Headquarters

How it works...
In a pipeline, you separate a series of commands using the pipe (|) character. In the previous
example, the Get-Mailbox cmdlet returns a collection of mailbox objects. Each mailbox
object contains several properties that contain information such as the name of the mailbox,
the location of the associated user account in Active Directory, and more. The Set-Mailbox
cmdlet is designed to accept input from the Get-Mailbox cmdlet in a pipeline, and with one
simple command we can pass along an entire collection of mailboxes that can be modified in
one operation.

You can also pipe output to filtering commands, such as the Where-Object cmdlet.
In this example, the command retrieves only the mailboxes with a MaxSendSize equal
to 10 megabytes:

Get-Mailbox | Where-Object{$_.MaxSendSize -eq 10mb}

The code that the Where-Object cmdlet uses to perform the filtering is enclosed in curly
braces ({}). This is called a script block, and the code within this script block is evaluated for
each object that comes across the pipeline. If the result of the expression is evaluated as true,
the object is returned; otherwise, it is ignored. In this example, we access the MaxSendSize
property of each mailbox using the $_ object, which is an automatic variable that refers to the
current object in the pipeline. We use the equals (-eq) comparison operator to check that the
MaxSendSize property of each mailbox is equal to 10 megabytes. If so, only those mailboxes
are returned by the command.

Comparison operators allow you to compare results and find values
that match a pattern. For a complete list of comparison operators,
run Get-Helpabout_Comparison_Operators.

When running this command, which can also be referred to as a one-liner, each mailbox
object is processed one at a time using stream processing. This means that as soon as a
match is found, the mailbox information is displayed on the screen. Without this behavior,
you would have to wait for every mailbox to be found before seeing any results. This may not
matter if you are working in a very small environment, but without this functionality in a large
organization with tens of thousands of mailboxes, you would have to wait a long time for the
entire result set to be collected and returned.

Chapter 1

19

One other interesting thing to note about the comparison being done inside our Where-Object
filter is the use of the mb multiplier suffix. PowerShell natively supports these multipliers and
they make it a lot easier for us to work with large numbers. In this example, we've used 10mb,
which is the equivalent of entering the value in bytes because behind the scenes, PowerShell is
doing the math for us by replacing this value with 1024*1024*10. PowerShell provides support
for the following multipliers: kb, mb, gb, tb, and pb.

There's more...
You can use advanced pipelining techniques to send objects across the pipeline to other
cmdlets that do not support direct pipeline input. For example, the following one-liner adds a
list of users to a group:

Get-User |

 Where-Object{$_.title -eq "Exchange Admin"} | Foreach-Object{

 Add-RoleGroupMember -Identity "Organization Management" `

 -Member $_.name

 }

This pipeline command starts off with a simple filter that returns only the users that have
their title set to "Exchange Admin". The output from that command is then piped to the
ForEach-Object cmdlet that processes each object in the collection. Similar to the Where-
Object cmdlet, the ForEach-Object cmdlet processes each item from the pipeline using
a script block. Instead of filtering, this time we are running a command for each user object
returned in the collection and adding them to the "Organization Management" role group.

Using aliases in pipelines can be helpful because it reduces the number of characters you
need to type. Take a look at the following command where the previous command is modified
to use aliases:

Get-User |

 ?{$_.title -eq "Exchange Admin"} | %{

 Add-RoleGroupMember -Identity "Organization Management" `

 -Member $_.name

 }

Notice the use of the question mark (?) and the percent sign (%) characters. The ? character
is an alias for the Where-Object cmdlet, and the % character is an alias for the ForEach-
Object cmdlet. These cmdlets are used heavily, and you'll often see them used with these
aliases because it makes the commands easier to type.

PowerShell Key Concepts

20

You can use the Get-Alias cmdlet to find all of the aliases
currently defined in your shell session and the New-Alias
cmdlet to create custom aliases.

The Where-Object and ForEach-Object cmdlets have additional aliases. Here's another
way you could run the previous command:

Get-User |

 where{$_.title -eq "Exchange Admin"} | foreach{

 Add-RoleGroupMember -Identity "Organization Management" `

 -Member $_.name

 }

Use aliases when you're working interactively in the shell to speed up your work and keep
your commands concise. You may want to consider using the full cmdlet names in production
scripts to avoid confusing others who may read your code.

See also
ff The Looping through items recipe

ff The Creating custom objects recipe

ff The Dealing with concurrent pipelines in remote PowerShell recipe in Chapter 2,
Exchange Management Shell Common Tasks

Working with variables and objects
Every scripting language makes use of variables as placeholders for data, and PowerShell
is no exception. You'll need to work with variables often to save temporary data to an object
so you can work with it later. PowerShell is very different from other command shells in that
everything you touch is, in fact, a rich object with properties and methods. In PowerShell, a
variable is simply an instance of an object just like everything else. The properties of an object
contain various bits of information depending on the type of object you're working with. In
this recipe we'll learn to create user-defined variables and work with objects in the Exchange
Management Shell.

How to do it...
To create a variable that stores an instance of the testuser mailbox, use the
following command:

$mailbox = Get-Mailbox testuser

Chapter 1

21

How it works...
To create a variable, or an instance of an object, you prefix the variable name with the dollar
sign ($). To the right of the variable name, use the equals (=) assignment operator, followed
by the value or object that should be assigned to the variable. Keep in mind that the variables
you create are only available during your current shell session and will be destroyed when you
close the shell.

Let's look at another example. To create a string variable that contains an e-mail address, use
the following command:

$email = "testuser@contoso.com"

In addition to user-defined variables, PowerShell also
includes automatic and preference variables. To learn
more, run Get-Helpabout_Automatic_Variables
and Get-Helpabout_Preference_Variables.

Even a simple string variable is an object with properties and methods. For instance, every
string has a Length property that will return the number of characters that are in the string:

[PS] C:\>$email.length

20

When accessing the properties of an object, you can use dot notation to reference the
property with which you want to work. This is done by typing the object name, then a period,
followed by the property name, as shown in the previous example. You access methods in the
same way, except that the method names always end with parenthesis ().

The string data type supports several methods, such as Substring, Replace, and Split.
The following example shows how the Split method can be used to split a string:

[PS] C:\>$email.Split("@")

testuser

contoso.com

You can see here that the Split method uses the "@" portion of the string as a delimiter and
returns two substrings as a result.

PowerShell also provides a -Split operator that can split a string
into one or more substrings. Run Get-Helpabout_Split
for details.

PowerShell Key Concepts

22

There's more...
At this point, you know how to access the properties and methods of an object, but you need
to be able to discover and work with these members. To determine which properties and
methods are accessible on a given object, you can use the Get-Member cmdlet, which is one
of the key discovery tools in PowerShell along with Get-Help and Get-Command.

To retrieve the members of an object, pipe the object to the Get-Member cmdlet.
The following command will retrieve all of the instance members of the $mailbox
object we created earlier:

$mailbox | Get-Member

To filter the results returned by Get-Member, use the
-MemberType parameter to specify whether the type
should be a Property or a Method.

Let's take a look at a practical example of how we could use Get-Member to discover the
methods of an object. Imagine that each mailbox in our environment has had a custom
MaxSendSize restriction set and we need to record the value for reporting purposes. When
accessing the MaxSendSize property, the following information is returned:

[PS] C:\>$mailbox.MaxSendSize

IsUnlimited Value

----------- -----

False 10 MB (10,485,760 bytes)

We can see here that the MaxSendSize property actually contains an object with two
properties: IsUnlimited and Value. Based on what we've learned, we should be able to
access the information for the Value property using dot notation:

[PS] C:\>$mailbox.MaxSendSize.Value

10 MB (10,485,760 bytes)

That works, but the information returned contains not only the value in megabytes, but
also the total bytes for the MaxSendSize value. For the purpose of what we are trying to
accomplish, we only need the total megabytes. Let's see if this object provides any methods
that can help us out with this using Get-Member:

Chapter 1

23

From the output shown in the previous screenshot, we can see this object supports several
methods that can be used convert the value. To obtain the MaxSendSize value in megabytes,
we can call the ToMB method:

[PS] C:\>$mailbox.MaxSendSize.Value.ToMB()

10

In a traditional shell, you would have to perform complex string parsing to extract this type
of information, but PowerShell and the .NET Framework make this much easier. As you'll see
over time, this is one of the reasons why PowerShell's object-based nature really outshines a
typical text-based command shell.

An important thing to point about this last example is that it would not work if the mailbox
had not had a custom MaxSendSize limitation configured. Nevertheless, this provides a
good illustration of the process you'll want to use when you're trying to learn about an object's
properties or methods.

Variable expansion in strings
As mentioned in the Understanding command syntax and parameters recipe in this chapter,
PowerShell uses quoting rules to determine how variables should be handled inside a quoted
string. When enclosing a simple variable inside a double-quoted string, PowerShell will expand
that variable and replace the variable with the value of the string. Let's take a look at how this
works by starting off with a simple example:

[PS] C:\>$name = "Bob"

[PS] C:\> "The user name is $name"

The user name is Bob

PowerShell Key Concepts

24

This is pretty straightforward. We stored the string value of "Bob" inside the $name variable.
We then include the $name variable inside a double-quoted string that contains a message.
When we hit return, the $name variable is expanded and we get back the message we expect
to see on the screen.

Now let's try this with a more complex object. Let's say that we want to store an instance of
a mailbox object in a variable and access the PrimarySmtpAddress property inside the
quoted string:

[PS] C:\>$mailbox = Get-Mailbox testuser

[PS] C:\>"The email address is $mailbox.PrimarySmtpAddress"

The email address is test user.PrimarySmtpAddress

Notice here that when we try to access the PrimarySmtpAddress property of our mailbox
object inside the double-quoted string, we're not getting back the information that we'd
expect. This is a very common stumbling block when it comes to working with objects and
properties inside strings. We can get around this using sub-expression notation. This requires
that you enclose the entire object within $() characters inside the string:

[PS] C:\>"The email address is $($mailbox.PrimarySmtpAddress)"

The email address is testuser@contoso.com

Using this syntax, the PrimarySmtpAddress property of the $mailbox object is properly
expanded and the correct information is returned. This technique will be useful later when
extracting data from objects and generating reports or logfiles.

Strongly typed variables
PowerShell will automatically try to select the correct data type for a variable based on the
value being assigned to it. You don't have to worry about doing this yourself, but we do have
the ability to explicitly assign a type to a variable if needed. This is done by specifying the data
type in square brackets before the variable name:

[string]$a = 32

Here we've assigned the value of 32 to the $a variable. Had we not strongly typed the variable
using the [string] type shortcut, $a would have been created using the Int32 data type,
since the value we assigned was a number that was not enclosed in single or double quotes.
Take a look at the following screenshot:

Chapter 1

25

As you can see here, the $var1 variable is initially created without any explicit typing. We use
the GetType() method, which can be used on any object in the shell, to determine the data
type of $var1. Since the value assigned was a number not enclosed in quotes, it was created
using the Int32 data type. When using the [string] type shortcut to create $var2 with the
same value, you can see that it has now been created as a string.

It is good to have an understanding of data types because when building scripts that return
objects, you may need to have some control over this. For example, you may want to report
on the amount of free disk space on an Exchange server. If we store this value in the property
of a custom object as a string, we lose the ability to sort on that value. There are several
examples throughout the book that use this technique.

See Appendix A, Common Shell Information, for a listing of commonly-used type shortcuts.

Formatting output
One of the most common PowerShell questions is how to get information returned from
commands in the desired output on the screen. In this recipe, we'll take a look at how you
can output data from commands and format that information for viewing on the screen.

How to do it...
To change the default output and view the properties of an object in list format, pipe the
command to the Format-List cmdlet:

Get-Mailbox testuser | Format-List

PowerShell Key Concepts

26

To view specific properties in table format, supply a comma-separated list of property names
as parameters, as shown next when using Format-Table:

Get-Mailbox testuser | Format-Table name,alias

How it works...
When you run the Get-Mailbox cmdlet, you only see the Name, Alias, ServerName,
and ProhibitSendQuota properties of each mailbox in a table format. This is because
the Get-Mailbox cmdlet receives its formatting instructions from the exchange.format.
ps1xml file located in the Exchange server bin directory.

PowerShell cmdlets use a variety of formatting files that usually include a default view with
only a small subset of predefined properties. When you need to override the default view,
you can use Format-List and Format-Table cmdlets.

You can also select specific properties with Format-List, just as we saw when using the
Format-Table cmdlet. The difference is, of course, that the output will be displayed in
list format.

Let's take a look at the output from the Format-Table cmdlet, as shown previously:

As you can see here, we get both properties of the mailbox formatted as a table.

When using Format-Table cmdlet, you may find it useful to use the -Autosize parameter
to organize the columns based on the width of the data:

Chapter 1

27

This command selects the same properties as our previous example, but this time we are
using the -Autosize parameter and the columns are adjusted to use only as much space
on the screen as is needed. Remember, you can use the ft alias instead of typing the entire
Format-Table cmdlet name. You can also use the fl alias for the Format-List cmdlet.
Both of these aliases can keep your commands concise and are very convenient when
working interactively in the shell.

There's more…
One thing to keep in mind is that you never want to use the Format-* cmdlets in the middle
of a pipeline since most other cmdlets will not understand what to do with the output. The
Format-* cmdlets should normally be the last thing you do in a command unless you are
sending the output to a printer or a text file.

To send formatted output to a text file, you can use the Out-File cmdlet. In the following
command, the Format-List cmdlet uses the asterisk (*) character as a wildcard and
exports all of the property values for the mailbox to a text file:

Get-Mailbox testuser | fl * | Out-File c:\mb.txt

To add data to the end of an existing file, use the -Append parameter with the Out-File
cmdlet. Even though we're using the Out-File cmdlet here, the traditional cmd output
redirection operators such as > and >> can still be used. The difference is that the cmdlet
gives you a little more control over the output method and provides parameters for tasks,
including setting the encoding of the file.

You can sort the output of a command using the Sort-Object cmdlet. For example, this
command will display all mailbox databases in alphabetical order:

Get-MailboxDatabase | sort name | ft name

We are using the sort alias for the Sort-Object cmdlet specifying name as the property we
want to sort. To reverse the sort order, use the descending switch parameter:

Get-MailboxDatabase | sort name -desc | ft name

See also
ff The Understanding the pipeline recipe

ff The Exporting reports to text and CSV files recipe in Chapter 2, Exchange
Management Shell Common Tasks

PowerShell Key Concepts

28

Working with arrays and hash tables
Like many other scripting and programming languages, Windows PowerShell allows you to
work with arrays and hash tables. An array is a collection of values that can be stored in a
single object. A hash table is also known as an associative array, and is a dictionary that
stores a set of key-value pairs. You'll need to have a good grasp of arrays so that you can
effectively manage objects in bulk and gain maximum efficiency in the shell. In this recipe,
we'll take a look at how we can use both types of arrays to store and retrieve data.

How to do it...
You can initialize an array that stores a set of items by assigning multiple values to a variable.
All you need to do is separate each value with a comma. The following command would create
an array of server names:

$servers = "EX1","EX2","EX3"

To create an empty hash table, use the following syntax:

$hashtable = @{}

Now that we have an empty hash table, we can add key-value pairs:

$hashtable["server1"] = 1

$hashtable["server2"] = 2

$hashtable["server3"] = 3

Notice in this example that we can assign a value based on a key name, not using an index
number as we saw with a regular array. Alternatively, we can create this same object using a
single command using the following syntax:

$hashtable = @{server1 = 1; server2 = 2; server3 = 3}

You can see here that we used a semicolon (;) to separate each key-value pair. This is only
required if the entire hash table is created in one line.

You can break this up into multiple lines to make it easier to read:

$hashtable = @{

 server1 = 1

 server2 = 2

 server3 = 3

}

Chapter 1

29

How it works...
Let's start off by looking at how arrays work in PowerShell. When working with arrays, you can
access specific items and add or remove elements. In our first example, we assigned a list
of server names to the $servers array. To view all of the items in the array, simply type the
variable name and hit return:

[PS] C:\>$servers

EX1

EX2

EX3

Array indexing allows you to access a specific element of an array using its index number
inside square brackets ([]). PowerShell arrays are zero-based, meaning that the first item in
the array starts at index zero. For example, use the second index to access the third element
of the array, as shown next:

[PS] C:\>$servers[2]

EX3

To assign a value to a specific element of the array, use the equals (=) assignment operator.
We can change the value from the last example using the following syntax:

[PS] C:\>$servers[2] = "EX4"

[PS] C:\>$servers[2]

EX4

Let's add another server to this array. To append a value, use the plus equals (+=) assignment
operator as shown here:

[PS] C:\>$servers += "EX5"

[PS] C:\>$servers

EX1

EX2

EX4

EX5

To determine how many items are in an array, we can access the Count property to retrieve
the total number of array elements:

[PS] C:\>$servers.Count

4

PowerShell Key Concepts

30

We can loop through each element in the array with the ForEach-Object cmdlet and
display the value in a string:

$servers | ForEach-Object {"Server Name: $_"}

We can also check for a value in an array using the -Contains or -NotContains
conditional operators:

[PS] C:\>$servers -contains "EX1"

True

In this example, we are working with a one-dimensional array, which is what you'll commonly
be dealing with in the Exchange Management Shell. PowerShell supports more complex array
types such as jagged and multidimensional arrays, but these are beyond the scope of what
you'll need to know for the examples in this book.

Now that we've figured out how arrays work, let's take a closer look at hash tables. When
viewing the output for a hash table, the items are returned in no particular order. You'll notice
this when viewing the hash table we created earlier:

[PS] C:\>$hashtable

Name Value

---- -----

server2 2

server1 1

server3 3

If you want to sort the hash table, you can call the GetEnumerator method and sort by the
Value property:

[PS] C:\>$hashtable.GetEnumerator() | sort value

Name Value

---- -----

server1 1

server2 2

server3 3

Hash tables can be used when creating custom objects, or to provide a set of parameter
names and values using parameter splatting. Instead of specifying parameter names one by
one with a cmdlet, you can use a hash table with keys that match the parameter's names and
their associated values will automatically be used for input:

$parameters = @{

 Title = "Manager"

 Department = "Sales"

Chapter 1

31

 Office = "Headquarters"

}

Set-User testuser @parameters

This command automatically populates the parameter values for Title, Department, and
Office when running the Set-User cmdlet for the testuser mailbox.

For more details and examples for working with hash tables, run Get-Help
about_Hash_Tables.

There's more…
You can think of a collection as an array created from the output of a command. For example,
the Get-Mailbox cmdlet can be used to create an object that stores a collection of
mailboxes, and we can work with this object just as we would with any other array. You'll notice
that, when working with collections, such as a set of mailboxes, you can access each mailbox
instance as an array element. Consider the following example:

First, we retrieve a list of mailboxes that start with the letter t and assign that to the
$mailboxes variable. From looking at the items in the $mailboxes object, we can
see that the testuser mailbox is the second mailbox in the collection.

Since arrays are zero-based, we can access that item using the first index, as shown next:

PowerShell Key Concepts

32

If your command only returns one item, then the output can no longer be accessed using
array notation. In the following example, the $mailboxes object contains only one mailbox
and will display an error when trying to access an item using array notation:

Even though it will only store one item, you can initialize this object as an array, using the
following syntax:

You can see here that we've wrapped the command inside the @() characters to ensure that
PowerShell will always interpret the $mailboxes object as an array. This can be useful when
you're building a script that always needs to work with an object as an array, regardless of the
number of items returned from the command that created the object. Since the $mailboxes
object has been initialized as an array, you can add and remove elements as needed.

We can also add and remove items to multi-valued properties, just as we would with
a normal array. To add an e-mail address to the testuser mailbox, we can use the
following commands:

$mailbox = Get-Mailbox testuser

$mailbox.EmailAddresses += "testuser@contoso.com"

Set-Mailbox testuser -EmailAddresses $mailbox.EmailAddresses

In this example, we created an instance of the testuser mailbox by assigning the command
to the $mailbox object. We can then work with the EmailAddresses property to view, add,
and remove e-mail addresses from this mailbox. You can see here that the plus equals (+=)
operator was used to append a value to the EmailAddresses property.

Chapter 1

33

We can also remove that value using the minus equals (-=) operator:

$mailbox.EmailAddresses -= "testuser@contoso.com"

Set-Mailbox testuser -EmailAddresses $mailbox.EmailAddresses

There is actually an easier way to add and remove e-mail addresses
on recipient objects. See Adding and removing recipient e-mail
addresses in Chapter 3, Managing Recipients for details.

We've covered the core concepts in this section that you'll need to know when working with
arrays. For more details run Get-Helpabout_arrays.

See also
ff The Working with variables and objects recipe

ff The Creating custom objects recipe

Looping through items
Loop processing is a concept that you will need to master in order to write scripts and
one-liners with efficiency. You'll need to use loops to iterate over each item in an array or a
collection of items, and then run one or more commands within a script block against each
of those objects. In this recipe, we'll take a look at how you can use foreach loops and the
ForEach-Object cmdlet to process items in a collection.

How to do it...
The foreach statement is a language construct used to iterate through values in a collection
of items. The following example shows the syntax used to loop through a collection of
mailboxes, returning only the name of each mailbox:

foreach($mailbox in Get-Mailbox) {$mailbox.Name}

In addition, you can take advantage of the PowerShell pipeline and perform loop processing
using the ForEach-Object cmdlet. This example produces the same result as the one
shown previously:

Get-Mailbox | ForEach-Object {$_.Name}

You will often see the given command written using an alias of the ForEach-Object cmdlet,
such as the percent sign (%):

Get-Mailbox | %{$_.Name}

PowerShell Key Concepts

34

How it works...
The first part of a foreach statement is enclosed in parenthesis and represents a variable
and a collection. In the previous example, the collection is the list of mailboxes returned from
the Get-Mailbox cmdlet. The script block contains the commands that will be run for every
item in the collection of mailboxes. Inside the script block, the $mailbox object is assigned
the value of the current item being processed in the loop. This allows you to access each
mailbox one at a time using the $mailbox variable.

When you need to perform loop processing within a pipeline, you can use the
ForEach-Object cmdlet. The concept is similar, but the syntax is different
because objects in the collection are coming across the pipeline.

The ForEach-Object cmdlet allows you to process each item in a collection using the
$_ automatic variable, which represents the current object in the pipeline. The ForEach-
Object cmdlet is probably one of the most commonly-used cmdlets in PowerShell, and we'll
rely on it heavily in many examples throughout the book.

The code inside the script block used with both looping methods can be more complex than
just a simple expression. The script block can contain a series of commands or an entire
script. Consider the following code:

Get-MailboxDatabase -Status | %{

 $DBName = $_.Name

 $whiteSpace = $_.AvailableNewMailboxSpace.ToMb()

 "The $DBName database has $whiteSpace MB of total white space"

}

In this example, we're looping through each mailbox database in the organization using
the ForEach-Object cmdlet. Inside the script block, we've created multiple variables,
calculated the total megabytes of whitespace in each database, and returned a custom
message that includes the database name and corresponding whitespace value. This is a
simple example, but keep in mind that inside the script block you can run other cmdlets, work
with variables, create custom objects, and more.

PowerShell also supports other language constructs for processing items such as for, while,
and do loops. Although these can be useful in some cases, we won't rely on them much for
the remaining examples in this book. You can read more about them and view examples
using the get-help about_for, get-help about_while, and get-helpabout_do
commands in the shell.

Chapter 1

35

There's more…
There are some key differences about the foreach statement and the ForEach-Object
cmdlet that you'll want to be aware of when you need to work with loops. First, the ForEach-
Object cmdlet can process one object at a time as it comes across the pipeline. When you
process a collection using the foreach statement, this is the exact opposite. The foreach
statement requires that all of the objects that need to be processed within a loop are collected
and stored in memory before processing begins. We'll want to take advantage of the PowerShell
pipeline and its streaming behavior whenever possible since it is much more efficient.

The other thing to take note of is that in PowerShell, foreach is not only a keyword, but also
an alias. This can be a little counterintuitive, especially when you are new to PowerShell and
you run into a code sample that uses the following syntax:

Get-Mailbox | foreach {$_.Name}

At first glance, this might seem like we're using the foreach keyword, but we're
actually using an alias for the ForEach-Object cmdlet. The easiest way to remember
this distinction is that the foreach language construct is always used before a pipeline.
If you use foreach after a pipeline, PowerShell will use the foreach alias which
corresponds to the ForEach-Object cmdlet.

See also
ff The Working with arrays and hash tables recipe

ff The Understanding the pipeline recipe

ff The Creating custom objects recipe

Creating and running scripts
You can accomplish many tasks by executing individual cmdlets or running multiple
commands in a pipeline, but there may be times where you want to create a script that
performs a series of operations or that loads a library of functions and predefined variables
and aliases into the shell. In this recipe, we'll take a look at how you can create and run
scripts in the shell.

PowerShell Key Concepts

36

How to do it...
1.	 Let's start off by creating a basic script that automates a multi-step process. We'll

start up a text editor, such as Notepad, and enter the following code:
param(

 $name,

 $maxsendsize,

 $maxreceivesize,

 $city,

 $state,

 $title,

 $department

)

Set-Mailbox -Identity $name `

-MaxSendSize $maxsendsize `

-MaxReceiveSize $maxreceivesize

Set-User -Identity $name `

-City $city `

-StateOrProvince $state `

-Title $title `

-Department $department

Add-DistributionGroupMember -Identity DL_Sales `

-Member $name

2.	 Next, we'll save the file on the C:\ drive using the name Update-SalesMailbox.
ps1.

3.	 We can then run this script and provide input using parameters that have been
declared using the param keyword:
C:\Update-SalesMailbox.ps1 -name testuser `

-maxsendsize 25mb `

-maxreceivesize 25mb `

-city Phoenix `

-state AZ `

-title Manager `

-department Sales

