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DEDICATION
Volume 20 of Advances in Econometrics is dedicated to Rob Engle and
Sir Clive Granger, winners of the 2003 Nobel Prize in Economics, for their
many valuable contributions to the econometrics profession. The Royal
Swedish Academy of Sciences cited Rob ‘‘for methods of analyzing eco-
nomic time series with time-varying volatility (ARCH)’’ while Clive was
cited ‘‘for methods of analyzing economic time series with common trends
(cointegration).’’ Of course, these citations are meant for public consump-
tion but we specialists in time series analysis know their contributions go
far beyond these brief citations. Consider some of Rob’s other contributions
to our literature: Aggregation of Time Series, Band Spectrum Regression,
Dynamic Factor Models, Exogeneity, Forecasting in the Presence of
Cointegration, Seasonal Cointegration, Common Features, ARCH-M,
Multivariate GARCH, Analysis of High Frequency Data, and CAViaR.
Some of Sir Clive’s additional contributions include Spectral Analysis
of Economic Time Series, Bilinear Time Series Models, Combination
Forecasting, Spurious Regression, Forecasting Transformed Time Series,
Causality, Aggregation of Time Series, Long Memory, Extreme Bounds,
Multi-Cointegration, and Non-linear Cointegration. No doubt, their Nobel
Prizes are richly deserved. And the 48 authors of the two parts of this
volume think likewise. They have authored some very fine papers that con-
tribute nicely to the same literature that Rob’s and Clive’s research helped
build.

For more information on Rob’s and Clive’s Nobel prizes you can go to
the Nobel Prize website http://nobelprize.org/economics/laureates/2003/
index.html. In addition to the papers that are contributed here, we are
publishing remarks by Rob and Clive on the nature of innovation in
econometric research that were given during the Third Annual Advances in
Econometrics Conference at Louisiana State University in Baton Rouge,
November 5–7, 2004. We think you will enjoy reading their remarks. You
come away with the distinct impression that, although they may claim they
were ‘‘lucky’’ or ‘‘things just happened to fall in place,’’ having the orien-
tation of building models that solve practical problems has been an orien-
tation that served them and our profession very well.
ix
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We hope the readers of this two-part volume enjoy its contents. We feel
fortunate to have had the opportunity of working with these fine authors
and putting this volume together.
ek Terrell
epartment of Economics
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INTRODUCTION
Thomas B. Fomby and Dek Terrell
The editors are pleased to offer the following papers to the reader in rec-
ognition and appreciation of the contributions to our literature made by
Robert Engle and Sir Clive Granger, winners of the 2003 Nobel Prize in
Economics. Please see the previous dedication page of this volume. The
basic themes of this part of Volume 20 of Advances in Econometrics are time-
varying betas of the capital asset pricing model, analysis of predictive den-
sities of nonlinear models of stock returns, modeling multivariate dynamic
correlations, flexible seasonal time series models, estimation of long-memory
time series models, the application of the technique of boosting in volatility
forecasting, the use of different time scales in Generalized Auto-Regressive
Conditional Heteroskedasticity (GARCH) modeling, out-of-sample evalu-
ation of the ‘Fed Model’ in stock price valuation, structural change as an
alternative to long memory, the use of smooth transition autoregressions in
stochastic volatility modeling, the analysis of the ‘‘balancedness’’ of regres-
sions analyzing Taylor-type rules of the Fed Funds rate, a mixture-
of-experts approach for the estimation of stochastic volatility, a modern
assessment of Clive’s first published paper on sunspot activity, and a new
class of models of tail-dependence in time series subject to jumps. Of course,
we are also pleased to include Rob’s and Clive’s remarks on their careers
and their views on innovation in econometric theory and practice that were
given at the Third Annual Advances in Econometrics Conference held at
Louisiana State University, Baton Rouge, on November 5–7, 2004.

Let us briefly review the specifics of the papers presented here. In the first
paper, ‘‘Realized Beta: Persistence and Predictability,’’ Torben Andersen,
Tim Bollerslev, Francis Diebold, and Jin Wu review the literature on the
one-factor Capital Asset Pricing Model (CAPM) for the purpose of coming
to a better understanding of the variability of the betas of such models. They
do this by flexibly modeling betas as the ratio of the integrated stock and
market return covariance and integrated market variance in a way that
allows, but does not impose, fractional integration and/or cointegration.
xiii



THOMAS B. FOMBY AND DEK TERRELLxiv
They find that, although the realized variances and covariances fluctuate
widely and are highly persistent and predictable, the realized betas, which
are simple nonlinear functions of the realized variances and covariances,
display much less persistence and predictability. They conclude that the
constant beta CAPM, as bad as it may be, is nevertheless not as bad as some
popular conditional CAPMs. Their paper provides some very useful insight
into why allowing for time-varying betas may do more harm than good
when estimated from daily data. They close by sketching an interesting
framework for future research using high-frequency intraday data to im-
prove the modeling of time-varying betas.

Yong Bao and Tae-Hwy Lee in their paper ‘‘Asymmetric Predictive
Abilities of Nonlinear Models for Stock Returns: Evidence from Density
Forecast Comparison’’ investigate the nonlinear predictability of stock re-
turns when the density forecasts are evaluated and compared instead of the
conditional mean point forecasts. They use the Kullback–Leibler Informa-
tion Criterion (KLIC) divergence measure to characterize the extent of
misspecification of a forecast model. Their empirical findings suggest that
the out-of-sample predictive abilities of nonlinear models for stock returns
are asymmetric in the sense that the right tails of the return series are
predictable via many of the nonlinear models while they find no such ev-
idence for the left tails or the entire distribution.

Zongwu Cai and Rong Chen introduce a new class of flexible seasonal
time series models to characterize trend and seasonal variation in their paper
‘‘Flexible Seasonal Time Series Models.’’ Their model consists of a common
trend function over periods and additive individual trend seasonal functions
that are specific to each season within periods. A local linear approach is
developed to estimate the common trend and seasonal trend functions. The
consistency and asymptotic normality of the proposed estimators are es-
tablished under weak a-mixing conditions and without specifying the error
distribution. The proposed methodologies are illustrated with a simulated
example and two economic and financial time series, which exhibit nonlinear
and nonstationary behavior.

In ‘‘Estimation of Long-Memory Time Series Models: A Survey of
Different Likelihood-Based Methods’’ Ngai Hang Chan and Wilfredo
Palma survey the various likelihood-based techniques for analyzing long
memory in time series data. The authors classify these methods into the
following categories: Exact maximum likelihood methods, maximum like-
lihood methods based on autoregressive approximations, Whittle estimates,
Whittle estimates with autoregressive truncation, approximate estimates
based on the Durbin–Levinson algorithm, state–space based estimates for
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the autoregressive fractionally integrated moving average (ARFIMA) mod-
els, and estimation of stochastic volatility models. Their review provides a
succinct survey of these methodologies as well as an overview of the im-
portant related problems such as the maximum likelihood estimation with
missing data, influence of subsets of observations on estimates, and the
estimation of seasonal long-memory models. Performances and asymptotic
properties of these techniques are compared and examined. Interconnec-
tions and finite sample performances among these procedures are studied
and applications to financial time series of these methodologies are
discussed.

In ‘‘Boosting-Based Frameworks in Financial Modeling: Application to
Symbolic Volatility Forecasting’’ Valeriy Gavrishchaka suggests that Boost-
ing (a novel ensemble learning technique) can serve as a simple and robust
framework for combining the best features of both analytical and data-
driven models and more specifically discusses how Boosting can be applied
for typical financial and econometric applications. Furthermore, he dem-
onstrates some of the capabilities of Boosting by showing how a Boosted
collection of GARCH-type models for the IBM stock time series can be
used to produce more accurate forecasts of volatility than both the best
single model of the collection and the widely used GARCH(1,1) model.

Eric Hillebrand studies different generalizations of GARCH that allow
for several time scales in his paper ‘‘Overlaying Time Scales in Financial
Volatility Data.’’ In particular he examines the nature of the volatility in
four measures of the U.S. stock market (S&P 500, Dow Jones Industrial
Average, CRSP equally weighted index, and CRSP value-weighted index) as
well as the exchange rate of the Japanese Yen against the U.S. Dollar and
the U.S. federal funds rate. In addition to analyzing these series using the
conventional ARCH and GARCH models he uses three models of multiple
time scales, namely, fractional integration, two-scale GARCH, and wavelet
analysis in conjunction with Heterogeneous ARCH (HARCH). Hillebrand
finds that the conventional ARCH and GARCH models miss the important
short correlation time scale in the six series. Based on a holding sample test,
the multiple time scale models, although offering an improvement over the
conventional ARCH and GARCH models, still did not completely model
the short correlation structure of the six series. However, research in
extending volatility models in this way appears to be promising.

The ‘‘Fed Model’’ postulates a cointegrating relationship between the
equity yield on the S&P 500 and the bond yield. In their paper, ‘‘Evaluating
the ‘Fed Model’ of Stock Price Valuation: An Out-of-Sample Forecasting
Perspective,’’ Dennis Jansen and Zijun Wang evaluate the Fed Model as a
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vector-error correction forecasting model for stock prices and for bond
yields. They compare out-of-sample forecasts of each of these two variables
from a univariate model and various versions of the Fed Model including
both linear and nonlinear vector error correction models. They find that for
stock prices the Fed Model improves on the univariate model for longer-
horizon forecasts, and the nonlinear vector-error correction model performs
even better than its linear version.

In their paper, ‘‘Structural Change as an Alternative to Long Memory in
Financial Time Series,’’ Tze Leung Lai and Haipeng Xing note that vol-
atility persistence in GARCH models and spurious long memory in auto-
regressive models may arise if the possibility of structural changes is not
incorporated in the time series model. Therefore, they propose a structural
change model that allows changes in the volatility and regression parameters
at unknown times and with unknown changes in magnitudes. Their model is
a hidden Markov model in which the volatility and regression parameters
can continuously change and are estimated by recursive filters. As their
hidden Markov model involves gamma-normal conjugate priors, there are
explicit recursive formulas for the optimal filters and smoothers. Using
NASDAQ weekly return data, they show how the optimal structural change
model can be applied to segment financial time series by making use of the
estimated probabilities of structural breaks.

In their paper, ‘‘Time Series Mean Level and Stochastic Volatility Mode-
ling by Smooth Transition Autoregressions: A Bayesian Approach,’’
Hedibert Lopes and Esther Salazar propose a Bayesian approach to mod-
el the level and variance of financial time series based on a special class
of nonlinear time series models known as the logistic smooth transition
autoregressive (LSTAR) model. They propose a Markov Chain Monte
Carlo (MCMC) algorithm for the levels of the time series and then adapt it
to model the stochastic volatilities. The LSTAR order of their model is
selected by the three information criteria Akaike information criterion
(AIC), Bayesian information criterion (BIC), and Deviance information
criteria (DIC). They apply their algorithm to one synthetic and two real-
time series, namely the Canadian Lynx data and the SP500 return series, and
find the results encouraging when modeling both the levels and the variance
of univariate time series with LSTAR structures.

Relying on Robert Engle’s and Clive Granger’s many and varied con-
tributions to econometrics analysis, Pierre Siklos and Mark Wohar examine
some key econometric considerations involved in estimating Taylor-type
rules for U.S. data in their paper ‘‘Estimating Taylor-Type Rules: An Un-
balanced Regression?’’ They focus on the roles of unit roots, cointegration,
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structural breaks, and nonlinearities to make the case that most existing
estimates are based on unbalanced regressions. A variety of their estimates
reveal that neglecting the presence of cointegration results in the omission
of a necessary error correction term and that Fed reactions during the
Greenspan era appear to have been asymmetric. They further argue that
error correction and nonlinearities may be one way to estimate Taylor rules
over long samples when the underlying policy regime may have changed
significantly.

Alejandro Villagran and Gabriel Huerta propose a Bayesian Mixture-
of-Experts (ME) approach to estimating stochastic volatility in time series in
their paper ‘‘Bayesian Inference on Mixture-of-Experts for Estimation of
Stochastic Volatility.’’ They use as their ‘‘experts’’ the ARCH, GARCH, and
EGARCH models to analyze the stochastic volatility in the U.S. dollar/
German Mark exchange rate and conduct a study of the volatility of the
Mexican stock market (IPC) index using the Dow Jones Industrial (DJI)
index as a covariate. They also describe the estimation of predictive volatilities
and their corresponding measure of uncertainty given by a Bayesian credible
interval using the ME approach. In the applications they present, it is in-
teresting to see how the posterior probabilities of the ‘‘experts’’ change over
time and to conjecture why the posterior probabilities changed as they did.

Sir Clive Granger published his first paper ‘‘A Statistical Model for Sun-
spot Activity’’ in 1957 in the prestigious Astrophysical Journal. As a means
of recognizing Clive’s many contributions to the econometric analysis of
time series and celebrating the near 50th anniversary of his first publication,
one of his students and now professor, Gawon Yoon, has written a paper
that provides a modern time series assessment of Clive’s first paper. In
‘‘A Modern Time Series Assessment of ‘A Statistical Model for Sunspot
Activity’ by C. W. J. Granger (1957),’’ Yoon reviews Granger’s statistical
model of sunspots containing two parameters representing an amplitude
factor and the occurrence of minima, respectively. At the time Granger’s
model accounted for about 85% of the total variation in the sunspot data.
Interestingly, Yoon finds that, in the majority, Granger’s model quite nicely
explains the more recent occurrence of sunspots despite the passage of time.
Even though it appears that some of the earlier observations that Granger
had available were measured differently from later sunspot numbers,
Granger’s simple two-parameter model still accounts for more than 80% of
the total variation in the extended sunspot data. This all goes to show (as Sir
Clive would attest) that simple models can also be useful models.

With respect to Yoon’s review of Granger’s paper, Sir Clive was kind
enough to offer remarks that the editors have chosen to publish immediately
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following Yoon’s paper. In reading Clive’s delightful remarks we come to
know (or some of us remember, depending on your age) how difficult it was
to conduct empirical analysis in the 1950s and 1960s. As Clive notes, ‘‘Try-
ing to plot by hand nearly two hundred years of monthly data is a lengthy
task!’’ So econometric researchers post-1980 have many things to be thank-
ful for, not the least of which is fast and inexpensive computing. Never-
theless, Clive and many other young statistical researchers at the time were
undaunted. They were convinced that quantitative research was important
and a worthwhile endeavor regardless of the expense of time and they set
out to investigate what the naked eye could not detect. You will enjoy
reading Clive’s remarks knowing that he is always appreciative of the com-
ments and suggestions of colleagues and that he is an avid supporter of best
practices in statistics and econometrics.

In the final paper of Part B of Volume 20, ‘‘A New Class of Tail-
Dependent Time Series Models and Its Applications in Financial Time
Series,’’ Zhengjun Zhang proposes a new class of models to determine the
order of lag-k tail dependence in financial time series that exhibit jumps. His
base model is a specific class of maxima of moving maxima processes (M3
processes). Zhang then improves on his base model by allowing for possible
asymmetry between positive and negative returns. His approach adopts a
hierarchical model structure. First you apply, say GARCH(1,1), to get es-
timated standard deviations, then based on standardized returns, you apply
M3 and Markov process modeling to characterize the tail dependence in the
time series. Zhang demonstrates his model and his approach using the S&P
500 Index. As he points out, estimates of the parameters of the proposed
model can be used to compute the value at risk (VaR) of the investments
whose returns are subject to jump processes.



GOOD IDEAS
Robert F. Engle III
The Nobel Prize is given for good ideas – very good ideas. These ideas often
shape the direction of research for an academic discipline. These ideas are
often accompanied by a great deal of work by many researchers.

Most good ideas don’t get prizes but they are the centerpieces of our
research and our conferences. At this interesting Advances in Econometrics

conference hosted by LSU, we’ve seen lots of new ideas, and in our careers
we have all had many good ideas. I would like to explore where they come
from and what they look like.

When I was growing up in suburban Philadelphia, my mother would
sometimes take me over to Swarthmore College to the Physics library. It was
a small dusty room with windows out over a big lawn with trees. The books
cracked when I opened them; they smelled old and had faded gold letters on
the spine. This little room was exhilarating. I opened books by the famous
names in physics and read about quantum mechanics, elementary particles
and the history of the universe. I didn’t understand too much but kept
piecing together my limited ideas. I kept wondering whether I would un-
derstand these things when I was older and had studied in college or grad-
uate school. I developed a love of science and the scientific method. I think
this is why I studied econometrics; it is the place where theory meets reality.
It is the place where data on the economy tests the validity of economic
theory.

Fundamentally I think good ideas are simple. In Economics, most ideas
can be simplified until they can be explained to non-specialists in plain
language. The process of simplifying ideas and explaining them is extremely
important. Often the power of the idea comes from simplification of a col-
lection of complicated and conflicting research. The process of distilling out
the simple novel ingredient is not easy at all and often takes lots of fresh
starts and numerical examples. Discouragingly, good ideas boiled down to
their essence may seem trivial. I think this is true of ARCH and Cointe-
gration and many other Nobel citations. But, I think we should not be
xix
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offended by this simplicity, but rather we should embrace it. Of course it is
easy to do this after 20 years have gone by; but the trick is to recognize good
ideas early. Look for them at seminars or when reading or refereeing or
editing.

Good ideas generalize. A good idea, when applied to a new situation,
often gives interesting insights. In fact, the implications of a good idea may
be initially surprising. Upon reflection, the implications may be of growing
importance. If ideas translated into other fields give novel interpretations to
existing problems, this is a measure of their power.

Often good ideas come from examining one problem from the point of
view of another. In fact, the ARCH model came from such an analysis. It
was a marriage of theory, time series and empirical evidence. The role of
uncertainty in rational expectations macroeconomics was not well devel-
oped, yet there were theoretical reasons why changing uncertainty could
have real effects. From a time series point of view a natural solution to
modeling uncertainty was to build conditional models of variance rather
than the more familiar unconditional models. I knew that Clive’s test for
bilinearity based on the autocorrelation of squared residuals was often sig-
nificant in macroeconomic data, although I suspected that the test was also
sensitive to other effects such as changing variances. The idea for the ARCH
model came from combining these three observations to get an autoregres-
sive model of conditional heteroskedasticity.

Sometimes a good idea can come from attempts to disprove proposals of
others. Clive traces the origin of cointegration to his attempt to disprove a
David Hendry conjecture that a linear combination of the two integrated
series could be stationary. From trying to show that this was impossible,
Clive proved the Granger Representation theorem that provides the fun-
damental rationale for error correction models in cointegrated systems.

My first meeting in Economics was the 1970 World Congress of the
Econometric Society in Cambridge England. I heard many of the famous
economists of that generation explain their ideas. I certainly did not
understand everything but I wanted to learn it all. I gave a paper at this
meeting at a session organized by Clive that included Chris Sims and
Phoebus Dhrymes. What a thrill. I have enjoyed European meetings of the
Econometric Society ever since.

My first job was at MIT. I had a lot of chances to see good ideas; par-
ticularly good ideas in finance. Myron Scholes and Fischer Black were
working on options theory and Bob Merton was developing continuous
time finance. I joined Franco Modigliani and Myron on Michael Brennan’s
dissertation committee where he was testing the CAPM. Somehow I missed
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the opportunity to capitalize on these powerful ideas and it was only many
years later that I moved my research in this direction.

I moved to UCSD in 1976 to join Clive Granger. We studied many fas-
cinating time series problems. Mark Watson was my first PhD student at
UCSD. The ARCH model was developed on sabbatical at LSE, and when I
returned, a group of graduate students contributed greatly to the develop-
ment of this research. Tim Bollerslev and Dennis Kraft were among the first,
Russ Robins and Jeff Wooldridge and my colleague David Lilien were
instrumental in helping me think about the finance applications. The next 20
years at UCSD were fantastic in retrospect. I don’t think we knew at the
time how we were moving the frontiers in econometrics. We had great
visitors and faculty and students and every day there were new ideas.

These ideas came from casual conversations and a relaxed mind. They
came from brainstorming on the blackboard with a student who was look-
ing for a dissertation topic. They came from ‘‘Econometrics Lunch’’ when
we weren’t talking about gossip in the profession. Universities are incuba-
tors of good ideas. Our students come with good ideas, but they have to be
shaped and interpreted. Our faculties have good ideas, which they publish
and lecture on around the world. Our departments and universities thrive on
good ideas that make them famous places for study and innovation. They
also contribute to spin-offs in the private sector and consulting projects.
Good ideas make the whole system work and it is so important to recognize
them in all their various forms and reward them.

As a profession we are very protective of our ideas. Often the origin of the
idea is disputable. New ideas may have only a part of the story that eventually
develops; who gets the credit? While such disputes are natural, it is often
better in my opinion to recognize previous contributions and stand on their
shoulders thereby making your own ideas even more important. I give similar
advice for academics who are changing specialties; stand with one foot in the
old discipline and one in the new. Look for research that takes your successful
ideas from one field into an important place in a new discipline.

Here are three quotations that I think succinctly reflect these thoughts.
�
 ‘‘The universe is full of magical things, patiently waiting for our wits to grow

sharper’’

Eden Philpotts

�
 ‘‘To see what is in front of one’s nose requires a constant struggle.’’

George Orwell

�
 ‘‘To select well among old things is almost equal to inventing new ones’’

Nicolas Charles Trublet
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There is nothing in our chosen career that is as exhilarating as having a

good idea. But a very close second is seeing someone develop a wonderful
new application from your idea. The award of the Nobel Prize to Clive and
me for our work in time series is an honor to all of the authors who con-
tributed to the conference and to this volume. I think the prize is really given
to a field and we all received it. This gives me so much joy. And I hope that
someone in this volume will move forward to open more doors with pow-
erful new ideas, and receive her own Nobel Prize.
Robert F. Engle III
Remarks Given at Third Annual Advances in Econometrics Conference

Louisiana State University

Baton Rouge, Louisiana

November 5–7, 2004



THE CREATIVITY PROCESS
Sir Clive W. J. Granger, KB
In 1956, I was searching for a Ph.D. topic and I selected time series analysis
as being an area that was not very developed and was potentially interesting.
I have never regretted that choice. Occasionally, I have tried to develop
other interests but after a couple of years away I would always return to
time series topics where I am more comfortable.

I have never had a long-term research topic. What I try to do is to develop
new ideas, topics, and models, do some initial development, and leave the
really hard, rigorous stuff to other people. Some new topics catch on quickly
and develop a lot of citations (such as cointegration), others are initially
ignored but eventually become much discussed and applied (causality, as I
call it), some develop interest slowly but eventually deeply (fractionally in-
tegrated processes), some have long term, steady life (combination of fore-
casts), whereas others generate interest but eventually vanish (bilinear
models, spectral analysis).

The ideas come from many sources, by reading literature in other fields,
from discussions with other workers, from attending conferences (time dis-
tance measure for forecasts), and from general reading. I will often attempt
to take a known model and generalize and expand it in various ways. Quite
frequently these generalizations turn out not to be interesting; I have several
examples of general I(d) processes where d is not real or not finite. The
models that do survive may be technically interesting but they may not
prove useful with economic data, providing an example of a so-called
‘‘empty box,’’ bilinear models, and I(d), d non-integer could be examples.

In developing these models one is playing a game. One can never claim
that a new model will be relevant, only that it might be. Of course, when
using the model to generate forecasts, one has to assume that the model is
correct, but one must not forget this assumption. If the model is correct,
the data will have certain properties that can be proved, but it should always
be remembered that other models may generate the same properties,
xxiii
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for example I(d), d a fraction, and break processes can give similar ‘‘long
memory’’ autocorrelations. Finding properties of data and then suggesting
that a particular model will have generated the data is a dangerous game.

Of course, once the research has been done one faces the problem of
publication. The refereeing process is always a hassle. I am not convinced
that delaying an interesting paper (I am not thinking of any of my own here)
by a year or more to fix a few minor difficulties is actually helping the
development of our field. Rob and I had initial rejections of some of our best
joint papers, including the one on cointegration. My paper on the typical
spectral shape took over three and a half years between submission and
publication, and it is a very short paper.

My favorite editors’ comment was that ‘‘my paper was not very good
(correct) but is was very short,’’ and as they just had that space to fill they
would accept. My least favorite comment was a rejection of a paper with
Paul Newbold because ‘‘it has all been done before.’’ As we were surprised
at this we politely asked for citations. The referee had no citations, he just
thought that must have been done before. The paper was published else-
where.

For most of its history time series theory considered conditional means,
but later conditional variances. The next natural development would be
conditional quantiles, but this area is receiving less attention than I expect-
ed. The last stages are initially conditional marginal distributions, and fi-
nally conditional multivariate distributions. Some interesting theory is
starting in these areas but there is an enormous amount to be done.

The practical aspects of time series analysis are rapidly changing with
improvements in computer performance. Now many, fairly long series can
be analyzed jointly. For example, Stock and Watson (1999) consider over
200 macro series. However, the dependent series are usually considered in-
dividually, whereas what we are really dealing with is a sample from a 200-
dimensional multivariate distribution, assuming the processes are jointly
stationary. How to even describe the essential features of such a distribu-
tion, which is almost certainly non-Gaussian, in a way that is useful to
economists and decision makers is a substantial problem in itself.

My younger colleagues sometimes complain that we old guys solved all
the interesting easy questions. I do not think that was ever true and is not
true now. The higher we stand the wider our perspective; I hope that Rob
and I have provided, with many others, a suitable starting point for the
future study in this area.
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ABSTRACT

A large literature over several decades reveals both extensive concern with

the question of time-varying betas and an emerging consensus that betas are

in fact time-varying, leading to the prominence of the conditional CAPM.

Set against that background, we assess the dynamics in realized betas,

vis-à-vis the dynamics in the underlying realized market variance and in-

dividual equity covariances with the market. Working in the recently pop-

ularized framework of realized volatility, we are led to a framework of

nonlinear fractional cointegration: although realized variances and covar-

iances are very highly persistent and well approximated as fractionally

integrated, realized betas, which are simple nonlinear functions of those

realized variances and covariances, are less persistent and arguably best

modeled as stationary I(0) processes. We conclude by drawing implications

for asset pricing and portfolio management.
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1. INTRODUCTION

One of the key insights of asset pricing theory is also one of the simplest:
only systematic risk should be priced. Perhaps not surprisingly, however,
there is disagreement as to the sources of systematic risk. In the one-factor
capital asset pricing model (CAPM), for example, systematic risk is deter-
mined by covariance with the market (Sharpe, 1963; Lintner, 1965a, b),
whereas, in more elaborate pricing models, additional empirical character-
istics such as firm size and book-to-market are seen as proxies for another
set of systematic risk factors (Fama & French, 1993).1

As with most important scientific models, the CAPM has been subject to
substantial criticism (e.g., Fama & French, 1992). Nevertheless, to paraphrase
Mark Twain, the reports of its death are greatly exaggerated. In fact, the one-
factor CAPM remains alive and well at the frontier of both academic research
and industry applications, for at least two reasons. First, recent work reveals
that it often works well – despite its wrinkles and warts – whether in
traditional incarnations (e.g., Ang & Chen, 2003) or more novel variants
(e.g., Cohen, Polk, & Vuolteenaho, 2002; Campbell & Vuolteenaho, 2004).
Second, competing multi-factor pricing models, although providing improved
statistical fit, involve factors whose economic interpretations in terms of sys-
tematic risks remain unclear, and moreover, the stability of empirically mo-
tivated multi-factor asset pricing relationships often appears tenuous when
explored with true out-of-sample data, suggesting an element of data mining.2

In this paper, then, we study the one-factor CAPM, which remains central
to financial economics nearly a half century after its introduction. A key
question within this setting is whether stocks’ systematic risks, as assessed by
their correlations with the market, are constant over time – i.e., whether
stocks’ market betas are constant. And if betas are not constant, a central
issue becomes how to understand and formally characterize their persistence
and predictability vis-à-vis their underlying components.

The evolution of a large literature over several decades reveals both ex-
tensive concern with this question and, we contend, an eventual implicit
consensus that betas are likely time-varying.3 Several pieces of evidence
support our contention. First, leading texts echo it. For example, Huang
and Litzenberger (1988) assert that ‘‘It is unlikely that risk premiums and
betas on individual assets are stationary over time’’ (p. 303). Second,
explicitly dynamic betas are often modeled nonstructurally via time-varying
parameter regression, in a literature tracing at least to the early ‘‘return to
normality’’ model of Rosenberg (1973), as implemented in the CAPM by
Schaefer Broaley, Hodges, and Thomas (1975). Third, even in the absence of
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explicit allowance for time-varying betas, the CAPM is typically esti-
mated using moving estimation windows, usually of 5–10 years, presum-
ably to guard against beta variation (e.g., Fama, 1976; Campbell, Lo, &
MacKinlay, 1997). Fourth, theoretical and empirical inquiries in asset pric-
ing are often undertaken in conditional, as opposed to unconditional,
frameworks, the essence of which is to allow for time-varying betas, pre-
sumably because doing so is viewed as necessary for realism.

The motivation for the conditional CAPM comes from at least two sources.
First, from a theoretical perspective, financial economic considerations sug-
gest that betas may vary with conditioning variables, an idea developed the-
oretically and empirically in a large literature that includes, among many
others, Dybvig and Ross (1985), Hansen and Richard (1987), Ferson, Kandel,
and Stambaugh (1987), Ferson and Harvey (1991), Jagannathan and Wang
(1996), and Wang (2003).4 Second, from a different and empirical perspective,
the financial econometric volatility literature (see Andersen, Bollerslev, &
Diebold, 2005, for a recent survey) has provided extensive evidence of wide
fluctuations and high persistence in asset market conditional variances, and in
individual equity conditional covariances with the market. Thus, even from a
purely statistical viewpoint, market betas, which are ratios of time-varying
conditional covariances and variances, might be expected to display persistent
fluctuations, as in Bollerslev, Engle, and Wooldridge (1988). In fact, unless
some special cancellation occurs – in a way that we formalize – betas would
inherit the persistence features that are so vividly present in their constituent
components.

Set against this background, we assess the dynamics in betas vis-à-vis the
widely documented persistent dynamics in the underlying variance and co-
variances. We proceed as follows: In Section 2, we sketch the framework,
both economic and econometric, in which our analysis is couched. In
Section 3, we present the empirical results with an emphasis on analysis of
persistence and predictability. In Section 4, we formally assess the uncer-
tainty in our beta estimates. In Section 5, we offer summary, conclusions,
and directions for future research.
2. THEORETICAL FRAMEWORK

Our approach has two key components. First, in keeping with the recent move
toward nonparametric volatility measurement, we cast our analysis within
the framework of realized variances and covariances, or equivalently, empir-
ical quadratic variation and covariation. That is, we do not entertain a null
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hypothesis of period-by-period constant betas, but instead explicitly allow for
continuous evolution in betas. Our ‘‘realized betas’’ are (continuous-record)
consistent for realizations of the underlying ratio between the integrated stock
and market return covariance and the integrated market variance.5 Second, we
work in a flexible econometric framework that allows for – without imposing –
fractional integration and/or cointegration between the market variance and
individual equity covariances with the market.
2.1. Realized Quarterly Variances, Covariances, and Betas

We provide estimates of quarterly betas, based on nonparametric realized
quarterly market variances and individual equity covariances with the mar-
ket. The quarterly frequency is appealing from a substantive financial eco-
nomic perspective, and it also provides a reasonable balance between
efficiency and robustness to microstructure noise. Specifically, we produce
our quarterly estimates using underlying daily returns, as in Schwert (1989),
so that the sampling frequency is quite high relative to the quarterly horizon
of interest, yet low enough so that contamination by microstructure noise is
not a serious concern for the highly liquid stocks that we study. The daily
frequency further allows us to utilize a long sample of data, which is not
available when sampling more frequently.

Suppose that the logarithmic N� 1 vector price process, pt, follows a
multivariate continuous-time stochastic volatility diffusion,

dpt ¼ mtdtþ OtdWt (1)

where Wt denotes a standard N-dimensional Brownian motion, and both
the process for the N�N positive definite diffusion matrix, Ot, and the
N-dimensional instantaneous drift, mt, are strictly stationary and jointly in-
dependent of the Wt process. For our purposes it is helpful to think of the
Nth element of pt as containing the log price of the market and the ith
element of pt as containing the log price of the ith individual stock included
in the analysis, so that the corresponding covariance matrix contains both
the market variance, say s2M;t ¼ OðNNÞ;t; and the individual equity covariance
with the market, siM;t ¼ OðiNÞ;t: Then, conditional on the sample path
realization of mt and Ot, the distribution of the continuously compounded
h-period return, rtþh;h � ptþh � pt; is

rtþh;hjs mtþt;Otþt
� �h

t¼0
� N

Z h

0

mtþtdt;
Z h

0

Otþtdt
� �

(2)
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where s mtþt;Otþt
� �h

t¼0
denotes the s-field generated by the sample paths of

mt+t and Ot+t, for 0rtrh. The integrated diffusion matrix
R h
0 Otþtdt;

therefore provides a natural measure of the true latent h-period volatility.6

The requirement that the innovation process, Wt, is independent of the drift
and diffusion processes is rather strict and precludes, for example, the
asymmetric relations between return innovations and volatility captured by
the so-called leverage or volatility feedback effects. However, from the re-
sults in Meddahi (2002), Barndorff-Nielsen and Shephard (2003), and
Andersen, Bollerslev, and Meddahi (2004), we know that the continuous-
record asymptotic distribution theory for the realized covariation continues
to provide an excellent approximation for empirical high-frequency real-
ized volatility measures.7 As such, even if the conditional return distri-
bution result (2) does not apply in full generality, the evidence presented
below, based exclusively on the realized volatility measures, remains trust-
worthy in the presence of asymmetries in the return innovation–volatility
relations.

By the theory of quadratic variation, we have that under weak regularity
conditions, and regardless of the presence of leverage or volatility feedback
effects, that

X
j¼1;...; h=D½ �

rtþj�D;D � r0tþj�D;D �

Z h

0

Otþtdt ! 0 (3)

almost surely for all t as the sampling frequency of the returns increases, or
D ! 0: Thus, by summing sufficiently finely sampled high-frequency returns,
it is possible to construct ex-post realized volatility measures for the integrated
latent volatilities that are asymptotically free of measurement error. This
contrasts sharply with the common use of the cross-product of the h-period
returns, rtþh;h � r

0
tþh;h; as a simple ex post (co)variability measure. Although the

squared return (innovation) over the forecast horizon provides an unbiased
estimate for the integrated volatility, it is an extremely noisy estimator, and
predictable variation in the true latent volatility process is typically dwarfed
by measurement error. Moreover, for longer horizons any conditional mean
dependence will tend to contaminate this variance measure. In contrast, as the
sampling frequency is lowered, the impact of the drift term vanishes, thus
effectively annihilating the mean.

These assertions remain valid if the underlying continuous time process
in Eq. (1) contains jumps, so long as the price process is a special semi-
martingale, which will hold if it is arbitrage-free. Of course, in this case the
limit of the summation of the high-frequency returns will involve an additional
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jump component, but the interpretation of the sum as the realized h-period
return volatility remains intact.

Finally, with the realized market variance and realized covariance be-
tween the market and the individual stocks in hand, we can readily define
and empirically construct the individual equity ‘‘realized betas.’’ Toward
that end, we introduce some formal notation. Using an initial subscript to
indicate the corresponding element of a vector, we denote the realized mar-
ket volatility by

v̂2M ;t;tþh ¼
X

j¼1;...; h=D½ �

r2ðNÞ;tþj�D;D (4)

and we denote the realized covariance between the market and the ith in-
dividual stock return by

v̂iM;t;tþh ¼
X

j¼1;...; h=D½ �

rðiÞ;tþj�D;D � rðNÞ;tþj�D;D (5)

We then define the associated realized beta as

b̂i;t;tþh ¼
v̂iM;t;tþh

v̂2M;t;tþh

(6)

Under the assumptions invoked for Eq. (1), this realized beta measure is
consistent for the true underlying integrated beta in the following sense:

b̂i;t;tþh ! bi;t;tþh ¼

R h
0 OðiNÞ;tþtdtR h
0 OðNNÞ;tþtdt

(7)

almost surely for all t as the sampling frequency increases, or D ! 0:
A number of comments are in order. First, the integrated return covar-

iance matrix,
R h
0
Otþtdt; is treated as stochastic, so both the integrated

market variance and the integrated covariances of individual equity returns
with the market over [t, t+h] are ex ante, as of time t, unobserved and
governed by a non-degenerate (and potentially unknown) distribution.
Moreover, the covariance matrix will generally vary continuously and ran-
domly over the entire interval, so the integrated covariance matrix should be
interpreted as the average realized covariation among the return series.
Second, Eq. (3) makes it clear that the realized market volatility in (4) and
the realized covariance in (5) are continuous-record consistent estimators of
the (random) realizations of the underlying integrated market volatility and
covariance. Thus, as a corollary, the realized beta will be consistent for the
integrated beta, as stated in (7). Third, the general representation here
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encompasses the standard assumption of a constant beta over the meas-
urement or estimation horizon, which is attained for the degenerate case of
the Ot process being constant throughout each successive h-period meas-
urement interval, or Ot ¼ O. Fourth, the realized beta estimation procedure
in Eq. (4)–(6) is implemented through a simple regression (without a con-
stant term) of individual high-frequency stock returns on the corresponding
market return. Nonetheless, the interpretation is very different from a
standard regression, as the Ordinary Least Square (OLS) point estimate
now represents a consistent estimator of the ex post realized regression
coefficient obtained as the ratio of unbiased estimators of the average re-
alized covariance and the realized market variance. The associated contin-
uous-record asymptotic theory developed by Barndorff-Nielsen and
Shephard (2003) explicitly recognizes the diffusion setting underlying this
regression interpretation and hence facilitates the construction of standard
errors for our beta estimators.
2.2. Nonlinear Fractional Cointegration: A Common Long-Memory

Feature in Variances and Covariances

The possibility of common persistent components is widely recognized in
modern multivariate time-series econometrics. It is also important for our
analysis, because there may be common persistence features in the under-
lying variances and covariances from which betas are produced.

The idea of a common feature is a simple generalization of the well-
known cointegration concept. If two variables are integrated but there exists
a function f of them that is not, we say that they are cointegrated, and we
call f the conintegrating function. More generally, if two variables have
property X but there exists a function of them that does not, we say that
they have common feature X. A key situation is when X corresponds to
persistence, in which case we call the function of the two variables that
eliminates the persistence the copersistence function. It will prove useful to
consider linear and nonlinear copersistence functions in turn.

Most literature focuses on linear copersistence functions. The huge co-
integration literature pioneered by Granger (1981) and Engle and Granger
(1987) deals primarily with linear common long-memory I(1) persistence fea-
tures. The smaller copersistence literature started by Engle and Kozicki (1993)
deals mostly with linear common short-memory I(0) persistence features. The
idea of fractional cointegration, suggested by Engle and Granger (1987) and
developed by Cheung and Lai (1993) and Robinson and Marinucci, (2001),
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among others, deals with linear common long-memory I(d) persistence
features, 0odo1/2.

Our interest is closely related but different. First, it centers on nonlinear

copersistence functions, because betas are ratios. There is little literature on
nonlinear common persistence features, although they are implicitly treated
in Granger (1995). We will be interested in nonlinear common long-memory
I(d) persistence features, 0odo1/2, effectively corresponding to nonlinear
fractional cointegration.8

Second, we are interested primarily in the case of known cointegrating
relationships. That is, we may not know whether a given stock’s covariance
with the market is fractionally cointegrated with the market variance, but if
it is, then there is a good financial economic reason (i.e., the CAPM) to
suspect that the cointegrating function is the ratio of the covariance to the
variance. This provides great simplification. In the integer-cointegration
framework with known cointegrating vector under the alternative, for ex-
ample, one could simply test the cointegrating combination for a unit root,
or test the significance of the error-correction term in a complete error-
correction model, as in Horvath and Watson (1995). We proceed in anal-
ogous fashion, examining the integration status (generalized to allow for
fractional integration) of the realized market variance, realized individual
equity covariances with the market, and realized market betas.

Our realized beta series are unfortunately relatively short compared to
the length required for formal testing and inference procedures regarding
(fractional) cointegration, as the fractional integration and cointegration
estimators proposed by Geweke and Porter-Hudak (1983), Robinson and
Marinucci (2001), and Andrews and Guggenberger (2003) tend to behave
quite erratically in small samples. In addition, there is considerable meas-
urement noise in the individual beta series so that influential outliers may
have a detrimental impact on our ability to discern the underlying dynamics.
Hence, we study the nature of the long range dependence and short-run
dynamics in the realized volatility measures and realized betas through in-
tentionally less formal but arguably more informative graphical means, and
via some robust procedures that utilize the joint information across many
series, to which we now turn.
3. EMPIRICAL ANALYSIS

We examine primarily the realized quarterly betas constructed from daily
returns. We focus on the dynamic properties of market betas vis-à-vis the
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dynamic properties of their underlying covariance and variance components.
We quantify the dynamics in a number of ways, including explicit measurement
of the degree of predictability in the tradition of Granger and Newbold (1986).
3.1. Dynamics of Quarterly Realized Variance, Covariances and Betas

This section investigates the realized quarterly betas constructed from daily
returns obtained from the Center for Research in Security Prices from July
1962 to September 1999. We take the market return rm,t to be the 30 Dow
Jones Industrial Average (DJIA), and we study the subset of 25 DJIA stocks
as of March 1997 with complete data from July 2, 1962 to September 17, 1999,
as detailed in Table 1. We then construct quarterly realized DJIA variances,
individual equity covariances with the market, and betas, 1962:3–1999:3 (149
observations).

In Fig. 1, we provide a time-series plot of the quarterly realized market
variance, with fall 1987 included (top panel) and excluded (bottom panel). It
is clear that the realized variance is quite persistent and, moreover, that the
fall 1987 volatility shock is unlike any other ever recorded, in that volatility
reverts to its mean almost instantaneously. In addition, our subsequent
computation of asymptotic standard errors reveals that the uncertainty as-
sociated with the fall 1987 beta estimate is enormous, to the point of ren-
dering it entirely uninformative. In sum, it is an exceptional outlier with
potentially large influence on the analysis, and it is measured with huge
imprecision. Hence, following many other authors, we drop the fall 1987
observation from this point onward.

In Figs. 2 and 3, we display time-series plots of the 25 quarterly realized
covariances and realized betas.9 Like the realized variance, the realized co-
variances appear highly persistent. The realized betas, in contrast, appear
noticeably less persistent. This impression is confirmed by the statistics
presented in Table 2: the mean Ljung–Box Q-statistic (through displacement
12) is 84 for the realized covariance, but only 47 for the realized beta,
although both are of course significant relative to a w2(12) distribution.10

The impression of reduced persistence in realized betas relative to realized
covariances is also confirmed by the sample autocorrelation functions for
the realized market variance, the realized covariances with the market, and
the realized betas shown in Fig. 4.11 Most remarkable is the close corre-
spondence between the shape of the realized market variance correlogram
and the realized covariance correlograms. This reflects an extraordinary
high degree of dependence in the correlograms across the individual realized



Table 1. The Dow Jones Thirty.

Company Name Ticker Data Range

Alcoa Inc. AA 07/02/1962 to 09/17/1999

Allied Capital Corporation ALD 07/02/1962 to 09/17/1999

American Express Co. AXPa 05/31/1977 to 09/17/1999

Boeing Co. BA 07/02/1962 to 09/17/1999

Caterpillar Inc. CAT 07/02/1962 to 09/17/1999

Chevron Corp. CHV 07/02/1962 to 09/17/1999

DuPont Co. DD 07/02/1962 to 09/17/1999

Walt Disney Co. DIS 07/02/1962 to 09/17/1999

Eastman Kodak Co. EK 07/02/1962 to 09/17/1999

General Electric Co. GE 07/02/1962 to 09/17/1999

General Motors Corp. GM 07/02/1962 to 09/17/1999

Goodyear Tire & Rubber Co. GT 07/02/1962 to 09/17/1999

Hewlett–Packard Co. HWP 07/02/1962 to 09/17/1999

International Business Machines Corp. IBM 07/02/1962 to 09/17/1999

International Paper Co. IP 07/02/1962 to 09/17/1999

Johnson & Johnson JNJ 07/02/1962 to 09/17/1999

JP Morgan Chase & Co. JPMa 03/05/1969 to 09/17/1999

Coca–Cola Co. KO 07/02/1962 to 09/17/1999

McDonald’s Corp. MCDa 07/05/1966 to 09/17/1999

Minnesota Mining & Manufacturing Co. MMM 07/02/1962 to 09/17/1999

Philip Morris Co. MO 07/02/1962 to 09/17/1999

Merck & Co. MRK 07/02/1962 to 09/17/1999

Procter & Gamble Co. PG 07/02/1962 to 09/17/1999

Sears, Roebuck and Co. S 07/02/1962 to 09/17/1999

AT&T Corp. T 07/02/1962 to 09/17/1999

Travelers Group Inc. TRVa 10/29/1986 to 09/17/1999

Union Carbide Corp. UK 07/02/1962 to 09/17/1999

United Technologies Corp. UTX 07/02/1962 to 09/17/1999

Wal–Mart Stores Inc. WMTa 11/20/1972 to 09/17/1999

Exxon Corp. XON 07/02/1962 to 09/17/1999

Note: A summary of company names and tickers, and the range of the data are examined. We

use the Dow Jones Thirty as of March 1997.
aStocks with incomplete data, which we exclude from the analysis.
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covariances with the market, as shown in Fig. 5. In Fig. 4, it makes the
median covariance correlogram appear as a very slightly dampened version
of that for the market variance. This contrasts sharply with the lower and
gently declining pattern for the realized beta autocorrelations. Intuitively,
movements of the realized market variance are largely reflected in move-
ments of the realized covariances; as such, they largely ‘‘cancel’’ when we
form ratios (realized betas). Consequently, the correlation structure across
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Fig. 1. Time Series Plot of Quarterly Realized Market Variance, Fall 1987 (a) In-

cluded (b) Exculded. Note: The Two Subfigures Show the Time Series of Quarterly

Realized Market Variance, with The 1987:4 Outlier Included (a) and Excluded (b). The

Sample Covers the Period from 1962:3 through 1999:3, for a Total of 149 Observa-

tions. We Calculate the Realized Quarterly Market Variances from Daily Returns.

Realized Beta: Persistence and Predictability 11
the individual realized beta series in Fig. 6 is much more dispersed than is
the case for the realized covariances in Fig. 5. This results in an effective
averaging of the noise and the point estimates of the median correlation
values are effectively zero beyond 10 quarters for the beta series.12


