

.NET Framework 4.5
Expert Programming
Cookbook

Over 50 engaging recipes for learning advanced concepts of
.NET Framework 4.5

A.P. Rajshekhar

BIRMINGHAM - MUMBAI

.NET Framework 4.5 Expert Programming
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1110113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-742-3

www.packtpub.com

Cover Image by David Gutierrez (bilbaorocker@yahoo.co.uk)

Credits

Author
A.P. Rajshekhar

Reviewers
Wei Chung, Low

Jason De Oliveira

Acquisition Editor
James Jones

Lead Technical Editor
Ankita Shashi

Technical Editors
Jalasha D'costa

Worrell Lewis

Varun Pius Rodrigues

Copy Editors
Brandt D'Mello

Aditya Nair

Laxmi Subramanian

Ruta Waghmare

Project Coordinators
Priya Sharma

Abhishek Kori

Proofreader
Lawrence A. Herman

Indexer
Rekha Nair

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

A.P. Rajshekhar, Senior Developer with Red Hat, has more than 7 years of experience
in IT, having worked on applications ranging from enterprise-level web applications and
game development to android applications. His endeavors include development of Learning
Management System, Health Systems, Supply Management Solution, and Xbox-based games.
He has extensive knowledge of different technologies (SOA, Portal, Java Persistence, and
.NET Persistence) and platforms (Sharepoint and JBoss EAP). He is also the author of Building
Dynamic Web 2.0 Websites with Ruby on Rails, Packt Publishing, that was in Amazon's top 50
in Web 2.0 for 6 months. Apart from that he has also contributed to DevShed Portal on topics
ranging from server-side development (JEE/.NET/RoR) to mobile (Symbian/Android-based
development) and game development (SDL and OpenGL) with a total readership of more
than 3 million. He is currently ranked among the top 10 authors on DevShed. You can find
out about his interests on his blogs – http://aprajshekhar.wordpress.com and
http://sententiasupervicis.wordpress.com.

Authoring a book is not an easy feat. However, the help and guidance
from my family and friends helped me to author this book. First, I would
like to thank Packt Publishing for providing me an opportunity to work on
such an exciting project. I would like to thank my parents for their constant
encouragement. Special thanks to my friends Shrikant Khare and Sormita
Chakraborty for their support, encouragement, and initial research on the
topics to be covered.

About the Reviewers

Wei Chung, Low is a Business Intelligence Manager, a .NET developer, and a MCT, MCPD,
MCITP, MCTS, MCSD.NET. He works with IPG MediaBrands (NYSE: IPG) at its Kuala Lumpur,
Malaysia campus. He is also a member of PMI, certified as PMP. He started working on
Microsoft .NET early in his career and has been involved in development, consultation, and
corporate training in the areas of business intelligence, system integration, and virtualization.
He has worked for the Bursa Malaysia (formerly Kuala Lumpur Stock Exchange) and Shell IT
International previously, which gave him rich integration experiences across different platforms.

He strongly believes that a good system implementation delivers precious value to
businesses, and integration of various systems across different platforms shall always
be a part of it, just as diverse people from different cultures live together in harmony in
most of the major cities.

Jason De Oliveira works as CTO for Cellenza (http://www.cellenza.com), an IT
Consulting company specializing in Microsoft technologies and Agile methodology in Paris,
France. He is an experienced Manager and Senior Solutions Architect, with advanced skills
in Software Architecture and Enterprise Architecture.

Jason works for big companies and helps them to realize complex and challenging software
projects. He frequently collaborates with Microsoft and you can quite often find him at the
Microsoft Technology Center (MTC) in Paris.

He loves sharing his knowledge and experience via his blog, by speaking at conferences,
writing technical books, writing articles in the technical press, giving software courses
as a Microsoft Certified Trainer (MCT), and coaching co-workers in his company.

Microsoft has awarded him the Microsoft® Most Valuable Professional (MVP C#) Award
since 2011 for his numerous contributions to the Microsoft community. Microsoft seeks to
recognize the best and brightest from technology communities around the world with the MVP
Award. These exceptional and highly respected individuals come from more than 90 countries,
serving their local online and offline communities and have an impact worldwide. Jason is very
proud to be one of them.

Please feel free to contact him via his blog if you need any technical assistance or want to
exchange information on technical subjects (http://www.jasondeoliveira.com).

Jason has worked on the following books:

 f WCF 4.5 Multi-tier Services Development with LINQ to Entities, Packt Publishing

 f Visual Studio 2012 - Développez pour le web, ENI Publishing

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print and bookmark content
 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Core .NET Recipes 5

Introduction 5
Implementing the validation logic using the Repository pattern 6
Creating a custom validation attribute by extending the validation
data annotation 10
Using XML to generate a localized validation message 16
Extending the validation attribute for localization 19
Creating custom attributes 22
Processing custom attributes via reflection 27
Using asynchronous file I/O for directory-to-directory copy 33
Accessing JSON using dynamic programming 38

Chapter 2: Application Events and Windows Forms 45
Introduction 45
Creating an event that can have generic values as payload 46
Creating a table layout that can dynamically add or remove rows based on
the size of the collection 52
Creating DataGridView dynamically 61
Creating a video player using DirectX and Windows Forms 71

Chapter 3: Threading and Parallel Programming 77
Introduction 77
Creating a shared resource 78
Handling Producer-Consumer race conditions 82
Handling background threads in Windows Forms 88
Handling threads in WPF 93
Using parallel programming to make bulk image processing faster 98
Chaining two parallelized bulk image processing operations 101

ii

Table of Contents

Chapter 4: ASP.NET Recipes – I 105
Introduction 105
Creating a user registration page using HTML5 controls 105
Saving a draft of a user registration page using HTML5 client storage 109
Binding objects to controls using strongly-typed data controls 114
Implementing communication between an ASPX page
and a Silverlight application 119

Chapter 5: ADO.NET Recipes 129
Introduction 129
Saving large files (BLOB) in MS SQL Server using ADO.NET 129
Retrieving large files (BLOB) from SQL Server using ADO.NET 134
Using transactions to maintain database consistency when saving
multiple files 138
Using DataSet to modify custom XML configuration files 145

Chapter 6: WCF Recipes 151
Introduction 151
Implementing custom binding in WCF 151
Creating a WCF REST service 157
Handling exceptions using FaultContract and FaultException 162
Uploading files using Stream 166
Securing a service using role-based security 173

Chapter 7: WPF Recipes 179
Introduction 179
Implementing the Model and Repository patterns 180
Implementing View Model 187
Implementing View commands and binding data to View 190
Using the live data shaper for live sorting 196
Playing videos using MediaElement 199
Using Ribbon control to display the video player controls 203

Chapter 8: ASP.NET Recipes – II 209
Introduction 209
Preventing cross-site injection using the anti-XSS library 210
Adding Google Map functionality using Map Helper 213
Third-party authentication of users using Google 216
Implementing unobtrusive validation 218

iii

Table of Contents

Chapter 9: Silverlight Recipes 223
Introduction 223
Using Pivot control to present asset data 223
Accessing webcams 227
Using client-side storage for saving a draft of the user registration data 231

Chapter 10: Entity Framework Recipes 235
Introduction 235
Joining two entities using LINQ 236
Uploading files using Entity Framework and stored procedures 240
Managing connections manually for long-running tasks 244
Using functions that return tables as return values 247

Index 255

iv

Table of Contents

Preface
.NET is an architecture-neutral programming language and agnostic framework that caters
to the varying requirements from desktop application, to business solutions, to multiplayer
online three-dimensional games. The Version 4.5 added many new features and enhanced
the existing ones that help in the development of robust and user-friendly solutions more
easily. .NET Framework 4.5 Expert Programming Cookbook takes a hands-on approach in
teaching you how to use the new as well as advanced features of the .NET Framework 4.5.
Each topic will teach you how to use a specific feature of .NET to solve a real world problem
or scenario.

This is a concise and practical cookbook with recipes which demonstrates advanced concepts
with all the new functionality of the .NET Framework 4.5.

What this book covers
Chapter 1, Core .NET Recipes, will cover the core concepts in .NET, which include metadata
programming, reflection, asynchronous I/O, and dynamic programming.

Chapter 2, Application Events and Windows Forms, covers topics such as event handling,
dynamically generating controls, and layouts as well as creating video players using
Managed DirectX.

Chapter 3, Threading and Parallel Programming, will cover multi-threading, thread-safety, and
the parallel framework extensions to avoid threading pitfalls in your Windows Forms, WPF, and
Silverlight applications.

Chapter 4, ASP.NET Recipes – I, explains the new features of ASP.NET applications including
strongly-typed controls, HTML 5 controls, and client-side storage as well as passing data
between Silverlight and the ASPX page.

Chapter 5, ADO.NET Recipes, covers saving and retrieving files of big size (BLOB) in SQL
Server, managing transactions, and using DataSet to operate upon XML data.

Preface

2

Chapter 6, WCF Recipes, explains uploading files using streamed mode, implementing
REST services, handling exceptions using FaultContract, implementing custom binding,
and securing services using role-based security.

Chapter 7, WPF Recipes, will cover design patterns that include MVVM, repository pattern, and
Data Mapper as well as new controls such as Ribbon control and live data shaper. It will also
cover creating a video player using WPF Media API.

Chapter 8, ASP.NET Recipes – II, covers the new features of ASP.NET websites such as
enabling Google/Facebook, SSO-based authentication, adding unobtrusive validation,
embedding maps in websites, and protecting against cross-server scripting attacks.

Chapter 9, Silverlight Recipes, explains the new pivot control, accessing webcams, and
client-side storage.

Chapter 10, Entity Framework Recipes, will cover using LINQ to join multiple entities,
calling stored procedures using Entity Framework, handling long-running tasks, and
using table-valued functions of MS SQL Server.

What you need for this book
You will need Visual Studio 2012, MS SQL Server 2008 or higher, Windows 7 or higher,
and hardware compatible with Windows 7 or higher. A webcam will be required to run
certain recipes.

Who this book is for
This book is for those who have basic to intermediate knowledge about the .NET Framework
and want to understand its advanced features and features new to .NET 4.5. Each advanced
feature covered in this book assumes that the reader has the basic knowledge of the concept
being discussed.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning:

Code words in text are shown as follows: "The core of the validation logic lies in the
IsUsernameUnique method of the MockRespository class."

A block of code is set as follows:

public interface IRepository
{
 void AddUser(User user);
 bool IsUsernameUnique(string userName);
}

Preface

3

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

foreach (string filename in Directory.EnumerateFiles(sourceDir))
{
 using (FileStream sourceStream = File.Open(filename, FileMode.Open))
 {
 }
}

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Then click on the Copy
button to start copying."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

4

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata section
of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Core .NET Recipes

In this chapter we will cover:

 f Implementing the validation logic using the Repository pattern

 f Creating a custom validation attribute by extending the validation data annotation

 f Using XML to generate a localized validation message

 f Extending the validation attribute for localization

 f Creating custom attributes

 f Processing custom attributes via reflection

 f Using asynchronous file I/O for directory-to-directory copy

 f Accessing JSON using dynamic programming

Introduction
This chapter will cover recipes related to core concepts in .NET, which will include
the following:

 f Metadata-driven programming: The first six recipes will cover how to use attributes
as metadata for specific purposes such as validation and localization.

 f Reflection: The Processing custom attributes via reflection recipe will tell you how
to use reflection to create metadata processors such as applications or libraries
that can understand custom attributes and provide the output based on them.

 f Asynchronous file I/O: This is a new feature for file input/output introduced in .NET
4.5. The Using asynchronous file I/O for directory-to-directory copy recipe will cover
this feature.

Core .NET Recipes

6

 f Dynamic programming: .NET 4.0 introduced the concept of dynamic programming,
in which blocks of code marked as dynamic will be executed directly, bypassing
the compilation phase. We will look at this in the last recipe, Accessing JSON using
dynamic programming.

Implementing the validation logic using the
Repository pattern

The Repository pattern abstracts out data-based validation logic. It is a common
misconception that to implement the Repository pattern you require a relational database
such as MS SQL Server as the backend. Any collection can be treated as a backend for a
Repository pattern. The only point to keep in mind is that the business logic or validation
logic must treat it as a database for saving, retrieving, and validating its data. In this recipe,
we will see how to use a generic collection as backend and abstract out the validation logic
for the same.

The validation logic makes use of an entity that represents the data related to the user and
a class that acts as the repository for the data allowing certain operations. In this case, the
operation will include checking whether the user ID chosen by the user is unique or not.

How to do it...
The following steps will help check the uniqueness of a user ID that is chosen by the user:

1. Launch Visual Studio .NET 2012. Create a new project of Class Library project type.
Name it CookBook.Recipes.Core.CustomValidation.

2. Add a folder to the project and set the folder name to DataModel.

3. Add a new class and name it User.cs.

4. Open the User class and create the following public properties:

Property name Data type
UserName String

DateOfBirth DateTime

Password String

Use the automatic property functionality of .NET to create the properties. The final
code of the User class will be as follows:

namespace CookBook.Recipes.Core.CustomValidation
{
 /// <summary>
 /// Contains details of the user being registered

Chapter 1

7

 /// </summary>
 public class User
 {

 public string UserName { get; set; }
 public DateTime DateOfBirth { get; set; }
 public string Password { get; set; }

 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

5. Next, let us create the repository. Add a new folder and name it Repository.

6. Add an interface to the Repository folder and name it IRepository.cs.

7. The interface will be similar to the following code snippet:
public interface IRepository
 {
 }

8. Open the IRepository interface and add the following methods:

Name Description Parameter(s) Return Type
AddUser Adds a new user User object Void

IsUsernameUnique Determines whether
the username is
already taken or not

string Boolean

After adding the methods, IRepository will look like the following code:

namespace CookBook.Recipes.Core.CustomValidation
{
 public interface IRepository
 {
 void AddUser(User user);
 bool IsUsernameUnique(string userName);
 }
}

9. Next, let us implement IRepository. Create a new class in the Repository folder
and name it MockRepository.

Core .NET Recipes

8

10. Make the MockRepository class implement IRepository. The code will be
as follows:
namespace CookBook.Recipes.Core.Data.Repository
{
 public class MockRepository:IRepository
 {
 #region IRepository Members
 /// <summary>
 /// Adds a new user to the collection
 /// </summary>
 /// <param name="user"></param>
 public void AddUser(User user)
 {

 }
 /// <summary>
 /// Checks whether a user with the username already
 ///exists
 /// </summary>
 /// <param name="userName"></param>
 /// <returns></returns>
 public bool IsUsernameUnique(string userName)
 {

 }

 #endregion
 }
}

11. Now, add a private variable of type List<Users> in the MockRepository class.
Name it _users. It will hold the registered users. It is a static variable so that it
can hold usernames across multiple instantiations.

12. Add a constructor to the class. Then initialize the _users list and add two users to
the list:
public class MockRepository:IRepository
 {
 #region Variables
 Private static List<User> _users;

 #endregion
 public MockRepository()
 {
 _users = new List<User>();
 _users.Add(new User() { UserName = "wayne27",
DateOfBirth = new DateTime(1950, 9, 27), Password = "knight"
});

Chapter 1

9

 _users.Add(new User() { UserName = "wayne47",
DateOfBirth = new DateTime(1955, 9, 27), Password = "justice"
});
 }
 #region IRepository Members
 /// <summary>
 /// Adds a new user to the collection
 /// </summary>
 /// <param name="user"></param>
 public void AddUser(User user)
 {
 }
 /// <summary>
 /// Checks whether a user with the username already exists
 /// </summary>
 /// <param name="userName"></param>
 /// <returns></returns>
 public bool IsUsernameUnique(string userName)
 {

 }

 #endregion
 }

13. Now let us add the code to check whether the username is unique. Add the following
statements to the IsUsernameUnique method:
bool exists = _users.Exists(u=>u.UserName==userName);
return !exists;

The method turns out to be as follows:

public bool IsUsernameUnique(string userName)
{
 bool exists =
 _users.Exists(u=>u.UserName==userName);
 return !exists;
}

14. Modify the AddUser method so that it looks as follows:

 public void AddUser(User user)
 {
 _users.Add(user);
 }

Core .NET Recipes

10

How it works...
The core of the validation logic lies in the IsUsernameUnique method of the
MockRespository class. The reason to place the logic in a different class rather than in
the attribute itself was to decouple the attribute from the logic to be validated. It is also an
attempt to make it future-proof. In other words, tomorrow, if we want to test the username
against a list generated from an XML file, we don't have to modify the attribute. We will just
change how IsUsernameUnique works and it will be reflected in the attribute. Also, creating
a Plain Old CLR Object (POCO) to hold values entered by the user stops the validation logic
code from directly accessing the source of input, that is, the Windows application.

Coming back to the IsUsernameUnique method, it makes use of the predicate feature
provided by .NET. Predicate allows us to loop over a collection and find a particular item.
Predicate can be a static function, a delegate, or a lambda. In our case it is a lambda.

bool exists = _users.Exists(u=>u.UserName==userName);

In the previous statement, .NET loops over _users and passes the current item to u. We
then make use of the item held by u to check whether its username is equal to the username
entered by the user. The Exists method returns true if the username is already present.
However, we want to know whether the username is unique. So we flip the value returned
by Exists in the return statement, as follows:

return !exists;

Creating a custom validation attribute by
extending the validation data annotation

.NET provides data annotations as a part of the System.ComponentModel.
DataAnnotation namespace. Data annotations are a set of attributes that provides out of
the box validation, among other things. However, sometimes none of the in-built validations
will suit your specific requirements. In such a scenario, you will have to create your own
validation attribute. This recipe will tell you how to do that by extending the validation
attribute. The attribute developed will check whether the supplied username is unique or
not. We will make use of the validation logic implemented in the previous recipe to create a
custom validation attribute named UniqueUserValidator.

How to do it...
The following steps will help you create a custom validation attribute to meet your specific
requirements:

1. Launch Visual Studio 2012. Open the CustomValidation solution.

2. Add a reference to System.ComponentModel.DataAnnotations.

Chapter 1

11

3. Add a new class to the project and name it UniqueUserValidator.

4. Add the following using statements:
using System.ComponentModel.DataAnnotations;
using CookBook.Recipes.Core.CustomValidation.MessageRepository;
using CookBook.Recipes.Core.Data.Repository;

5. Derive it from ValidationAttribute, which is a part of the System.
ComponentModel.DataAnnotations namespace. In code, it would be
as follows:
namespace CookBook.Recipes.Core.CustomValidation
{
 public class UniqueUserValidator:ValidationAttribute
 {

 }
}

6. Add a property of type IRepository to the class and name it Repository.

7. Add a constructor and initialize Repository to an instance of MockRepository.
Once the code is added, the class will be as follows:
namespace CookBook.Recipes.Core.CustomValidation
{
 public class UniqueUserValidator:ValidationAttribute
 {
 public IRepository Repository {get;set;}

 public UniqueUserValidator()
 {
 this.Repository = new MockRepository();
 }
 }
}

8. Override the IsValid method of ValidationAttribute. Convert the object
argument to string.

9. Then call the IsUsernameUnique method of IRepository, pass the string
value as a parameter, and return the result. After the modification, the code will
be as follows:

namespace CookBook.Recipes.Core.CustomValidation
{
 public class UniqueUserValidator:ValidationAttribute
 {
 public IRepository Repository {get;set;}

Core .NET Recipes

12

 public UniqueUserValidator()
 {
 this.Repository = new MockRepository();
 }
 public override bool IsValid(object value)
 {
 string valueToTest = Convert.ToString(value);
 return this.Repository.IsUsernameUnique(valueToTest);
 }
 }
}

We have completed the implementation of our custom validation attribute. Now let's
test it out.

10. Add a new Windows Forms Application project to the solution and name it
CustomValidationApp.

11. Add a reference to the System.ComponentModel.DataAnnotations and
CustomValidation projects.

12. Rename Form1.cs to Register.cs.

13. Open Register.cs in the design mode. Add controls for username, date of birth,
and password and also add two buttons to the form. The form should look like the
following screenshot:

14. Name the input control and button as given in the following table:

Control Name
Textbox txtUsername

Button btnOK

Chapter 1

13

Since we are validating the User Name field, our main concern is with the textbox
for the username and the OK button. I have left out the names of other controls for
brevity.

15. Switch to the code view mode. In the constructor, add event handlers for the Click
event of btnOK as shown in the following code:
public Register()
{
 InitializeComponent();
 this.btnOK.Click += new EventHandler(btnOK_Click);
}

void btnOK_Click(object sender, EventArgs e)
{
}

16. Open the User class of the CookBook.Recipes.Core.CustomValidation
project. Annotate the UserName property with UniqueUserValidator. After
modification, the User class will be as follows:
namespace CookBook.Recipes.Core.CustomValidation
{
 /// <summary>
 /// Contains details of the user being registered
 /// </summary>
 public class User
 {
 [UniqueUserValidator(ErrorMessage="User name already
exists")]
 public string UserName { get; set; }
 public DateTime DateOfBirth { get; set; }
 public string Password { get; set; }

 }
}

17. Go back to Register.cs in the code view mode.

18. Add the following using statements:
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using CookBook.Recipes.Core.CustomValidation;
using CookBook.Recipes.Core.Data.Repository;

Core .NET Recipes

14

19. Add the following code to the event handler of btnOK:
//create a new user
User user = new User()
{
UserName = txtUsername.Text, DateOfBirth=dtpDob.Value
};
//create a validation context for the user instance
ValidationContext context = new ValidationContext(user, null,
null);
//holds the validation errors
IList<ValidationResult> errors = new List<ValidationResult>();

if (!Validator.TryValidateObject(user, context, errors, true))
{
 foreach (ValidationResult result in errors)
 MessageBox.Show(result.ErrorMessage);
}
else
{
 IRepository repository = new MockRepository();
 repository.AddUser(user);
 MessageBox.Show("New user added");
}

20. Hit F5 to run the application. In the textbox add a username, say, dreamwatcher.
Click on OK. You will get a message box stating User has been added successfully.

21. Enter the same username again and hit the OK button. This time you will get a
message saying User name already exists. This means our attribute is working
as desired.

22. Go to File | Save Solution As…, enter CustomValidation for Name, and click
on OK.

We will be making use of this solution in the next recipe.

How it works...
To understand how UniqueUserValidator works, we have to understand how it is
implemented and how it is used/called. Let's start with how it is implemented. It extends
ValidationAttribute. The ValidationAttribute class is the base class for all the
validation-related attributes provided by data annotations. So the declaration is as follows:

public class UniqueUserValidator:ValidationAttribute

Chapter 1

15

This allowed us to make use of the public and protected methods/attribute arguments of
ValidationAttribute as if it is a part of our attribute. Next, we have a property of type
IRepository, which gets initialized to an instance of MockRepository. We have used the
interface-based approach so that the attribute will only need a minor change if we decide to
test the username against a database table or list generated from a file. In such a scenario,
we will just change the following statement:

this.Repository = new MockRepository();

The previous statement will be changed to something such as the following:

this.Repository = new DBRepository();

Next, we overrode the IsValid method. This is the method that gets called when we use
UniqueUserValidator. The parameter of the IsValid method is an object. So we have to
typecast it to string and call the IsUniqueUsername method of the Repository property.
That is what the following statements accomplish:

string valueToTest = Convert.ToString(value);
return this.Repository.IsUsernameUnique(valueToTest);

Now let us see how we used the validator. We did it by decorating the UserName property of
the User class:

[UniqueUserValidator(ErrorMessage="User name already exists")]
public string UserName {get; set;}

As I already mentioned, deriving from ValidatorAttribute helps us in using its properties
as well. That's why we can use ErrorMessage even if we have not implemented it.

Next, we have to tell .NET to use the attribute to validate the username that has been set. That
is done by the following statements in the OK button's Click handler in the Register class:

ValidationContext context = new ValidationContext(user, null, null);
//holds the validation errors
IList<ValidationResult> errors = new List<ValidationResult>();
if (!Validator.TryValidateObject(user, context, errors, true))

First, we instantiate an object of ValidationContext. Its main purpose is to set up the
context in which validation will be performed. In our case the context is the User object. Next,
we call the TryValidateObject method of the Validator class with the User object, the
ValidationContext object, and a list to hold the errors. We also tell the method that we
need to validate all properties of the User object by setting the last argument to true. That's
how we invoke the validation routine provided by .NET.

