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Preface
PHP and CouchDB Web Development will teach you the fundamentals of combining 
CouchDB and PHP to create a full application from conception to deployment. This book 
will direct you in developing a basic social network, while guiding you through some of the 
common pitfalls that are frequently associated with NoSQL databases.

What this book covers
Chapter 1, Introduction to CouchDB, provides a quick definition of NoSQL and an overview  
of CouchDB.

Chapter 2, Setting up your Development Environment, sets up your computer for developing 
an application with PHP and CouchDB.

Chapter 3, Getting Started with CouchDB and Futon, defines CouchDB documents and shows 
how to manage them both from the command-line and within Futon – CouchDB's built-in 
administration utility. 

Chapter 4, Starting your Application, creates a simple PHP framework to house your 
application and publishes this code to GitHub.

Chapter 5, Connecting your Application to CouchDB, connects your application to CouchDB 
using a variety of methods, and ultimately picks the right solution for your application.

Chapter 6, Modeling Users, creates users within your application and handles document 
creation and authentication with CouchDB.

Chapter 7, User Profiles and Modeling Posts, perfects your user profile using Bootstrap and 
posts content to CouchDB.

Chapter 8, Using Design Documents for Views and Validation, explores CouchDB's exclusive 
use of Design Documents to improve the quality of your application.
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Chapter 9, Adding Bells and Whistles to your Application, leverages existing tools to simplify 
and improve your application.

Chapter 10, Deploying your Application, shows your application to the world, and teaches 
you how to launch your application and database using a variety of Cloud services.

Bonus Chapter, Replicating your Data, finds out how to use CouchDB's replication system to 
scale your application as it grows.

You can download the Bonus Chapter from http://www.packtpub.com/sites/
default/files/downloads/Replicating_your_Data.pdf.

What you need for this book
You'll need a modern computer with Mac OSX. Chapter 1, Introduction to CouchDB, will 
provide the setup instructions for Linux and Windows machines, and the code written in  
this book will work on any machine. However, the majority of the command-line statements 
and applications that we'll use in this book are Mac OSX-specific.

Who this book is for
This book is for beginners and intermediate PHP developers, who are interested in using 
CouchDB development in their projects. Advanced PHP developers will appreciate the 
familiarity of the PHP architecture, and can easily learn how to incorporate CouchDB into 
their existing development experiences.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are 
followed with:
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What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you  
have learned.

You will also find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " It's difficult to standardize the install methods 
for Linux, because there are many different flavors and configurations."

A block of code is set as follows: 

<Directory />
  Options FollowSymLinks
  AllowOverride None
  Order deny,allow
  Allow from all

</Directory>

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

<Directory />
  Options FollowSymLinks
  AllowOverride All
  Order deny,allow
  Allow from all
</Directory>

Any command-line input or output is written as follows:

sudo apt-get install php5 php5-dev libapache2-mod-php5 php5-curl php5-
mcrypt
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New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "Start by opening Terminal".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

http://www.packtpub.com
http://www.packtpub.com/support
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you 
find any errata, please report them by visiting http://www.packtpub.com/support, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata 
will be uploaded to our website, or added to any list of existing errata, under the Errata 
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com




1
Introduction to CouchDB

Welcome to CouchDB and PHP Web Development Beginner's Guide. In this 
book, we will learn the ins and outs of building a simple but powerful website 
using CouchDB and PHP. For you to understand why we do certain things 
in CouchDB, it's first important for you to understand the history of NoSQL 
databases and learn CouchDB's place in database history. 

In this chapter we will:

�� Go over a brief history of databases and their place in technology

�� Talk about how databases evolved into the concept of NoSQL

�� Define NoSQL databases by understanding different classifications of NoSQL 
databases, the CAP theorem and its avoidance of the ACID model

�� Look at the history of CouchDB and its main contributors

�� Talk about what makes CouchDB special

Let's start by looking at the evolution of databases and how NoSQL arrived on the scene.

The NoSQL database evolution
In the early 1960s, the term database was introduced to the world as a simple layer that 
would serve as the backbone behind information systems. The simple concept of separating 
applications from data was new and exciting, and it opened up possibilities for applications 
to become more robust. At this point, databases existed first as tape-based devices, but soon 
became more usable as system direct-access storage on disks.
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In 1970, Edgar Codd proposed a more efficient way of storing data – the relational model. 
This model would also use SQL to allow the applications to find the data stored within its 
tables. This relational model is nearly identical to what we know as traditional relational 
databases today. While this model was widely accepted, it wasn't until the mid 1980s that 
there was hardware that could actually make effective use of it. By 1990, hardware finally 
caught up, and the relational model became the dominant method for storing data.

Just as in any area of technology, competition arose with Relational Database Management 
Systems (RDBMS) . Some examples of popular RDMBS systems are Oracle, Microsoft SQL 
Server, MySQL, and PostgreSQL.

As we moved past the year 2000, applications began to produce incredible amounts of 
data through more complex applications. Social networks entered the scene. Companies 
wanted to make sense of the vast amounts of data that were available. This shift brought up 
some serious concerns about the datastructure, scalability, and availability of data that the 
relational model didn't seem to handle. With the uncertainty of how to manage this large 
amount of ever-changing data, the term NoSQL emerged.

The term NoSQL isn't short for "no SQL;" it actually stands for "not only SQL". NoSQL 
databases are a group of persistent solutions, which do not follow the relational model and 
do not use SQL for querying. On top of that, NoSQL wasn't introduced to replace relational 
databases. It was introduced to complement relational databases where they fell short.

What makes NoSQL different
Besides the fact that NoSQL databases do not use SQL to query data, there are a few key 
characteristics of NoSQL databases. In order to understand these characteristics, we'll 
need to cover a lot of terminology and definitions. It's not important that you memorize 
or remember everything here, but it's important for you to know exactly what makes up a 
NoSQL database. 

The first thing that makes NoSQL databases different is their data structure. There are a 
variety of different ways in which NoSQL databases are classified.

Classification of NoSQL databases
NoSQL databases (for the most part) fit into four main data structures:

�� Key-value stores: They save data with a unique key and a value. Their simplicity 
allow them to be incredibly fast and scale to enormous sizes.

�� Column stores: They are similar to relational databases, but instead of storing 
records, they store all of the values for a column together in a stream.
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�� Document stores: They save data without it being structured in a schema, with 
buckets of key-value pairs inside a self-contained object. This datastructure is 
reminiscent of an associative array in PHP. This is where CouchDB lands on the 
playing field. We'll go much deeper into this topic in Chapter 3, Getting Started with 
CouchDB and Futon.

�� Graph databases: They store data in a flexible graph model that contains a node for 
each object. Nodes have properties and relationships to other nodes.

We won't go too deeply into examples of each of these types of databases, but it's important 
to look at the different options that are out there. By looking at databases at this level, it's 
relatively easy for us to see (in general) how the data will scale to size and complexity, by 
looking at the following screenshot:

S
c
a
le

To
S

iz
e

Key/value Stores

Column Stores

Document Database

Graph Database

Typical Relational Database

RDBMS Performance Line

Scale To Complexity

If you look at this diagram, you'll see that I've placed a Typical Relational Database with a 
crude performance line. This performance line gives you a simple idea of how a database 
might scale in size and complexity. How is it possible that NoSQL databases perform so much 
better in regards to high size and complexity of data?

For the most part, NoSQL databases are scalable because they rely on distributed systems 
and ignore the ACID model. Let's talk through what we gain and what we give up through a 
distributed system, and then define the ACID model.

When talking about any distributed system (not just storage or databases), there is a concept 
that defines the limitations of what you can do. This is known as the CAP theorem.
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CAP theorem
Eric Brewer introduced the CAP theorem in the year 2000. It states that in any distributed 
environment, it is impossible for it to provide three guarantees.

�� Consistency: All the servers in the system will have the same data. So, anyone using 
the system will get the latest data, regardless of which node they talk to in the 
distributed system.

�� Availability: All of the servers will always return data.

�� Partition-tolerance: The system continues to operate as a whole, even if an 
individual server fails or cannot be reached.

By looking at these choices, you can tell that it would definitely be ideal to have all three 
of these things guaranteed, but it's theoretically impossible. In the real world, each NoSQL 
database picks two of the three options, and usually develops some kind of process to 
mitigate the impact of the third, unhandled property. 

We'll talk about which approach CouchDB takes shortly, but there is still a bit to learn about 
another concept that NoSQL databases avoid: ACID.

ACID
ACID is a set of properties that apply to database transactions, which are the core of 
traditional relational databases. While transactions are incredibly powerful, they are also  
one of the things that make reading and writing quite a bit slower in relational databases.

ACID is made up of four main properties:

�� Atomicity: This is an all or nothing approach to dealing with data. Everything in the 
transaction must happen successfully, or none of the changes are committed. This is 
a key property whenever money or currency is handled in a system, and requires a 
system of checks and balances.

�� Consistency: Data will only be accepted if it passes all of the validation in place on 
the database, such as triggers, data types, and constraints.

�� Isolation: Transactions will not affect other transactions that are occurring, and 
other users won't see partial results of a transaction in progress.

�� Durability: Once the data is saved, it is safe against errors, crashes, and other 
software malfunctions.

Again, as you read through the definition of ACID, you are probably thinking to yourself, 
"These are all must haves!" That may be the case, but keep in mind that most NoSQL 
databases do not fully employ ACID, because it's near impossible to have all of these 
restrictions and still have blazing fast writes to data.
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So what does all of that mean?
I've given you a lot of definitions now, but let's try to wrap it together into a few simple lists. 
Let's talk through the advantages and disadvantages of NoSQL databases, when to use, and 
when to avoid NoSQL databases.

Advantages of NoSQL databases
With the introduction of NoSQL databases, there are lot of advantages:

�� You can do things that simply weren't possible with the processing and query power 
of traditional relational databases.

�� Your data is scalable and flexible, allowing it to scale to size and complexity faster, 
right out of the box.

�� There are new data models to consider. You don't have to force your data into a 
relational model if it doesn't make sense. 

�� Writing data is blazing fast.

As you can see, there are some clear advantages of NoSQL databases, but as I mentioned 
before, there are still some negatives that we need to consider.

Negatives of NoSQL databases
However, along with the good, there's also some bad:

�� There are no common standards; each database does things just a little bit 
differently

�� Querying data does not involve the familiar SQL model to find records

�� NoSQL databases are still relatively immature and constantly evolving

�� There are new data models to consider; sometimes it can be confusing to make your 
data fit

�� Because a NoSQL database avoids the ACID model, there is no guarantee that all of 
your data will be successfully written

Some of those negatives may be pretty easy for you to stomach, except for NoSQL's 
avoidance of the ACID model.

When you should use NoSQL databases
Now that we have a good take on the advantages and disadvantages, let's talk about some 
great use cases for using NoSQL databases:

�� Applications that have a lot of writing

�� Applications where the schema and structure of the data might change
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�� Large amount of unstructured or semi-structured data

�� Traditional relational databases feel restricting, and you want to try something new.

That list isn't exclusive, but there are no clear definitions on when you can use NoSQL 
databases. Really, you can use them for just about every project. 

When you should avoid NoSQL databases
There are, however, some pretty clear areas that you should avoid when storing  
data in NoSQL.

�� Anything involving money or transactions. What happens if one record doesn't 
save correctly because of NoSQL avoidance of the ACID model or the data isn't 100 
percent available because of the distributed system?

�� Business critical data or line of business applications, where missing one row of data 
could mean huge problems.

�� Heavily-structured data requiring functionality in a relational database.

For all of these use cases, you should really focus on using relational databases that will 
make sure that your data is safe and sound. Of course, you can always include NoSQL 
databases where it makes sense.

When choosing a database, it's important to remember that "There is no silver bullet." 
This phrase is used a lot when talking about technology, and it means that there is no one 
technology that will solve all of your problems without having any side effects or negative 
consequences. So choose wisely!

Introduction to CouchDB
For this book and for a variety of my own projects and startups, I chose CouchDB. Let's take 
a historical look at CouchDB, then quickly touch on its approach to the CAP theorem, and its 
strengths and weaknesses.

The history of CouchDB
In April 2005, Damien Katz posted a blog entry about a new database engine he was working 
on, later to be called CouchDB, which is an acronym for Cluster Of Unreliable Commodity 
Hardware. Katz, a former Lotus Notes developer at IBM, was attempting to create a fault-
tolerant document database in C++, but soon after, shifted to the Erlang OTP platform. As 
months went by, CouchDB started to evolve under the self-funding of Damien Katz, and 
in February 2008, it was introduced to the Apache Incubator project. Finally, in November 
2008, it graduated as a top-level project.
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Damien's team, CouchOne, merged with the Membase team in 2011 to form a new company 
called Couchbase. This company was formed to merge CouchDB and Membase into a new 
product, and increase the documentation and visibility for the product.

In early 2012, Couchbase announced that it would be shifting focus from facilitating 
CouchDB and moving to create Couchbase Server 2.0. This new database takes a different 
approach to the database, which meant that it would not be contributing to the CouchDB 
community anymore. This news was met with some distress in the CouchDB community until 
Cloudant stepped in.

Cloudant, the chief CouchDB hosting company and creator of BigCouch, a fault tolerant  
and horizontally scalable clustering frameworking built for CouchDB, announced that 
they would merge their changes back to CouchDB, and take on the role of continuing 
development of CouchDB.

In early 2012, at the time of writing, CouchDB's most major release was 1.1.1 in March 31, 
2011. But CouchDB 1.2 is looking to be released just around the corner!

Defining CouchDB
According to http://couchdb.apache.org/, CouchDB can be defined as:

�� A document database server, accessible via a RESTful JSON API

�� Ad-hoc and schema-free with a flat address space

�� Distributed, featuring robust, incremental replication with bi-directional conflict 
detection and management

�� Query-able and index-able, featuring a table oriented reporting engine that uses 
JavaScript as a query language.

You might be able to read between the lines, but CouchDB chose availability and partial-
tolerance from the CAP theorem, and focuses on eventual consistency using replication.

We could go really deep into what each of these bullet points mean, because it will take the 
rest of the book until we've touched on them in depth. In each chapter, we'll begin to build 
on top of our CouchDB knowledge until we have a fully operational application in the wild.
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Summary
I hope you enjoyed this chapter and are ready to take a deep dive into really learning the ins 
and outs of CouchDB. Let's recap everything we learned in this chapter.

�� We talked about the history of databases and the emergence of NoSQL databases

�� We defined the advantages and disadvantages of using NoSQL

�� We looked at the definition and history of CouchDB

That's it for the history lesson. Fire up your computer. In the next chapter, we'll set 
everything up to develop web applications with CouchDB and PHP, and make sure that  
it's all set up correctly.


