

Akka Essentials

A practical, step-by-step guide to learn and build
Akka's actor-based, distributed, concurrent, and
scalable Java applications

Munish K. Gupta

 BIRMINGHAM - MUMBAI

Akka Essentials

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1171012

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-828-4

www.packtpub.com

Cover Image by Eleanor Bennett (eleanor.ellieonline@gmail.com)

Credits

Author
Munish K. Gupta

Reviewers
Jonas Bonér

David Y. Ross

Domingo Suarez Torres

Acquisition Editor
Usha Iyer

Lead Technical Editor
Unnati Shah

Technical Editors
Mayur Hule

Devdutt Kulkarni

Ankita Shashi

Copy Editor
Insiya Morbiwala

Project Coordinator
Joel Goveya

Proofreader
Julie Jackson

Indexer
Monica Ajmera

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Munish K. Gupta is a Senior Architect working for Wipro Technologies. Based in
Bangalore, India, his day-to-day work involves solution architecture for applications
with stringent non-functional requirements (NFRs), Application Performance
Engineering, and exploring the readiness of cutting-edge, open source technologies
for enterprise adoption.

He advises enterprise customers to help them solve performance and scalability
issues, and implement innovative differentiating solutions to achieve business and
technology goals. He believes that technology is meant to enable the business, and
technology by itself is not a means to an end.

He is very passionate about software programming and craftsmanship. He is always
looking for patterns in solving problems, writing code, and making optimum
use of tools and frameworks. He blogs about technology trends and Application
Performance Engineering at http://www.techspot.co.in and about Akka at
http://www.akkaessentials.in

Acknowledgement

Writing a book is never a single person's job. During the course of this journey, I
have relied on many people, both directly and indirectly. I would like to thank the
Akka community, from whom I have learned, and continue to learn, every day.

I would like to especially thank Jonas Bonér and David Ross, who reviewed and
contributed many helpful suggestions and improvements to my drafts.

I am grateful to my editors, Usha Iyer, Unnati Shah, and Joel Goveya at Packt
Publishing for their help in preparing this book. I would like to thank all my
colleagues at Wipro Technologies, especially Hari Burle, Sridhar PV, and Aravind
Ajad for all their support and encouragement. I have learned so much from each one
of you, and for that I am grateful.

Last but not the least, I would like to thank my family. My wife Kompal, who has
been a source of constant support throughout this journey. She single-handedly
managed the kids and other chores around the house while I was working late
nights and on weekends. She was the constant motivator who egged me on to go
that extra mile whenever I felt that it was too big a task. I also want to thank my
parents and brother Nitin, who provided the moral support throughout this
journey. I love you all.

To my children, Dale and Sabal, I am sorry I couldn't be around with you as much
as we all wanted, and many times had to get you away from the laptop. I love you
very much.

About the Reviewers

Jonas Bonér is a geek, programmer, speaker, musician, writer, and Java champion.
He is the CTO and co-founder of Typesafe, and is an active contributor to the
open source community. Most notably, he founded the Akka project and the
AspectWerkz AOP compiler (now AspectJ). You can know more about him at
http://jonasboner.com.

David Y. Ross is a Scala enthusiast and Software Engineer at Klout, the social
media startup that empowers its users to discover and be recognized for how they
influence the world. As a member of Klout's platform team, David uses Scala and
Akka to scale the Klout API to over a billion requests per day. Having previously
worked on enterprise Java systems at a large tech company, he is constantly amazed
by the productivity and elegance of Scala and Akka.

David attends Bay Area Scala meetups and has given a talk on Klout's use of Akka.
He is a fan of Boston's sports teams and esoteric Jazz guitar players.

Domingo Suarez Torres is a Software Developer from Mexico City. He is
always looking for tools that can make him a more productive developer. He likes
to adopt frameworks that are in their early stages. In Mexico, he has been a pioneer
in adopting several languages for the JVM, such as Groovy and Scala, programming
languages that are used to build successful businesses. He has founded several user
groups to spread the word about new technology.

In the professional field, he has worked for big companies as well as small ones in
different sectors, such as financial, health, media, sales, and e-commerce. Currently,
he is the CTO for a succesful e-commerce company in Mexico (clickOnero).

He has helped as a technical reviewer for other books, such as Camel In Action, Claus
Ibsen and Jonathan Anstey, Manning Publications and Making Java Groovy, Kenneth A.
Kousen, Manning Publications.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Pack's online digital book
library. Here, you can access, read and search across Pack's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Introduction to Akka 7

Background 7
Microprocessor evolution 7
Concurrent systems 8
Container-based applications 10
Actor Model 10
Akka framework 12

Actor systems 13
What is an actor? 13
Fault tolerance 17
Location transparency 18
Transactors 19

Akka use cases 21
Summary 22

Chapter 2: Starting with Akka 23
Application requirements 23
Application design 24
Start development 26

Prerequisites 26
Java 26
Eclipse 27
Maven 27
Scala 27
Akka 28

Java application 30
Creating the Akka Maven project 30
Defining message classes 35
Defining actor classes 36
Defining the execution class 44

Table of Contents

[ii]

Scala application 46
Defining message classes 47
Defining actor classes 47
Defining the execution class 55

Summary 58
Chapter 3: Actors 59

Actors 59
Defining an actor 61
Creating actors 61

Actor with default constructor 62
Actor with non-default constructor 62
Creating an actor within an actor hierarchy 63

Messaging model 64
Sending messages 65

Fire and forget messages – tell() 66
Send and receive messages – ask() 67

Receiving messages 69
Replying to messages 70
Forwarding messages 70

Stopping actors 71
Killing actors 73
Actor lifecycle monitoring 73
HotSwap 74
Summary 76

Chapter 4: Typed Actors 77
What are typed actors? 78
Defining an actor 80
Creating actors 82

An actor with a default constructor 83
An actor with a non-default constructor 83

Messaging model 84
Sending messages 84

Fire and forget messages 85
Send and receive messages 85

Stopping actors 86
Actor lifecycle monitoring 87

Lifecycle callbacks 87
Receiving messages 88
Supervisor strategy 90

Creating an actor hierarchy 91
Dispatchers and routers 92

Table of Contents

[iii]

Using dispatchers 92
application.conf 93

Using routers 93
Summary 94

Chapter 5: Dispatchers and Routers 95
Dispatchers 95

Dispatcher as a pattern 97
Executor in Java 97
Dispatchers in Akka 99
Types of dispatcher 100

Dispatcher 101
Pinned dispatcher 102
Balancing dispatcher 103
Calling thread dispatcher 103

Types of mailboxes 104
Dispatcher usage 105

Routers 109
Router usage 110
Router usage via application.conf 112
Router usage for distributed actors 113
Dynamically resizing routers 114
Custom router 115

Summary 121
Chapter 6: Supervision and Monitoring 123

Let It Crash 123
Actor hierarchy 124

Supervision 127
Supervision strategies 130

One-For-One strategy 133
All-For-One strategy 146

Lifecycle monitoring 154
Fault tolerance 161
Summary 163

Chapter 7: Software Transactional Memory 165
Transaction management 165

What is software transactional memory? 166
Coordinated transactions 169

Money transfer between two accounts 171
Transactor 184

Money transfer between two accounts – take two 185

Table of Contents

[iv]

Agents 187
Creating agents 188
Updating agent values 188
Reading agent values 189
Stopping agents 190

Summary 190
Chapter 8: Deployment Ready 191

Testing your Akka application 191
Writing the first unit test with TestActorRef 192
Access to the underlying actor reference 194
Testing actor behavior 195
Testing exception scenarios 196
Integration testing with TestKit 197

EchoActor testing 202
ForwardingActor testing 203
SequencingActor testing 203
SupervisorActor testing 205

Remote actors testing 207
Managing application configuration using Akka extensions 208
Deployment mode 213

Microkernel 214
Summary 216

Chapter 9: Remote Actors 217
Distributed computing 217

Actor path 221
Remote actors 223

Creating the remote node application 225
Creating the local node application 228
Creating remote actors programmatically 232

Message serialization 234
Creating your own serialization technique 235

Remote events 242
Summary 246

Chapter 10: Management 247
Application monitoring 247
Typesafe console 248

Typesafe console modules 249
Trace 250
Analyze 252
Query 254
Typesafe console 255

Table of Contents

[v]

Graphical dashboard 257
System overview 259

Node 260
Dispatchers 262

Actors 264
Tags 266
Errors 268

Limitations 270
JMX and REST interfaces 270

RESTful API 270
JMX 272

Summary 274
Chapter 11: Advanced Topics 275

Durable mailboxes 275
Akka support 277

Dispatcher usage 277
FileDurableMailboxStorage 279

Actors and web applications 281
Installing play 282
Creating the first HttpActors application 282
Launching the console 283

Integrating actors with ZeroMQ 289
Publisher-subscriber connection 290

Usage 290
Request-reply connection 294

Usage 295
Router-dealer connection 298

Usage 299
Push-pull connection 302

Usage 303
Summary 306

Index 307

Preface
Akka Essentials is meant as a guide for architects, solution providers, consultants,
engineers, and anyone planning to design and implement a distributed, concurrent
application based on Akka. It will refer to easy-to-explain concept examples, as
they are likely to be the best teaching aids. It will explain the logic, code, and
configurations needed to build a successful, distributed, concurrent application, as
well as the reason behind those decisions.

This book covers the core concepts to design and create a distributed, concurrent
application, but it is not meant to be a replacement for the official documentation
guide for Akka published at Typesafe.

The driving force of Akka's Actor Model
The existing, Java-based concurrency model does not lend well to the underlying,
hardware multiprocessor model. This leads to the Java application not being able
to scale up and scale out, to handle the demands of a distributed, scalable,
concurrent application.

The Akka framework has taken the "Actor Model" concept to build an
event-driven, middleware framework that allows the building of concurrent,
scalable, and distributed systems. Akka uses the Actor Model to raise the
abstraction level that decouples the business logic from the low-level
constructs of threads, locks, and non-blocking I/O.

The Akka framework provides the following features:

• Concurrency: The Akka Actor Model abstracts concurrency handling and
allows the programmer to focus on the business logic

• Scalability: The Akka Actor Model's asynchronous message passing allows
applications to scale up on multicore servers

Preface

[2]

• Fault tolerance: Akka borrows the concepts and techniques from Erlang to
build the "Let It Crash", fault tolerance model

• Event-driven architecture: Akka provides an asynchronous messaging
platform for building event-driven architectures

• Transaction support: Akka implements transactors that combine the actors
and software transactional memory (STM) into transactional actors

• Location transparency: Akka provides a unified programming model for
multicore and distributed computing needs

• Scala/Java APIs: Akka supports both Java and Scala APIs for
building applications

The Akka framework is envisioned as a toolkit and runtime for building highly
concurrent, distributed, and fault-tolerant, event-driven applications on the JVM.

What this book covers
Chapter 1, Introduction to Akka, covers the background on the evolution of the
microprocessor, the current problems met in the building of concurrent applications,
and the Actor Model. We will then jump into what Akka provides, and the high-level
features of the Akka framework.

Chapter 2, Starting with Akka, covers the motions of the installation of the
development environment and the writing of the first Akka application.

Chapter 3, Actors, covers the overview of the actors. The chapter covers the lifecycle of
an actor, how to create actors, how to pass and process messages, and how to stop or
kill the actor.

Chapter 4, Typed Actors, covers the overview of the typed actors. It also covers the
lifecycle of a typed actor, how to create actors, how to pass and process messages,
and how to stop or kill the actor.

Chapter 5, Dispatchers and Routers, covers dispatchers and their workings. The chapter
covers the various types of dispatchers and their usage and configuration settings,
and the different types of mailboxes and their usage and configuration. This chapter
also covers routers, and their different types and usage.

Chapter 6, Supervision and Monitoring, covers fault tolerance, the lifecycle, supervision
strategies, and linking strategies when writing large-scale, concurrent programs.
The chapter covers the "Let It Crash" paradigm, and how it is managed in the Actor
Model using the various supervision strategies.

Preface

[3]

Chapter 7, Software Transactional Memory, covers the various Akka constructs
provided for the transactional concepts (begin/commit/rollback semantics). The
chapter walks us through the basics of transaction management and explores the
Akka constructs provided for STM—transactors and agents.

Chapter 8, Deployment Ready, covers the three, critical gating criteria that an
application needs to pass in order to go into production. This chapter covers the
unit and integration testing employed for the Akka application, how to manage
environment-specific configuration, and the deployment strategies.

Chapter 9, Remote Actors, covers the requirements of a distributed computing
environment and how Akka implements these. It also covers the various methods
of creating remote actors, how object serialization happens in Akka, the various
serializers provided by Akka, and how you can write your own serializers.

Chapter 10, Management, covers the monitoring capabilities provided by the Typesafe
console—the Akka monitoring tool, various graphical dashboards, and real-time
statistics. The chapter also covers the key JMX and REST interfaces.

Chapter 11, Advanced Topics, covers topics such as durable mailboxes, the integration
of Akka with the play framework, and actor integration with ZeroMQ.

What you need for this book
The book is technical in nature, so the reader needs to have a basic understanding of
the following:

• Java/Scala programming language
• Java's thread and concurrency model

Who this book is for
This book is aimed at developers and architects, who are building large distributed,
concurrent, and scalable applications using Java/Scala. The book requires the reader
to have a knowledge of Java/JEE concepts, but a knowledge of the Actor Model is
not necessary.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows:"The /lib folder holds the
scala-library.jar file."

A block of code is set as follows:

package akka.first.app.mapreduce.messages;
import java.util.List;
public final class MapData {
 private final List<WordCount> dataList;
 public List<WordCount> getDataList() {
 return dataList;
 }
 public MapData(List<WordCount> dataList) {
 this.dataList = dataList;
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package akka.first.app.mapreduce.actors;
import akka.actor.ActorRef;
import akka.actor.UntypedActor;
import akka.first.app.mapreduce.messages.Result;

public class MasterActor extends UntypedActor {
 ActorRef mapActor;
 ActorRef reduceActor;
 ActorRef aggregateActor;
 @Override
 public void onReceive(Object message) throws Exception {

 }
}

Any command-line input or output is written as follows:

$ cd HttpActors

$ ls

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this:"Open
Eclipse and go to File | New | Project...."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Akka
Akka is one of the most popular Actor Model frameworks that provide a complete
toolkit and runtime for designing and building highly concurrent, distributed, and
fault-tolerant, event-driven applications on the JVM. This chapter will walk you
through the motivation and need for building an Akka toolkit.

As Java/Scala developers, we will see the usage of creating applications using the
Akka Actor Model, which scales up and scales out seamlessly, and provides levels
of concurrency, which is simply difficult to achieve with the standard Java libraries.

Background
Before we delve into what Akka is, let us take a step back to understand how the
concept of concurrent programming has evolved in the application development
world. The applications have always been tied to the underlying hardware
resource capacity. The whole concept of building large, scalable, distributed
applications needs to be looked at from the perspective of the underlying
hardware resources where the application runs and the language support
provided for concurrent programming.

Microprocessor evolution
The advancement of the microprocessor architecture meant the CPU kept becoming
faster and faster with doubling of the transistors every 18 months (Moore's law).
But soon, the chip design hit the physical limits in terms of how many transistors
could be squeezed on to the printed circuit board (PCB). Subsequently, we moved
to multicore processor architecture that has two or more identical processors or
processor cores physically close to each other, sharing the underlying bus interface
and the cache.

Introduction to Akka

[8]

These microprocessors having two or more cores effectively increased the processor's
performance by the same factor as the number of cores, limited only by the amount
of serial code (Amdahl's law).

The preceding diagram from wiki, http://en.wikipedia.org/wiki/
Transistor_count shows how the transistor count was doubled initially over
the period of 18 months (following the Moore's Law) and how the multiprocessor
architecture for consumer machines has evolved over the last 6-7 years.

Clock speeds are not increasing; processors are getting
more parallel and not faster.

Concurrent systems
When writing large concurrent systems, the traditional model of shared state
concurrency makes use of changing shared memory locations. The system uses
multithreaded programming coupled with synchronization monitors to guard
against potential deadlocks. The entire multithreading programming model is based
on how to manage and control the concurrent access to the shared, mutable state.

Chapter 1

[9]

Manipulating shared, mutable state via threads makes it hard at times to
debug problems. Usage of locks may guarantee the correct behavior, but it is
likely to lead to the effect of threads running into a deadlock problem, with
each acquiring locks in a different order and waiting for each other, as shown
in the following diagram:

Working with threads requires a much higher level of programming skills and it is
very difficult to predict the behavior of the threads in a runtime environment.

Java provides shared memory threads with locks as the primary form of concurrency
abstractions. However, shared memory threads are quite heavyweight and incur
severe performance penalties from context-switching overheads.

A newer Java API around fork/join, based on work-stealing algorithms, makes the
task easier, but it still takes a fair bit of expertise and tuning to write the application.

Writing multithreaded applications that can take
advantage of the underlying hardware is very
error-prone and not easy to build.
Scaling up Java programs is difficult; scaling out
Java programs is even more difficult.

Introduction to Akka

[10]

Container-based applications
Java Platform, Enterprise Edition (JEE) was introduced as a platform to develop and
run distributed multitier Java applications. The entire multitier architecture is based
on the concept of breaking down the application into specialized layers that process
the smaller pieces of logic. These multitier applications are deployed in containers
(called application servers) provided by vendors, such as IBM or Oracle, which host
and provide the infrastructure to run the application. The application server is tuned
to run the application and utilize the underlying hardware.

The container-based model allows the applications to be distributed across nodes
and allows them to be scaled. The runtime model of the application servers has its
own share of issues, as follows:

• In case of runtime failures, the entire request call fails. It is very difficult to
retry any method execution or recovery from failures.

• The application scalability is tagged to the underlying application container
settings. An application cannot make use of different threading models to
account for different workloads within the same application.

• Using the container-based model to scale out the applications requires a
large set of resources, and overheads of managing the application across
the application server nodes are very high.

Container-based applications are bounded by the rules of
the container's ability to scale up and scale out, resulting
in suboptimal performance.

The JEE programming model of writing distributed applications is not the best fit for
a scale-out application model.

Given that the processors are becoming more parallel, the applications are getting
more distributed, and traditional JVM programming techniques are not helpful. So,
there is a need for a different paradigm to solve the problem.

Actor Model
In 1973, Carl Hewitt, Peter Bishop, and Richard Steiger wrote a paper—A Universal
Modular ACTOR Formalism for Artificial Intelligence, which introduced the concept of
Actors. Subsequently, the Actor Model was implemented in the Erlang language by
Joe Armstrong and Ericsson implemented the AXD 301 telecom switch that went
onto achieve reliability of 99.9999999 percent (nine 9's).

Chapter 1

[11]

The Actor Model takes a different approach to solving the problem of concurrency,
by avoiding the issues caused by threads and locks. In the Actor Model, all objects
are modeled as independent, computational entities that only respond to the
messages received. There is no shared state between actors, as follows:

Actors change their state only when they receive a stimulus in the form of a message.
So unlike the object-oriented world where the objects are executed sequentially, the
actors execute concurrently.

The Actor Model is based on the following principles:

• The immutable messages are used to communicate between actors. Actors do
not share state, and if any information is shared, it is done via message only.
Actors control the access to the state and nobody else can access the state.
This means there is no shared, mutable state.

• Each actor has a queue attached where the incoming messages are enqueued.
Messages are picked from the queue and processed by the actor, one at a
time. An actor can respond to the received message by sending immutable
messages to other actors, creating a new set of actors, updating their own
state, or designating the computational logic to be used when the next
message arrives (behavior change).

• Messages are passed between actors asynchronously. It means that the
sender does not wait for the message to be received and can go back to its
execution immediately. Any actor can send a message to another actor with
no guarantee on the sequence of the message arrival and execution.

• Communication between the sender and receiver is decoupled and
asynchronous, allowing them to execute in different threads. By having
invocation and execution in separate threads coupled with no shared state,
allows actors to provide a concurrent and scalable model.

Introduction to Akka

[12]

Akka framework
The Akka framework has taken the Actor Model concept to build an event-driven,
middleware framework that allows building concurrent, scalable, distributed
systems. Akka uses the Actor Model to raise the abstraction level that decouples the
business logic from low-level constructs of threads, locks, and non-blocking I/O.

The Akka framework provides the following features:

• Concurrency: Akka Actor Model abstracts the concurrency handling and
allows the programmer to focus on the business logic.

• Scalability: Akka Actor Model's asynchronous message passing allows
applications to scale up on multicore servers.

• Fault tolerance: Akka borrows the concepts and techniques from Erlang to
build a "Let It Crash" fault-tolerance model using supervisor hierarchies to
allow applications to fail fast and recover from the failure as soon as possible.

• Event-driven architecture: Asynchronous messaging makes Akka a perfect
platform for building event-driven architectures.

• Transaction support: Akka implements transactors that combine actors and
software transactional memory (STM) into transactional actors. This allows
composition of atomic message flows with automatic retry and rollback.

• Location transparency: Akka treats remote and local process actors the
same, providing a unified programming model for multicore and distributed
computing needs.

• Scala/Java APIs: Akka supports both Java and Scala APIs for
building applications.

The Akka framework is envisaged as a toolkit and runtime for building highly
concurrent, distributed, and fault-tolerant, event-driven applications on the JVM.

Akka is open source and available under the Apache License,
Version 2 at http://akka.io.

Akka was originally created by Jonas Bonér and is currently available as part of the
open source Typesafe Stack.

Next, we will see all the key constructs provided by Akka that are used to build a
concurrent, fault-tolerant, and scalable application.

Chapter 1

[13]

Actor systems
Actor is an independent, concurrent computational entity that responds to messages.
Before we jump into actor, we need to understand the role played by the actor in the
overall scheme of things. Actor is the smallest unit in the grand scheme of things.
Concurrent programs are split into separate entities that work on distinct subtasks.
Each actor performs his quota of tasks (subtasks) and when all the actors have
finished their individual subtasks, the bigger task gets completed.

Let's take an example of an IT project that needs to deliver a defined functionality to
the business. The project is staffed with people who bring different skill sets to the
table, mapped for the different phases of the project as follows:

The whole task of building something is divided into subtasks/activities that are
handled by specialized actors adept in that subtask. The overall supervision is
provided by another actor—project manager or architect.

In the preceding example, the project needs to exist and it should provide the
structure for the various actors (project manager, architect, developer, and so on) to
start playing their roles. In the absence of the project, the actor roles have no meaning
and existence. In Akka world, the project is equivalent to the actor system.

The actor system is the container that manages the actor behavior,
lifecycle, hierarchy, and configuration among other things. The
actor system provides the structure to manage the application.

What is an actor?
Actor is modeled as the object that encapsulates state and behavior. All the messages
intended for the actors are parked in a queue and actors process the messages from
that queue.

Actors can change their state and behavior based on the message passed. This allows
them to respond to changes in the messages coming in. An actor has the constituents
that are listed in the following sections.

Introduction to Akka

[14]

State
The actor objects hold instance variables that have certain state values or can be
pure computational entities (stateless). These state values held by the actor instance
variable define the state of the actor. The state can be characterized by counters,
listeners, or references to resources or state machine. The actor state is changed only
as a response to a message. The whole premise of the actor is to prevent the actor
state getting corrupted or locked via concurrent access to the state variables.

Akka implements actors as a reactive, event-driven, lightweight thread that
shields and protects the actor's state. Actors provide the concurrent access to
the state allowing us to write programs without worrying about concurrency
and locking issues.

When the actors fail and are restarted, the actors' state is reinitialized to make sure
that the actors behave in a consistent manner with a consistent state.

Behavior
Behavior is nothing but the computation logic that needs to be executed in response
to the message received. The actor behavior might include changing the actor state.
The actor behavior itself can undergo a change as a reaction to the message. It
means the actor can swap the existing behavior with a new behavior when a certain
message comes in. The actor defaults to the original behavior in case of a restart,
when encountering a failure:

Chapter 1

[15]

Mailbox
An actor responds to messages. The connection wire between the sender sending a
message and the receiver actor receiving the message is called the mailbox. Every
actor is attached to exactly one mailbox. When the message is sent to the actor, the
message gets enqueued in its mailbox, from where the message is dequeued for
processing by the receiving actor. The order of arrival of the messages in the queue
is determined in runtime based on the time order of the send operation. Messages
from one sender actor to another definite receiver actor will be enqueued in the
same order as they are sent:

Akka provides multiple mailbox implementations. The mailboxes can be bounded or
unbounded. A bounded mailbox limits the number of messages that can be queued
in the mailbox, meaning it has a defined or fixed capacity for holding the messages.

At times, applications may want to prioritize a certain message over the other.
To handle such cases, Akka provides a priority mailbox where the messages
are enqueued based on the assigned priority. Akka does not allow scanning of
the mailbox. Messages are processed in the same order as they are enqueued in
the mailbox.

Akka makes use of dispatchers to pass the messages from the queue to the actors for
processing. Akka supports different types of dispatchers. We will cover more about
dispatchers and mailboxes in Chapter 5, Dispatchers and Routers.

Introduction to Akka

[16]

Actor lifecycle
Every actor that is defined and created has an associated lifecycle. Akka provides
hooks such as preStart that allow the actor's state and behavior to be initialized.
When the actor is stopped, Akka disables the message queuing for the actor before
PostStop is invoked. In the postStop hook, any persistence of the state or clean up
of any hold-up resources can be done:

Further, Akka supports two types of actors—untyped actors and typed actors. We
will cover untyped and typed actors in Chapter 3, Actors, and Chapter 4, Typed Actors,
respectively.

Chapter 1

[17]

Fault tolerance
Akka follows the premise of the actor hierarchy where we have specialized actors
that are adept in handling or performing an activity. To manage these specialized
actors, we have supervisor actors that coordinate and manage their lifecycle. As
the complexity of the problem grows, the hierarchy also expands to manage the
complexity. This allows the system to be as simple or as complex as required based
on the tasks that need to be performed:

The whole idea is to break down the task into smaller tasks to the point where the
task is granular and structured enough to be performed by one actor. Each actor
knows which kind of message it will process and how he reacts in terms of failure.
So, if the actor does not know how to handle a particular message or an abnormal
runtime behavior, the actor asks its supervisor for help. The recursive actor hierarchy
allows the problem to be propagated upwards to the point where it can be handled.
Remember, every actor in Akka has one and only one supervisor.

This actor hierarchy forms the basis of the Akka's "Let It Crash" fault-tolerance
model. Akka's fault-tolerance model is built using the actor hierarchy and
supervisor model. We will cover more details about supervision in Chapter 6,
Supervision and Monitoring.

Introduction to Akka

[18]

Location transparency
For a distributed application, all actor interactions need to be asynchronous and
location transparent. Meaning, location of the actor (local or remote) has no impact
on the application. Whether we are accessing an actor, or invoking or passing the
message, everything remains the same.

To achieve this location transparency, the actors need to be identifiable and
reachable. Under the hood, Akka uses configuration to indicate whether the actor is
running locally or on a remote machine. Akka uses the actor hierarchy and combines
it with the actor system address to make each actor identifiable and reachable.

Akka uses the same philosophy of the World Wide Web (WWW) to identify and
locate resources on the Web. WWW makes use of the uniform resource locator
(URL) to identify and locate resources on the Web. The URL consists of—scheme://
domain:port/path, where scheme defines the protocol (HTTP or FTP), domain
defines the server name or the IP address, port defines the port where the process
listens for incoming requests, and path specifies the resource to be fetched.

Akka uses the similar URL convention to locate the actors. In case of an Akka
application, the default values are akka://hostname/ or akka://hostname:2552/
depending upon whether the application uses remote actors or not, to identify the
application. To identify the resource within the application, the actor hierarchy is
used to identify the location of the actor:

Chapter 1

[19]

The actor hierarchy allows the unique path to be created to reach any actor within
the actor system. This unique path coupled with the address creates a unique
address that identifies and locates an actor.

Within the application, each actor is accessed using an ActorRef class, which is
based on the underlying actor path. ActorRef allows us to transparently access
the actors without knowing their locations. Meaning, the location of the actor is
transparent for the application. The location transparency allows you to build
applications without worrying how the actors communicate underneath.

Akka treats remote and local process actors the same—all
can be accessed by an address URL.

Transactors
To provide transaction capabilities to actors, Akka transactors combine actors with
STM to form transactional actors. This allows actors to compose atomic message
flows with automatic retry and rollback.

Working with threads and locks is hard and there is no guarantee that the
application will not run into locking issues. To abstract the threading and locking
hardships, STM, which is a concurrency control mechanism for managing access to
shared memory in a concurrent environment, has gained a lot of acceptance.

STM is modeled on similar lines of database transaction handling. In the case of
STM, the Java heap is the transactional data set with begin/commit and rollback
constructs. As the objects hold the state in memory, the transaction only implements
the characteristics—atomicity, consistency, and isolation.

For actors to implement a shared state model and provide a consistent, stable view
of the state across the calling components, Akka transactors provide the way. Akka
transactors combine the Actor Model and STM to provide the best of both worlds
allowing you to write transactional, asynchronous, event-based message flow
applications and gives you composed atomic arbitrary, deep message flows. We will
cover transactors in more details in the Chapter 7, Software Transactional Memory.

