

CouchDB and PHP Web
Development Beginner's Guide

Get your PHP application from conception to deployment by
leveraging CouchDB's robust features

Tim Juravich

BIRMINGHAM - MUMBAI

CouchDB and PHP Web Development Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2012

Production Reference: 1150612

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-849513-58-6

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

Credits

Author

Tim Juravich

Reviewers

Gonzalo Ayuso

David Carr

Wenbert Del Rosario

Acquisition Editor

Sarah Cullington

Lead Technical Editors

Arun Nadar

Chris Rodrigues

Technical Editor

Lubna Shaikh

Project Coordinator

Leena Purkait

Proofreader

Kevin McGowan

Indexer

Monica Ajmera Mehta

Graphics

Manu Joseph

Valentina D'silva

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

About the Author

Tim Juravich is an experienced product, program, and technology leader who has spent the
past decade leading teams through a variety of projects in PHP, Ruby, and .NET. After gaining
experience at several Fortune 500 companies, Tim discovered entrepreneurship, founded
three of his own startups, and helped dozens of other startups open their doors.

Tim currently serves as the Director of Program Management for Thinktiv, a venture
accelerator. When not at work, Tim actively mentors engineers, contributes to open source
projects, and works on a variety of side projects.

Check out Tim's blog at http://juravich.com, and be sure to follow him on
Twitter @timjuravich

I would like to thank my loving parents, my older (but smaller) brother Jon,
and my wife Leigha. Without Leigha's support and love through our first
year of marriage, this book, and much more, would not have been possible.

I would also like to thank my clients and colleagues who have provided
invaluable opportunities for me to shape my career, my life, and my
perspective on technology.

http://juravich.com

About the Reviewers

Gonzalo Ayuso is a web architect with more than 10 years of experience in web
development, specializing in open source technologies. He has experience in delivering
scalable, secure, and high-performing web solutions to large scale enterprise clients. He
has a varied background, always related to Linux and the Internet. He is mainly focused on
Internet technologies, databases, and programming languages (mostly PHP, Python, and
JavaScript). You can check his blog at gonzalo123.wordpress.com or follow him on
Twitter @gonzalo123.

Wenbert Del Rosario is from Cebu, Philippines. He started his career as a web
developer in college, learning PHP and Adobe Photoshop. He works with open source
technologies – Zend Framework, Code Igniter, MySQL, jQuery, and Wordpress are some
of the tools he has up his sleeve. He also works with Django (Python) and Ruby on Rails.

In his free time, he loves to work on personal projects. He also does some freelance and
consulting. He knows he has a lot to learn, but his experience has taught him to solve
real-world and business problems. He is very passionate and shares some of his thoughts
and day-to-day encounters through his blog (http://blog.ekini.net).

Wenbert's latest employer is Norwegian Pacific Offshore. He also has worked for Lexmark
Research and Development Corporation in Cebu.

I would like to thank my family and my wife, Noeme, for all their support
and encouragement.

http://gonzalo123.wordpress.com/
http://blog.ekini.net/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1

Chapter 1: Introduction to CouchDB	 7
The NoSQL database evolution	 7

What makes NoSQL different	 8
Classification of NoSQL databases	 8
CAP theorem	 10
ACID	 10
So what does all of that mean?	 11

Introduction to CouchDB	 12
The history of CouchDB	 12
Defining CouchDB	 13

Summary	 14

Chapter 2: Setting up your Development Environment	 15
Operating systems	 16

Windows	 16
Installing Apache and PHP	 16
Installing Git	 16
Installing CouchDB	 16

Linux	 16
Installing Apache and PHP	 17
Installing Git	 17
Installing CouchDB	 17

Setting up your web development environment on Mac OS X	 18
Terminal	 18

Time for action – using Terminal to show hidden files	 19
Text editor	 20
Apache	 20
Web browser	 21

Time for action – opening your web browser	 21

Table of Contents

[ii]

PHP	 22
Time for action – checking your PHP version	 22
Time for action – making sure that Apache can connect to PHP	 23
Time for action – creating a quick info page	 23

Fine tuning Apache	 25
Time for action – further configuration of Apache	 25

Our web development setup is complete!	 27
Installing CouchDB	 27
Homebrew	 27

Time for action – installing Homebrew	 27
Time for action – installing CouchDB	 28
Checking that our setup is complete	 28

Starting CouchDB	 29
Time for action – checking that CouchDB is running	 29

Running CouchDB as a background process	 30
Installing version control	 31

Git	 31
Time for action – installing and configuring Git	 31
Did you have any problems?	 32
Summary	 32

Chapter 3: Getting Started with CouchDB and Futon	 33
What is CouchDB?	 33

Database server	 34
Documents	 35

Example of a CouchDB document	 35
JSON format	 35
Key-value storage	 36
Reserved fields	 36

RESTful JSON API	 36
Time for action – getting a list of all databases in CouchDB	 38
Time for action – creating new databases in CouchDB	 39
Time for action – deleting a database In CouchDB	 40
Time for action – creating a CouchDB document	 41
Futon	 42
Time for action – updating a document in Futon	 44
Time for action – creating a document in Futon	 45
Security	 46
Time for action – taking CouchDB out of Admin Party	 46
Time for action – anonymously accessing the _users database	 47
Time for action – securing the _users database	 48

Table of Contents

[iii]

Time for action – checking to make sure the database is secure	 50
Time for action – accessing a database with security enabled	 51
Summary	 52

Chapter 4: Starting your Application	 53
What we'll build in this book	 53
Bones	 54
Project setup	 54
Time for action – creating the directories for Verge	 54

Source control with Git	 55
Time for action – initializing a Git repository	 55
Implementing basic routing	 56
Time for action – creating our first file: index.php	 56

.htaccess files	 57
Time for action – creating the .htaccess file	 57

Hacking together URLs	 59
Creating the skeleton of Bones	 59

Time for action – hooking up our application to Bones	 60
Using Bones to handle requests	 60

Time for action – creating the class structure of Bones	 61
Accessing the route	 61

Time for action – creating functions to access the route on Bones creation	 62
Matching URLs	 62

Time for action – creating the register function to match routes	 63
Calling the register function from our application	 64

Time for action – creating a get function in our Bones class	 64
Adding routes to our application	 65

Time for action – creating routes for us to test against Bones	 66
Testing it out!	 66
Adding changes to Git	 66

Handling layouts and views	 67
Using Bones to support views and layouts	 67

Time for action – using constants to get the location of the working directory	 67
Time for action – allowing Bones to store variables and the content path	 68
Time for action – allowing our application to display a view by calling it
in index.php	 69
Time for action – creating a simple layout file	 70

Adding views to our application	 70
Time for action – rendering views inside of our routes	 71
Time for action – creating views 	 71

Table of Contents

[iv]

Adding changes to Git	 72
Adding support for other HTTP methods	 72
Time for action – retrieving the HTTP method used in a request	 72
Time for action – altering the register to support different methods	 74
Time for action – adding simple but powerful helpers to Bones	 75

Using a form to test our HTTP method support	 76
Testing it out!	 77
Adding changes to Git	 77

Adding support for complex routing	 78
Handling complex routes	 78
Accessing route variables	 83
Adding more complex routes to index.php	 83
Testing it out!	 83
Adding changes to Git	 83

Adding support for public files	 84
Time for action – altering .htaccess to support public files	 84
Time for action – creating a stylesheet for the application	 85

Adding changes to Git	 86
Publishing your code to GitHub	 86
Get complete code from GitHub	 91
Summary	 91

Chapter 5: Connecting your Application to CouchDB	 93
Before we get started	 93
Time for action – creating a database for Verge with curl	 94
Diving in head first	 94

Adding logic to our signup script	 94
Time for action – adding an e-mail field to the signup form	 95

Using curl calls to post data to CouchDB	 95

Time for action – creating a standard object to encode to JSON	 96
Committing it to Git	 97

Time for action – creating a CouchDB document with PHP and curl	 98
Committing it to Git	 102

Is this technique good enough?	 103
Available CouchDB libraries	 103
Sag	 103

Downloading and setting up Sag	 103
Time for action – using Git to install Sag	 104

Adding Sag to Bones	 104

Time for action – adding Sag to Bones	 104
Simplifying our code with Sag	 105

Time for action – creating a document with Sag	 105

Table of Contents

[v]

Adding more structure	 106
Time for action – including the classes directory	 107

Working with classes	 107

Time for action – creating a Base object	 107
Time for action – creating a User object	 109
Time for action – plugging the User object in	 111

Testing it out	 112
Committing it to Git	 112

Wrapping up	 113
Summary	 113

Chapter 6: Modeling Users	 115
Before we get started	 115

Cleaning up our interface by installing Bootstrap	 116
Time for action – installing Bootstrap locally	 116
Time for action – including Bootstrap and adjusting our layout to
work with it	 118
Time for action – sprucing up the home page	 120

Moving all user files into the user folder	 122
Time for action – organizing our user views	 122
Designing our user documents	 123

How CouchDB looks at basic user documents	 123
Adding more fields to the user document	 124

Discussing options for adding these fields	 124
Adding support for the additional fields	 125

Time for action – adding the fields to support the user documents	 125
The signup process	 126

A little administrator setup	 127
Updating the interface	 127
Quick and dirty signup	 130

Time for action – handling simple user signup	 130
SHA-1	 134

Testing the signup process again	 135

Refactoring the signup process	 136
Time for action – cleaning up the signup process	 136
Exception handling and resolving errors	 138

Deciphering error logs	 139
Time for action – examining Apache's log	 139
Time for action: Examine CouchDB's log	 140

Catching errors	 141
Time for action – handling document update conflicts using
SagCouchException	 142

Table of Contents

[vi]

Showing alerts	 142
Time for action – showing alerts	 143
User authentication	 145

Setting up for the login form	 145
Logging in and logging out	 147

Time for action – adding functionality for users to log in	 147
Time for action – adding functionality for users to log out	 150

Handling the current user	 151
Time for action – handling the current user	 151
Summary	 153

Chapter 7: User Profiles and Modeling Posts	 155
User profile	 155

Finding a user with routes	 156
Time for action – getting single user documents	 156
Time for action – creating a route for user profiles	 157
Time for action – creating the user profile	 158

Testing it out	 159
Adding your changes to Git	 159

Fixing some problems	 160
Finding errors	 160

Time for action – examining Apache's log	 160
Handling 500 errors	 162

Time for action – handling 500 errors with Bones	 162
Time for action – handling exceptions	 163

Testing our exception handler	 165

Showing 404 errors	 166
404 if user isn't found	 167

Time for action: handling 404 errors with Bones	 167
Showing 404 errors for unknown users	 167
Hooking up 404 all around the site	 168

Time for action – handling 404 errors with Bones	 168
Testing it out	 169

Giving users a link to their profile	 170
Creating a better profile with Bootstrap	 171

Time for action – checking whether a user is currently logged in	 171
Cleaning up the profile's design	 172
Let's check out our new profile	 173
Adding your changes to Git	 174

Posts	 174
Modeling Posts	 174

How to model posts in MySQL	 174
How to model posts in CouchDB	 175

Table of Contents

[vii]

Creating posts	 177
Time for action – making a function to handle Post creation	 177
Time for action – making a form to enable Post creation	 178
Time for action – creating a route and handling the creation of the Post	 180

Test it out	 181
Adding your changes to Git	 182

Wrapping up	 183
Summary	 183

Chapter 8: Using Design Documents for Views and Validation	 185
Design documents	 185

A basic design document	 186
Views	 186

Map functions	 186

Time for action – creating a temporary view	 187
Time for action – creating a view for listing posts	 190

Querying map functions	 193

Time for action – querying the posts_by_user view 	 194
Using the view in our application	 196

Time for action – adding support to get_posts_by_user in the post class 	 197
Time for action – adding posts to the user profile	 198

Reduce functions	 201

Time for action – creating the reduce function in Futon	 202
Time for action – adding support to our application to consume the
reduce function	 204

More with MapReduce	 206

Validation	 206
Time for action – adding support for $_rev to our classes	 207
Time for action – adding support to delete posts in our application	 208

CouchDB's support for validation	 210

Time for action – adding a validate function to ensure that only creators
can update or delete their documents	 211
Time for action – hiding the delete buttons when not on the current
user's profile	 214
Wrapping up	 214

Want more examples?	 215
Working with design documents in Futon is too hard!	 215

Summary	 215

Chapter 9: Adding Bells and Whistles to your Application	 217
Adding jQuery to our project	 217

Installing jQuery	 218
Time for action – adding jQuery to our project	 218

Table of Contents

[viii]

Time for action – creating master.js and connecting Boostrap's
JavaScript files	 218
Using jQuery to improve our site	 219

Fixing our delete post action to actually use HTTP delete 	 219
Time for action – improving our user experience by using AJAX to
delete posts	 220

Updating our route to use the DELETE HTTP method	 222
Let's test it out!	 223

Adding simple pagination using jQuery	 223
Time for action – taking posts out of profile.php and putting them in their
own partial view	 224

Adding backend support for pagination	 225
Time for action – adjusting our get_posts_by_user function to skip and
limit posts	 225

Let's test it out!	 227

Time for action – refactoring our code so it's not redundant	 228
Time for action – adding frontend support for pagination	 230
Time for action – fixing our delete post function to work with pagination	 232

Testing our complete pagination system	 233

Using Gravatars	 234
Time for action – adding Gravatars to our application	 234

Testing our Gravatars	 236
Adding everything to Git	 239

Summary	 239

Chapter 10: Deploying your Application	 241
Before we get started	 241

Application hosting	 242
CouchDB hosting	 243

Database hosting with Cloudant	 243
Getting started with Cloudant	 244
Creating a _users database	 246
Creating a verge database	 246
Using Futon on Cloudant	 247
Configuring permissions	 250

Configuring our project	 251
Time for action – creating a configuration class	 252
Time for action – adding our configuration file to Bones	 254

Adding changes to Git	 256
Application hosting with PHP Fog	 256

Setting up a PHP Fog account	 256
Creating environment variables	 260

Table of Contents

[ix]

Deploying to PHP Fog	 263
Adding our SSH key to PHP Fog	 263
Connecting to PHP Fog's Git repository	 264
Deploy to PHP Fog	 265

Replicating local data to production	 266
Time for action – replicating our local _users database to Cloudant	 266
What's next?	 271

Scaling your application	 271
Next steps	 271

Summary	 272

Bonus Chapter
You can download the Bonus Chapter from
http://www.packtpub.com/sites/default/files/downloads/Replicating_

your_Data.pdf.

Pop Quiz Answers	 273
Chapter 2, Setting up your Development Environment	 273
Chapter 3, Getting Started with CouchDB and Futon	 274

Index	 275

Preface
PHP and CouchDB Web Development will teach you the fundamentals of combining
CouchDB and PHP to create a full application from conception to deployment. This book
will direct you in developing a basic social network, while guiding you through some of the
common pitfalls that are frequently associated with NoSQL databases.

What this book covers
Chapter 1, Introduction to CouchDB, provides a quick definition of NoSQL and an overview
of CouchDB.

Chapter 2, Setting up your Development Environment, sets up your computer for developing
an application with PHP and CouchDB.

Chapter 3, Getting Started with CouchDB and Futon, defines CouchDB documents and shows
how to manage them both from the command-line and within Futon – CouchDB's built-in
administration utility.

Chapter 4, Starting your Application, creates a simple PHP framework to house your
application and publishes this code to GitHub.

Chapter 5, Connecting your Application to CouchDB, connects your application to CouchDB
using a variety of methods, and ultimately picks the right solution for your application.

Chapter 6, Modeling Users, creates users within your application and handles document
creation and authentication with CouchDB.

Chapter 7, User Profiles and Modeling Posts, perfects your user profile using Bootstrap and
posts content to CouchDB.

Chapter 8, Using Design Documents for Views and Validation, explores CouchDB's exclusive
use of Design Documents to improve the quality of your application.

Preface

[2]

Chapter 9, Adding Bells and Whistles to your Application, leverages existing tools to simplify
and improve your application.

Chapter 10, Deploying your Application, shows your application to the world, and teaches
you how to launch your application and database using a variety of Cloud services.

Bonus Chapter, Replicating your Data, finds out how to use CouchDB's replication system to
scale your application as it grows.

You can download the Bonus Chapter from http://www.packtpub.com/sites/
default/files/downloads/Replicating_your_Data.pdf.

What you need for this book
You'll need a modern computer with Mac OSX. Chapter 1, Introduction to CouchDB, will
provide the setup instructions for Linux and Windows machines, and the code written in
this book will work on any machine. However, the majority of the command-line statements
and applications that we'll use in this book are Mac OSX-specific.

Who this book is for
This book is for beginners and intermediate PHP developers, who are interested in using
CouchDB development in their projects. Advanced PHP developers will appreciate the
familiarity of the PHP architecture, and can easily learn how to incorporate CouchDB into
their existing development experiences.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

Preface

[3]

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " It's difficult to standardize the install methods
for Linux, because there are many different flavors and configurations."

A block of code is set as follows:

<Directory />
 Options FollowSymLinks
 AllowOverride None
 Order deny,allow
 Allow from all

</Directory>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<Directory />
 Options FollowSymLinks
 AllowOverride All
 Order deny,allow
 Allow from all
</Directory>

Any command-line input or output is written as follows:

sudo apt-get install php5 php5-dev libapache2-mod-php5 php5-curl php5-
mcrypt

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Start by opening Terminal".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Introduction to CouchDB

Welcome to CouchDB and PHP Web Development Beginner's Guide. In this
book, we will learn the ins and outs of building a simple but powerful website
using CouchDB and PHP. For you to understand why we do certain things
in CouchDB, it's first important for you to understand the history of NoSQL
databases and learn CouchDB's place in database history.

In this chapter we will:

�� Go over a brief history of databases and their place in technology

�� Talk about how databases evolved into the concept of NoSQL

�� Define NoSQL databases by understanding different classifications of NoSQL
databases, the CAP theorem and its avoidance of the ACID model

�� Look at the history of CouchDB and its main contributors

�� Talk about what makes CouchDB special

Let's start by looking at the evolution of databases and how NoSQL arrived on the scene.

The NoSQL database evolution
In the early 1960s, the term database was introduced to the world as a simple layer that
would serve as the backbone behind information systems. The simple concept of separating
applications from data was new and exciting, and it opened up possibilities for applications
to become more robust. At this point, databases existed first as tape-based devices, but soon
became more usable as system direct-access storage on disks.

Introduction to CouchDB

[8]

In 1970, Edgar Codd proposed a more efficient way of storing data – the relational model.
This model would also use SQL to allow the applications to find the data stored within its
tables. This relational model is nearly identical to what we know as traditional relational
databases today. While this model was widely accepted, it wasn't until the mid 1980s that
there was hardware that could actually make effective use of it. By 1990, hardware finally
caught up, and the relational model became the dominant method for storing data.

Just as in any area of technology, competition arose with Relational Database Management
Systems (RDBMS) . Some examples of popular RDMBS systems are Oracle, Microsoft SQL
Server, MySQL, and PostgreSQL.

As we moved past the year 2000, applications began to produce incredible amounts of
data through more complex applications. Social networks entered the scene. Companies
wanted to make sense of the vast amounts of data that were available. This shift brought up
some serious concerns about the datastructure, scalability, and availability of data that the
relational model didn't seem to handle. With the uncertainty of how to manage this large
amount of ever-changing data, the term NoSQL emerged.

The term NoSQL isn't short for "no SQL;" it actually stands for "not only SQL". NoSQL
databases are a group of persistent solutions, which do not follow the relational model and
do not use SQL for querying. On top of that, NoSQL wasn't introduced to replace relational
databases. It was introduced to complement relational databases where they fell short.

What makes NoSQL different
Besides the fact that NoSQL databases do not use SQL to query data, there are a few key
characteristics of NoSQL databases. In order to understand these characteristics, we'll
need to cover a lot of terminology and definitions. It's not important that you memorize
or remember everything here, but it's important for you to know exactly what makes up a
NoSQL database.

The first thing that makes NoSQL databases different is their data structure. There are a
variety of different ways in which NoSQL databases are classified.

Classification of NoSQL databases
NoSQL databases (for the most part) fit into four main data structures:

�� Key-value stores: They save data with a unique key and a value. Their simplicity
allow them to be incredibly fast and scale to enormous sizes.

�� Column stores: They are similar to relational databases, but instead of storing
records, they store all of the values for a column together in a stream.

Chapter 1

[9]

�� Document stores: They save data without it being structured in a schema, with
buckets of key-value pairs inside a self-contained object. This datastructure is
reminiscent of an associative array in PHP. This is where CouchDB lands on the
playing field. We'll go much deeper into this topic in Chapter 3, Getting Started with
CouchDB and Futon.

�� Graph databases: They store data in a flexible graph model that contains a node for
each object. Nodes have properties and relationships to other nodes.

We won't go too deeply into examples of each of these types of databases, but it's important
to look at the different options that are out there. By looking at databases at this level, it's
relatively easy for us to see (in general) how the data will scale to size and complexity, by
looking at the following screenshot:

S
c
a
le

To
S

iz
e

Key/value Stores

Column Stores

Document Database

Graph Database

Typical Relational Database

RDBMS Performance Line

Scale To Complexity

If you look at this diagram, you'll see that I've placed a Typical Relational Database with a
crude performance line. This performance line gives you a simple idea of how a database
might scale in size and complexity. How is it possible that NoSQL databases perform so much
better in regards to high size and complexity of data?

For the most part, NoSQL databases are scalable because they rely on distributed systems
and ignore the ACID model. Let's talk through what we gain and what we give up through a
distributed system, and then define the ACID model.

When talking about any distributed system (not just storage or databases), there is a concept
that defines the limitations of what you can do. This is known as the CAP theorem.

Introduction to CouchDB

[10]

CAP theorem
Eric Brewer introduced the CAP theorem in the year 2000. It states that in any distributed
environment, it is impossible for it to provide three guarantees.

�� Consistency: All the servers in the system will have the same data. So, anyone using
the system will get the latest data, regardless of which node they talk to in the
distributed system.

�� Availability: All of the servers will always return data.

�� Partition-tolerance: The system continues to operate as a whole, even if an
individual server fails or cannot be reached.

By looking at these choices, you can tell that it would definitely be ideal to have all three
of these things guaranteed, but it's theoretically impossible. In the real world, each NoSQL
database picks two of the three options, and usually develops some kind of process to
mitigate the impact of the third, unhandled property.

We'll talk about which approach CouchDB takes shortly, but there is still a bit to learn about
another concept that NoSQL databases avoid: ACID.

ACID
ACID is a set of properties that apply to database transactions, which are the core of
traditional relational databases. While transactions are incredibly powerful, they are also
one of the things that make reading and writing quite a bit slower in relational databases.

ACID is made up of four main properties:

�� Atomicity: This is an all or nothing approach to dealing with data. Everything in the
transaction must happen successfully, or none of the changes are committed. This is
a key property whenever money or currency is handled in a system, and requires a
system of checks and balances.

�� Consistency: Data will only be accepted if it passes all of the validation in place on
the database, such as triggers, data types, and constraints.

�� Isolation: Transactions will not affect other transactions that are occurring, and
other users won't see partial results of a transaction in progress.

�� Durability: Once the data is saved, it is safe against errors, crashes, and other
software malfunctions.

Again, as you read through the definition of ACID, you are probably thinking to yourself,
"These are all must haves!" That may be the case, but keep in mind that most NoSQL
databases do not fully employ ACID, because it's near impossible to have all of these
restrictions and still have blazing fast writes to data.

Chapter 1

[11]

So what does all of that mean?
I've given you a lot of definitions now, but let's try to wrap it together into a few simple lists.
Let's talk through the advantages and disadvantages of NoSQL databases, when to use, and
when to avoid NoSQL databases.

Advantages of NoSQL databases
With the introduction of NoSQL databases, there are lot of advantages:

�� You can do things that simply weren't possible with the processing and query power
of traditional relational databases.

�� Your data is scalable and flexible, allowing it to scale to size and complexity faster,
right out of the box.

�� There are new data models to consider. You don't have to force your data into a
relational model if it doesn't make sense.

�� Writing data is blazing fast.

As you can see, there are some clear advantages of NoSQL databases, but as I mentioned
before, there are still some negatives that we need to consider.

Negatives of NoSQL databases
However, along with the good, there's also some bad:

�� There are no common standards; each database does things just a little bit
differently

�� Querying data does not involve the familiar SQL model to find records

�� NoSQL databases are still relatively immature and constantly evolving

�� There are new data models to consider; sometimes it can be confusing to make your
data fit

�� Because a NoSQL database avoids the ACID model, there is no guarantee that all of
your data will be successfully written

Some of those negatives may be pretty easy for you to stomach, except for NoSQL's
avoidance of the ACID model.

When you should use NoSQL databases
Now that we have a good take on the advantages and disadvantages, let's talk about some
great use cases for using NoSQL databases:

�� Applications that have a lot of writing

�� Applications where the schema and structure of the data might change

Introduction to CouchDB

[12]

�� Large amount of unstructured or semi-structured data

�� Traditional relational databases feel restricting, and you want to try something new.

That list isn't exclusive, but there are no clear definitions on when you can use NoSQL
databases. Really, you can use them for just about every project.

When you should avoid NoSQL databases
There are, however, some pretty clear areas that you should avoid when storing
data in NoSQL.

�� Anything involving money or transactions. What happens if one record doesn't
save correctly because of NoSQL avoidance of the ACID model or the data isn't 100
percent available because of the distributed system?

�� Business critical data or line of business applications, where missing one row of data
could mean huge problems.

�� Heavily-structured data requiring functionality in a relational database.

For all of these use cases, you should really focus on using relational databases that will
make sure that your data is safe and sound. Of course, you can always include NoSQL
databases where it makes sense.

When choosing a database, it's important to remember that "There is no silver bullet."
This phrase is used a lot when talking about technology, and it means that there is no one
technology that will solve all of your problems without having any side effects or negative
consequences. So choose wisely!

Introduction to CouchDB
For this book and for a variety of my own projects and startups, I chose CouchDB. Let's take
a historical look at CouchDB, then quickly touch on its approach to the CAP theorem, and its
strengths and weaknesses.

The history of CouchDB
In April 2005, Damien Katz posted a blog entry about a new database engine he was working
on, later to be called CouchDB, which is an acronym for Cluster Of Unreliable Commodity
Hardware. Katz, a former Lotus Notes developer at IBM, was attempting to create a fault-
tolerant document database in C++, but soon after, shifted to the Erlang OTP platform. As
months went by, CouchDB started to evolve under the self-funding of Damien Katz, and
in February 2008, it was introduced to the Apache Incubator project. Finally, in November
2008, it graduated as a top-level project.

Chapter 1

[13]

Damien's team, CouchOne, merged with the Membase team in 2011 to form a new company
called Couchbase. This company was formed to merge CouchDB and Membase into a new
product, and increase the documentation and visibility for the product.

In early 2012, Couchbase announced that it would be shifting focus from facilitating
CouchDB and moving to create Couchbase Server 2.0. This new database takes a different
approach to the database, which meant that it would not be contributing to the CouchDB
community anymore. This news was met with some distress in the CouchDB community until
Cloudant stepped in.

Cloudant, the chief CouchDB hosting company and creator of BigCouch, a fault tolerant
and horizontally scalable clustering frameworking built for CouchDB, announced that
they would merge their changes back to CouchDB, and take on the role of continuing
development of CouchDB.

In early 2012, at the time of writing, CouchDB's most major release was 1.1.1 in March 31,
2011. But CouchDB 1.2 is looking to be released just around the corner!

Defining CouchDB
According to http://couchdb.apache.org/, CouchDB can be defined as:

�� A document database server, accessible via a RESTful JSON API

�� Ad-hoc and schema-free with a flat address space

�� Distributed, featuring robust, incremental replication with bi-directional conflict
detection and management

�� Query-able and index-able, featuring a table oriented reporting engine that uses
JavaScript as a query language.

You might be able to read between the lines, but CouchDB chose availability and partial-
tolerance from the CAP theorem, and focuses on eventual consistency using replication.

We could go really deep into what each of these bullet points mean, because it will take the
rest of the book until we've touched on them in depth. In each chapter, we'll begin to build
on top of our CouchDB knowledge until we have a fully operational application in the wild.

Introduction to CouchDB

[14]

Summary
I hope you enjoyed this chapter and are ready to take a deep dive into really learning the ins
and outs of CouchDB. Let's recap everything we learned in this chapter.

�� We talked about the history of databases and the emergence of NoSQL databases

�� We defined the advantages and disadvantages of using NoSQL

�� We looked at the definition and history of CouchDB

That's it for the history lesson. Fire up your computer. In the next chapter, we'll set
everything up to develop web applications with CouchDB and PHP, and make sure that
it's all set up correctly.

