

Symfony 1.3
Web Application Development

Design, develop, and deploy feature-rich,
high-performance PHP web applications using
the Symfony framework

Tim Bowler

Wojciech Bancer

 BIRMINGHAM - MUMBAI

Symfony 1.3 Web Application Development

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2009

Production Reference: 1150909

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-56-5

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Authors
Tim Bowler

Wojciech Bancer

Reviewer
Jose Argudo Blanco

Acquisition Editor
David Barnes

Development Editor
Ved Prakash Jha

Technical Editors
Kartik Thakkar

Reshma Sundaresan

Copy Editor
Sneha Kulkarni

Indexer
Rekha Nair

Editorial Team Leader
Abhijeet Deobhakta

Project Coordinator
Srimoyee Ghoshal

Neelkanth Mehta

Proofreader
Lynda Sliwoski

Graphics
Nilesh Mohite

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Tim Bowler has a Bachelor's Degree in Computer Science, a Masters Degree in
Internet Technologies and e-commerce, and is currently studying for his Ph.D. in
Near Field Communication. With over ten years of experience in web application
development and agile project management, he has gained an MIET membership
at the Institute of Engineering and Technology (IET) and Charted I.T. Professional
membership at the British Computer Society (BCS).

Tim started his career developing web applications in PHP for a digital media
agency in London. As client expectations and delivery times became more and more
demanding, he introduced agile and scrum into the development process along with
the Symfony framework, in order to effectuate rapid application development.

Tim is currently the Managing Director at Agile Labs (http://www.agilelabs.
co.uk), which specialize in web application development and agile coaching.

I would like to thank all of my editors at Packt Publishing—Ved
Prakash Jha, Srimoyee Ghoshal, Neelkanth Mehta and David
Barnes—for this book.

I would also like to thank my parents, Marian and Michael Bowler,
for inspiring me to do well and to achieve everything possible.

And finally, I would like to thank all of my friends for their patience
and understanding that books don't write themselves.

Wojciech Bancer has a Master's Degree in Computer Science. He has over eight
years of experience in web application development. In 2007, after passing the Zend
exam, he gained a Zend Certified Engineer for PHP5 certificate. Wojciech started
his career developing web applications in PHP4 and PHP5, as a freelancer. Later he
started working for a digital media agency in London, where he was introduced to
Symfony and the scrum process. Currently he is a Lead Developer at Agile Labs.

I thank all of the Symfony developers for their great work of creating
the Symfony framework, making a PHP developer's life much easier.

I also thank Packt Publishing and my editors—Neelkanth Mehta,
Ved Prakash Jha, Srimoyee Ghoshal, Reshma Sundaresan—for their
kindness and support.

A special thanks to my wife, Kate, and my friends for their support
and patience during long evenings spent on writing this book.

About the Reviewer

Jose Argudo is a web developer from Valencia, Spain. After finishing his studies
he started working for a web design company. After six years of working for that
company, and others, he decided to start working as a freelancer.

Now, after some years have passed, he thinks it's the best decision he has ever made,
a decision that lets him work with the tools he likes, such as Joomla!, CodeIgniter,
CakePHP, JQuery, and other known open source technologies.

For the last months he has also been reviewing Packt Publishing books, such
as Magento Theme Design, Magento Beginners Guide, and others about to be
published, such as Magento Development with PHP, Joomla! SEO, Joomla! and
Flash, and a book on Symfony framework.

If that isn't enough, he is also writing a book on CodeIgniter for Packt Publishing,
something that he is putting all his effort into.

To my brother, I wish him the best.

Table of Contents
Preface	 1
Chapter 1: Getting Started with Symfony	 7

Exploring Symfony	 7
The framework	 7

The Model-View-Controller pattern	 8
Taking a look at the key features	 10

Forms and validation	 10
Plugins	 10
Internationalization and localization	 10
Generators	 11
Cache	 11
Testing	 11
Configuration files	 11

Coding guidelines	 12
Symfony-specific guidelines	 12

Installing Symfony	 12
Summary	 13

Chapter 2: Developing Our Application	 15
The milkshake shop	 15

Creating the skeleton folder structure	 16
Creating our database schema	 21
Configuring the ORM layer	 25

Configuring the database connection	 26
Generating the models, forms, and filters	 27
Building the database	 28

Creating the application modules	 29
Handling the routing	 31
The application logic	 32

Rendering the template	 34
Adding our routing rules	 35

Table of Contents

[ii]

Configuring template parameters	 36
Styling the pages	 37

Common installation problems	 39
Web server 404 error page	 39
A symfony 'Oop! An error occurred'	 39
Pages and debug bar do not render correctly	 40

Summary	 41
Chapter 3: Adding the Business Logic and
Complex Application Logic	 43

The generated models	 43
Populating the database	 44

Retrieving data using the models	 46
Defining the criteria	 46
Hydration	 47

Retrieving the result set from the action	 48
The template logic	 49

Returned results	 49
Using the DAOs	 50
Displaying the results	 50

Helpers	 52
Paginating our menu	 54

Adding the pager business logic	 54
Setting a configuration option	 55

Amending the action	 55
Accessing the $_POST, $_GET, and $_REQUEST variables	 56
Accessing the application and module configuration file	 56
Building up the routing	 57
Organizing a template with partials	 58

Creating the milkshake page	 62
Routing with an object	 64
Adding the route to the template	 65
Retrieving many-to-many results	 65
Accessing related objects in the action	 66
Accessing related objects in the templates	 67

Plugins	 68
DbFinderPlugin	 69

Finishing off the location page	 71
Summary	 73

Chapter 4: User Interaction and Email Automation	 75
The signup module	 75
Binding a form to a database table	 77

A look at the generated base class	 78
Rendering the form	 80
Customizing form widgets and validators	 82

Table of Contents

[iii]

Removing unneeded fields	 83
Modifying the form widgets	 83
Adding form validators	 84
Form naming convention and setting its style	 85

Submitting the form	 85
Changing the global rendering of forms	 87
Customizing the rendering of the form	 89

Form security for the user	 91
Creating a simple form	 92
Automated email responses	 94

Adding the mailer settings to the application	 94
Creating the application logic	 94
The partial email template	 96

Flashing temporary values	 97
Creating a plugin	 99
Packaging a plugin	 107
Summary	 108

Chapter 5: Generating the Admin Area	 109
How Symfony can help us	 109
Initializing generator	 110

Creating application and module	 110
Exploring list view	 111

Looking into the generated list view code	 113
Customizing the admin generator	 116

Customizing the edit view	 118
Handling foreign keys using admin generator	 119

Accessing application settings from generator.yml	 122
Using partials in the generated views	 123

Customizing the layout	 124
Securing the application	 125

Setting up credentials (permissions)	 130
Handling credentials in templates	 131
Tidying up the backend	 132

Summary	 132
Chapter 6: Advanced Forms and JavaScript	 133

Adding JavaScript code into the Symfony project	 133
JavaScript frameworks	 134
Using JavaScript helpers	 134
Adding JavaScript files into the header section	 135

Creating more advanced admin modules	 136
Installing the required plugins and libraries	 137

Table of Contents

[iv]

Creating an advanced admin module	 138
Adding file upload and thumbnails	 141

Handling many-to-many relations	 143
Adding jQuery calendar and TinyMCE widget	 144

Autocompleting the search	 145
Other JavaScript helpers	 149
Summary	 149

Chapter 7: Internationalizing our Global Positions 	 151
Internationalization and localization	 151

Refactoring the schema	 152
Rebuilding with test data	 154

Setting and getting the culture and language	 155
Preferred culture and language	 156

The action	 156
Adding culture to the routing	 157
Localizing the template	 158
Translating interface text	 159

Configuring i18n for the templates	 159
Dictionary files	 160
Translating the interface	 161

Adding the culture links	 161
Translating the static text	 162

Summary	 165
Chapter 8: Extending Symfony	 167

Bridging to other frameworks	 167
Bridging with eZ Components	 167

Configuring the component with Symfony	 168
Using the component	 169

Bridging with the Zend Framework	 172
Extending the core classes with your own	 172

Multiple inheritance 	 173
Summary	

Chapter 9: Optimizing for Performance	 175
HTTP compression	 175
Caching	 177

Cache settings	 178
Caching globally	 178
Caching page-by-page	 179
Caching without the layout	 180
Caching with the layout	 181

Table of Contents

[�]

Caching parts of a template	 183
Dynamic cache	 183
Cache storage	 183
Caching dynamic pages	 184

Looking at the database	 184
Setting limits and columns in the criteria	 185
Creating your own SQL statements	 185
Limit your queries	 186

Caching your queries	 187
ETags	 187
Less requests	 187

Stylesheets	 188
JavaScripts	 188

Other tools to aid you	 189
Firefox developer tools	 189
Database tools	 189

Deciding on your table types	 190
Accelerators	 191
memcached	 191
Caching database calls	 194

Summary	 195
Chapter 10: Final Tweaks and Deployment	 197

Editing the default pages	 197
Disabling the application	 199

Symfony on the server or not?	 200
Transferring your application to the server	 201

rsync	 201
Symfony and rsync	 202

Summary	 204
Index	 205

Preface
Back in the days, PHP developers developed web sites using a mixture of PHP
functional code and HTML, with no separation between the two. The problem with
this is that larger sites lost scalability and maintainability. Not to mention that there
was vast amount of code duplication. The increasing demand for web applications
sparked a need for a better way of rapid application development.

A framework helps a developer to create code that is readable as well as
maintainable. Further more, it helps to alleviate repetitive tasks by automating them
and provides additional classes and tools to aid in rapid application development.
The Symfony framework is one of the best frameworks available today. It contains
all of the features mentioned in the previous sentences and even more. If Symfony
doesn't have something you need, then by integrating external components you can
achieve it quiet easily. By using the Symfony framework for your projects, you will
be able to develop web applications quickly and more easily.

What this book covers
Chapter 1: Getting Started with Symfony gives an overview of the MVC framework
and covers the key features of Symfony framework, such as plugins, generators,
internationalization, forms, and validation that help to save time on development
of an application.

Chapter 2: Developing our Application shows how to start developing an application
with less effort by using the Command Line Interface (CLI). In this chapter, you will
learn the basic activities, such as creating the folder structure and database schema,
configuring the ORM layer, and generating models, forms, and filters. Finally, we
will see how to build the database and handle the routing. We also learn to add
styling to the pages and cover some common installation problems.

Preface

[�]

Chapter 3: Adding the Business Logic and Complex Application Logic shows how we can
add business and application logic to make the prototype (created in Chapter 2) to
interact with the database. In this chapter, become familiar with the flow of the MVC
pattern in Symfony. You will see how a request is handled and passed to the the
application logic, which in turn will retrieve data using models before passing the
results to the view. This chapter also illustrates how to add plugins with an example
of adding the DbFinderPlugin plugin to the application.

Chapter 4: User interaction and email automation introduces the Symfony subframework
that handles forms. Here we will see how Symfony can generate nice looking forms
for us, before creating our own formatting class. We then progress to create a fully
customized form. We will also learn about how Symfony can be expanded to use the
other third-party libraries, and how can we convert a module into a fully working
plugin that can be packaged up and reused in other projects.

Chapter 5: Generating the Admin Area explains how we can build a backend admin
area application without having to code much. In this chapter, we will initialize the
Propel admin generator and customize it. Then we will see how to handle Foreign
Keys using the admin generator. We will customize the layout and then secure
the application by setting permissions for the user, and look at how we can handle
credentials from the template.

Chapter 6: Advanced Forms and JavaScript contains examples on how to add
JavaScript into Symfony, how to use more advanced widgets in forms, and how to
handle M-N database relations. Finally we look at how to add AJAX support into
your application.

Chapter 7: Internationalizing our Global Positions introduces internationalization
and localization to parts of our application. In this chapter you will learn how to
automatically set user language and how to allow the user to change their language.
You will learn to create the XLIFF dictionary files using the Symfony tasks, which
will help in internationalization and localization of the application. We will also see
how to create the database to accommodate a multilingual site, and how Symfony
handles the data retrieval for us.

In Chapter 8: Extending Symfony, you will learn to integrate components from other
frameworks, such as eZ Components and the Zend Framework.

Chapter 9: Optimizing for Performance is all about optimizing our site by introducing
compression and caching. We will start by looking at and using Symfony's caching
framework. To take things a little further we then introduce a caching server. We will
also look at several other useful tools that aid in speeding up web applications.

Preface

[�]

Chapter 10: Final Tweaks and Deployment introduces some of the ways to deploy web
applications. Here we take a look at a better way to transfer applications than using
FTP. We will also learn to customize the default error 404 and error 500 Symfony
pages to match our site.

What you need for this book
LAMP or WAMP stack plus memcached installed. You will also need PEAR installed
if you wish to installed Symfony via pear.

Basic knowledge of object-oriented design and ORM will be quite helpful.

Who this book is for
This book is for PHP web developers who want to get started with Symfony 1.3. If
you are already using Symfony 1.0 or are new to Symfony, you will learn how to use
it in the best way to produce better applications faster.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Open the settings.yml file, and then
look for the compressed parameter key halfway down."

A block of code is set as follows:

<?php use_helper(‘JavascriptBase'); ?>
<?php echo javascript_tag("
 function name()
 {
 //Code
 }
") ?>

Preface

[�]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

dev:
 .settings:
 error_reporting: <?PHP echo (E_ALL | E_STRICT)."\n" ?>
 web_debug: on
 cache: on

 no_script_name: off
 etag: off

Any command-line input or output is written as follows:

$/home/timmy/workspace/milkshake>Symfony generate:module frontend best

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "As you
can see in the following screenshot, the total page size is 113 KB".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Preface

[�]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4565_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration, and help us to improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata added to any list of
existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Getting Started with Symfony
This chapter is an overview of the Symfony framework and how good it is to
develop with. It will cover how Symphony conforms to the MVC pattern, the
main features, general coding guidelines, and how to install it.

By the end of this chapter you will know:

About the MVC pattern
How Symfony incorporates the MVC pattern
How to install Symfony

Exploring Symfony
Symfony was released in October 2005 by Fabien Potencier who is the CEO of Sensio,
which is a French web agency (http://www.sensio.com). After Fabien used the
framework on several projects successfully, he decided to release the project under
an open source license. Ever since its first release, the Symfony community has
increased dramatically and continues to do so.

The community can be found at http://www.symfony-project.org/.

The framework
A framework is aimed at reducing the development time without the need to
sacrifice maintainability, scalability, or quality. Symfony can take less than a day
to learn, comes with many tools and classes, and is easy to install. This means the
developer can spend more time developing the application. All of these reasons and
many more are why Symfony has come about, and why it has maintained its place as
one of the best PHP5 frameworks.

•

•

•

Getting Started with Symfony

[�]

The current trends at the moment seem to revolve around agile development
methodologies with groups of developers working on the same web application.
Using the Symfony framework, developers are aided in writing structured and
maintainable code. This is all down to the framework's strict implementation of
the Model-View-Controller (MVC) paradigm and modulization.

"It aims to speed up the creation and maintenance of web applications, and to
replace the repetitive coding tasks by power, control and pleasure."

More information about this project can be found at
http://www.symfony-project.org/about.

The Model-View-Controller pattern
Many books go into the details of what the MVC pattern is and how it works.
However, we will just look at the basic overview and how Symfony incorporates
the pattern.

The MVC pattern is designed to split the presentation and business logic, and has a
controller that manages the user's interactions between the two.

Controller

ModelView

When you first use Symfony to generate the skeleton code for a new application and
module, you can see exactly how Symfony strictly abides by the MVC pattern.

Controller
The controller is responsible for processing user events. The controllers in Symfony
are split into several components.

1.	 It is the entry point into the application.
2.	 It determines what action is required to execute.
3.	 Loads the configurations.
4.	 Executes the filters.

Chapter 1

[�]

One great feature about the controller being the entry point is that any time a site
needs to go down for maintenance, the controller can simply be disabled. Creation
of a new application in Symfony creates two controllers:

A controller for the production environment
A controller for the development environment

The difference between the two is the debug information and error displaying.

The controller calls an action, which is what drives the application. The action
contains all of the application logic and has the ability to access everything from
the request, sessions, authentication, and core Symfony objects.

Model
The model layer represents the applications data and the business rules used to
manipulate and access it.

Symfony's model layer is split into two separate layers—an Object Relational
Mapping (ORM) layer and a data abstraction layer. Of course, there are a few
good PHP5 ORM and database abstraction libraries that already exist. Therefore,
rather than reinventing the wheel, the framework incorporates the Doctrine ORM
(http://www.doctrine-project.org/) which is the defualt ORM layer, with the
option of using the Propel ORM (http://propel.phpdb.org). The second layer,
being the data abstraction layer is handled by PHP Data Objects (PDO).

Database abstraction means database portability. Every database vendor will have a
slight variant in their SQL syntax. Therefore, by moving your application to another
RDBMS, a developer would have to amend certain queries. But with a database
abstraction layer, this portability becomes transparent.

Object relational mapping turns database tables, rows, and different variable types
into objects. As Symfony is written using OOP, it makes sense that the data is
returned as an object.

At the moment, Symfony comes shipped with Propel 1.2 as it's default ORM.
However, this whole ORM layer can be easily changed. For example, the ORM
layer can be changed to Doctrine (http://www.phpdoctrine.org/).

Views
A view, which is commonly referred to as a template, is displayed to the user.
These templates are completely separated from controllers and models. They
mainly comprise of XHTML markup and presentation logic in the form of PHP tags.
Although Symphony's template system has matured, the view layer can be replaced
with another template engine, such as Smarty (https://smarty.php.net) through a
plugin, for example.

•
•

Getting Started with Symfony

[10]

Taking a look at the key features
We have looked at Symfony's implementation of the MVC pattern. Next, let's go
over some of the features that Symfony has to offer in order to cut down
development time.

Forms and validation
This is one of those repetitive requirements that a developer always has to face.
Using Symfony, the development time is decreased due to the form subframework.
There are two types of form:

Propel form is a form that is based on a database table(s). These forms
persist the submitted data to the table(s) that they are based on. As part of
the generation task(s), these forms are automatically created along with
validation. Although we can easily customize both form and validation, the
default forms are a great way to display an initial prototype.
Simple form is a form that doesn't persist data to the database.
Although they are not generated, they follow the same approach
as the Propel-based forms.

Plugins
One of Symfony's best features is its plugin architecture. So, many units of
functionality can be written as a plugin and used time and again. The available
plugins either help a developer in some way, or provide full, feature-rich
applications. Looking at the plugin repository, numerous plugins have been
submitted by the community and it continues to grow. You can visit http://trac.
symfony-project.com/wiki/SymfonyPlugins to know more about Symfony
Plugins. A few of the main plugins are:

sfGuardPlugin: Web asset management
sfSimpleBlog: Simple blog for your site
sfSimpleCMSPlugin: Create a CMS
sfLucenePlugin: Integrates the Zend framework's search engine

Internationalization and localization
Many web applications offer locale translations and services based on your
locale. Symfony provides interfaces, standards, and localized helpers to make
internationalization (i18N) and localization (l10N) simple.

•

•

•

•

•

•

