

RESTful Java Web Services

Master core REST concepts and create RESTful web
services in Java

Jose Sandoval

 BIRMINGHAM - MUMBAI

RESTful Java Web Services

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2009

Production Reference: 1051109

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK

ISBN 978-1-847196-46-0

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

Credits

Author
Jose Sandoval

Reviewers
Atanas Roussev

Richard Wallace

Acquisition Editor
Sarah Cullington

Development Editor
Dhiraj Chandiramani

Technical Editor
Ishita Dhabalia

Copy Editor
Sanchari Mukherjee

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Srimoyee Ghoshal

Proofreader
Lynda Silwoski

Graphics
Nilesh R. Mohite

Production Coordinator
Dolly Dasilva

Cover Work
Dolly Dasilva

About the Author

Jose Sandoval is a software developer based in Canada. He has played and
worked with web technologies since the Mosaic web browser days. For the last
12 years he's worked or consulted for various financial institutions and software
companies in North America, concentrating on large-scale Java web applications. He
holds a Bachelor of Mathematics from the University of Waterloo and an MBA from
Wilfrid Laurier University.

Aside from coding and writing, he enjoys watching a good soccer match and
coaching his son's soccer team. You can learn more about his interests at his website
www.josesandoval.com or his consulting firm's website www.sandoval.ca. Or you
can reach him directly at jose@josesandoval.com.

I would like to thank Renee and Gabriel, for being the center
and compass of my adventures; my family, for supporting me
unconditionally; my friends and colleagues, for challenging me at
every opportunity; my clients, for trusting me with their projects;
and the entire Packt Publishing team, for helping me throughout the
writing of this book.

About the Reviewers

Atanas Roussev is a father, an entrepreneur, and a software engineer. A certified
Sun and Oracle developer, his work can be found at EA, Morgan Stanley, and many
startups. His latest activities are in Java, GWT, mobile programming, and building
HTTP4e (Eclipse add-on for HTTP and REST).

In the last decade he moved from Bulgaria to Vancouver, British Columbia, learning
new words such as "timbits" and "double-double". He enjoys any offline time in the
Rockies and he loves challenging his three kids at Guitar Hero and math.

You can find him at www.roussev.org or just e-mail him at atanas@roussev.org.

Richard Wallace is a software developer, currently working for Atlassian. He has
been developing Java software for over seven years and has been a strong advocate
for RESTful web services at Atlassian since starting there two years ago. He enjoys
reading a good sci-fi book and spending time with his family.

I'd like to thank my wonderful wife and kids for making life
an exciting adventure everyday.

Table of Contents
Preface 1
Chapter 1: RESTful Architectures 7

What is REST? 7
Resources 9
Representation 10
URI 10
Uniform interfaces through HTTP requests 11

GET/RETRIEVE 12
POST/CREATE 16
PUT/UPDATE 18
DELETE/DELETE 20

Web services and the big picture 21
Summary 23

Chapter 2: Accessing RESTful Services — Part 1 25
Getting the tools 25
RESTful clients 26

Java command-line application 27
Jakarta Commons HTTP Client 30

Java desktop application 32
JSP application 36
Servlet application 38

Summary 42
Chapter 3: Accessing RESTful Services — Part 2 43

Getting the tools 43
Semantic search mashup 43

Application architecture 45
Web application definition 46

Table of Contents

[ii]

User interface layer 48
Parsing JSON structures 58

Servlet layer 60
SemanticHacker parser Servlet 61
Google search Servlet 63
Twitter search Servlet 64
Yahoo search Servlet 66
Yahoo image search Servlet 67

Compiling and running the application 68
Summary 68

Chapter 4: RESTful Web Services Design 69
Designing a RESTful web service 69

Requirements of sample web service 70
Resource identification 71
Representation definition 72

XML representations 72
JSON representations 75

URI definition 76
Executing logic with RESTful URIs 78
Using URIs to request representation types 78

Summary 79
Chapter 5: Jersey: JAX-RS 81

Getting the tools 81
JAX-RS 82
Jersey the JAX-RS 1.1 reference implementation 82
Annotations 83

Jersey resource 83
URIs 83

@Path 83
HTTP methods 84

@GET 84
@POST 85
@PUT 85
@DELETE 85
Relative paths in methods 86

URI variables 86
@PathParam 86

Input and output formats 88
@Consumes 88
@Produces 89

Parameters 90
@FormParam 90

Web service architecture 91
Persistence layer 92

Table of Contents

[iii]

RESTful web service implementation with Jersey 93
Application deployment 94
URI and resources 95

/users 95
/users/{username} 103
/messages 109
/messages/{messageID} 115
/messages/users/{username} 119
/messages/search/{search_item} 121

Using this RESTful web service 124
Summary 124

Chapter 6: The Restlet Framework 125
Getting the tools 125
Restlet 126
Restlet 1.1 127

Restlet application and URI mappings 127
Handling HTTP requests 128

HTTP GET and content negotiation (HTTP Accept header) 128
HTTP POST 130
HTTP PUT 131
HTTP DELETE 132

Implementation using Restlet 1.1 133
Restlet application and URI mappings 133
URIs and resources 135

/users 135
/users/{username} 139
/messages 143
/messages/{messageID} 144
/messages/users/{username} 146
/messages/search/{search_item} 147

Restlet 2.0 149
Restlet application and URI mappings 149
Annotations 150

@Get and content negotiation (HTTP Accept header) 150
@Post 151
@Put 152
@Delete 152

Implementation using Restlet 2.0 153
Restlet application and URI mappings 154
URIs and resources 154

/users 155
/users/{username} 158
/messages 162
/messages/{messageID} 163

Table of Contents

[iv]

/messages/users/{username} 165
/messages/search/{search_item} 166

Summary 167
Chapter 7: RESTEasy: JAX-RS 169

Getting the tools 169
RESTEasy — a JAX-RS implementation 170
Web service architecture 170
RESTful web service implementation with RESTEasy 171

Application deployment 172
URI and resources 174

/users 174
/users/{username} 175
/messages 176
/messages/{messageID} 177
/messages/users/{username} 178
/messages/search/{search_item} 179

Summary 179
Chapter 8: Struts 2 and the REST Plugin 181

Getting the tools 181
Struts 2 182

REST plugin 182
URI mappings 183
HTTP request handlers 184

Web service architecture 185
RESTful web service implementation with Struts 2 186

Application deployment 187
URIs and resources 189

/users and /users/{username} 189
/messages and /messages/{messageID} 197
/usermessages/{username} 200
/searchmessages/{search_item} 201

Summary 202
Chapter 9: Restlet Clients and Servers 203

Getting the tools 203
Restlet standalone applications 204

Restlet clients 204
HTTP GET requests 204
HTTP POST requests 205
HTTP PUT requests 207
HTTP DELETE requests 208

Restlet servers 209
Summary 218

Table of Contents

[v]

Chapter 10: Security and Performance 219
Security 219

Securing web services 219
Custom token authentication 220
HTTP basic authentication 222

OAuth — accessing web services on behalf of users 228
Performance 230

High availability 230
Scalability 231
On-demand infrastructures 232
Performance recommendations 233

Summary 234
Index 235

Preface
If you're already familiar with REST theory, but are new to RESTful Java web
services, and want to use the Java technology stack together with Java RESTful
frameworks to create robust web services, this is the book for you.

This book is a guide for developing RESTful web services using Java and the most
popular RESTful Java frameworks available today. This book covers the theory
of REST, practical coding examples for RESTful clients, a practical outline of the
RESTful design, and a complete implementation of a non-trivial web service
using the frameworks Jersey's JAX-RS, Restlet's Lightweight REST, JBoss's JAX-RS
RESTEasy, and Struts 2 with the REST plugin.

We cover each framework in detail so you can compare their strengths and
weaknesses. This coverage will also provide you with enough knowledge to begin
developing your own web services after the first reading. What's more, all the source
code is included for you to study and modify. Finally, we discuss performance issues
faced by web service developers and cover practical solutions for securing your
web services.

What this book covers
Chapter 1, RESTful Architectures, introduces you to the REST software architectural
style and discusses the constraints, main components, and abstractions that make
a software system RESTful. It also elaborates on the details of HTTP requests and
responses between clients and servers, and the use of RESTful web services in the
context of Service-Oriented Architectures (SOA).

Chapter 2, Accessing RESTful Services—Part 1, teaches you to code four different
RESTful Java clients that connect and consume RESTful web services, using the
messaging API provided by Twitter.

Preface

[2]

Chapter 3, Accessing RESTful Services—Part 2, shows you how to develop a mashup
application that uses RESTful web services that connect to Google, Yahoo!, Twitter,
and TextWise's SemanticHacker API. It also covers in detail what it takes to consume
JSON objects using JavaScript.

Chapter 4, RESTful Web Services Design, demonstrates how to design a micro-blogging
web service (similar to Twitter), where users create accounts and then post entries. It
also outlines a set of steps that can be used to design any software system that needs to
be deployed as a RESTful web service.

Chapter 5, Jersey: JAX-RS, implements the micro-blogging web service specified in
Chapter 4 using Jersey, the reference implementation of Sun's Java API for RESTful
Web Services.

Chapter 6, The Restlet Framework, implements the micro-blogging web service
specified in Chapter 4 using the Restlet framework, using two of its latest versions,
1.1 and 2.0.

Chapter 7, RESTEasy: JAX-RS, implements the micro-blogging web service specified
in Chapter 4 using JBoss's RESTEasy framework.

Chapter 8, Struts 2 and the REST Plugin, implements the micro-blogging web service
specified in Chapter 4 using Struts 2 framework (version 2.1.6) together with the
REST plugin. This chapter covers configuration of Struts 2 and the REST plugin,
mapping of URIs to Struts 2 action classes, and handling of HTTP requests using
the REST plugin.

Chapter 9, Restlet Clients and Servers, extends coverage of the Restlet framework.
This chapter looks at the client connector library and the standalone server library.

Chapter 10, Security and Performance, explores how to secure web services using
HTTP Basic Authentication, and covers the OAuth authentication protocol. This
chapter also covers the topics of availability and scalability and how they relate to
implementing high performing web services.

What you need for this book
At the beginning of each chapter, you're given a list of the tools you will need to code
and to compile the sample applications presented. However, the main software tools
needed are the latest Java JDK and the latest Tomcat web server—these tools are
available for any modern operating system.

Preface

[3]

Who this book is for
This book is for developers who want to code RESTful web services using the Java
technology stack together with any of the frameworks Jersey's JAX-RS, Restlet's
Lightweight REST, JBoss's JAX-RS RESTEasy, and Struts 2 with the REST plugin.

You don't need to know REST, as we cover the theory behind it all; however,
you should be familiar with the Java language and have some understanding of Java
web applications.

For each framework, we develop the same web service outlined in Chapter 4,
RESTful Web Services Design. This is a practical guide and a greater part of the book is
about coding RESTful web services, and not just about the theory of REST.

Conventions
In this book, you'll find a number of different styles of text that differentiate between
sections in every chapter. Here are some examples of these styles, and an explanation
of their meaning.

Code words in text are shown as follows (note the keyword true): "Without this
directive set to true, our application will not identify resource classes to handle
HTTP requests."

A block of code is set as follows:

if (acceptHeader == null || acceptHeader.isEmpty()
 || acceptHeader.equals("application/xml")) {
 representation = UserBO.getAllXML();
} else if (acceptHeader.equals("application/json")) {
 representation = UserBO.getAllJSON();
 type = "json";
}

When we wish to draw your attention to a particular portion of a code block,
the relevant lines or items are set in bold as follows:

@GET
@Produces("application/xml")
public String getXML() {
return UserBO.getAllXML();
}

Preface

[4]

Any command-line input or output is written as follows:

javac –classpath "/apache-tomcat-6.0.16/lib/servlet-api.jar;commons-
logging-1.1.1.jar;commons-codec-1.3.jar;commons-httpclient-3.1.jar"
*.java

New terms and important words are shown in bold.

Words that you see on the screen in menus or dialog boxes appear in the text bolded,
for example, "Note the Response in the right pane of the Swing application."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcomed. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important to us
and helps us develop titles that offer you the most value for your money.

To send us general feedback, simply send an email to feedback@packtpub.com,
mentioning the book's title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and are interested in writing a book about
it or in contributing to one, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/6460_Code.zip.

Preface

[5]

Errata
Although we have taken every opportunity to ensure the accuracy of our content,
mistakes do happen. If you find mistakes in one of our books—in the text or the
code samples—we would be grateful if you report them to us. Reporting errors or
inaccuracies will improve subsequent versions of this book.

If you find any errors, please report them by visiting http://www.packtpub.
com/support, selecting the title of this book, clicking on the let us know link, and
entering the details of the error in the provided form. Once your submission is
verified, it will be added to the existing errata. Any existing errata can be viewed at
http://www.packtpub.com/support.

Piracy
Piracy of copyrighted materials on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyrighted materials and licenses
very seriously. If you come across any illegal copies of our works, in any form, on
the Internet, please provide us with the website's address and name and we'll take
immediate action. Please contact us at copyright@packtpub.com with a link to the
suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com, if you are having a problem with
any aspect of the book, and we will do our best to address it.

RESTful Architectures
In this chapter, we cover the REST software architectural style, as described in
Roy Fielding's PhD dissertation. We discuss the set of constraints, the main
components, and the abstractions that make a software system RESTful. We also look
in detail at how data transfers take place between clients and servers. Finally, we
look at how RESTful web services are used in the context of large Service-Oriented
Architectures (SOA).

This chapter distills the theory of REST to its main core. No previous knowledge
about the subject is necessary, but I assume you are familiar with web technologies
and the basics of the HTTP protocol.

What is REST?
The term REST comes from Roy Fielding's PhD dissertation, published in 2000, and
it stands for REpresentational State Transfer. REST by itself is not an architecture;
REST is a set of constraints that, when applied to the design of a system, creates
a software architectural style. If we implement all the REST guidelines outlined
in Fielding's work, we end up with a system that has specific roles for data,
components, hyperlinks, communication protocols, and data consumers.

Fielding arrived at REST by evaluating all networking resources and technologies
available for creating distributed applications. Without any constraints, anything and
everything goes, leading us to develop applications that are hard to maintain and
extend. With this in mind, he looks at document distributed application architectural
styles beginning with what he calls the null space—which represents the availability
of every technology and every style of application development with no rules or
limits—and ends with the following constraints that define a RESTful system:

•	 It must be a client-server system
•	 It has to be stateless—there should be no need for the service to keep users'

sessions; in other words, each request should be independent of others

RESTful Architectures

[8]

•	 It has to support a caching system—the network infrastructure should
support cache at different levels

•	 It has to be uniformly accessible—each resource must have a unique address
and a valid point of access

•	 It has to be layered—it must support scalability
•	 It should provide code on demand—although this is an optional constraint,

applications can be extendable at runtime by allowing the downloading of
code on demand, for example, Java Applets

These constraints don't dictate what kind of technology to use; they only define how
data is transferred between components and what are the benefits of following the
guidelines. Therefore, a RESTful system can be implemented in any networking
architecture available. More important, there is no need for us to invent new
technologies or networking protocols: we can use existing networking infrastructures
such as the Web to create RESTful architectures. Consequently, a RESTful
architecture is one that is maintainable, extendable, and distributed.

Before all REST constraints were formalized, we already had a working example
of a RESTful system: the Web. We can ask, then, why introduce these RESTful
requirements to web application development when it's agreed that the Web is
already RESTful.

We need to first qualify here what it's meant for the Web to be RESTful. On the one
hand, the static web is RESTful, because static websites follow Fielding's definition of
a RESTful architecture. For instance, the existing web infrastructure provides caching
systems, stateless connection, and unique hyperlinks to resources, where resources
are all of the documents available on every website and the representations of these
documents are already set by files being browser readable (HTML files, for example).
Therefore, the static web is a system built on the REST-like architectural style.

On the other hand, traditional dynamic web applications haven't always been
RESTful, because they typically break some of the outlined constraints. For instance,
most dynamic applications are not stateless, as servers require tracking users
through container sessions or client-side cookie schemes. Therefore, we conclude
that the dynamic web is not normally built on the REST-like architectural style.

We can now look at the abstractions that make a RESTful system, namely resources,
representations, URIs, and the HTTP request types that make up the uniform
interface used for client/server data transfers.

Chapter 1

[9]

Resources
A RESTful resource is anything that is addressable over the Web. By addressable,
we mean resources that can be accessed and transferred between clients and servers.
Subsequently, a resource is a logical, temporal mapping to a concept in the problem
domain for which we are implementing a solution.

These are some examples of REST resources:

•	 A news story
•	 The temperature in NY at 4:00 p.m. EST
•	 A tax return stored in IRS databases
•	 A list of code revisions history in a repository like SVN or CVS
•	 A student in some classroom in some school
•	 A search result for a particular item in a web index, such as Google

Even though a resource's mapping is unique, different requests for a resource can
return the same underlying binary representation stored in the server. For example,
let's say we have a resource within the context of a publishing system. Then, a
request for "the latest revision published" and the request for "revision number 12"
will at some point in time return the same representation of the resource: the last
revision is revision 12. However, when the latest revision published is increased
to version 13, a request to the latest revision will return version 13, and a request
for revision 12 will continue returning version 12. As resources in a RESTful
architecture, each of these resources can be accessed directly and independently,
but different requests could point to the same data.

Because we are using HTTP to communicate, we can transfer any kind of
information that can be passed between clients and servers. For example, if we
request a text file from CNN, our browser receives a text file. If we request a Flash
movie from YouTube, our browser receives a Flash movie. The data is streamed in
both cases over TCP/IP and the browser knows how to interpret the binary streams
because of the HTTP protocol response header Content-Type. Consequently, in a
RESTful system, the representation of a resource depends on the caller's desired type
(MIME type), which is specified within the communication protocol's request.

RESTful Architectures

[10]

Representation
The representation of resources is what is sent back and forth between clients and
servers. A representation is a temporal state of the actual data located in some storage
device at the time of a request. In general terms, it's a binary stream together with its
metadata that describes how the stream is to be consumed by either the client or the
server (metadata can also contain extra information about the resource, for example,
validation, encryption information, or extra code to be executed at runtime).

Throughout the life of a web service there may be a variety of clients requesting
resources. Different clients are able to consume different representations of the same
resource. Therefore, a representation can take various forms, such as an image, a text
file, or an XML stream or a JSON stream, but has to be available through the same URI.

For human-generated requests through a web browser, a representation is typically
in the form of an HTML page. For automated requests from other web services,
readability is not as important and a more efficient representation can be used such
as XML.

URI
A Uniform Resource Identifier, or URI, in a RESTful web service is a hyperlink to a
resource, and it's the only means for clients and servers to exchange representations.

The set of RESTful constraints don't dictate that URIs must be hyperlinks. We only
talk about RESTful URIs being hyperlinks, because we are using the Web to create
web services. If we were using a different set of supporting technologies, a RESTful
URI would look completely different. However, the core idea of addressability
would still remain.

In a RESTful system, the URI is not meant to change over time, as the architecture's
implementation is what manages the services, locates the resources, negotiates the
representations, and then sends back responses with the requested resources. More
important, if we were to change the structure of the storage device at the server level
(swapping database servers, for example), our URIs will remain the same and be valid
for as long the web service is online or the context of a resource is not changed.

Without REST constraints, resources are accessed by location: typical web addresses
are fixed URIs. For instance, if we rename a file on a web server, the URI will be
different; if we move a file to a different directory tree in a web server, the URI will
change. Note that we could modify our web servers to execute redirects at runtime
to maintain addressability, but if we were to do this for every file change, our rules
would become unmanageable.

Chapter 1

[11]

Uniform interfaces through HTTP
requests
In previous sections, we introduced the concepts of resources and representations.
We said that resources are mappings of actual entity states that are exchanged
between clients and servers. Furthermore, we discussed that representations are
negotiated between clients and servers through the communication protocol at
runtime—through HTTP. In this section, we look in detail at what it means to
exchange these representations, and what it means for clients and servers to take
actions on these resources.

Developing RESTful web services is similar to what we've been doing up to this
point with our web applications. However, the fundamental difference between
modern and traditional web application development is how we think of the
actions taken on our data abstractions. Specifically, modern development is rooted
in the concept of nouns (exchange of resources); legacy development is rooted
in the concept of verbs (remote actions taken on data). With the former, we are
implementing a RESTful web service; with the latter, we are implementing an
RPC-like service (Remote Procedure Call). What's more, a RESTful service modifies
the state of the data through the representation of resources; an RPC service, on the
other hand, hides the data representation and instead sends commands to modify
the state of the data at the server level (we never know what the data looks like).
Finally, in modern web application development we limit design and
implementation ambiguity, because we have four specific actions that we can take
upon resources—Create, Retrieve, Update, and Delete (CRUD). On the other hand,
in traditional web application development, we can have countless actions with no
naming or implementation standards.

Therefore, with the delineated roles for resources and representations, we can now
map our CRUD actions to the HTTP methods POST, GET, PUT, and DELETE as follows:

Data action HTTP protocol equivalent
CREATE POST

RETRIEVE GET

UPDATE PUT

DELETE DELETE

RESTful Architectures

[12]

In their simplest form, RESTful web services are networked applications that
manipulate the state of resources. In this context, resource manipulation means
resource creation, retrieval, update, and deletion. However, RESTful web services
are not limited to just these four basic data manipulation concepts. On the contrary,
RESTful web services can execute logic at the server level, but remembering that
every result must be a resource representation of the domain at hand.

A uniform interface brings all the aforementioned abstractions into
focus. Consequently, putting together all these concepts we can describe
RESTful development with one short sentence: we use URIs to connect
clients and servers to exchange resources in the form of representations.

Let's now look at the four HTTP request types in detail and see how each of them
is used to exchange representations to modify the state of resources.

GET/RETRIEVE
The method GET is used to RETRIEVE resources.

Before digging into the actual mechanics of the HTTP GET request, first, we need
to determine what a resource is in the context of our web service and what type of
representation we're exchanging.

For the rest of this section, we'll use the artificial example of a web service handling
students in some classroom, with a location of http://restfuljava.com/. For this
service, we assume an XML representation of a student to look as follows:

<student>
 <name>Jane</name>
 <age>10</age>
 <link>/students/Jane</link>
</student>

And a list of students to look like:

<students>
 <student>
 <name>Jane</name>
 <age>10</age>
 <link>/students/Jane</link>
 </student>
 <student>
 <name>John</name>
 <age>11</age>

Chapter 1

[13]

 <link>/students/John</link>
 </student>
 <link>/students</link>
</students>

With our representations defined, we now assume URIs of the form
http://restfuljava.com/students to access a list of students, and
http://restfuljava.com/students/{name} to access a specific student that has
the unique identifier of value name.

We can now begin making requests to our web service. For instance,
if we wanted the record for a student with the name Jane, we make a request to the
URI http://restfuljava.com/students/Jane. A representation of Jane, at the
time of the request, may look like:

<student>
 <name>Jane</name>
 <age>10</age>
 <link>/students/Jane</link>
</student>

Subsequently, we can access a list of students through the URI
http://restfuljava.com/students. The response from the service
will contain the representation of all students and may look like (assuming there
are two students available):

<students>
 <student>
 <name>Jane</name>
 <age>10</age>
 <link>/students/Jane</link>
 </student>
 <student>
 <name>John</name>
 <age>11</age>
 <link>/students/John</link>
 </student>
 <link>/students</link>
</students>

