

Microsoft SQL Server
2012 Performance
Tuning Cookbook

80 recipes to help you tune SQL Server 2012 and achieve
optimal performance

Ritesh Shah

Bihag Thaker

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

Microsoft SQL Server 2012 Performance
Tuning Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2012

Production Reference: 1160712

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-574-0

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Authors
Ritesh Shah

Bihag Thaker

Reviewers
Satya SK Jayanty

Maria Zakourdaev

Michael Zilberstein

Acquisition Editor
Dhwani Devater

Lead Technical Editor
Kedar Bhat

Technical Editors
Apoorva Bolar

Madhuri Das

Merin Jose

Copy Editor
Brandt D'Mello

Project Coordinator
Sai Gamare

Proofreader
Lesley Harrison

Indexer
Monica Ajmera Mehta

Graphics
Manu Joseph

Valentina Dsilva

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Ritesh Shah is a data professional with over 10 years of experience with using Microsoft
technology, from SQL Server 2000 to the latest version. He has worked with various
technologies, from Visual Basic 6.0 to .NET Framework 4.0. He has deployed many
medium-scale as well as large-scale projects, using Microsoft technology.

He shares his knowledge on his blog, SQLHub.com, and also helps the community, using
different portals, such as BeyondRelational.com, Experts-Exchange.com, and
Asp.Net forum.

Acknowledgement

It is really truer than ever that this is not an individual effort. The Packt team worked with me
the whole time, so a really big thanks goes to them, especially Sai, Kedar, Apoorva, Madhuri,
and many more. I cannot forget to mention Dhwani from the Packt team, as she is the one
who presented the idea of this book to me. Seriously, I wouldn't have been able to author this
book alone, so thanks should go to Mr. Bihag Thaker, as well, as he agreed to co-author this
book with me and has worked even harder on it than I have myself.

I am really honored to have Satya, Michael, and Maria as the technical reviewers for this book.
They are all well-known personalities in the world of SQL Server.

Apart from the team that worked on this book, I would also like to thank, on a personal note,
two well-known personalities in the SQL Server community, who always inspire me to do more.
In fact, they were the ones who diverted my interest from .NET technology to SQL Server.
They are:

ff Pinal Dave, who blogs at SQLAuthority.com and is an author of several SQL Server
books. Currently, he is working as a Technology Evangelist at Microsoft.

ff Jacob Sebastian, who blogs at BeyondRelational.com and is a SQL Server MVP,
book author, well-known speaker in SQL Server technology, and much more.

Most important of all, my deepest gratitude goes to my parents, Mr. Ashwin Shah and
Mrs. Divya Shah. It is because of their hard work, inspiration, and motivation that a
small-town boy like me, who has grown up with very limited resources, has progressed so
much in life, which in itself proves where there's a will there's a way. I would also like to thank
my one-and-a-half-year-old son, Teerth, who used to often start crying at midnight, because of
which I would lose my sleep and, not being able to get it back, started researching more on
the subjects that helped me write this book. Finally, I would like to thank my wife, Alka Shah.

Bihag Thaker is a SQL Server enthusiast, an MCTS (SQL Server 2005), and an MCITP
(SQL Server 2008), who has been working with SQL Server technology for the past
few years. Initially he was into .NET technology, but his keen interest for SQL Server
led him to be a database specialist.

He is currently working as a database administrator. He has worked on numerous
performance tuning assignments and executed large-scale database migrations. He
likes to share his knowledge and enjoys helping the SQL Server community. You will
find him talking about SQL Server on his blog MsSQLBlog.com.

Acknowledgement

I had never thought that the dream of writing my first book on SQL Server would come true so
early, and I must give full credit for this to Mr. Ritesh Shah and Packt Publishing.

I would sincerely like to thank Packt Publishing, for showing their confidence in me and
providing the invaluable opportunity of being a part of this book. Individuals at Packt whom
I am deeply grateful to, are Kedar Bhat, Sai Gamare, Madhuri Das, Ashwin Shetty, Apoorva
Bolar, and Dhwani Devater. They have been very co-operative and supportive at all the stages
of this book. I am extremely thankful to Michael Zilberstein and Maria Zakourdaev, the
technical reviewers, for their excellent work of getting the accuracy of the technical details
of the book in perfect shape.

I find it difficult to express, in words, my gratitude, to Ritesh, who has shared the priceless gift
of writing this book with me. This was not at all attainable without his continuous support.
Apart from being a TechMate, Ritesh is an all-time great friend of mine, who is always willing
to help the SQL Server community.

Two individuals to whom I am indebted and whose disciple I have always been, are Mr. Paresh
Vora and Mr. Mukesh Devmurari. I have learnt a lot from them, and they are the reason I'm
part of the IT community today.

Without my family support, a task such as writing a book would not have been achievable.
I would like to heartily thank my parents, Mr. Kanaiyalal Thaker and Mrs. Hema Thaker. It is
because of them that I exist, and I cherish their blessings, which are always with me. I am
very thankful to my wife, Khyati, who has always stood by me, helped me at all times, and has
even smilingly got me cups of coffee during my sleepless nights of writing!

Last but not the least, I would like to thank my friends who helped me directly or indirectly by
giving me moral support.

About the Reviewers

Satya SK Jayanty is a SQL Server MVP and Subject Matter Expert with consulting and
technical expertise for D Bi A Solutions INc. Limited, with over 20 years of experience. His
work experience includes a wide range of industries, including the stock exchange, insurance,
tele-communications, financial, retail, and manufacturing sectors, among others.

He is a regular speaker and SME volunteer at major technology conferences such as
Microsoft Tech-Ed (Europe, India, and North America), and SQL PASS (Europe and North
America), SQL Bits - UK, and manages the Scottish Area SQL Server user group based in
Scotland. He is also a moderator in a majority of web-based SQL Server forums (Microsoft
Technet and www.sql-server-performance.com), writer, and contributing editor,
and blogs at www.sqlserver-qa.net, www.sql-server-performance.com, and
www.beyondrelational.com websites.

He is the author of Microsoft SQL Server 2008 R2 Administration Cookbook, Packt Publishing,
and co-author of SQL Server MVP Deep Dives, Volume 2, Manning Publications.

Maria Zakourdaev has more than 10 years of experience with SQL Server. She is
currently working with one of the most successful Israeli startup companies, called
Conduit. She has extensive knowledge of Microsoft replication solutions, table partitioning,
and advanced, query tuning techniques. Prior to Conduit she had worked with different
companies, benchmarking different SQL Server features and flows, such as partitioning, data
import, index impact on DML flows, star transformations in RDBMS, hierarchic queries, and
custom OLAP-like aggregations. She was a speaker in Microsoft Teched (Israel) on the SQL
Server track and is an active member of the Israel SQL Server Group.

Michael Zilberstein has more than 10 years of experience in the IT industry and database
world, working with all the SQL Server versions from 6.5 to 2012 and with different Oracle
versions as well. After working with several start-up companies during the first few years of his
career, in 2007 Michael founded DBArt Ltd – SQL Server, a consulting services company.

Two of Michael's most distinctive interests (besides rappelling, homebrewing, playing chess,
and reading history books) are performance tuning and architecture of large-scale systems.
The biggest professional satisfaction for him is to take a young start-up company and build its
product from schemas in scrapbook and Visio to a working and scalable terabyte-size system.

Michael is a frequent speaker at Israeli SQL Server Usergroup (ISUG) and other SQL
Server events in Israel. He also writes a blog—http://sqlblog.com/blogs/michael_
zilberstein/default.aspx.

http://sqlblog.com/blogs/michael_zilberstein/default.aspx
http://sqlblog.com/blogs/michael_zilberstein/default.aspx

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Mastering SQL Trace Using Profiler	 7

Introduction	 7
Creating a trace or workload	 9
Filtering events	 19
Detecting slow running and expensive queries	 27
Creating trace with system stored procedures	 34

Chapter 2: Tuning with Database Engine Tuning Advisor 	 45
Introduction	 45
Analyzing queries using Database Engine Tuning Advisor	 46
Running Database Engine Tuning Advisor for workload	 51
Executing Database Tuning Advisor from command prompt	 59

Chapter 3: System Statistical Functions, Stored Procedures,
and the DBCC SQLPERF Command	 63

Introduction	 63
Monitoring system health using system statistical functions	 64
Monitoring with system stored procedure	 69
Monitoring log space usage statistics with DBCC command	 75

Chapter 4: Resource Monitor and Performance Monitor	 79
Introduction	 79
Monitoring of server performance	 80
Monitoring CPU usage	 86
Monitoring memory (RAM) usage	 90

ii

Table of Contents

Chapter 5: Monitoring with Execution Plans	 95
Introduction	 95
Working with estimated execution plan	 97
Working with actual execution plan	 100
Monitoring performance of a query by SET SHOWPLAN_XML	 103
Monitoring performance of a query by SET STATISTICS XML	 108
Monitoring performance of a query by SET STATISTICS IO	 112
Monitoring performance of a query by SET STATISTICS TIME	 116
Including and understanding client statistics	 118

Chapter 6: Tuning with Execution Plans	 121
Introduction	 121
Understanding Hash, Merge, and Nested Loop Join strategies	 122
Finding table/index scans in execution plan and fixing them	 128
Introducing Key Lookups, finding them in execution plans,
and resolving them	 133

Chapter 7: Dynamic Management Views and Dynamic
Management Functions	 145

Introduction	 145
Monitoring current query execution statistics	 147
Monitoring index performance	 155
Monitoring performance of TempDB database	 164
Monitoring disk I/O statistics	 172

Chapter 8: SQL Server Cache and Stored Procedure Recompilations	 179
Introduction	 179
Monitoring compilations and recompilations at instance level using
Reliability and Performance Monitor	 182
Monitoring recompilations using SQL Server Profiler	 188

Chapter 9: Implementing Indexes	 197
Introduction	 197
Increasing performance by creating a clustered index	 198
Increasing performance by creating a non-clustered index	 206
Increasing performance by covering index	 212
Increasing performance by including columns in an index	 216
Improving performance by a filtered index	 219
Improving performance by a columnstore index	 222

Chapter 10: Maintaining Indexes	 231
Introduction	 231
Finding fragmentation	 232
Playing with Fill Factor	 234

iii

Table of Contents

Enhance index efficiency by using the REBUILD index	 237
Enhance index efficiency by using the REORGANIZE index	 240
How to find missing indexes	 241
How to find unused indexes	 244
Enhancing performance by creating an indexed view	 247
Enhancing performance with index on Computed Columns	 252
Determining disk space consumed by indexes	 258

Chapter 11: Points to Consider While Writing Queries	 261
Introduction	 261
Improving performance by limiting the number of columns and rows	 262
Improving performance by using sargable conditions	 265
Using arithmetic operator wisely in predicate to improve performance	 267
Improving query performance by not using functions on
predicate columns	 270
Improving performance by Declarative Referential Integrity (DRI)	 273
"Trust" your foreign key to gain performance	 277

Chapter 12: Statistics in SQL Server 	 283
Introduction 	 283
Creating and updating statistics	 284
Effects of statistics on non-key column	 292
Find out-of-date statistics and get it correct	 296
Effect of statistics on a filtered index	 299

Chapter 13: Table and Index Partitioning	 303
Introduction	 303
Partitioning a table with RANGE LEFT	 304
Partitioning a table with RANGE RIGHT	 311
Deleting and loading bulk data by splitting, merging, and switching
partitions (sliding window)	 319

Chapter 14: Implementing Physical Database Structure	 333
Introduction	 333
Configuring data file and log file on multiple physical disks	 334
Using files and filegroups	 342
Moving the existing large table to separate physical disk	 346
Moving non-clustered indexes on separate physical disk	 350
Configuring the tempdb database on separate physical disk	 354

Chapter 15: Advanced Query Tuning Hints and Plan Guides	 359
Introduction	 359
Using NOLOCK table query hint	 360
Using FORCESEEK and INDEX table hint	 363

iv

Table of Contents

Optimizing a query using an object plan guide	 367
Implementing a fixed execution plan using SQL plan guide	 371

Chapter 16: Dealing with Locking, Blocking, and Deadlocking	 381
Introduction	 381
Determining long-running transactions	 382
Detecting blocked and blocking queries	 384
Detecting deadlocks with SQL Server Profiler	 388
Detecting deadlocks with Trace Flag 1204	 395

Chapter 17: Configuring SQL Server for Optimization 	 399
Introduction	 399
Configuring SQL Server to use more processing power	 400
Configuring memory in 32 bit versus. 64 bit	 403
Configuring "Optimize for Ad hoc Workloads"	 405
Optimizing SQL Server instance configuration	 410

Chapter 18: Policy-based Management 	 415
Introduction	 415
Evaluating database properties	 416
Restricting database objects	 422

Chapter 19: Resource Management with Resource Governor	 427
Introduction	 427
Configuring Resource Governor with SQL Server Management Studio	 429
Configuring Resource Governor with T-SQL script	 436
Monitoring Resource Governor	 442

Index	 447

Preface
Microsoft SQL Server 2012 Performance Tuning Cookbook is divided into
three major parts—Performance Monitoring, Performance Tuning, and Performance
Management—that are mandatory for dealing with performance in any capacity.

Microsoft SQL Server 2012 Performance Tuning Cookbook offers a great way to manage
performance with effective, concise, and practical recipes. You will learn how to diagnose
performance issues, fix them, and take precautions to avoid common mistakes.

Each recipe given in this book is an individual task that will address different performance
aspects to take your SQL Server's Performance to a higher level.

The first part of this book covers monitoring with SQL Server Profiler, DTA, system statistical
functions, SPs with DBCC commands, Resource Monitor, Reliability and Performance Monitor,
and execution plans.

The second part of the book offers execution plan, dynamic management views and
dynamic management functions, SQL Server Cache, stored procedure recompilations,
indexes, important ways to write effective T-SQL, statistics, table and index partitioning,
advanced query tuning with query hints and plan guide, dealing with locking, blocking,
and deadlocking, and configuring SQL Server for optimization to boost performance.

The third and final part gives you knowledge about performance management with the help
of policy based management and management with Resource Governor.

Preface

2

What this book covers
Chapter 1, SQL Server Profiler, teaches you how to create and start your first SQL Trace,
limit the trace data and capture only the events which are of interest, detect slow running
and expensive queries, and create a trace with system stored procedures.

Chapter 2, Tuning with Database Engine Tuning Advisor, covers how to analyze queries
using Database Engine Tuning Advisor, how to run Database Engine Tuning Advisor for
Workload, and how to execute Database Tuning Advisor from the command prompt.

Chapter 3, System Statistical Functions, System Stored Procedures, and DBCC SQLPERF
Command, starts with the monitoring of system health using system statistical functions
and later on covers the monitoring of SQL Server processes and sessions with system stored
procedures, and log space usage statistics with the DBCC SQLPERF command.

Chapter 4, Resource Monitor and Performance Monitor, teaches you how to do quick
monitoring of server performance, followed by monitoring of CPU and memory (RAM) usage.

Chapter 5, Monitoring with Execution Plans, includes recipes for working with Estimated
Execution Plan and Actual Execution Plan, monitoring the performance of queries by SET
SHOWPLAN_XML, SET STATISTICS XML, and SET STATISTICS IO, finding the execution time
of a query by SET STATISTICS TIME, and including and understanding Client Statistics.

Chapter 6, Tuning with Execution Plans, explains the Hash, Merge, and Nested Loop
Join strategies, teaches how to find table/index scans in execution plans and how to fix them,
introduces Key Lookups, and explains how to find them in execution plans and resolve them.

Chapter 7, Dynamic Management Views and Dynamic Management Functions, includes
recipes to monitor current query execution statistics, manage and monitor index performance,
monitor the TempDB database's performance with database-related dynamic management
views, and monitor disk I/O statistics.

Chapter 8, SQL Server Cache and Stored Procedure Recompilations, covers monitoring of
compilations and recompilations at instance level, using Reliability and Performance Monitor,
and monitoring of recompilations using SQL Server Profiler.

Chapter 9, Implementing Indexes, explains how to improve performance by creating
a clustered index, by creating a non-clustered index, by covering index, by including
columns in an index, by a filtered index, and by a columnstore index.

Chapter 10, Maintaining Indexes, includes recipes to find fragmentation, to enhance index
efficiency by using the REBUILD and REORGANIZE index, to find missing and unused indexes,
to enhance performance by creating indexed views and creating an index on Computed
Columns, and to determine disk space consumed by indexes.

Preface

3

Chapter 11, Points to Consider While Writing Query, covers how to improve performance
by limiting the number of columns and rows and by using sargable conditions, how to use
arithmetic operators wisely in predicate to improve performance, how to improve query
performance by not using functions on predicate columns, how to improve performance by
Declarative Referential Integrity (DRI), and how to gain performance by trusting your foreign key.

Chapter 12, Statistics in SQL Server, explains how to create and update statistics, effects of
statistics on non-key columns, how to find out-of-date statistics and correct them, and effects
of statistics on a filtered index.

Chapter 13, Table and Index Partitioning, covers partitioning of table with RANGE LEFT and
RANGE RIGHT, and deleting and loading of bulk data by splitting, merging, and switching
partitions (sliding window).

Chapter 14, Implementing Physical Database Structure, includes recipes for configuring a
data file and log file on multiple physical disks, using files and filegroups, moving an existing
large table to a separate physical disk, moving non-clustered indexes to a separate physical
disk, and configuring the TempDB database on a separate physical disk.

Chapter 15, Advanced Query Tuning: Hints and Plan Guides, includes recipes for using the
NOLOCK table query hint, using the FORCESEEK and INDEX table hints, optimizing a query
using an object plan guide, and implementing a fixed execution plan using a SQL plan guide.

Chapter 16, Dealing with Locking, Blocking, and Deadlocking, covers determining
long-running transactions, detecting blocked and blocking queries, detecting deadlocks
with SQL Server Profiler, and detecting deadlocks with Trace Flag 1204.

Chapter 17, Configuring SQL Server for Optimization, includes recipes for configuring SQL
Server to use more processing power, configuring memory in 32-bit versus 64-bit, configuring
"Optimize for Ad hoc Workloads", and optimizing SQL Server instance configuration.

Chapter 18, Policy Based Management, explains how to evaluate database properties and
restrict database objects.

Chapter 19, Management with Resource Governor, includes recipes for configuring
Resource Governor with SQL Server Management Studio and T-SQL script, and
monitoring Resource Governor.

What you need for this book
To work with the examples given in the book, you must have the following infrastructure:

ff SQL Server Denail CTP version 3 or higher, or SQL Server 2012 RTM

ff The AdventureWorks2012 database, which can be freely downloaded from the following
link: http://msftdbprodsamples.codeplex.com/releases/view/55330

ff A Windows administrator login and/or a SQL server login with the sysAdmin privilege

http://msftdbprodsamples.codeplex.com/releases/view/55330

Preface

4

Who this book is for
Microsoft SQL Server 2012 Performance Tuning Cookbook is aimed at SQL Server Database
Developers, DBAs, and Database Architects who are working in any capacity to achieve
optimal performance. Basic knowledge of SQL Server is expected, and professionals who want
to get hands-on with performance tuning and have not worked on tuning the SQL Server for
performance will find this book helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "You may notice some TextData appearing multiple
times in a trace for a single execution of a T-SQL statement."

A block of code is set as follows:

--creating table for demonstration
CREATE TABLE ordDemo (OrderID INT IDENTITY, OrderDate DATETIME, Amount
MONEY, Refno INT)
GO

Any command-line input or output is written as follows:

dta -D AdventureWorks2012 -s adventureworks2012FromDTA5 -S WIN-
SLYJ9UY3PKD\DENALICTP3 -E -if D:\test.sql -F -of D:\DTA.sql

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Connect object explorer
with server and move to Management | Policy Management | Policies ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

Preface

5

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata section
of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Mastering SQL Trace

Using Profiler

In this chapter we will cover:

ff Creating a trace or workload

ff Filtering events

ff Detecting slow running and expensive queries

ff Creating trace with SQL Trace system stored procedures

Introduction
Welcome to the world of Performance Monitoring and Tuning with SQL Server 2012!

Let's assume that you are a database administrator in your organization. What, if one day
one of your colleagues from your IT department calls you right away and complains that the
production database server has abruptly started to run very slowly and applications that are
accessing the production database are not responding the way they should? The issue needs
immediate attention and for that you are required to investigate the issue and fix it in timely
manner. What will be your approach to look at the problem and solve it? How would you be
able to analyze the situation and identify where the problem is? What actions would you take
once a particular problem is recognized in order to resolve it?

Mastering SQL Trace Using Profiler

8

Installing and upgrading database servers, managing and maintaining database servers,
managing database security, implementing disaster recovery plan, capacity planning,
managing high-availability of databases, and performance tuning of databases and SQL
server are some of the responsibilities of a DBA. Amongst these responsibilities, performance
tuning of the database server is one of the prime responsibilities of DBA. The most common
reason is, companies offering IT services are often engaged in signing Service Level
Agreements (SLAs) and as per their SLAs they are committed to provide a certain level of
services and up-time. Any additional down-time than what is allowed as per SLAs can cause
them money loss or business loss. Even companies not engaged in SLAs might lose business
because of their poor software systems caused by poor database systems. This is one of
the reasons why skilled DBAs are required to keep the database performance up-to date by
monitoring and tuning database performance.

In database centric application environment, it is very common for any DBA to face such
database related performance issues at different levels. By means of different levels, it
implies that performance problem can be found at query level, database level, server level or
application level .There can be a number of reasons for a database centric application to be
performing poorly. The troubleshooting skills and expertise in performance tuning of a DBA
are tested out in recognizing such factors behind the performance degradation and taking
the necessary corrective steps.

The first step towards performance tuning is monitoring. In data platform, monitoring
something is the process of analyzing and identifying something. So, until you monitor
something, you can't know for sure what and where the problem is. Until you know what
and where the problem is, you can't analyze the problem. And until you can analyze the
problem, you can't solve a problem! This also means that unless you understand performance
monitoring, you cannot master performance tuning in a true sense. Thus, performance tuning
always comes after performance monitoring. This is the reason why we have a few opening
chapters that specifically concentrates on performance monitoring.

The troublesome situation that was just described earlier needs thorough monitoring and
systematic analysis in order to identify the root problem accurately before a problem can
be solved.

SQL Server Profiler is the most common but powerful tool for monitoring and auditing an
instance of SQL server. By using this tool, a DBA is able to solve a large number of different
types of database performance issues whether it is a query issue, index issue, locking issue
or database, or server configuration issue. It is the tool that essentially any DBA must know.
So, SQL Server Profiler will be the subject of this first chapter.

Chapter 1

9

Creating a trace or workload
If you have never worked with SQL Server Profiler, this recipe will teach you how to create and
start your first SQL Trace. There is some detailed information on SQL Trace in There's more…
section of this recipe. This will help you in appreciating rest of the recipes quite easily, which
employs SQL Trace in remaining chapters. The section covers the information that will help
you in mastering core concepts of SQL Trace and thus mastering SQL Server Profiler. There
are no major changes in SQL Server Profiler 2012 documented. In SQL Server 2012, the
architecture and functionality of SQL Server Profiler is almost identical to that of SQL
Server 2008.

Getting ready
In this recipe, we will create our first trace with SQL Server Profiler. The following are the
prerequisites that you should fulfil:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff An SQL Server Login account with administrative rights.

ff Sample AdventureWorks2012 database on the instance of SQL Server. For more
details on how to install AdventureWorks2012 database, please refer to the
Introduction section of this book.

How to do it...
To create a new trace, follow the steps provided here.

1.	 Start SQL Server Profiler. To start SQL Server Profiler, navigate through Start |
All Programs | Microsoft SQL Server 2012 Program Group | Performance Tools |
SQL Server Profiler.

2.	 Select New Trace… from the File menu. In the Connect to Server dialog box, provide
connection details of SQL Server hosting AdventureWorks2012 database and click
on Connect.

Login name that you use to connect SQL Server Profiler must
have the ALTER TRACE permission otherwise you will receive
an error and cannot start a trace session.

3.	 In the General tab of the Trace Properties dialog box, specify
CreatingTraceWorkload as trace name. Use the Standard
(default) trace template for the Use the template: option.

Mastering SQL Trace Using Profiler

10

4.	 Check the checkbox Save to file: and specify a path and file name in the Save As
dialog box and then click on Save.

5.	 Keep Enable file rollover checked and Set maximum file size (MB): to its default
value, that is, 128. The following screenshot shows the General tab of the Trace
Properties dialog box:

In the Trace Properties dialog box, there is a checkbox option in the General
tab with the caption Server processes trace data, to specify whether
trace data should be processed on the server. If not checked, trace data is
processed at the client side.
When trace data is processed at the client side, it is possible for some events
to be missed if the server load is high. If this option is checked, then trace
data is processed on the server and all the events included in trace definition
are guaranteed to be captured without miss. However, this guarantee comes
with performance penalty, because processing trace data on server has an
impact on the performance of SQL Server, and hence enabling this option is
not recommended on production server.
Also, running SQL Server Profiler on production server itself should be avoided
as running SQL Server Profiler is resource consuming. Instead, you should run
SQL Server Profiler from a client computer and connect it to your SQL Server
from there.

Chapter 1

11

6.	 Click on the Events Selection tab. On this screen, the events that are predefined
for the Standard (default) trace template are selected and shown in grid. Check
the Show all events check box to show all events.

7.	 Navigate through the Events list until you find Stored Procedures event category.
Expand Stored Procedures event category if it is collapsed. Uncheck the checkbox for
RPC:Completed event and check the checkbox for SP:Completed event. Uncheck the
Show all events checkbox to show only selected events. The screen should now look
as shown in following screenshot:

8.	 Click on the Run button to start the trace.

9.	 Now open SQL Server Management Studio and establish a connection to the same
SQL Server.

10.	 In query window, type the sample T-SQL statements as shown in following script and
then execute them by pressing the F5 key:
USE AdventureWorks2012
GO

SELECT DB_ID()
GO

EXECUTE sp_helpdb

Mastering SQL Trace Using Profiler

12

GO

SELECT
 P.FirstName + ' ' + P.LastName AS EmployeeName
 ,E.JobTitle
 ,E.BirthDate
 ,E.Gender
 ,E.BirthDate
FROM HumanResources.Employee AS E
INNER JOIN Person.Person AS P
ON E.BusinessEntityID = P.BusinessEntityID
GO

11.	 Now switch to the SQL Server Profiler window and stop the trace by clicking Stop
selected trace button in toolbar. Observe the events captured in the trace. The following
screenshot shows the captured events that are displayed in SQL Server Profiler:

How it works...
We started to configure a trace by setting a few trace properties. To demonstrate how we can
use one of the in-built trace templates to get a quick start, we used the default trace template
Standard (default) in this example. When this template is used, the following events are
selected by default:

Chapter 1

13

ff Audit Login

ff Audit Logout

ff ExistingConnection

ff RPC:Completed

ff SQL:BatchCompleted

ff SQL:BatchStarting

You may notice some TextData appearing multiple times in a trace for a
single execution of a T-SQL statement. For instance, in the previous example,
you will notice two events for SELECT DB_ID() statement even if we
executed it only once. These two entries here do not represent two executions
of the said statement. Rather, they represent two different related events
associated to one single execution of the statement. For example, both events
SQL:BatchStarting and SQL:BatchCompleted raised for a single
execution of batch containing SELECT DB_ID() statement and they both
show the same T-SQL command in TextData data column. This depends
upon what events you have selected in trace definition.

In the Trace Properties dialog box, we have set the maximum file size for our trace to 128 MB.
Option Enable file rollover was also enabled by default. Enabling this option is helpful while
working with large amount of trace data.

When large amount of event data is captured, the trace file can grow very quickly and become
very large. Enabling the Enable file rollover option can prevent a trace file from becoming
very large by limiting a file to the maximum file size specified. When the file size is reached to
the maximum file size specified, SQL Server creates a new roll-over file with the same name
appended with a suffix of an incremental number for the same trace. Thus, when we have this
option enabled and the size of trace data is greater than maximum file, we have multiple trace
files for the same trace.

In this example, we are saving our trace file as C:\MyTraces\CreatingTraceWorkload.
trc. A trace can also be started without having to save the trace data. In case a trace was
started in this way without enabling the Save to file: checkbox, SQL Server manages to
keep the captured data in queue temporarily. The unsaved trace data can be saved later
on as well after gathering the required data. This can be done with the Save or Save As
command from the File menu. With the Save As command, we can save trace data in our
desired format. Selecting the Trace Table... option in the Save As command, asks for the SQL
Server connection details and destination table details where the trace data will be stored.

Mastering SQL Trace Using Profiler

14

It's best to store the trace file on a separate disk other than the one which is used to store
data files and log files of SQL server databases. Storing the trace file on the same physical
disk where database files are stored can degrade the performance of normal I/O operations
of other databases.

Configuring a trace by enabling the Save to table checkbox in the Trace
Properties dialog box and saving trace data directly to trace table is less
efficient. If you want your trace data to be saved in a trace table then consider
saving the trace data first in a trace file; then export your trace data from
trace file to trace table by opening the trace file in SQL Server Profiler and
selecting the Save As command from the File menu with the Trace Table…
option. When you want to save your trace in a trace table, always consider to
save your trace in a separate database.

The Events Selection tab of Trace Properties dialog box displays the selected events only and
does not show all events by default. So, we checked the Show all events option to list all the
available events. Because we did not want to capture RPC:Completed event, we excluded this
event by un-checking its checkbox from the event list and included SP:Completed event under
Stored Procedures event category.

Once we finished configuring our trace, the trace was started. To demonstrate how the events
are captured, we produced some events by executing a few T-SQL statements from another
connection through SQL Server Management Studio.

In the final figure, we can see the trace data that is produced by the events included in trace
definition. Look at the trace data that we captured. By looking at the values in different data
columns, we can learn many different things. For example, for a given trace, by examining
LoginName, TextData, and HostName we can tell who is running which query and from
which machine. By examining StartTime and EndTime data columns we can determine
when a particular query was executed and when it finished its execution.

Pausing and Stopping a trace
Once a trace is started, it can be either paused or stopped. To do this, select
the Run Trace, Pause Trace, and Stop Trace commands from the File menu
or click on the corresponding shortcut command buttons on standard toolbar.
Pausing and resuming trace: When a trace is paused, event data stops
from being captured temporarily. Once a trace is paused, it can be resumed
by starting it again. Restarting a trace resumes and continues to capture
event data again without wiping out any previously captured trace data.
Stopping and restarting trace: When a trace is stopped, event data stops
from being captured. If a trace is stopped, it can be restarted by starting it
again. Restarting a stopped trace starts to capture event data again; but any
previously captured trace data is lost.
Remember that we cannot change the Trace Properties of a trace while it is
running. To do this, we must have to pause or stop the trace.

Chapter 1

15

There's more...
This section covers some essential information on SQL Trace that you must know if you want
to master SQL Tracing. It is advised that even if you are an advanced user, you do not skip
this section.

Some background of SQL Trace
Follow this section in order to have an in-depth understanding of SQL Trace and its architecture.

SQL Trace terms and concepts
Understanding the SQL Trace and its architecture by knowing its related terms and concepts is
a prerequisite for working with SQL Server Profiler effectively. This section discusses the basic
terminologies and concepts of SQL Trace in brief.

SQL Trace
SQL Trace is an event monitoring and capturing engine that comes with SQL Server. It
provides the capability to capture the database events with event data and create traces
that can be used for performance analysis afterwards.

SQL Server Profiler
SQL Server Profiler is a graphical user interface tool for working with SQL Trace. Behind the
scene, it uses the same SQL Trace engine, but additionally provides graphical user interface
to the user for working with traces. SQL Server Profiler provides functionalities, such as
displaying collected event data on its graphical interface, saving traces either in a file or in an
SQL Server table, opening previously saved traces, extracting T-SQL statements from a trace,
and many more. Finding and analyzing long running or costly queries, finding deadlocks and
their related information, looking for which indexes are scanned, and looking for database
connection requests are some of the practical applications of SQL Server Profiler.

Event
In context of SQL Trace terminology, an event is the happening of a database activity that
takes place within an instance of SQL Server. Execution of an ad-hoc query or T-SQL batch,
a call to stored procedure, an attempt to log in or log out from database server are a few
examples that raise specific SQL Server events.

Event class
An event class describes a specific type of event. There are many different types of
events that can occur within the database engine and each type of event is represented
by an event class. Audit Login, Audit Logout, SP:Completed, SP:Recompile,
SQL:BatchCompleted, Lock:Deadlock are some of the examples of event classes.
To get list of all available event classes, you can query sys.trace_events catalog view.

Mastering SQL Trace Using Profiler

16

Event category
An event category is a subset of related event classes. Each event class belongs to a
particular event category and each event category includes a subset of specific type of
event classes. Locks, performance, scans, and stored procedures are some examples of
the event categories. To get list of all available event categories,you can query sys.trace_
categories catalog view. You can join sys.trace_events and sys.trace_categories
catalog views on category_id column to make correlation between the two views.

Data column
A data column is an attribute that represents a particular characteristic of an event class.
For example, event class SQL:BatchCompleted can have different characteristics,
such as TextData, LoginName, Duration, StartTime, EndTime, and so on, where
TextData represents T-SQL statement(s) whose execution raises a particular event.
These characteristics of event classes are represented by different data columns.

Trace
A session that performs the activity of capturing database events and collecting events' data
is typically called a trace. Loosely, the term Trace is also used by database professionals to
refer the Trace Data that has been collected previously during a trace session and saved in
a trace file or SQL Server table.

Trace properties and Trace definition
A set of configured settings for a trace that defines how event data should be collected or
saved and which event classes or data columns should be collected as a part of trace data is
called Trace properties or a Trace definition.

Filter
A filter is an optional logical condition that can be applied to a trace to limit the resulting trace
data by capturing only the required trace events for which the filter condition is satisfied. For
example, in a trace definition we can specify a filter condition so that SQL Trace collects event
data only for a specific database by applying a filter on either DatabaseID data column or
DatabaseName data column.

Trace file
This is a file with the extension .trc in which the captured trace data is saved.

Trace table
A table in SQL Server database in which the captured trace data is stored is a trace table.

Trace template
A file which saves the pre-configured trace definitions is called a Trace Template. This can be
reused for creating new traces.

Chapter 1

17

Architecture of SQL Trace
After learning the basic SQL Trace terms and concepts, it will be easier to understand the
following architectural diagram of SQL Trace:

EVENT CLASSES

SP:Completed

SP:Recompile

SQL:BatchCompleted

Lock:Deadlock

TRACE

Filter

Trace File SQL Server

Profiler

Queue

Trace Table

When events are raised in SQL Server database engine, SQL Trace captures event data only
for those event classes that are included in trace definition and for which filter conditions if
specified any are satisfied. Once the event data is captured, it is queued and then sent to its
specified target location. The target location can be a Trace file, Trace table, or SQL Server
Profiler. Trace data can also be viewed only in SQL Server Profiler without the need of saving
a trace.

After understanding the basic concepts of SQL Trace, working with SQL Server Profiler and
traces should be an easy task. As this is our first recipe of the book where we learn how to
create a trace or workload with SQL Server Profiler, let's first discuss something about trace
and workload.

Trace and workload
We now know that a trace is a session during which the events are captured and event data is
collected. SQL Server supports few formats for saving this collected trace data. We can save
trace data in one of the following formats:

ff A trace file with .trc extension name

ff A trace file in XML format with .xml extension name

ff A trace table in an SQL Server database

A trace contains a series of events and every event has its associated event data. All the
events of a trace and their event data collectively form trace data for a trace file. Data
columns associated with trace events form the event data. T-SQL statements whose
execution causes the events to be raised are also a part of this event data under
TextData data column and are themselves included in trace data.

Mastering SQL Trace Using Profiler

18

A workload or workload file basically contains a series of T-SQL statements. A T-SQL script is
an example of a workload file. Because trace data also contains a series of T-SQL statements
as a part of event data (as TextData Column), they are also used as workloads. Thus, a
T-SQL script, trace file (.trc or .xml), trace table, all can be considered as workload. In
other words, a trace file is also a workload file. This workload can be used to re-run on a
database for workload or performance analysis. Usually, a workload file is provided as input
file to Database Engine Tuning Advisor (DTA) for a tuning session. You will learn more about
Database Engine Tuning Advisor in Chapter 2, Tuning with Database Engine Tuning Advisor.

Commonly-used event classes
The following list gives brief descriptions of commonly used event classes:

ff Audit Login: This event occurs when a user connects and logs in to SQL Server

ff Audit Logout: This event occurs when a users disconnects and logs out from
SQL Server

ff RPC:Starting: This event occurs when a Remote Procedure Call (RPC)
starts executing

ff RPC:Completed: This event occurs when a Remote Procedure Call (RPC)
completes its execution

ff SQL:BatchStarting: This event occurs when a T-SQL batch starts executing

ff SQL:StmtStarting: This event occurs when a statement inside a T-SQL batch
starts executing

ff SQL:StmtCompleted: This event occurs when a statement inside a T-SQL batch
completes its execution

ff SQL:BatchCompleted: This event occurs when a T-SQL batch completes
its execution

ff SP:Starting: This event occurs when a stored procedure starts executing

ff SP:StmtStarting: This event occurs when a statement inside a stored procedure
starts executing

ff SP:StmtCompleted: This event occurs when a statement inside a stored
procedure completes its execution

ff SP:Completed: This event occurs when a stored procedure completes its execution

Commonly-used data columns
The following list gives brief descriptions of commonly used event classes:

ff ApplicationName: This data column represents the name of the client application
causing a trace event to occur

ff DatabaseID: This data column represents the internal system assigned ID of the
database for which a trace event occurs

Chapter 1

19

ff DatabaseName: This data column represents the name of the database for which a
trace event occurs

ff HostName: This data column represents the name of the host or computer where the
client component connecting to SQL Server causes a trace event to occur

ff LoginName: This data column represents the name of the login under whose
security context, particular T-SQL statement(s) executes that causes trace event
to occur

ff ObjectID: This data column represents the internal system assigned ID of an object
for which a trace event occurs

ff ObjectName: This data column represents the name of an object for which a trace
event occurs

ff SessionLoginName: This data column represents the name of the login who
initiated the connection and under whose security context a trace event occurs

ff SPID: This data column represents the Server Process ID or Session ID of the
connection which causes a trace event to occur

For a complete list of event classes and data columns of SQL Trace with their
description, you can refer product documentation for SQL Server 2012 at msdn.
microsoft.com/en-us/library/bb418432(v=sql.10).aspx.

Filtering events
Running a trace which is configured to collect large number of events is not best practice.
While collecting trace data, SQL Trace itself can introduce overhead and affect the
performance of SQL Server if trace is configured to collect too much trace information.
This also depends on whether the trace is server-side trace or client-side trace. If the
trace is client-side using profiler, then the performance overhead can be greater.

Also, if large number of trace data is captured, the size of the trace file immediately grows
very big and it becomes a difficult job for us to look for the right data in the trace. Therefore,
any unnecessary or irrelevant trace data should not be collected.

This is the reason why we should consider limiting the resulting trace data and capturing only
the events which are of our interest. For this, we should identify what trace data we need to
look at and based upon that we should identify the filters that are applied to our trace.

Mastering SQL Trace Using Profiler

20

Collecting large amount of trace data can affect the performance of SQL
Server. So, before creating a trace, we should identify the type of analysis we
want to perform on trace information. A single trace should not be created
for multiple types of analysis. For each analysis type, a separate trace should
be created until and unless different types of analysis explicitly need to be
combined into single trace for performing correlative analysis. For example,
rather than creating a single trace that collects both scan events and lock
events for index scan analysis and object locking analysis respectively, we
should consider creating two separate traces; one for collecting only scan
events and another for collecting lock events only.

Getting ready
In this recipe, we will see how to capture only those trace events that occurred for a specific
database and from a specific SQL Server login.

Let's assume that sample database AdventureWorks2012 is our production database
on our production server, which is hosting other databases also. One of the database
users James complains that he faces some problems while running queries against
database AdventureWorks2012. So, we want to trace his session only for database
AdventureWorks2012. Because there are also other databases hosted on the same
production server and many users are accessing AdventureWorks2012 database, we
need to filter trace events based on session login name and database name in order
to avoid any unwanted trace data from being collected.

To emulate this case practically, we need the following as prerequisites:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff An SQL Server Login account with sysadmin rights

ff The sample AdventureWorks2012 database on the instance of SQL Server. For
more details on how to install AdventureWorks2012 database, please refer the
Introduction section of this book.

ff Two SQL Server logins named James and Peter with some permission on
AdventureWorks2012 database.

How to do it...
We will be performing three main actions in this example. These are as follows:

ff Creating the required logins and users in the AdventureWorks2012 database
(James and Peter)

ff Creating a trace by applying filters on the DatabaseName and SessionLoginName
data columns

Chapter 1

21

ff Executing sample queries from two separate connections belonging to James and
Peter respectively and observing the trace data

Because two SQL Server logins named James and Peter with permissions on
AdventureWorks2012 database are required, create them by performing the following steps:

1.	 Open SQL Server Management Studio.

2.	 Connect to the instance of SQL Server with login account having sysadmin rights.

3.	 Execute the following T-SQL script to create the logins and their corresponding users
in the AdventureWorks2012 database for James and Peter:
--Creating Login and User in
--AdventureWorks2012 database for James
USE [master]
GO
CREATE LOGIN [James] WITH PASSWORD=N'JamesPass123'
 ,DEFAULT_DATABASE=[AdventureWorks2012]
 ,CHECK_EXPIRATION=OFF
 ,CHECK_POLICY=OFF
GO
USE [AdventureWorks2012]
GO
CREATE USER [James] FOR LOGIN [James]
GO
ALTER ROLE [db_owner] ADD MEMBER [James]
GO

--Creating Login and User in AdventureWorks2012 database for Peter
USE [master]
GO
CREATE LOGIN [Peter] WITH PASSWORD=N'PeterPass123'
 ,DEFAULT_DATABASE=[AdventureWorks2012]
 ,CHECK_EXPIRATION=OFF
 ,CHECK_POLICY=OFF
GO
USE [AdventureWorks2012]
GO
CREATE USER [Peter] FOR LOGIN [Peter]
GO
ALTER ROLE [db_owner] ADD MEMBER [Peter]
GO

Notice the new command syntax in this script introduced in
SQL Server 2012 for adding members to a role.

Mastering SQL Trace Using Profiler

22

Now, we will create a trace and capture only events that occur for AdventureWorks2012
database from James' session only. To do this, follow these steps:

1.	 Start SQL Server Profiler.

2.	 Select New Trace… from the File menu. In the Connect to Server dialog box, provide
connection details of SQL Server hosting the AdventureWorks2012 database and
click on Connect.

3.	 In the General tab of Trace Properties, enter FilteringEvents as the Trace name
and select Blank template for the Use the template: drop-down menu as shown
in following:

4.	 In Events Selection tab, check the checkbox for event class SQL:BatchCompleted
under the TSQL event category as shown in following screenshot:

Chapter 1

23

5.	 Click on Column Filters… button.

6.	 In the Edit Filter dialog box, select DatabaseName from the list of available
data columns on the left. Expand the Like option and enter string value
AdventureWorks2012; then press the OK button as shown in the
following screenshot:

Mastering SQL Trace Using Profiler

24

7.	 In the Edit Filter dialog box, select SessionLoginName from the list of available data
columns on the left. Expand the Like option and enter string value James; then press
the OK button as shown in following screenshot:

8.	 Click on the Organize Columns… button in Events Selection tab of Trace Properties
dialog box. Select TextData data column and then keep clicking on Up button
repeatedly to move the column up the order in the list, until the column appears as
the second item, at the top of the list underneath EventClass data column. Do this
same exercise also for the data columns DatabaseName and SessionLoginName
so that the final order of the data columns should look like as shown in following
screenshot. Press OK in the Organize Columns dialog box:

9.	 Click on the Run button to run the trace in the Trace Properties dialog box.

Chapter 1

25

Now, we will open two instances of SQL Server Management Studio one by one that connect
to SQL Server with the logins James and Peter respectively and run a few queries.

1.	 Open the first instance of SSMS and connect to SQL Server with the login credentials
of James. In the query window, type and execute the T-SQL statements as shown in
following script:
USE [AdventureWorks2012]
GO

SELECT * FROM [Sales].[Customer]
GO

USE [master]
GO

SELECT * FROM sys.databases
GO

2.	 Open a second instance of SSMS and connect to SQL Server with the login
credentials of Peter. In the query window, type and execute the same T-SQL
queries as shown in previous step.

3.	 Switch to SQL Server Profiler window that is running the trace. Examine the trace data
as shown in following screenshot:

Mastering SQL Trace Using Profiler

26

How it works...
In this recipe, we first created two SQL Server logins and their corresponding users in
AdventureWorks2012 database to demonstrate how to apply a trace filter based on a specific
SQL Server login, so that the events belonging to SQL Server logins other than the one for
which the filter condition on SessionLoginName is satisfied are not captured. We executed a
T-SQL script to create logins and users for James and Peter. For a login/user, the script first
creates an SQL Server login account by the executing T-SQL statement—CREATE LOGIN. It
then creates a user in the AdventureWorks2012 database for that login and adds the user
to the db_owner database role by executing the T-SQL commands CREATE USER and ALTER
ROLE respectively.

After creating logins and users, we started a new trace in SQL Server Profiler. We selected
a Blank trace template and chose SQL:BatchCompleted event class as the only event that
will be captured. Then we specified filters on DatabaseName and SessionLoginName data
columns so that only the events which are occurred against AdventureWorks2012 database
by user James are captured. We also organized the data columns in the Organize Columns
dialog box, so that we can have better view of data columns we are interested in when trace
data is displayed in SQL Server Profiler; we do not have to scroll much across the right side to
see the values of TextData, DatabaseName, and SessionLoginName.

Use of DatabaseID
We can alternatively use DatabaseID data column instead of DatabaseName
to specify a filter on a particular database. For this, we must know system
assigned ID value for a specific database. This value can be retrieved by
either calling DB_ID('AdventureWorks2012') metadata function or
querying sys.databases catalog view.

After starting the trace, we opened two instances of SSMS out of which one instance connects
with the login James and another one connects with the login Peter. In both the instances of
SSMS, we run a few sample queries against the AdventureWorks2012 and master database.

We can see the resulting trace data as shown in final screenshot. Notice that events belonging
to login Peter and the events occurred for master database were not captured.

There's more...
In a real world scenario, you may need to put filters on columns that are frequently used in
trace filters to narrow down the data that you have to look at for troubleshooting. The following
section lists some of data columns that are commonly used in trace filters:

ff ApplicationName: A filter can be specified on this data column so that only trace
events raised by a particular client application are captured

Chapter 1

27

ff DatabaseID: A filter can be specified on this data column so that only trace events
raised for a specific database are captured

ff DatabaseName: A filter can be specified on this data column so that only trace
events raised for a specific database are captured

ff HostName: A filter can be specified on this data column so that only trace events
raised from a specific host or client machine are captured

ff LoginName: A filter can be specified on this data column so that only trace events
raised by a specific login are captured

ff ObjectID: A filter can be specified on this data column so that only trace events
raised for a specific object are captured

ff ObjectName: A filter can be specified on this data column so that only trace events
raised for a specific object are captured

ff SessionLoginName: A filter can be specified on this data column so that only trace
events raised by a specific login are captured

ff SPID: A filter can be specified on this data column so that only trace events raised
from a specific session connection are captured

LoginName and SessionLoginName may look identical at first. However,
there is a small difference between them.
By using EXECUTE AS syntax in SQL Server, we can execute T-SQL
statements in the same session under different security context other
than the security context of the login who actually initiates the session/
connection. For example, James can login to SQL Server and run a query
under security context of Peter by using EXECUTE AS command. In this
case, data column SessionLoginName returns James, while LoginName
data column returns Peter. In other cases, where SQL Statements
are not executed under different security context, data columns
SessionLoginName and LoginName return the same value.

Detecting slow running and expensive
queries

Quite a few times, you may come across database related performance issues that are
caused by slow running and expensive queries. Slow running queries or expensive queries
are queries that have longer execution time and consume more hardware resources, such as
CPU, memory, and disk I/O. For instance, suppose that you are working for an organization
having an enterprise application environment with high degree of database transaction activity
against single production database that is used to support many applications, it is usual to face
database performance issues due to a poorly designed application or poorly written queries.

Mastering SQL Trace Using Profiler

28

For example, an application that processes one record at a time and makes a round trip to
SQL server for each record is an example of poorly designed application when it is possible
to process multiple records in batch and send them to database server in one go. Similarly,
a query can be considered to be poorly written if is not optimized for efficient read/write
operations, generates sub-optimum execution plan, and takes longer to execute. One
common example of a poorly written query is the one which processes records row-
by–row, using cursor to perform a task that can be accomplished by a set-based query.

When there are a few hundreds of query requests per second coming from different
applications hitting the same database continuously, how would you identify those slow
running and expensive queries?

Of course, you can use Dynamic Management Views or Activity Monitor to perform such
an investigation. However, SQL Profiler will give you more insight into the execution flow of
different applications because you can see the actual order and sequence of incoming query
requests in real-time along with their execution statistics that can help you in identifying the
performance related issues caused by any possible loopholes in application logic.

Getting ready
Remember that the objective of this recipe is not to teach you how to write efficient queries
but instead how to identify expensive queries. Thus, for demonstration purposes, we ourselves
will write a few expensive queries that take longer to execute in this example.

But before you can identify these slow running queries, you need to know what to look in SQL
Server Profiler to identify those queries.

Whenever there is problem with the logic of the query, there is a possibility that the queries
may start to take longer to execute as the database starts to grow. This results in holding
locks on resources for a longer time, which can lead blockage to other queries. Poorly written
queries also produce bad execution plans and can cause a high number of read/write
operations that are expensive and take longer to execute.

So, when you are identifying long running queries, mostly you will be looking at time
duration and CPU time that a query takes and the number of read/write operations
that a query causes.

Therefore, in this recipe we will look at the following data columns:

ff CPU: Amount of CPU processing time in milliseconds taken by an event

ff Duration: Total amount of time in microseconds taken by an event

ff StartTime: Time when an event starts

ff EndTime: Time when an event ends

ff Reads: Number of data pages that SQL Server has to read for an event

ff Writes: Number of data pages that SQL Server has to write on disk for an event

Chapter 1

29

The following are the prerequisites to do this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff An SQL Server Login account with administrative rights

ff Sample AdventureWorks2012 database on the instance of SQL Server

How to do it...
Follow the steps provided here for this recipe:

1.	 Start SQL Server Profiler. To start SQL Server Profiler, navigate through Start | All
Programs | Microsoft SQL Server 2012 Program Group | Performance Tools |
SQL Server Profiler.

2.	 Select New Trace… from the File menu. In the Connect to Server dialog box, provide
connection details of SQL Server hosting the AdventureWorks2012 database and
click on Connect.

3.	 In the General tab of Trace Properties, specify IdentifyingExpensiveQueries
as trace name and select Blank template for the Use the template: drop-down menu.

4.	 Check the checkbox Save to file: and specify a trace file name and location in the
Save As dialog box.

5.	 In the Events Selection tab, check the checkbox for event class
SQL:BatchCompleted under TSQL event category.

6.	 Click on the Column Filters… button.

7.	 In the Edit Filter dialog box, select DatabaseName from the list of available
data columns on the left. Expand the Like option and enter string value
AdventureWorks2012; then click on the OK button.

8.	 Click on Organize Columns… button in Events Selection tab of Trace Properties
dialog box. Select TextData data column and then keep clicking the Up button
repeatedly to move the column up the order in the list until the column appears as
the second item at the top of the list underneath EventClass data column. Do this
same exercise also for data columns, such as CPU, Duration, StartTime, Endtime,
Reads, and Writes so that they appear underneath the TextData column. Press OK
in the Organize Columns dialog box.

9.	 Open SQL Server Management Studio and connect to SQL Server.

10.	 Click on the Run button to run the trace in Trace Properties dialog box.

11.	 Type and execute the following T-SQL script.The script creates a stored procedure
usp_calculateOrderTotals in AdventureWorks2012 database and a table
tbl_SampleData by generating and inserting five million sample records:
USE [AdventureWorks2012]
GO

Mastering SQL Trace Using Profiler

30

--Drop the stored procedure if it exists.
IF OBJECT_ID('[dbo].[usp_CalculateOrderTotals]') IS NOT NULL
 DROP PROCEDURE [dbo].[usp_CalculateOrderTotals]
GO
--Creates the stored procedure.
CREATE PROCEDURE [dbo].[usp_CalculateOrderTotals] AS
BEGIN
 CREATE TABLE [tempdb].[dbo].[#tbl_OrderTotals]
 (
 SRNo INT IDENTITY(1,1) PRIMARY KEY CLUSTERED
 ,OrderID INT
 ,OrderDate DATETIME
 ,CustomerName NVARCHAR(200)
 ,SalesPersonName NVARCHAR(200)
 ,OrderTotal NUMERIC(38,6)
)

 DECLARE @SalesOrderID INT
 DECLARE @OrderDate DATETIME
 DECLARE @CustomerName NVARCHAR(200)
 DECLARE @SalesPersonName NVARCHAR(200)
 DECLARE @OrderTotal NUMERIC(38,6)

 DECLARE curSalesOrders CURSOR FAST_FORWARD FOR
 SELECT
 SOH.SalesOrderID
 ,SOH.OrderDate
 ,UPPER(P2.FirstName + ' ' + P2.LastName) AS CustomerName
 ,UPPER(P1.FirstName + ' ' + P1.LastName) AS SalesPersonName
 FROM [Sales].[SalesOrderHeader] AS SOH
 LEFT OUTER JOIN [Sales].[SalesPerson] AS SP
 ON SOH.SalesPersonID = SP.BusinessEntityID
 LEFT OUTER JOIN [Sales].[Customer] AS C
 ON SOH.CustomerID = C.CustomerID
 LEFT OUTER JOIN [Person].[Person] AS P1
 ON SP.BusinessEntityID = P1.BusinessEntityID
 LEFT OUTER JOIN [Person].[Person] AS P2
 ON C.PersonID = P2.BusinessEntityID

 OPEN curSalesOrders

 FETCH NEXT FROM curSalesOrders INTO
 @SalesOrderID
 ,@OrderDate

Chapter 1

31

 ,@CustomerName
 ,@SalesPersonName

 WHILE @@FETCH_STATUS=0
 BEGIN

 SELECT @OrderTotal=SUM(LineTotal) FROM [Sales].
[SalesOrderDetail]
 WHERE SalesOrderID = @SalesOrderID

 INSERT INTO [tempdb].[dbo].[#tbl_OrderTotals]
 VALUES
 (
 @SalesOrderID
 ,@OrderDate
 ,@CustomerName
 ,@SalesPersonName
 ,@OrderTotal
)
 FETCH NEXT FROM curSalesOrders INTO
 @SalesOrderID
 ,@OrderDate
 ,@CustomerName
 ,@SalesPersonName
 END
 CLOSE curSalesOrders
 DEALLOCATE curSalesOrders

 SELECT * FROM [tempdb].[dbo].[#tbl_OrderTotals]
 ORDER BY OrderID DESC
END

GO
--Excutes stored procedure.
EXECUTE [dbo].[usp_CalculateOrderTotals]
GO
--Drop the table if it exists
IF OBJECT_ID('[dbo].[tblSampleData]') IS NOT NULL
 DROP TABLE [dbo].[tblSampleData]
GO
--Generate 5 million records and insert them into a table.
SELECT TOP 5000000 C1.*
INTO [dbo].[tblSampleData]
FROM sys.columns AS C1

Mastering SQL Trace Using Profiler

32

CROSS JOIN sys.columns AS C2
CROSS JOIN sys.columns AS C3

GO

12.	 After executing the previous script, switch to SQL Server Profiler and stop the trace.
Notice the CPU, Duration, StartTime, EndTime, Reads, and Write columns. The
following screenshot shows the trace after execution of the script:

Notice in the figure, how some of the SQL:BatchCompleted events caused high number of
CPU usage counts, duration counts, and reads/writes counts. These queries are resource
consuming and thus expensive queries.

How it works...
We started a new trace in SQL Server Profiler. We selected Blank trace template and
SQL:BatchCompleted event class that is the only event we wanted to capture. We then
specified a trace filter on DatabaseName data column so that only the events which are
occurred against AdventureWorks2012 database are captured.

We organized data columns in the Organize Columns dialog box so we can have a better view
of data columns that we are interested in when trace data is displayed in SQL Server Profiler;
we do not have to scroll much across the right side to see the values of TextData, CPU,
Duration, StartTime, Endtime, Reads, and Writes data columns.

Chapter 1

33

Trace Filter on CPU or Duration
We could also have put a trace filter on CPU or Duration data column with
> (greater than) operator in order to capture only those events whose CPU
or duration count is higher than the value specified in trace filter. With this,
let's say for example, if you want to find out the queries that are taking
total execution time of 10 seconds or more, then you can define a filter on
Duration column and only those queries running for 10 seconds or more will
be captured.

After starting trace, we opened SSMS and connected to SQL Server. We then
run sample script against AdventureWorks2012 database. The script creates and
executes a sample stored procedure named [AdventureWorks2012].[dbo].[usp_
CalculateOrderTotals] that loops through a cursor to calculate the total for an order and
inserts it in a temporary table. Looking at CPU and Duration data columns, it can be noticed
that stored procedure took almost around six seconds to execute. Also, the Reads data
column has high value and suggests that SQL Server had to read 296166 data pages to run
this stored procedure. Higher the reads and writes counts are, slower the query will be. When
the stored procedure [AdventureWorks2012].[dbo].[usp_CalculateOrderTotals]
is executed to retrieve the requested data with required columns along with the required
calculation, it performed a read operation on the following tables:

ff Sales.SalesOrderHeader

ff Sales.SalesPerson

ff Sales.Customer

ff Person.Person

ff #tbl_OrderTotals

The script also generates five million sample records by cross joining sys.columns catalog
view with itself multiple times and inserting the resulting data in tblSampleData table by
SELECT…INTO command. This demonstrates how the writes count gets high when large
amount of data is inserted. You can see that it caused 55369 reads and 35862 writes counts.

Remember that value in CPU data column is reported in milliseconds and the value in
Duration data column is reported in microseconds. However, when SQL Server Profiler shows
the value of Duration on its GUI, it shows the value in milliseconds by default. But when
you save the trace in a trace file or trace table the value is stored in microseconds and not
in milliseconds. Thus, for the Duration data column SQL Server behaves differently when it
displays and stores the value.

You can change the way SQL Server displays the value of Duration so that it is
reported in microsecond instead of millisecond on GUI if you wish so. You can
change this setting from Tools | Options….

