

Learning jQuery
Third Edition

Create better interaction, design, and web development
with simple JavaScript techniques

Jonathan Chaffer

Karl Swedberg

 BIRMINGHAM - MUMBAI

Learning jQuery
Third Edition

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2011

Production Reference: 1160911

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84951-654-9

www.packtpub.com

Cover Image by Karl Swedberg (kswedberg@gmail.com)

Credits

Authors
Jonathan Chaffer

Karl Swedberg

Reviewers
Kaiser Ahmed

Kevin Boudloche

Carlos Estebes

Acquisition Editor
Sarah Cullington

Development Editor
Roger D'souza

Technical Editors
Llewellyn F. Rozario

Azharuddin Sheikh

Project Coordinator
Srimoyee Ghoshal

Proofreader
Linda Morris

Indexers
Tejal Daruwale

Rekha Nair

Graphics
Nilesh Mohite

Production Coordinators
Aparna Bhagat

Prachali Bhiwandkar

Cover Work
Aparna Bhagat

Prachali Bhiwandkar

Foreword

I feel honored knowing that Karl Swedberg and Jonathan Chaffer undertook the task
of writing Learning jQuery. As the first book about jQuery, it set the standard that
other jQuery—and, really, other JavaScript books in general—have tried to match.
It's consistently been one of the top selling JavaScript books since its release, in no
small part due to its quality and attention to detail.

I'm especially pleased that it was Karl and Jonathan who wrote the book as I already
knew them so well and knew that they would be perfect for the job. Being part of
the core jQuery team, I've had the opportunity to come to know Karl quite well over
the past couple years, and especially within the context of his book writing effort.
Looking at the end result, it's clear that his skills as both a developer and a former
English teacher were perfectly designed for this singular task.

I've also had the opportunity to meet both of them in person, a rare occurrence in
the world of distributed Open Source projects, and they continue to be upstanding
members of the jQuery community.

The jQuery library is used by so many different people in the jQuery community.
The community is full of designers, developers, people who have experience
programming, and those who don't. Even within the jQuery team, we have people
from all backgrounds providing their feedback on the direction of the project. There
is one thing that is common across all of jQuery's users, though: We are a community
of developers and designers who want JavaScript development to be made simple.

It's almost a cliché, at this point, to say that an open source project is community-
oriented, or that a project wants to focus on helping new users get started. However,
it's not just an empty gesture for jQuery; it's the liquid-oxygen fuel for the project.
We actually have more people in the jQuery team dedicated to managing the jQuery
community, writing documentation, or writing plugins than actually maintaining
the core code base. While the health of the library is incredibly important, the
community surrounding that code is the difference between a floundering,
mediocre project and one that will match and exceed your every need.

How we run the project, and how you use the code, is fundamentally very different
from most open source projects—and most JavaScript libraries. The jQuery project
and community is incredibly knowledgeable; we understand what makes jQuery
a different programming experience and do our best to pass that knowledge on to
fellow users.

The jQuery community isn't something that you can read about to understand; it's
something that you actually have to participate in for it to fully sink in. I hope that
you'll have the opportunity to partake in it. Come join us in our forums, mailing
lists, and blogs and let us help guide you through the experience of getting to know
jQuery better.

For me, jQuery is much more than a block of code. It's the sum total of experiences
that have transpired over the years in order to make the library happen. The
considerable ups and downs, the struggle of development together with the
excitement of seeing it grow and succeed. Growing close with its users and fellow
team members, understanding them and trying to grow and adapt.

When I first saw this book talk about jQuery and discuss it like a unified tool, as
opposed to the experiences that it's come to encapsulate for me, I was both taken
aback and excited. Seeing how others learn, understand, and mold jQuery to fit
them is much of what makes the project so exhilarating.

I'm not the only one who enjoys jQuery on a level that is far different from a normal
tool-user relationship. I don't know if I can properly encapsulate why this is, but I've
seen it time and time again—the singular moment when a user's face lights up with
the realization of just how much jQuery will help them.

There is a specific moment where it just clicks for a jQuery user, when they realize
that this tool that they were using was in fact much, much more than just a simple
tool all along—and suddenly their understanding of how to write dynamic web
applications completely shifts. It's an incredible thing, and absolutely my favorite
part of the jQuery project.

I hope you'll have the opportunity to experience this sensation as well.

John Resig

Creator of jQuery

About the Authors

Jonathan Chaffer is a member of Rapid Development Group, a web development
firm located in Grand Rapids, Michigan. His work there includes overseeing and
implementing projects in a wide variety of technologies, with an emphasis in PHP,
MySQL, and JavaScript. He also leads on-site training seminars on the jQuery
framework for web developers.

In the open-source community, Jonathan has been very active in the Drupal CMS
project, which has adopted jQuery as its JavaScript framework of choice. He is the
creator of the Content Construction Kit, a popular module for managing structured
content on Drupal sites. He is responsible for major overhauls of Drupal's menu
system and developer API reference.

Jonathan lives in Grand Rapids with his wife, Jennifer.

I would like to thank Jenny for her tireless enthusiasm and support,
Karl for the motivation to continue writing when the spirit is weak,
and the Ars Technica community for constant inspiration toward
technical excellence. In addition, I'd like to thank Mike Henry and
the Twisted Pixel team for producing consistently entertaining
distractions in between writing sessions.

Karl Swedberg is a web developer at Fusionary Media in Grand Rapids, Michigan,
where he spends much of his time making cool things happen with JavaScript. As a
member of the jQuery team, Karl is responsible for maintaining the jQuery API site
at api.jquery.com. He also publishes tutorials on his blog, learningjquery.com,
and presents at workshops and conferences. When he isn't coding, Karl likes to hang
out with his family, roast coffee in his garage, and exercise at the local cross-fit gym.

I wish to thank my wife, Sara, and my two children, Benjamin and
Lucia, for all the joy that they bring into my life. Thanks also to
Jonathan Chaffer for his patience and his willingness to write this
book with me.

Many thanks to John Resig for creating the world's greatest
JavaScript library and to all the others who have contributed their
code, time, and expertise to the project. Thanks to the folks at Packt
Publishing, the technical reviewers of this book, the jQuery Cabal,
and the many others who have provided help and inspiration along
the way.

About the Reviewers

Kaiser Ahmed is a professional web developer. He has gained his Bachelor's
Degree from Khulna University of Engineering and Technology (KUET). He is also a
co-founder of fully outsourcing company CyberXpress.Net Inc based on Bangladesh.

He has a wide breadth of technical skills, Internet knowledge, and experience across
the spectrum of online development in the service of building and improving online
properties for multiple clients. He enjoys creating site architecture and infrastructure,
backend development using open source toolset (PHP, MySQL, Apache, Linux, and
others (that is LAMP)), frontend development with CSS and HTML/XHTML.

He would like to thank his loving wife, Maria Akter, for her support.

Kevin Boudloche is a web developer out of Mississippi. He has been building
web pages as a hobby for more than eight years and for three years professionally.
Kevin's primary focus is front-end development and web application development.

Carlos Estebes is the founder of Ehxioz (http://ehxioz.com/) a Los Angeles-
based software development startup that specializes in developing modern web
applications and utilizing the latest web development technologies & methodologies.
He has over 10 years of web development experience and holds a BSc in Computer
Science from California State University, Los Angeles.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started	 9

What jQuery does	 9
Why jQuery works well	 11
Our first jQuery-powered web page	 12

Downloading jQuery	 12
Setting up jQuery in an HTML document	 13
Adding our jQuery code	 16

Finding the poem text	 17
Injecting the new class	 17
Executing the code	 17

The finished product	 19
Plain JavaScript vs. jQuery	 19
Development tools	 20

Firebug	 21
Summary	 24

Chapter 2: Selecting Elements	 25
The Document Object Model	 25
The $() function	 27
CSS selectors	 28

Styling list-item levels	 29
Attribute selectors	 31
Styling links	 31

Custom selectors	 34
Styling alternate rows	 34
Form selectors	 39

DOM traversal methods	 39
Styling specific cells	 41
Chaining	 43

Table of Contents

[ii]

Accessing DOM elements	 44
Summary	 45

Further reading	 45
Exercises	 45

Chapter 3: Handling Events	 47
Performing tasks on page load	 47

Timing of code execution	 47
Multiple scripts on one page	 48
Shortcuts for code brevity	 50
Passing an argument to the .ready() callback	 50

Simple events	 51
A simple style switcher	 51
Enabling the other buttons	 54
Event handler context	 55
Further consolidation	 57
Shorthand events	 59

Compound events	 61
Showing and hiding advanced features	 61
Highlighting clickable items	 63

The journey of an event	 65
Side effects of event bubbling	 66

Altering the journey: the event object	 67
Event targets	 68
Stopping event propagation	 69
Default actions	 70
Event delegation	 70
Methods for event delegation	 73

Removing an event handler	 74
Event namespacing	 75
Rebinding events	 75

Simulating user interaction	 78
Keyboard events	 79

Summary	 82
Further reading	 83

Exercises	 83
Chapter 4: Styling and Animating	 85

Inline CSS modification	 85
Basic hide and show	 90
Effects and speed	 92

Speeding in	 93

Table of Contents

[iii]

Fading in and fading out	 94
Sliding up and sliding down	 94
Compound effects	 95

Creating custom animations	 97
Building effects by hand	 98
Animating multiple properties at once	 99

Positioning with CSS	 101
Simultaneous versus queued effects	 103

Working with a single set of elements	 103
Bypassing the queue	 104
Manual queueing	 105

Working with multiple sets of elements	 107
Callbacks	 109

In a nutshell	 111
Summary	 111

Further reading	 112
Exercises	 112

Chapter 5: Manipulating the DOM	 113
Manipulating attributes	 113

Non-class attributes	 114
Value callbacks	 115

DOM element properties	 118
DOM tree manipulation	 119

The $() function revisited	 119
Creating new elements	 119
Inserting new elements	 120
Moving elements	 122
Wrapping elements	 124
Inverted insertion methods	 126

Copying elements	 129
Cloning for pull quotes	 130

Content getter and setter methods	 133
Further style adjustments	 135

DOM manipulation methods in a nutshell	 136
Summary	 137

Further reading	 138
Exercises	 138

Chapter 6: Sending Data with Ajax	 139
Loading data on demand	 139

Appending HTML	 141

Table of Contents

[iv]

Working with JavaScript objects	 144
Retrieving JSON	 144
Global jQuery functions	 146
Executing a script	 149

Loading an XML document	 151
Choosing a data format	 154
Passing data to the server	 155

Performing a GET request	 156
Performing a POST request	 160
Serializing a form	 161

Delivering different content for Ajax requests	 164
Keeping an eye on the request	 165
Error handling	 168
Ajax and events	 169
Security limitations	 170

Using JSONP for remote data	 172
Additional options	 174

The low-level Ajax method	 174
Modifying default options	 175
Loading parts of an HTML page	 175

Summary	 178
Further reading	 178

Exercises	 179
Chapter 7: Using Plugins	 181

Finding plugins and help	 181
How to use a plugin	 182

Downloading and referencing the Cycle plugin	 182
Simple plugin use	 182
Specifying plugin method parameters	 184
Parameter defaults	 185
Other types of plugins	 186

Custom selectors	 186
Global function plugins	 187

The jQuery UI plugin library	 188
Effects	 189

Color animations	 189
Class animations	 190
Advanced easing	 190
Additional effects	 191

Interaction components 	 192

Table of Contents

[v]

Widgets	 194
jQuery UI ThemeRoller	 197

Summary	 197
Exercises	 198

Chapter 8: Developing Plugins	 199
Use of the $ alias in plugins	 199
Adding new global functions	 200

Adding multiple functions	 202
Adding jQuery object methods	 205

Object method context	 206
Implicit iteration	 207
Method chaining	 208

Method parameters	 209
Parameter maps	 211
Default parameter values	 212
Callback functions	 213
Customizable defaults	 214

The jQuery UI widget factory	 216
Creating a widget	 217
Destroying widgets	 219
Enabling and disabling widgets	 220
Accepting widget options	 220
Adding sub-methods	 221
Triggering widget events	 222

Plugin design recommendations	 223
Plugin distribution	 224

Summary	 224
Exercises	 225

Chapter 9: Advanced Selectors and Traversing	 227
Selecting and traversing revisited	 227

Dynamic table filtering	 229
Table row striping	 231
Combining filtering and striping	 233
More selectors and traversal methods	 234

Customizing and optimizing selectors	 235
Writing a custom selector plugin	 235
Selector performance	 237

Sizzle selector implementation	 238
Testing selector speed	 239

Table of Contents

[vi]

DOM traversal under the hood	 240
jQuery object properties	 241
The DOM element stack	 243
Writing a DOM traversal method plugin	 244
DOM traversal performance	 246

Improving performance using chaining	 246
Improving performance using caching	 247

Summary	 248
Further reading	 248

Exercises	 248
Chapter 10: Advanced Events	 251

Events revisited	 251
Loading additional pages of data	 253
Displaying data on hover	 254

Event delegation	 256
Using jQuery's delegation methods	 257
Choosing a delegation method	 257
Delegating early	 259
Using a context argument	 260

Custom events	 260
Infinite scrolling	 262
Custom event parameters	 263

Throttling events	 264
Other ways to perform throttling	 265

Special events	 266
More about special events	 268

Summary	 268
Further reading	 269

Exercises	 269
Chapter 11: Advanced Effects	 271

Animation revisited	 271
Observing and interrupting animations	 274

Determining the animation state	 274
Halting a running animation	 275

Caution when halting animations	 276
Global effect properties	 276

Globally disabling all effects	 276
Fine-tuning animation smoothness	 277
Defining effect durations	 277

Multi-property easing	 280

Table of Contents

[vii]

Deferred objects	 281
Animation promises	 282

Summary	 285
Further reading	 285

Exercises	 286
Chapter 12: Advanced DOM Manipulation	 287

Sorting table rows	 287
Server-side sorting	 287
Ajax sorting	 288
JavaScript sorting	 289

Moving and inserting elements, revisited	 290
Adding links around existing text	 290
Sorting simple JavaScript arrays	 291
Sorting DOM elements	 292

Storing data alongside DOM elements	 294
Performing additional precomputation	 295
Storing non-string data	 296
Alternating sort directions	 299

Using HTML5 custom data attributes	 300
Sorting and building rows with JSON	 303

Modifying the JSON object 	 305
Rebuilding content on demand	 306

Advanced attribute manipulation	 308
Shorthand element creation	 308
DOM manipulation hooks	 309

Writing a CSS hook	 310
Summary	 312

Further reading	 312
Exercises	 313

Chapter 13: Advanced Ajax	 315
Progressive enhancement with Ajax	 315

Harvesting JSONP data	 317
Ajax error handling	 321
The jqXHR object	 323

Ajax promises	 323
Caching responses	 325

Throttling Ajax requests	 327
Extending Ajax capabilities	 328

Data type converters	 328
Ajax prefilters	 333

Table of Contents

[viii]

Alternate transports	 334
Summary	 338

Further reading	 338
Exercises	 339

Appendix A: JavaScript Closures	 341
Inner functions	 341

The great escape	 343
Variable scoping	 344

Interactions between closures	 346
Closures in jQuery	 347

Arguments to $(document).ready()	 348
Event handlers	 348
Binding handlers in loops	 350
Named and anonymous functions	 352

Memory leak hazards	 353
Accidental reference loops	 354
The Internet Explorer memory leak problem	 355

The good news	 356
Summary	 356

Appendix B: Testing JavaScript with QUnit	 357
Downloading QUnit	 358
Setting up the document	 358
Organizing tests	 359
Adding and running tests	 360

Asynchronous testing	 363
Other types of tests	 364
Practical considerations	 364

Further reading	 365
Summary	 366

Appendix C: Quick Reference	 367
Selector expressions	 367

Simple CSS	 367
Position among siblings	 368
Position among matched elements	 368
Attributes	 369
Forms	 369
Other custom selectors	 370

DOM traversal methods	 370
Filtering	 370
Descendants	 371

Table of Contents

[ix]

Siblings	 371
Ancestors	 372
Collection manipulation	 372
Working with selected elements	 373

Event methods	 373
Binding	 374
Shorthand binding	 374
Special shorthands	 376
Triggering	 376
Shorthand triggering	 376
Utility	 377

Effect methods	 377
Predefined effects	 377
Custom animations	 378
Queue manipulation	 378

DOM manipulation methods	 378
Attributes and properties	 378
Content	 379
CSS	 379
Dimensions	 380
Insertion	 381
Replacement	 381
Removal	 382
Copying	 382
Data	 382

Ajax methods	 382
Issuing requests	 383
Request monitoring	 383
Configuration	 384
Utilities	 384

Deferred objects	 384
Object creation	 384
Methods of deferred objects	 385
Methods of promise objects	 385

Miscellaneous properties and functions	 385
Properties of the jQuery object	 386
Arrays and objects	 386
Object introspection	 386
Other	 387

Index	 389

Preface
In 2005, inspired by pioneers in the field such as Dean Edwards and Simon Willison,
John Resig put together a set of functions to make it easy to programmatically find
elements on a web page and assign behaviors to them. By the time he first publicly
announced his project in January 2006, he had added DOM modification and basic
animations. He gave it the name jQuery to emphasize the central role of finding, or
querying, parts of a web page and acting on them with JavaScript. In the few short
years since then, jQuery has grown in its feature set, improved in its performance,
and gained widespread adoption by many of the most popular sites on the Internet.
While Resig remains the lead developer of the project, jQuery has blossomed, in
true open-source fashion, to the point where it now boasts a core team of top-notch
JavaScript developers, as well as a vibrant community of thousands of developers.

The jQuery JavaScript library can enhance your websites regardless of your
background. It provides a wide range of features, an easy-to-learn syntax, and
robust cross-platform compatibility in a single compact file. What's more, hundreds
of plugins have been developed to extend jQuery's functionality, making it an
essential tool for nearly every client-side scripting occasion.

Learning jQuery Third Edition provides a gentle introduction to jQuery concepts,
allowing you to add interactions and animations to your pages—even if previous
attempts at writing JavaScript have left you baffled. This book guides you past the
pitfalls associated with Ajax, events, effects, and advanced JavaScript language
features, and provides you with a brief reference to the jQuery library to return
to again and again.

Preface

[2]

What This Book Covers
In Chapter 1, Getting Started, you'll get your feet wet with the jQuery JavaScript
library. The chapter begins with a description of jQuery and what it can do for you.
It then walks you through downloading and setting up the library, as well as writing
your first script.

In Chapter 2, Selecting Elements, you'll learn how to use jQuery's selector expressions
and DOM traversal methods to find elements on the page, wherever they may be.
You'll use jQuery to apply styling to a diverse set of page elements, sometimes in a
way that pure CSS cannot.

In Chapter 3, Handling Events, you'll use jQuery's event-handling mechanism to
fire off behaviors when browser events occur. You'll see how jQuery makes it easy
to attach events to elements unobtrusively, even before the page finishes loading.
Also, you'll get an overview of deeper topics, such as event bubbling, delegation,
and namespacing.

In Chapter 4, Styling and Animating, you'll be introduced to jQuery's animation
techniques and see how to hide, show, and move page elements with effects that
are both useful and pleasing to the eye.

In Chapter 5, Manipulating the DOM, you'll learn how to change your page on
command. This chapter will teach you how to alter the very structure of an HTML
document, as well as its content, on the fly.

In Chapter 6, Sending Data with Ajax, you'll discover the many ways in which jQuery
makes it easy to access server-side functionality without resorting to clunky page
refreshes. With the basic components of the library well in hand, you will be ready
to explore how the library can expand to fit your needs.

In Chapter 7, Using Plugins, will show you how to find, install, and use plugins,
including the powerful jQuery UI plugin library.

In Chapter 8, Developing Plugins, you'll learn how to take advantage of jQuery's
impressive extension capabilities to develop your own plugins from the ground up.
You'll create your own utility functions, add jQuery object methods, and discover the
jQuery UI widget factory. Next, you'll take a second tour through jQuery's building
blocks, learning more advanced techniques.

In Chapter 9, Advanced Selectors and Traversing, you'll refine your knowledge of
selectors and traversals, gaining the ability to optimize selectors for performance,
manipulate the DOM element stack, and write plugins that expand selecting and
traversing capabilities.

Preface

[3]

In Chapter 10, Advanced Events, you'll dive further into techniques such as
delegation and throttling that can greatly improve event handling performance.
You'll also create custom and special events that add even more capabilities to
the jQuery library.

In Chapter 11, Advanced Effects, you'll fine-tune the visual effects jQuery can provide
by crafting custom easing functions and reacting to each step of an animation. You'll
gain the ability to manipulate animations as they occur, and schedule actions with
custom queuing.

In Chapter 12, Advanced DOM Manipulation, you'll get more practice modifying the
DOM, with techniques such as attaching arbitrary data to elements. You'll also learn
how to extend the way jQuery processes CSS properties on elements.

In Chapter 13, Advanced Ajax, you'll achieve a greater understanding of Ajax
transactions, including the jQuery deferred object system for handling data that
may become available at a later time.

In Appendix A, JavaScript Closures, you'll gain a solid understanding of closures in
JavaScript—what they are and how you can use them to your advantage.

In Appendix B, Testing JavaScript with QUnit, you'll learn about the QUnit library
for unit testing of JavaScript programs. This library will add to your toolkit for
developing and maintaining highly sophisticated web applications.

In Appendix C, Quick Reference, you'll get a glimpse of the entire jQuery library,
including every one of its methods and selector expressions. Its easy-to-scan format
is perfect for those moments when you know what you want to do, but you're just
unsure about the right method name or selector.

What you need for this book
In order to run the example code demonstrated in this book, you need a modern
web browser such as Mozilla Firefox, Apple Safari, Google Chrome, or Microsoft
Internet Explorer.

To experiment with the examples and to work on the chapter-ending exercises, you
will also need:

•	 A basic text editor
•	 Web development tools for the browser such as Firebug (as described in

Chapter 1 in the Development Tools section)
•	 The full code package for each chapter, which includes a copy of the jQuery

library (seen in the following Downloading the example code section)

Preface

[4]

Additionally, to run some of the Ajax examples in Chapter 6 and beyond, you will
need a PHP-enabled web server.

Who this book is for
This book is for web designers who want to create interactive elements for their
designs, and for developers who want to create the best user interface for their web
applications. Basic JavaScript programming knowledge is required. You will need
to know the basics of HTML and CSS, and should be comfortable with the syntax
of JavaScript. No knowledge of jQuery is assumed, nor is experience with any other
JavaScript libraries required.

By reading this book, you will become familiar with the functionality and syntax of
jQuery 1.6.x, the latest version at the time of writing.

History of the jQuery project
This book covers the functionality and syntax of jQuery 1.6.x, the latest version at
the time of writing. The premise behind the library—providing an easy way to find
elements on a web page and manipulate them—has not changed over the course of
its development, but some syntax details and features have. This brief overview of
the project history describes the most significant changes from version to version,
which may prove helpful to readers working with legacy versions of the library.

•	 Public Development Phase: John Resig first made mention of an
improvement on Prototype's Behavior library in August of 2005. This new
framework was formally released as jQuery on January 14, 2006.

•	 jQuery 1.0 (August 2006): This, the first stable release of the library, already
had robust support for CSS selectors, event handling, and AJAX interaction.

•	 jQuery 1.1 (January 2007): This release streamlined the API considerably.
Many rarely-used methods were combined, reducing the number of methods
to learn and document.

•	 jQuery 1.1.3 (July 2007): This minor release contained massive speed
improvements for jQuery's selector engine. From this version on, jQuery's
performance would compare favorably to its fellow JavaScript libraries such
as Prototype, Mootools, and Dojo.

•	 jQuery 1.2 (September 2007): XPath syntax for selecting elements was
removed in this release, as it had become redundant with the CSS syntax.
Effect customization became much more flexible in this release, and plugin
development became easier with the addition of namespaced events.

Preface

[5]

•	 jQuery UI (September 2007): This new plugin suite was announced
to replace the popular, but aging, Interface plugin. A rich collection of
prefabricated widgets was included, as well as a set of tools for building
sophisticated elements such as drag-and-drop interfaces.

•	 jQuery 1.2.6 (May 2008): The functionality of Brandon Aaron's popular
Dimensions plugin was brought into the main library.

•	 jQuery 1.3 (January 2009): A major overhaul of the selector engine (Sizzle)
provided a huge boost to the library’s performance. Event delegation
became formally supported.

•	 jQuery 1.4 (January 2010): This version, perhaps the most ambitious update
since 1.0, brought many performance improvements to DOM manipulation,
as well as a large number of new or enhanced methods to nearly every
aspect of the library. Version 1.4 was accompanied by fourteen days of
announcements and videos on a dedicated website, http://jquery14.com/.

•	 jQuery 1.4.2 (February 2010): Two new event delegation methods,
.delegate() and .undelegate(), were added, and jQuery’s entire event
system saw a comprehensive overhaul for more flexible use and greater
cross-browser consistency.

•	 jQuery Mobile (August 2010): The jQuery Project publicly outlined its
strategy, research, and UI designs for mobile web development with jQuery
and a new mobile framework at http://jquerymobile.com/.

•	 jQuery 1.5 (January 2011): The Ajax component underwent a major rewrite,
adding greater extensibility and performance. Additionally, jQuery 1.5
included an implementation of the Promise pattern for handling queues
of both synchronous and asynchronous functions.

•	 jQuery 1.6 (May 2011): The Attribute component was rewritten to more
accurately reflect the distinction between HTML attributes and DOM
properties. Also, the Deferred object, which was introduced in jQuery 1.5,
received two new methods: .always() and .pipe().

Historical Details
Release notes for older jQuery versions can be found on the project's
website at http://jquery.org/history.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[6]

Code words in text are shown as follows: "This code illustrates that we can pass any
kind of expression into the console.log() method."

A block of code is set as follows:

$('button.show-details').click(function() {
 $('div.details').show();
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$('#switcher-narrow').bind('click', function() {
 $('body').removeClass().addClass('narrow');
});

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
Console tab will be of most frequent use to us while learning jQuery, as shown in
the following screenshot".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[7]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.comwith a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started
Today's World Wide Web is a dynamic environment, and its users set a high bar for
both style and function of sites. To build interesting, interactive sites, developers
are turning to JavaScript libraries such as jQuery to automate common tasks and
simplify complicated ones. One reason for jQuery's popularity is its ability to assist
in a wide range of tasks.

It can seem challenging to know where to begin because jQuery performs so
many different functions. Yet, there is a coherence and symmetry to the design of
the library; many of its concepts are borrowed from the structure of HTML and
Cascading Style Sheets (CSS). The library's design lends itself to a quick start for
designers with little programming experience as many of them have more experience
with these technologies than they do with JavaScript. In fact, in this opening chapter,
we'll write a functioning jQuery program in just three lines of code. On the other
hand, experienced programmers will also be aided by this conceptual consistency,
as we'll see in the later, more advanced chapters.

So let's look at what jQuery can do for us.

What jQuery does
The jQuery library provides a general-purpose abstraction layer for common web
scripting, and is, therefore, useful in almost every scripting situation. Its extensible
nature means that we could never cover all possible uses and functions in a single
book, as plugins are constantly being developed to add new abilities. The core
features, though, assist us in accomplishing the following tasks:

•	 Access elements in a document: Without a JavaScript library, web developers
often need to write many lines of code to traverse the Document Object
Model (DOM) tree and locate specific portions of an HTML document's
structure. With jQuery, developers have a robust and efficient selector
mechanism at their disposal, making it easy to retrieve the exact piece of
the document that needs to be inspected or manipulated.
$('div.content').find('p');

Getting Started

[10]

•	 Modify the appearance of a web page: CSS offers a powerful method of
influencing the way a document is rendered, but it falls short when web
browsers do not all support the same standards. With jQuery, developers
can bridge this gap, relying on the same standards support across all
browsers. In addition, jQuery can change the classes or individual style
properties applied to a portion of the document even after the page has
been rendered.
$('ul > li:first').addClass('active');

•	 Alter the content of a document: Not limited to mere cosmetic changes, jQuery
can modify the content of a document itself with a few keystrokes. Text can
be changed, images can be inserted or swapped, lists can be reordered, or the
entire structure of the HTML can be rewritten and extended—all with a single
easy-to-use Application Programming Interface (API).
$('#container').append('more');

•	 Respond to a user's interaction: Even the most elaborate and powerful
behaviors are not useful if we can't control when they take place. The jQuery
library offers an elegant way to intercept a wide variety of events, such as a
user clicking on a link, without the need to clutter the HTML code itself with
event handlers. At the same time, its event-handling API removes browser
inconsistencies that often plague web developers.
$('button.show-details').click(function() {
 $('div.details').show();
});

•	 Animate changes being made to a document: To effectively implement such
interactive behaviors, a designer must also provide visual feedback to the
user. The jQuery library facilitates this by providing an array of effects such
as fades and wipes, as well as a toolkit for crafting new graphic displays.
$('div.details').slideDown();

•	 Retrieve information from a server without refreshing a page: This code
pattern has become known as Ajax, which originally stood for asynchronous
JavaScript and XML, but has since come to represent a much greater set of
technologies for communicating between the client and the server. The jQuery
library removes the browser-specific complexity from this responsive, feature-
rich process, allowing developers to focus on the server-end functionality.
$('div.details').load('more.html #content');

Chapter 1

[11]

•	 Simplify common JavaScript tasks: In addition to all of the document-specific
features of jQuery, the library provides enhancements to basic JavaScript
constructs such as iteration and array manipulation.

$.each(obj, function(key, value) {
 total += value;
});

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Why jQuery works well
With the resurgence of interest in dynamic HTML comes a proliferation of JavaScript
frameworks. Some are specialized, focusing on just one or two of the above tasks.
Others attempt to catalog every possible behavior and animation, and serve these
all up pre-packaged. To maintain the wide range of features outlined above while
remaining relatively compact, jQuery employs several strategies:

•	 Leverage knowledge of CSS: By basing the mechanism for locating page
elements on CSS selectors, jQuery inherits a terse, yet legible, way of
expressing a document's structure. The jQuery library becomes an entry
point for designers who want to add behaviors to their pages because a
prerequisite for doing professional web development is to have knowledge
of CSS syntax.

•	 Support extensions: In order to avoid feature creep, jQuery relegates special-
case uses to plugins. The method for creating new plugins is simple and
well-documented, which has spurred the development of a wide variety
of inventive and useful modules. Most of the features in the basic jQuery
download are internally realized through the plugin architecture, and can be
removed if desired, yielding an even smaller library.

•	 Abstract away browser quirks: An unfortunate reality of web development is
that each browser has its own set of deviations from published standards. A
significant portion of any web application can be relegated to handle features
differently on each platform. While the ever-evolving browser landscape
makes a perfectly browser-neutral code base impossible for some advanced
features, jQuery adds an abstraction layer that normalizes the common tasks,
reducing the size of code while tremendously simplifying it.

Getting Started

[12]

•	 Always work with sets: When we instruct jQuery, "Find all elements with
the class collapsible and hide them," there is no need to loop through
each returned element. Instead, methods such as .hide() are designed
to automatically work on sets of objects instead of individual ones. This
technique, called implicit iteration, means that many looping constructs
become unnecessary, shortening code considerably.

•	 Allow multiple actions in one line: To avoid overuse of temporary variables
or wasteful repetition, jQuery employs a programming pattern called
chaining for the majority of its methods. This means that the result of most
operations on an object is the object itself, ready for the next action to be
applied to it.

These strategies have kept the jQuery package slim—roughly 30 KB, compressed—
while at the same time providing techniques to keep our custom code that uses the
library compact.

The elegance of the library comes about partly by design, and partly due to the
evolutionary process spurred by the vibrant community that has sprung up around
the project. Users of jQuery gather to discuss not only the development of plugins,
but also enhancements to the core library. The users and developers also assist in
continually improving the official project documentation, which can be found at
http://api.jquery.com.

Despite all of the efforts required to engineer such a flexible and robust system, the
end product is free for all to use. This open source project is dually licensed under
the MIT License (to permit free use of jQuery on any site and facilitate its use within
proprietary software) and the GNU Public License (appropriate for inclusion in
other GNU-licensed open-source projects).

Our first jQuery-powered web page
Now that we have covered the range of features available to us with jQuery, we can
examine how to put the library into action. To get started, we need a copy of jQuery.

Downloading jQuery
No installation is required. To use jQuery, we just need a publicly available copy
of the file, whether that copy is on an external site or our own. As JavaScript is
an interpreted language, there is no compilation or build phase to worry about.
Whenever we need a page to have jQuery available, we will simply refer to the
file's location from a <script> element in the HTML document.

Chapter 1

[13]

The official jQuery website (http://jquery.com/) always has the most up-to-date,
stable version of the library, which can be downloaded right from the home page of
the site. Several versions of jQuery may be available at any given moment; the most
appropriate for us as site developers will be the latest uncompressed version of the
library. This can be replaced with a compressed version in production environments.

As jQuery's popularity has grown, companies have made the file freely available
through their Content Delivery Networks (CDNs). Most notably, Google (http://
code.google.com/apis/ajaxlibs/documentation/), and Microsoft (http://
www.asp.net/ajax/cdn) offer the file on powerful, low-latency servers distributed
around the world for fast download regardless of the user's location. While a CDN-
hosted copy of jQuery has speed advantages due to server distribution and caching,
using a local copy can be convenient during development. Throughout this book
we'll use a copy of the file stored on our own system, which will allow us to run our
code whether we're connected to the Internet or not.

Setting up jQuery in an HTML document
There are three pieces to most examples of jQuery usage: the HTML document,
CSS files to style it, and JavaScript files to act on it. For our first example, we'll use a
page with a book excerpt that has a number of classes applied to portions of it. This
page includes a reference to the latest version of the jQuery library, which we have
downloaded, renamed jquery.js, and placed in our local project directory,
as follows:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Through the Looking-Glass</title>

 <link rel="stylesheet" href="01.css">

 <script src="jquery.js"></script>
 <script src="01.js"></script>
 </head>

 <body>
 <h1>Through the Looking-Glass</h1>
 <div class="author">by Lewis Carroll</div>

 <div class="chapter" id="chapter-1">
 <h2 class="chapter-title">1. Looking-Glass House</h2>

Getting Started

[14]

 <p>There was a book lying near Alice on the table,
 and while she sat watching the White King (for she
 was still a little anxious about him, and had the
 ink all ready to throw over him, in case he fainted
 again), she turned over the leaves, to find some
 part that she could read,

 "—for it's all in some language I don't know,"

 she said to herself.
 </p>
 <p>It was like this.</p>
 <div class="poem">
 <h3 class="poem-title">YKCOWREBBAJ</h3>
 <div class="poem-stanza">
 <div>sevot yhtils eht dna ,gillirb sawT'</div>
 <div>;ebaw eht ni elbmig dna eryg diD</div>
 <div>,sevogorob eht erew ysmim llA</div>
 <div>.ebargtuo shtar emom eht dnA</div>
 </div>
 </div>
 <p>She puzzled over this for some time, but at last
 a bright thought struck her.

 "Why, it's a Looking-glass book, of course! And if
 I hold it up to a glass, the words will all go the
 right way again."

 </p>
 <p>This was the poem that Alice read.</p>
 <div class="poem">
 <h3 class="poem-title">JABBERWOCKY</h3>
 <div class="poem-stanza">
 <div>'Twas brillig, and the slithy toves</div>
 <div>Did gyre and gimble in the wabe;</div>
 <div>All mimsy were the borogoves,</div>
 <div>And the mome raths outgrabe.</div>
 </div>
 </div>
 </div>
 </body>
</html>

Chapter 1

[15]

File Paths
The actual layout of files on the server does not matter. References from
one file to another just need to be adjusted to match the organization
we choose. In most examples in this book, we will use relative paths to
reference files (../images/foo.png) rather than absolute paths (/
images/foo.png). This will allow the code to run locally without the
need for a web server.

Immediately following the normal HTML preamble, the stylesheet is loaded. For this
example, we'll use the following:

body {
 background-color: #fff;
 color: #000;
 font-family: Helvetica, Arial, sans-serif;
}
h1, h2, h3 {
 margin-bottom: .2em;
}
.poem {
 margin: 0 2em;
}
.highlight {
 background-color: #ccc;
 border: 1px solid #888;
 font-style: italic;
 margin: 0.5em 0;
 padding: 0.5em;
}

After the stylesheet is referenced, the JavaScript files are included. It is important that
the script tag for the jQuery library be placed before the tag for our custom scripts;
otherwise, the jQuery framework will not be available when our code attempts to
reference it.

Throughout the rest of this book, only the relevant portions of HTML
and CSS files will be printed. The files in their entirety are available at the
book's companion website http://book.learningjquery.com.

Getting Started

[16]

Now we have a page that looks similar to the following screenshot:

We will use jQuery to apply a new style to the poem text.

This example is to demonstrate a simple use of jQuery. In real-world
situations, this type of styling could be performed purely with CSS.

Adding our jQuery code
Our custom code will go in the second, currently empty, JavaScript file which we
included from the HTML using <script src="01.js"></script>. For this example,
we only need three lines of code, as follows:

$(document).ready(function() {
 $('div.poem-stanza').addClass('highlight');
});

Chapter 1

[17]

Finding the poem text
The fundamental operation in jQuery is selecting a part of the document. This is
done with the $() function. Typically, it takes a string as a parameter, which can
contain any CSS selector expression. In this case, we wish to find all of the <div>
elements in the document that have the poem-stanza class applied to them, so the
selector is very simple. However, we will cover much more sophisticated options
through the course of the book. We will step through many ways of locating parts
of a document in Chapter 2, Selecting Elements.

When called, the $() function returns a new jQuery object instance, which is the
basic building block we will be working with from now on. This object encapsulates
zero or more DOM elements, and allows us to interact with them in many different
ways. In this case, we wish to modify the appearance of these parts of the page, and
we will accomplish this by changing the classes applied to the poem text.

Injecting the new class
The .addClass() method, like most jQuery methods, is named self-descriptively;
it applies a CSS class to the part of the page that we have selected. Its only parameter
is the name of the class to add. This method, and its counterpart, .removeClass(),
will allow us to easily observe jQuery in action as we explore the different selector
expressions available to us. For now, our example simply adds the highlight
class, which our stylesheet has defined as italicized text with a gray background
and a border.

Note that no iteration is necessary to add the class to all the poem stanzas. As we
discussed, jQuery uses implicit iteration within methods such as .addClass(), so a
single function call is all it takes to alter all of the selected parts of the document.

Executing the code
Taken together, $() and .addClass() are enough for us to accomplish our goal of
changing the appearance of the poem text. However, if this line of code is inserted
alone in the document header, it will have no effect. JavaScript code is generally
run as soon as it is encountered in the browser, and at the time the header is being
processed, no HTML is yet present to style. We need to delay the execution of the
code until after the DOM is available for our use.

With the $(document).ready() construct, jQuery allows us to schedule function
calls for firing once the DOM is loaded—without necessarily waiting for images
to fully render. While this event scheduling is possible without the aid of jQuery,
$(document).ready() provides an especially elegant cross-browser solution that:

•	 Uses the browser's native DOM ready implementations when available and
adds a window.onload event handler as a safety net

Getting Started

[18]

•	 Allows for multiple calls to $(document).ready() and executes them in the
order in which they are called

•	 Executes functions passed to $(document).ready() even if they are added
after the browser event has already occurred

•	 Handles the event scheduling asynchronously to allow scripts to delay it if
necessary

•	 Simulates a DOM ready event in some older browsers by repeatedly
checking for the existence of a DOM method that typically becomes available
at the same time as the DOM

The .ready() method's parameter can accept a reference to an already defined
function, as shown in the following code snippet:

function addHighlightClass() {
 $('div.poem-stanza').addClass('highlight');
}

$(document).ready(addHighlightClass);

Listing 1.1

However, as demonstrated in the original version of the script, and repeated
in Listing 1.2, as follows, the method can also accept an anonymous function
(sometimes also called a lambda function), as follows:

$(document).ready(function() {
 $('div.poem-stanza').addClass('highlight');
});

Listing 1.2

This anonymous function idiom is convenient in jQuery code for methods that
take a function as an argument when that function isn't reusable. Moreover, the
closure it creates can be an advanced and powerful tool. However, it may also
have unintended consequences and ramifications on memory use, if not dealt with
carefully. The topic of closures is discussed fully in Appendix A, JavaScript Closures.

Chapter 1

[19]

The finished product
Now that our JavaScript is in place, the page looks similar to the following screenshot:

The poem stanzas are now italicized and enclosed in boxes, as specified by the
01.css stylesheet, due to the insertion of the highlight class by the JavaScript code.

Plain JavaScript vs. jQuery
Even a task as simple as this can be complicated without jQuery at our disposal.
In plain JavaScript, we could add the highlighted class as shown in the following
code snippet:

window.onload = function() {
 var divs = document.getElementsByTagName('div');
 for (var i = 0; i < divs.length; i++) {
 if (hasClass(divs[i], 'poem-stanza')
 && !hasClass(divs[i], 'highlight')) {
 divs[i].className += ' highlight';

Getting Started

[20]

 }
 }

 function hasClass(elem, cls) {
 var reClass = new RegExp(' ' + cls + ' ');
 return reClass.test(' ' + elem.className + ' ');
 }
};

Listing 1.3

Despite its length, this solution does not handle many of the situations that jQuery
takes care of for us in Listing 1.2, such as the following:

•	 Properly respecting other window.onload event handlers
•	 Acting as soon as the DOM is ready
•	 Optimizing element retrieval and other tasks with modern DOM methods

We can see that our jQuery-driven code is easier to write, simpler to read, and faster
to execute than its plain JavaScript equivalent.

Development tools
As this code comparison has shown, jQuery code is typically shorter and clearer than
its basic JavaScript equivalent. However, this doesn't mean we will always write
code that is free from bugs, or that we will intuitively understand what is happening
on our pages at all times. Our jQuery coding experience will be much smoother with
the assistance of standard development tools.

High-quality development tools are available in all modern browsers. We can feel
free to use the environment that is most comfortable to us. Options include:

•	 The Internet Explorer Developer Tools:
http://msdn.microsoft.com/en-us/library/dd565628.aspx

•	 The Safari Web Inspector:
http://developer.apple.com/technologies/safari/developer-tools.
html

•	 The Chrome Developer Tools:
http://code.google.com/chrome/devtools/

•	 Firebug for Firefox: http://getfirebug.com/

Chapter 1

[21]

Each of these toolkits offers similar development features, including:

•	 The ability to explore and modify aspects of the DOM
•	 Investigating the relationship between CSS and its effect on page

presentation
•	 Convenient tracing of script execution through special methods
•	 Pausing execution of running scripts and inspecting variable values

While the details of these features vary from one browser to the next, the general
concepts remain constant. In this book, some examples will require the use of one of
these toolkits; we will use Firebug for these demonstrations, but development tools
for other browsers are fine alternatives.

Firebug
Up-to-date instructions for installing and using Firebug can be found on the project's
home page at http://getfirebug.com/. The tool is too involved to explore in great
detail here, but a survey of some of the most relevant features will be useful to us.

Understanding these screenshots
Firebug is a quickly-evolving project, so the following screenshots may
not exactly match your environment. Some of the labels and buttons are
provided by the optional FireQuery add-on:
http://firequery.binaryage.com/.

When Firebug is activated, a new panel appears offering information about the
current page.

Getting Started

[22]

In the default HTML tab of this panel, we can see a representation of the page
structure on the left side, and details of the selected element (such as the CSS rules that
apply to it) on the right side. This tab is especially useful for investigating the structure
of the page and debugging CSS issues, as shown in the following screenshot:

The Script tab allows us to view the contents of all loaded scripts on the page,
as shown in the preceding screenshot. By clicking on a line number, we can set a
breakpoint; when the script reaches a line with a breakpoint, it will pause until we
resume execution with a button click. On the right side of the page, we can enter a
list of variables and expressions we wish to know the value of at any time.

