

Learning jQuery 1.3

Better Interaction Design and Web Development with
Simple JavaScript Techniques

Jonathan Chaffer
Karl Swedberg

 BIRMINGHAM - MUMBAI

Learning jQuery 1.3

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2009

Production Reference: 1040209

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-70-5

www.packtpub.com

Cover Image by Karl Swedberg (karl@englishrules.com)

Credits

Authors

Jonathan Chaffer

Karl Swedberg

Reviewers

Akash Mehta

Dave Methvin

Mike Alsup

Senior Acquisition Editor

Douglas Paterson

Development Editor

Usha Iyer

Technical Editor

John Antony

Editorial Team Leader

Akshara Aware

Production Editorial
Manager

Abhijeet Deobhakta

Project Team Leader

Lata Basantani

Project Coordinator

Leena Purkait

Indexer

Rekha Nair

Proofreader

Jeff Orloff

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

Foreword
I feel honored knowing that Karl Swedberg and Jonathan Chaffer undertook the task
of writing Learning jQuery. As the first book about jQuery, it set the standard that
other jQuery — and, really, other JavaScript books in general — have tried to match.
It's consistently been one of the top selling JavaScript books since its release, in no
small part due to its quality and attention to detail.

I'm especially pleased that it was Karl and Jonathan who wrote the book since I
already knew them so well and knew that they would be perfect for the job. Being
part of the core jQuery team, I've had the opportunity to come to know Karl quite
well over the past couple years, and especially within the context of his book writing
effort. Looking at the end result, it's clear that his skills as both a developer and a
former English teacher were perfectly designed for this singular task.

I've also had the opportunity to meet both of them in person, a rare occurrence in
the world of distributed Open Source projects, and they continue to be upstanding
members of the jQuery community.

The jQuery library is used by so many different people in the jQuery community.
The community is full of designers, developers, people who have experience
programming, and those who don't. Even within the jQuery team, we have people
from all backgrounds providing their feedback on the direction of the project. There
is one thing that is common across all of jQuery's users, though: We are a community
of developers and designers who want JavaScript development to be made simple.

It's almost a cliché, at this point, to say that an open source project is community-
oriented, or that a project wants to focus on helping new users get started. But it's
not just an empty gesture for jQuery; it's the liquid-oxygen fuel for the project. We
actually have more people in the jQuery team dedicated to managing the jQuery
community, writing documentation, or writing plugins than actually maintaining
the core code base. While the health of the library is incredibly important, the
community surrounding that code is the difference between a floundering, mediocre
project and one that will match and exceed your every need.

How we run the project, and how you use the code, is fundamentally very different
from most open source projects — and most JavaScript libraries. The jQuery project
and community is incredibly knowledgeable; we understand what makes jQuery
a different programming experience and do our best to pass that knowledge on to
fellow users.

The jQuery community isn't something that you can read about to understand; it's
something that you actually have to participate in for it to fully sink in. I hope that
you'll have the opportunity to partake in it. Come join us in our forums, mailing
lists, and blogs and let us help guide you through the experience of getting to know
jQuery better.

For me, jQuery is much more than a block of code. It's the sum total of experiences
that have transpired over the years in order to make the library happen. The
considerable ups and downs, the struggle of development together with the
excitement of seeing it grow and succeed. Growing close with its users and fellow
team members, understanding them and trying to grow and adapt.

When I first saw this book talk about jQuery and discuss it like a unified tool, as
opposed to the experiences that it's come to encapsulate for me, I was both taken
aback and excited. Seeing how others learn, understand, and mold jQuery to fit them
is much of what makes the project so exhilarating.

I'm not the only one who enjoys jQuery on a level that is far different from a normal
tool-user relationship. I don't know if I can properly encapsulate why this is, but I've
seen it time and time again — the singular moment when a user's face lights up with
the realization of just how much jQuery will help them.

There is a specific moment where it just clicks for a jQuery user, when they realize
that this tool that they were using was in fact much, much more than just a simple
tool all along — and suddenly their understanding of how to write dynamic web
applications completely shifts. It's an incredible thing, and absolutely my favorite
part of the jQuery project.

I hope you'll have the opportunity to experience this sensation as well.

John Resig
Creator of jQuery

About the Authors

Jonathan Chaffer is the Chief Technology Officer of Structure Interactive,
an interactive agency located in Grand Rapids, Michigan. There, he oversees
web development projects using a wide range of technologies, and continues
to collaborate on day-to-day programming tasks as well.

In the open-source community, Jonathan has been very active in the Drupal CMS
project, which has adopted jQuery as its JavaScript framework of choice. He is the
creator of the Content Construction Kit, a popular module for managing structured
content on Drupal sites. He is responsible for major overhauls of Drupal's menu
system and developer API reference.

Jonathan lives in Grand Rapids with his wife, Jennifer.

I would like to thank Jenny for her tireless enthusiasm and support,
Karl for the motivation to continue writing when the spirit is weak,
and the Ars Technica community for constant inspiration toward
technical excellence.

Karl Swedberg is a web developer at Fusionary Media in Grand Rapids, Michigan,
where he spends much of his time implementing design with a focus on "web
standards"—semantic HTML, well-mannered CSS, and unobtrusive JavaScript.
A member of the jQuery Project Team and an active contributor to the jQuery
discussion list, Karl has presented at workshops and conferences and provided
corporate training in Europe and North America.

Before his current love affair with web development, Karl worked as a copy editor,
a high-school English teacher, and a coffee house owner. His fascination with
technology began in the early 1990s when he worked at Microsoft in Redmond,
Washington, and it has continued unabated ever since.

Karl would rather be spending time with his wife, Sara, and his two children,
Benjamin and Lucia.

I wish to thank my wife, Sara, for her steadfast love and support.
Thanks also to my two delightful children, Benjamin and Lucia.
Jonathan Chaffer has my deepest respect for his programming
expertise and my gratitude for his willingness to write this book
with me.

Many thanks to John Resig for creating the world's greatest
JavaScript library and for fostering an amazing community around
it. Thanks also to the folks at Packt Publishing, the technical
reviewers of this book, the jQuery Cabal, and the many others
who have provided help and inspiration along the way.

 About the Reviewers

Akash Mehta is a web application developer, technical writer and business
consultant based in Brisbane, Australia. His past projects include brochure websites,
e-learning solutions and information systems. He has written web development
articles for several of publishers in print and online, is a regular speaker at local
conferences, and contributes to prominent PHP blogs.

As a student, Akash maintained PHP web applications and built user interfaces
using the jQuery toolkit. While pursuing a degree in both commerce and IT, Akash
develops web applications on PHP and Python platforms. After hours, he organizes
his local PHP user group.

Akash develops applications on a wide range of open source libraries. His toolbox
includes a number of application frameworks, including the Zend Framework,
CakePHP and Django; Javascript frameworks like jQuery, Prototype and Mootools,
platforms such as Adobe Flash/Flex, and the MySQL and SQLite database engines.

Currently, Akash provides freelance technical writing and web development
through his website, http://bitmeta.org.

Dave Methvin has more than 25 years of software development experience in
both the Windows and Unix environments. His early career focused on embedded
software in the fields of robotics, telecommunications, and medicine. Later, he
moved to PC-based software projects using C/C++ and web technologies.

Dave also has more than 20 years of experience in computer journalism. He was
Executive Editor at PC Tech Journal and Windows Magazine, covering PC and
Internet issues; his how-to columns on JavaScript offered some of the first cut-and-
paste solutions to common web page problems. He was also a co-author of the book
"Networking Windows NT" (John Wiley & Sons, 1997).

Currently, Dave is Chief Technology Officer at PC Pitstop, a web site that helps
users fix and optimize the performance of their computers. He is also active in the
jQuery community.

Mike Alsup has been involved with the jQuery project since near its inception
and has contributed many popular plugins to the community. He is an active
participant in the jQuery Google Group where he frequently provides support to
new jQuery users.

Mike lives in upstate NY with his wife, Diane, and their triplet teenage sons. He is a
Senior Software Developer at Click Commerce, Inc. where he focuses on Java, Swing,
and web application development.

His jQuery plugins can be found at http://jquery.malsup.com/

Table of Contents
Preface 1
Chapter 1: Getting Started 7

What jQuery does 7
Why jQuery works well 8
History of the jQuery project 10
Our first jQuery-powered web page 11

Downloading jQuery 11
Setting up the HTML document 11
Adding jQuery 14

Finding the poem text 15
Injecting the new class 15
Executing the code 15

The finished product 17
Summary 18

Chapter 2: Selectors 19
The Document Object Model 19
The $() factory function 20
CSS selectors 21

Styling list-item levels 23
Attribute selectors 24

Styling links 25
Custom selectors 26

Styling alternate rows 27
Form selectors 29

DOM traversal methods 30
Styling specific cells 31
Chaining 32

Accessing DOM elements 33
Summary 34

Table of Contents

[ii]

Chapter 3: Events 35
Performing tasks on page load 35

Timing of code execution 35
Multiple scripts on one page 36
Shortcuts for code brevity 37
Coexisting with other libraries 38

Simple events 39
A simple style switcher 39

Enabling the other buttons 41
Event handler context 43
Further consolidation 45

Shorthand events 47
Compound events 48

Showing and hiding advanced features 48
Highlighting clickable items 50

The journey of an event 51
Side effects of event bubbling 53

Altering the journey: the event object 53
Event targets 54
Stopping event propagation 55
Default actions 56
Event delegation 56

Removing an event handler 58
Event namespacing 59
Rebinding events 60

Simulating user interaction 62
Keyboard events 63

Summary 66
Chapter 4: Effects 67

Inline CSS modification 67
Basic hide and show 72
Effects and speed 74

Speeding in 74
Fading in and fading out 75

Compound effects 76
Creating custom animations 77

Toggling the fade 78
Animating multiple properties 79

Positioning with CSS 81
Simultaneous versus queued effects 82

Working with a single set of elements 82

Table of Contents

[iii]

Working with multiple sets of elements 85
Callbacks 87
In a nutshell 89

Summary 90
Chapter 5: DOM Manipulation 91

Manipulating attributes 91
Non-class attributes 91
The $() factory function revisited 94

Inserting new elements 96
Moving elements 98

Marking, numbering, and linking the context 101
Appending footnotes 103

Wrapping elements 105
Copying elements 106

Clone with events 107
Cloning for pull quotes 107
A CSS diversion 108
Back to the code 109
Prettifying the pull quotes 111

DOM manipulation methods in a nutshell 113
Summary 114

Chapter 6: AJAX 115
Loading data on demand 115

Appending HTML 117
Working with JavaScript objects 120

Retrieving a JavaScript object 120
Global jQuery functions 121
Executing a script 125

Loading an XML document 127
Choosing a data format 130
Passing data to the server 131

Performing a GET request 132
Performing a POST request 136
Serializing a form 137

Keeping an eye on the request 139
AJAX and events 142
Security limitations 143

Using JSONP for remote data 144
Additional options 146

The low-level AJAX method 146
Modifying default options 147

Table of Contents

[iv]

Loading parts of an HTML page 147
Summary 150

Chapter 7: Table Manipulation 151
Sorting and paging 152

Server-side sorting 152
Preventing page refreshes 153

JavaScript sorting 153
Row grouping tags 155
Basic alphabetical sorting 156
The power of plugins 161
Performance concerns 161
Finessing the sort keys 163
Sorting other types of data 165
Column highlighting 168
Alternating sort directions 168

Server-side pagination 171
Sorting and paging go together 171

JavaScript pagination 173
Displaying the pager 173
Enabling the pager buttons 174
Marking the current page 176
Paging with sorting 177

The finished code 178
Modifying table appearance 180

Row highlighting 181
Row striping 182
Advanced row striping 185
Interactive row highlighting 186

Tooltips 189
Collapsing and expanding sections 194
Filtering 196

Filter options 197
Reversing the filters 199
Interacting with other code 200

The finished code 202
Summary 205

Chapter 8: Forms with Function 207
Improving a basic form 207

Progressively enhanced form styling 208
The legend 210
Required field messages 211

Conditionally displayed fields 215
Form validation 217

Required fields 218

Table of Contents

[v]

Required formats 221
A final check 223

Checkbox manipulation 226
The finished code 228

Compact forms 232
Placeholder text for fields 232
AJAX auto-completion 235

On the server 236
In the browser 237
Populating the search field 238
Keyboard navigation 239
Handling the arrow keys 241
Inserting suggestions in the field 242
Removing the suggestion list 243
Auto-completion versus live search 243

The finished code 244
Working with numeric form data 246

Shopping cart table structure 247
Rejecting non-numeric input 250
Numeric calculations 251

Parsing and formatting currency 252
Dealing with decimal places 254
Other calculations 255
Rounding values 256
Finishing touches 257

Deleting items 258
Editing shipping information 263
The finished code 266

Summary 268
Chapter 9: Shufflers and Rotators 269

Headline rotator 269
Setting up the page 270
Retrieving the feed 272
Setting up the rotator 275
The headline rotate function 276
Pause on hover 279
Retrieving a feed from a different domain 281

Adding a loading indicator 282
Gradient fade effect 283
The finished code 285

An image carousel 287
Setting up the page 288

Revising the styles with JavaScript 290

Table of Contents

[vi]

Shuffling images when clicked 291
Adding sliding animation 294
Displaying action icons 295

Image enlargement 299
Hiding the enlarged cover 301
Displaying a close button 302
More fun with badging 304
Animating the cover enlargement 306
Deferring animations until image loads 310
Adding a loading indicator 311

The finished code 313
Summary 316

Chapter 10: Using Plugins 317
Finding plugins and help 317
How to use a plugin 318
The Form plugin 318

Tips and tricks 320
The jQuery UI plugin library 321

Effects 321
Color animations 322
Class animations 322
Advanced easing 322
Additional effects 323

Interaction components 324
Widgets 326
jQuery UI ThemeRoller 329

Other recommended plugins 330
Forms 330

Autocomplete 330
Validation 331
Jeditable 331
Masked input 332

Tables 332
Tablesorter 333
jqGrid 333
Flexigrid 334

Images 334
Jcrop 334
Magnify 335

Lightboxes and Modal Dialogs 336
FancyBox 336
Thickbox 336
BlockUI 337
jqModal 338

Table of Contents

[vii]

Charting 338
Flot 338
Sparklines 339

Events 340
hoverIntent 340
Live query 340

Summary 340
Chapter 11: Developing plugins 341

Adding new global functions 341
Adding multiple functions 342
What's the point? 343
Creating a utility method 343

Adding jQuery Object Methods 345
Object Method context 345
Method chaining 348

DOM traversal methods 349
Adding new shortcut methods 354
Method parameters 357

Simple parameters 359
Parameter maps 360
Default parameter values 361
Callback functions 362
Customizable defaults 363

Adding a selector expression 365
Sharing a plugin with the world 368

Naming conventions 368
Use of the $ alias 369
Method interfaces 369
Documentation style 370

Summary 370
Appendix A: Online Resources 371

jQuery documentation 371
jQuery wiki 371
jQuery API 371
jQuery API browser 371
Visual jQuery 372
Adobe AIR jQueryAPI viewer 372

JavaScript reference 372
Mozilla developer center 372
Dev.opera 372

Table of Contents

[viii]

MSDN JScript Reference 372
Quirksmode 373
JavaScript Toolbox 373

JavaScript code compressors 373
YUI Compressor 373
JSMin 373
Pretty printer 374

(X)HTML reference 374
W3C hypertext markup language home page 374

CSS reference 374
W3C cascading style sheets home page 374
Mezzoblue CSS cribsheet 374
Position is everything 375

Useful blogs 375
The jQuery blog 375
Learning jQuery 375
Ajaxian 375
John Resig 375
JavaScript ant 376
Robert's talk 376
Web standards with imagination 376
Snook 376
Matt Snider JavaScript resource 376
I can't 376
DOM scripting 377
As days pass by 377
A list apart 377

Web development frameworks using jQuery 377
Appendix B: Development Tools 379

Tools for Firefox 379
Firebug 379
Web developer toolbar 380
Venkman 380
Regular expressions tester 380

Tools for Internet Explorer 380
Microsoft Internet Explorer Developer Toolbar 380
Microsoft Visual Web Developer 381
DebugBar 381
Drip 381

Table of Contents

[ix]

Tools for Safari 381
Develop Menu 381
Web Inspector 382

Tools for Opera 382
Dragonfly 382

Other tools 382
Firebug Lite 382
NitobiBug 383
TextMate jQuery bundle 383
Charles 383
Fiddler 383
Aptana 383

Appendix C: JavaScript Closures 385
Inner functions 385

The great escape 387
Variable scoping 388

Interactions between closures 390
Closures in jQuery 391

Arguments to $(document).ready() 391
Event handlers 392

Memory leak hazards 394
Accidental reference loops 395
The Internet Explorer memory leak problem 396
The good news 397

Summary 397
Appendix D: Quick Reference 399

Selector expressions 399
DOM traversal methods 401
Event methods 402
Effect methods 404
DOM manipulation methods 405
AJAX methods 408
Miscellaneous methods 409

Index 411

Preface
It began as a labor of love back in 2005 by John Resig, a JavaScript wunderkind who
now works for the Mozilla Corporation. Inspired by pioneers in the field such as
Dean Edwards and Simon Willison, Resig put together a set of functions to make it
easy to programmatically find elements on a web page and assign behaviors to them.
By the time he first publicly announced his project in January 2006, he had added
DOM modification and basic animations. He gave it the name jQuery to emphasize
the central role of finding, or "querying," parts of a web page and acting on them
with JavaScript. In the few short years since then, jQuery has grown in its feature set,
improved in its performance, and gained widespread adoption by some of the most
popular sites on the Internet. While Resig remains the lead developer of the project,
jQuery has blossomed, in true open-source fashion, to the point where it now boasts
a core team of top-notch JavaScript developers, as well as a vibrant community of
thousands of developers.

The jQuery JavaScript Library can enhance your websites regardless of your
background. It provides a wide range of features, an easy-to-learn syntax, and robust
cross-platform compatibility in a single compact file. What's more, hundreds of
plug-ins have been developed to extend jQuery's functionality, making it an essential
tool for nearly every client-side scripting occasion.

Learning jQuery provides a gentle introduction to jQuery concepts, allowing you to
add interactions and animations to your pages—even if previous attempts at writing
JavaScript have left you baffled. This book guides you past the pitfalls associated
with AJAX, events, effects, and advanced JavaScript language features, and provides
you with a brief reference to the jQuery library to return to again and again.

Preface

[2]

What this book covers
In Chapter 1 you'll get your feet wet with the jQuery JavaScript library. The chapter
begins with a description of jQuery and what it can do for you. It walks you through
downloading and setting up the library, as well as writing your first script.

In Chapter 2 you'll learn how to use jQuery's selector expressions and DOM traversal
methods to find elements on the page, wherever they may be. You'll use jQuery to
apply styling to a diverse set of page elements, sometimes in a way that pure
CSS cannot.

In Chapter 3 you'll use jQuery's event-handling mechanism to fire off behaviors when
browser events occur. You'll see how jQuery makes it easy to attach events to elements
unobtrusively, even before the page finishes loading. And, you'll be introduced to
more advanced topics, such as event bubbling, delegation, and namespacing.

In Chapter 4 you'll be introduced to jQuery's animation techniques and see how to
hide, show, and move page elements with effects that are both useful and pleasing
to the eye.

In Chapter 5 you'll learn how to change your page on command. This chapter will
teach you how to alter the very structure of an HTML document, as well as its
content, on the fly.

In Chapter 6 you'll discover the many ways in which jQuery makes it easy to access
server-side functionality without resorting to clunky page refreshes.

In the next three chapters (7, 8, and 9) you'll work through several real-world
examples, pulling together what you've learned in previous chapters and creating
robust jQuery solutions to common problems.

In Chapter 7, "Table Manipulation," you'll sort, sift, and style information to create
beautiful and functional data layouts.

In Chapter 8, "Forms with Function," you'll master the finer points of client-side
validation, design an adaptive form layout, and implement interactive client-server
form features such as autocompletion.

In Chapter 9, "Shufflers and Rotators," you'll enhance the beauty and utility of page
elements by showing them in more manageable chunks. You'll make information fly
in and out of view both on its own and under user control.

Chapters 10 and 11 take you beyond the core jQuery methods to explore
third-party extensions to the library, and show you various ways you can extend
the library yourself.

Preface

[3]

In Chapter 10, "Using Plug-ins," you'll examine the Form plug-in and the official
collection of user interface plug-ins known as jQuery UI. You'll also learn where to
find many other popular jQuery plug-ins and see what they can do for you.

In Chapter 11, "Developing Plug-ins," you'll learn how to take advantage of jQuery's
impressive extension capabilities to develop your own plug-ins from the ground up.
You'll create your own utility functions, add jQuery object methods, write custom
selector expressions, and more.

In Appendix A, "Online Resources," you'll find recommendations for a handful of
informative websites on a wide range of topics related to jQuery, JavaScript, and web
development in general.

In Appendix B, "Development Tools," you'll discover a number of useful third-party
programs and utilities for editing and debugging jQuery code within your personal
development environment.

In Appendix C, "JavaScript Closures," you'll gain a solid understanding of
closures—what they are and how you can use them to your advantage.

In Appendix D, "Quick Reference," you'll get a glimpse of the entire jQuery library,
including every one of its methods and selector expressions. Its easy-to-scan format
is perfect for those moments when you know what you want to do, but you're just
unsure about the right method name or selector.

What you need for this book
In order to both write and run the code demonstrated in this book, you need
the following:

A basic text editor.
A modern web browser such as Mozilla Firefox, Apple Safari, or Microsoft
Internet Explorer.
The jQuery source file, version 1.3.1 or later, which can be downloaded from
http://jquery.com/.

Additionally, to run the AJAX examples in Chapter 6, you will need a
PHP-enabled server.

•

•

•

Preface

[4]

Who is this book for
This book is for web designers who want to create interactive elements for their
designs, and for developers who want to create the best user interface for their web
applications. Basic JavaScript programming knowledge is required. You will need
to know the basics of HTML and CSS, and should be comfortable with the syntax
of JavaScript. No knowledge of jQuery is assumed, nor is experience with any other
JavaScript libraries required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code will be set as follows:

<html>
 <head>
 <title>the title</title>
 </head>
 <body>
 <div>
 <p>This is a paragraph.</p>
 <p>This is another paragraph.</p>
 <p>This is yet another paragraph.</p>
 </div>
 </body>
</html>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

$(document).ready(function() {
 $('a[href^=mailto:]').addClass('mailto');
 $('a[href$=.pdf]').addClass('pdflink');
 $('a[href^=http][href*=henry]')
 .addClass('henrylink');
});

Preface

[5]

Any command-line input and output is written as follows:

outerFn():
Outer function
Inner function

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"Note the PDF icon to the right of the Hamlet link, the envelope icon next to the
email link, and the white background and black border around the Henry V link.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[6]

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/6705_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide the location address or website name immediately so we can pursue
a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Getting Started
Today's World Wide Web is a dynamic environment, and its users set a high bar for
both style and function of sites. To build interesting, interactive sites, developers
are turning to JavaScript libraries such as jQuery to automate common tasks and
simplify complicated ones. One reason the jQuery library is a popular choice is its
ability to assist in a wide range of tasks.

It can seem challenging to know where to begin because jQuery performs so
many different functions. Yet, there is a coherence and symmetry to the design of
the library; most of its concepts are borrowed from the structure of HTML and
Cascading Style Sheets (CSS). The library's design lends itself to a quick start for
designers with little programming experience since many web developers have
more experience with these technologies than they do with JavaScript. In fact, in this
opening chapter we'll write a functioning jQuery program in just three lines of code.
On the other hand, experienced programmers will also be aided by this conceptual
consistency, as we'll see in the later, more advanced chapters.

So let's look at what jQuery can do for us.

What jQuery does
The jQuery library provides a general-purpose abstraction layer for common web
scripting, and is therefore useful in almost every scripting situation. Its extensible
nature means that we could never cover all possible uses and functions in a single
book, as plugins are constantly being developed to add new abilities. The core
features, though, address the following needs:

Access elements in a document. Without a JavaScript library, many lines of
code must be written to traverse the Document Object Model (DOM) tree,
and locate specific portions of an HTML document's structure. A robust and
efficient selector mechanism is offered in jQuery for retrieving the exact piece
of the document that is to be inspected or manipulated.

•

Getting Started

[8]

Modify the appearance of a web page. CSS offers a powerful method of
influencing the way a document is rendered, but it falls short when web
browsers do not all support the same standards. With jQuery, developers can
bridge this gap, relying on the same standards support across all browsers. In
addition, jQuery can change the classes or individual style properties applied
to a portion of the document even after the page has been rendered.
Alter the content of a document. Not limited to mere cosmetic changes,
jQuery can modify the content of a document itself with a few keystrokes. Text
can be changed, images can be inserted or swapped, lists can be reordered, or
the entire structure of the HTML can be rewritten and extended—all with a
single easy-to-use Application Programming Interface (API).
Respond to a user's interaction. Even the most elaborate and powerful
behaviors are not useful if we can't control when they take place. The jQuery
library offers an elegant way to intercept a wide variety of events, such as a
user clicking on a link, without the need to clutter the HTML code itself with
event handlers. At the same time, its event-handling API removes browser
inconsistencies that often plague web developers.
Animate changes being made to a document. To effectively implement such
interactive behaviors, a designer must also provide visual feedback to the
user. The jQuery library facilitates this by providing an array of effects such
as fades and wipes, as well as a toolkit for crafting new ones.
Retrieve information from a server without refreshing a page. This code
pattern has become known as Asynchronous JavaScript And XML (AJAX),
and assists web developers in crafting a responsive, feature-rich site. The
jQuery library removes the browser-specific complexity from this process,
allowing developers to focus on the server-end functionality.
Simplify common JavaScript tasks. In addition to all of the
document-specific features of jQuery, the library provides enhancements
to basic JavaScript constructs such as iteration and array manipulation.

Why jQuery works well
With the recent resurgence of interest in dynamic HTML comes a proliferation of
JavaScript frameworks. Some are specialized, focusing on just one or two of the
above tasks. Others attempt to catalog every possible behavior and animation, and
serve these all up pre-packaged. To maintain the wide range of features outlined
above while remaining compact, jQuery employs several strategies:

•

•

•

•

•

•

Chapter 1

[9]

Leverage knowledge of CSS. By basing the mechanism for locating page
elements on CSS selectors, jQuery inherits a terse yet legible way of
expressing a document's structure. The jQuery library becomes an entry
point for designers who want to add behaviors to their pages because a
prerequisite for doing professional web development is knowledge of
CSS syntax.
Support extensions. In order to avoid "feature creep", jQuery relegates
special-case uses to plugins. The method for creating new plugins is simple
and well-documented, which has spurred the development of a wide variety
of inventive and useful modules. Even most of the features in the basic
jQuery download are internally realized through the plugin architecture,
and can be removed if desired, yielding an even smaller library.
Abstract away browser quirks. An unfortunate reality of web development
is that each browser has its own set of deviations from published standards.
A significant portion of any web application can be relegated to handling
features differently on each platform. While the ever-evolving browser
landscape makes a perfectly browser-neutral code base impossible for some
advanced features, jQuery adds an abstraction layer that normalizes the
common tasks, reducing the size of code, and tremendously simplifying it.
Always work with sets. When we instruct jQuery, Find all elements with
the class collapsible and hide them, there is no need to loop through
each returned element. Instead, methods such as .hide() are designed
to automatically work on sets of objects instead of individual ones. This
technique, called implicit iteration, means that many looping constructs
become unnecessary, shortening code considerably.
Allow multiple actions in one line. To avoid overuse of temporary variables
or wasteful repetition, jQuery employs a programming pattern called
chaining for the majority of its methods. This means that the result of most
operations on an object is the object itself, ready for the next action to be
applied to it.

These strategies have kept the jQuery package slim—under 20 KB compressed—
while at the same time providing techniques for keeping our custom code that uses
the library compact, as well.

The elegance of the library comes about partly by design, and partly due to
the evolutionary process spurred by the vibrant community that has sprung up
around the project. Users of jQuery gather to discuss not only the development of
plugins, but also enhancements to the core library. Appendix A details many of
the community resources available to jQuery developers.

•

•

•

•

•

Getting Started

[10]

Despite all of the efforts required to engineer such a flexible and robust system,
the end product is free for all to use. This open-source project is dually licensed
under the GNU Public License (appropriate for inclusion in many other
open-source projects) and the MIT License (to facilitate use of jQuery within
proprietary software).

History of the jQuery project
This book covers the functionality and syntax of jQuery 1.3.x, the latest version at
the time of writing. The premise behind the library—providing an easy way to find
elements on a web page and manipulating them—has not changed over the course
of its development, but some syntax details and features have. This brief overview
of the project history describes the most significant changes from version to version.

Public Development Phase: John Resig first made mention of an
improvement on Prototype's "Behaviour" library in August of 2005. This
new framework was formally released as jQuery on January 14, 2006.
jQuery 1.0 (August 2006): This, the first stable release of the library, already
had robust support for CSS selectors, event handling, and AJAX interaction.
jQuery 1.1 (January 2007): This release streamlined the API considerably.
Many rarely-used methods were combined, reducing the number of methods
to learn and document.
jQuery 1.1.3 (July 2007): This minor release contained massive speed
improvements for jQuery's selector engine. From this version on, jQuery's
performance would compare favorably to its fellow JavaScript libraries such
as Prototype, Mootools, and Dojo.
jQuery 1.2 (September 2007): XPath syntax for selecting elements was
removed in this release, as it had become redundant with the CSS syntax.
Effect customization became much more flexible in this release, and plugin
development became easier with the addition of namespaced events.
jQuery UI (September 2007): This new plugin suite was announced
to replace the popular but aging Interface plugin. A rich collection of
prefabricated widgets was included, as well as a set of tools for building
sophisticated elements such as drag-and-drop interfaces.
jQuery 1.2.6 (May 2008): The functionality of Brandon Aaron's popular
Dimensions plugin was brought into the main library.
jQuery 1.3 (January 2009): A major overhaul of the selector engine (Sizzle)
provided a huge boost to the library’s performance. Event delegation
became formally supported.

•

•

•

•

•

•

•

•

Chapter 1

[11]

Release notes for older jQuery versions can be found on the project's web
site at http://docs.jquery.com/History_of_jQuery.

Our first jQuery-powered web page
Now that we have covered the range of features available to us with jQuery, we can
examine how to put the library into action.

Downloading jQuery
The official jQuery website (http://jquery.com/) is always the most up-to-date
resource for code and news related to the library. To get started, we need a copy
of jQuery, which can be downloaded right from the home page of the site. Several
versions of jQuery may be available at any given moment; the most appropriate for
us as site developers will be the latest uncompressed version of the library. This can
be replaced with a compressed version in production environments.

No installation is required. To use jQuery, we just need to place it on our site in a
public location. Since JavaScript is an interpreted language, there is no compilation
or build phase to worry about. Whenever we need a page to have jQuery available,
we will simply refer to the file's location from the HTML document.

Setting up the HTML document
There are three pieces to most examples of jQuery usage: the HTML document itself,
CSS files to style it, and JavaScript files to act on it. For our first example, we'll use a
page with a book excerpt that has a number of classes applied to portions of it.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8"/>

 <title>Through the Looking-Glass</title>

 <link rel="stylesheet" href="alice.css"
 type="text/css" media="screen" />

 <script src="jquery.js" type="text/javascript"></script>

Getting Started

[12]

 <script src="alice.js" type="text/javascript"></script>
 </head>

 <body>
 <h1>Through the Looking-Glass</h1>
 <div class="author">by Lewis Carroll</div>

 <div class="chapter" id="chapter-1">
 <h2 class="chapter-title">1. Looking-Glass House</h2>
 <p>There was a book lying near Alice on the table,
 and while she sat watching the White King (for she
 was still a little anxious about him, and had the
 ink all ready to throw over him, in case he fainted
 again), she turned over the leaves, to find some
 part that she could read,
 "—for it's all in some language I don't know,"
 she said to herself.</p>
 <p>It was like this.</p>
 <div class="poem">
 <h3 class="poem-title">YKCOWREBBAJ</h3>
 <div class="poem-stanza">
 <div>sevot yhtils eht dna ,gillirb sawT'</div>
 <div>;ebaw eht ni elbmig dna eryg diD</div>
 <div>,sevogorob eht erew ysmim llA</div>
 <div>.ebargtuo shtar emom eht dnA</div>
 </div>
 </div>
 <p>She puzzled over this for some time, but at last
 a bright thought struck her.
 "Why, it's a Looking-glass book, of course! And if
 I hold it up to a glass, the words will all go the
 right way again."</p>
 <p>This was the poem that Alice read.</p>
 <div class="poem">
 <h3 class="poem-title">JABBERWOCKY</h3>
 <div class="poem-stanza">
 <div>'Twas brillig, and the slithy toves</div>
 <div>Did gyre and gimble in the wabe;</div>
 <div>All mimsy were the borogoves,</div>
 <div>And the mome raths outgrabe.</div>
 </div>
 </div>
 </div>
 </body>
</html>

Chapter 1

[13]

The actual layout of files on the server does not matter. References from
one file to another just need to be adjusted to match the organization
we choose. In most examples in this book, we will use relative paths to
reference files (../images/foo.png) rather than absolute paths
(/images/foo.png). This will allow the code to run locally without
the need for a web server.

Immediately following the normal HTML preamble, the stylesheet is loaded. For this
example, we'll use a spartan one.

body {
 font: 62.5% Arial, Verdana, sans-serif;
}
h1 {
 font-size: 2.5em;
 margin-bottom: 0;
}
h2 {
 font-size: 1.3em;
 margin-bottom: .5em;
}
h3 {
 font-size: 1.1em;
 margin-bottom: 0;
}
.poem {
 margin: 0 2em;
}
.highlight {
 font-style: italic;
 border: 1px solid #888;
 padding: 0.5em;
 margin: 0.5em 0;
 background-color: #ffc;
}

After the stylesheet is referenced, the JavaScript files are included. It is important that
the script tag for the jQuery library be placed before the tag for our custom scripts;
otherwise, the jQuery framework will not be available when our code attempts to
reference it.

Getting Started

[14]

Throughout the rest of this book, only the relevant portions of HTML and
CSS files will be printed. The files in their entirety are available from the
book's companion website http://book.learningjquery.com or
from the publisher's website http://www.packtpub.com/support.

Now we have a page that looks like this:

We will use jQuery to apply a new style to the poem text.

This example is to demonstrate a simple use of jQuery. In real-world
situations, this type of styling could be performed purely with CSS.

Adding jQuery
Our custom code will go in the second, currently empty, JavaScript file, which
we included from the HTML using <script src="alice.js" type="text/
javascript"></script>. For this example, we only need three lines of code:

$(document).ready(function() {
 $('.poem-stanza').addClass('highlight');
});

Chapter 1

[15]

Finding the poem text
The fundamental operation in jQuery is selecting a part of the document. This is done
with the $() construct. Typically, it takes a string as a parameter, which can contain
any CSS selector expression. In this case, we wish to find all parts of the document that
have the poem-stanza class applied to them, so the selector is very simple. However,
we will cover much more sophisticated options through the course of the book. We
will step through the different ways of locating parts of a document in Chapter 2.

The $() function is actually a factory for the jQuery object, which is the basic
building block we will be working with from now on. The jQuery object encapsulates
zero or more DOM elements, and allows us to interact with them in many different
ways. In this case, we wish to modify the appearance of these parts of the page, and
we will accomplish this by changing the classes applied to the poem text.

Injecting the new class
The .addClass() method, like most jQuery methods, is named self-descriptively; it
applies a CSS class to the part of the page that we have selected. Its only parameter
is the name of the class to add. This method, and its counterpart, .removeClass(),
will allow us to easily observe jQuery in action as we explore the different selector
expressions available to us. For now, our example simply adds the highlight class,
which our stylesheet has defined as italicized text with a border.

Note that no iteration is necessary to add the class to all the poem stanzas. As we
discussed, jQuery uses implicit iteration within methods such as .addClass(), so
a single function call is all it takes to alter all of the selected parts of the document.

Executing the code
Taken together, $() and .addClass() are enough for us to accomplish our goal of
changing the appearance of the poem text. However, if this line of code is inserted
alone in the document header, it will have no effect. JavaScript code is generally
run as soon as it is encountered in the browser, and at the time the header is being
processed, no HTML is yet present to style. We need to delay the execution of the
code until after the DOM is available for our use.

Getting Started

[16]

The traditional mechanism for controlling when JavaScript code is run is to call the
code from within event handlers. Many handlers are available for user-initiated
events, such as mouse clicks and key presses. If we did not have jQuery available
for our use, we would need to rely on the onload handler, which fires after the page
(along with all of its images) has been rendered. To trigger our code from the onload
event, we would place the code inside a function:

function highlightPoemStanzas() {
 $('.poem-stanza').addClass('highlight');
}

Then we would attach the function to the event by modifying the HTML <body> tag
to reference it:

<body onload="highlightPoemStanzas();">

This causes our code to run after the page is completely loaded.

There are drawbacks to this approach. We altered the HTML itself to effect this
behavior change. This tight coupling of structure and function clutters the code,
possibly requiring the same function calls to be repeated over many different
pages, or in the case of other events such as mouse clicks, over every instance of an
element on a page. Adding new behaviors would then require alterations in multiple
places, increasing the opportunity for error and complicating parallel workflows for
designers and programmers.

To avoid this pitfall, jQuery allows us to schedule function calls for firing once the
DOM is loaded—without waiting for images—with the $(document).ready()
construct. With our function defined as above, we can write:

$(document).ready(highlightPoemStanzas);

This technique does not require any HTML modifications. Instead, the behavior is
attached entirely from within the JavaScript file. We will learn how to respond to other
types of events, divorcing their effects from the HTML structure as well, in Chapter 3.

This incarnation is still slightly wasteful, though, because the function
highlightPoemStanzas() is defined only to be used immediately, and exactly
once. This means that we have used an identifier in the global namespace of
functions that we have to remember not to use again, and for little gain. JavaScript,
like some other programming languages, has a way around this inefficiency called
anonymous functions (sometimes also called lambda functions). Using anonymous
functions, we can write the code as it was originally presented:

$(document).ready(function() {
 $('.poem-stanza').addClass('highlight');
});

Chapter 1

[17]

By using the function keyword without a function name, we define a function
exactly where it is needed, and not before. This removes clutter and brings us
down to three lines of JavaScript. This idiom is extremely convenient in jQuery
code, as many methods take a function as an argument and such functions are
rarely reusable.

When this syntax is used to define an anonymous function within the body of
another function, a closure can be created. This is an advanced and powerful
concept, but should be understood when making extensive use of nested function
definitions as it can have unintended consequences and ramifications on memory
use. This topic is discussed fully in Appendix C.

The finished product
Now that our JavaScript is in place, the page looks like this:

The poem stanzas are now italicized and enclosed in boxes, as specified by
the alice.css stylesheet, due to the insertion of the highlight class by the
JavaScript code.

Getting Started

[18]

Summary
We now have an idea of why a developer would choose to use a JavaScript
framework rather than writing all code from scratch, even for the most basic tasks.
We also have seen some of the ways in which jQuery excels as a framework, and
why we might choose it over other options. We also know in general which tasks
jQuery makes easier.

In this chapter, we have learned how to make jQuery available to JavaScript code
on our web page, use the $() factory function to locate a part of the page that has
a given class, call .addClass() to apply additional styling to this part of the page,
and invoke $(document).ready() to cause this code to execute upon the loading
of the page.

The simple example we have been using demonstrates how jQuery works, but is not
very useful in real-world situations. In the next chapter, we will expand on the code
here by exploring jQuery's sophisticated selector language, finding practical uses for
this technique.

Selectors
The jQuery library harnesses the power of Cascading Style Sheets (CSS) selectors
to let us quickly and easily access elements or groups of elements in the Document
Object Model (DOM). In this chapter, we will explore a few of these selectors, as
well as jQuery's own custom selectors. We'll also look at jQuery's DOM traversal
methods that provide even greater flexibility for getting what we want.

The Document Object Model
One of the most powerful aspects of jQuery is its ability to make selecting elements
in the DOM easy. The Document Object Model is a family-tree structure of sorts.
HTML, like other markup languages, uses this model to describe the relationships of
things on a page. When we refer to these relationships, we use the same terminology
that we use when referring to family relationships—parents, children, and so on.
A simple example can help us understand how the family tree metaphor applies
to a document:

<html>
 <head>
 <title>the title</title>
 </head>
 <body>
 <div>
 <p>This is a paragraph.</p>
 <p>This is another paragraph.</p>
 <p>This is yet another paragraph.</p>
 </div>
 </body>
</html>

Selectors

[20]

Here, <html> is the ancestor of all the other elements; in other words, all the other
elements are descendants of <html>. The <head> and <body> elements are not
only descendants, but children of <html>, as well. Likewise, in addition to being
the ancestor of <head> and <body>, <html> is also their parent. The <p> elements
are children (and descendants) of <div>, descendants of <body> and <html>, and
siblings of each other. For information on how to visualize the family-tree structure
of the DOM using third-party software, see Appendix B.

An important point to note before we begin is that the resulting set of elements from
selectors and methods is always wrapped in a jQuery object. These jQuery objects are
very easy to work with when we want to actually do something with the things that
we find on a page. We can easily bind events to these objects and add slick effects
to them, as well as chain multiple modifications or effects together. Nevertheless,
jQuery objects are different from regular DOM elements or node lists, and as such do
not necessarily provide the same methods and properties for some tasks. In the final
part of this chapter, therefore, we will look at ways to access the DOM elements that
are wrapped in a jQuery object.

The $() factory function
No matter which type of selector we want to use in jQuery, we always start with the
dollar sign and parentheses: $(). Just about anything that can be used in a stylesheet
can also be wrapped in quotation marks and placed inside the parentheses, allowing
us to apply jQuery methods to the matched set of elements.

Making jQuery Play Well with Other JavaScript Libraries
In jQuery, the dollar sign $ is simply an "alias" for jQuery. Conflicts
could arise if more than one of these libraries were being used in a given
page because a $() function is very common in JavaScript libraries. We
can avoid such conflicts by replacing every instance of $ with jQuery
in our custom jQuery code. Additional solutions to this problem are
addressed in Chapter 10.

Three building blocks of these selectors are tag name, ID, and class. They can be
used either on their own or in combination with other selectors. Here is an example
of what each of these three selectors looks like on its own:

Chapter 2

[21]

Selector CSS jQuery Description
Tag name p $('p') Selects all paragraphs in the document
ID #some-id $('#some-id') Selects the single element in the

document that has an ID of some-id
Class .some-class $('.some-class') Selects all elements in the document

that have a class of some-class

As mentioned in Chapter 1, when we attach methods to the $() factory function,
the elements wrapped in the jQuery object are looped through automatically and
implicitly. Therefore, we can usually avoid explicit iteration, such as a for loop,
that is so often required in DOM scripting.

Now that we have covered the basics, we're ready to start exploring some more
powerful uses of selectors.

CSS selectors
The jQuery library supports nearly all of the selectors included in CSS
specifications 1 through 3, as outlined on the World Wide Web Consortium's site:
http://www.w3.org/Style/CSS/#specs. This support allows developers to
enhance their websites without worrying about which browsers (particularly
Internet Explorer 6) might not understand advanced selectors, as long as the
browsers have JavaScript enabled.

Responsible jQuery developers should always apply the concepts of
progressive enhancement and graceful degradation to their code,
ensuring that a page will render as accurately, even if not as beautifully,
with JavaScript disabled as it does with JavaScript turned on. We will
continue to explore these concepts throughout the book.

To begin learning how jQuery works with CSS selectors, we'll use a structure that
appears on many websites, often for navigation—the nested, unordered list.

<ul id="selected-plays">
 Comedies

 As You Like It
 All's Well That Ends Well
 A Midsummer Night's Dream
 Twelfth Night

 Tragedies

Selectors

[22]

 Hamlet
 Macbeth
 Romeo and Juliet

 Histories

 Henry IV (email)

 Part I
 Part II

 Henry V
 Richard II

Notice that the first has an ID of selected-plays, but none of the tags
have a class associated with them. Without any styles applied, the list looks like this:

The nested list appears as we would expect it to—a set of bulleted items arranged
vertically and indented according to their level.

Chapter 2

[23]

Styling list-item levels
Lets suppose that we want the top-level items, and only the top-level items, to be
arranged horizontally. We can start by defining a horizontal class in the stylesheet:

.horizontal {
 float: left;
 list-style: none;
 margin: 10px;
}

The horizontal class floats the element to the left of the one following it, removes
the bullet from it if it's a list item, and adds a 10 pixel margin on all sides of it.

Rather than attaching the horizontal class directly in our HTML, we'll add
it dynamically to the top-level list items only—Comedies, Tragedies, and
Histories—to demonstrate jQuery's use of selectors:

$(document).ready(function() {
 $('#selected-plays > li').addClass('horizontal');

});

As discussed in Chapter 1, we begin the jQuery code with the $(document).
ready() wrapper, that runs as soon as the DOM has loaded.

The second line uses the child combinator (>) to add the horizontal class to all
top-level items only. In effect, the selector inside the $() function is saying, find
each list item (li) that is a child (>) of the element with an ID of selected-plays
(#selected-plays).

With the class now applied, our nested list looks like this:

Selectors

[24]

Styling all of the other items—those that are not in the top level—can be done in a
number of ways. Since we have already applied the horizontal class to the top-
level items, one way to select all sub-level items is to use a negation pseudo-class to
identify all list items that do not have a class of horizontal. Note the addition of the
third line of code:

$(document).ready(function() {
 $('#selected-plays > li').addClass('horizontal');
 $('#selected-plays li:not(.horizontal)').addClass('sub-level');

});

This time we are selecting every list item (li) that:

1. Is a descendant of the element with an ID of selected-plays
(#selected-plays)

2. Does not have a class of horizontal (:not(.horizontal))

When we add the sub-level class to these items, they receive the shaded
background defined in the stylesheet. Now the nested list looks like this:

Attribute selectors
Attribute selectors are a particularly helpful subset of CSS selectors. They allow us
to specify an element by one of its HTML properties, such as a link's title attribute
or an image's alt attribute. For example, to select all images that have an alt
attribute, we write the following:

$('img[alt]')

In versions prior to 1.2, jQuery used XML Path Language (XPath) syntax
for its attribute selectors and included a handful of other XPath selectors.
While these basic XPath selectors have since been removed from the core
jQuery library, they are still available as a plugin:
http://plugins.jquery.com/project/xpath/

