

Ruby on Rails Web Mashup
Projects

A step-by-step tutorial to building web mashups

Chang Sau Sheong

 BIRMINGHAM - MUMBAI

Ruby on Rails Web Mashup Projects
A step-by-step tutorial to building web mashups

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2008

Production Reference: 1160408

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-93-3

www.packtpub.com

Cover Image by Raghuram Ashok (raghuram@iiitb.ac.in)

Credits

Author

Chang Sau Sheong

Reviewer

Walt Stoneburner

Senior Acquisition Editor

Douglas Paterson

Development Editor

Nikhil Bangera

Technical Editor

James Lumsden

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinators

Aboli Mendhe

Lata Basantani

Indexer

Monica Ajmera

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

About the Author

Chang Sau Sheong has more than 12 years experience in software application
development and has spent much of his career in Web and Internet-based
applications. He has a wide range of experience in banking payment-related as well
as Internet-based e-commerce software. Currently he is the Director of Software
Development of a 50+ strong software development team in Welcome Real-time, a
multi-national payment/loyalty software company based in France and Singapore.

Sau Sheong frequently writes for technical magazines and journals including Java
Report, Java World, and Dr. Dobb's Journal. He also contributes to open-source
projects in various technologies including smart cards, Ruby, and Java. His interests
revolve mainly around technology and software development. He has done
programming in Java/Java EE, C, C++, PHP, Python, Perl, Smalltalk, Erlang, Ruby/
Ruby on Rails, various smart card platforms, and also worked on various databases.
He has a wide range of experience in banking payment-related as well as Internet-
based e-commerce software.

Sau Sheong hails from tropical Malaysia but has spent most of his adult and
working life in sunny Singapore, where he shares his spare time enthusiastically
writing software and equally playing Nintendo Wii with his wife and son. He has a
Bachelor's degree in Computer Engineering, a Master's degree in Commercial Law,
and is a certified international arbitrator.

Acknowledgements

Firstly, many thanks to Douglas Peterson, Nikhil Bangera, Walt Stoneburner, and
James Lumsden who patiently guided me through my first book. I would also like
to thank the following people from the Singapore Ruby Brigade who contributed
comments and reviews on this book as well as general support: Peter Bohm, Chew
Choon Keat, Herryanto Siatono, Johan Gozali, Jeffrey Lim, Wong Keng Onn, and
many others from the 'last Thursday of the month' sessions. Grateful thanks also to
Mech, Watt, and Simon for their good support and general cheerleading in Rails and
non-Rails related matters. Special thanks to Sebastien Guillaud and all those people
in Welcome Real-time who believed that I can run software development center,
write a book, and go home in time to tutor my son.

Final thanks to the love of my life, Wooi Ying, who suffered my erratic 'nightlife'
huddling in front of my laptop, creating software and writing this book, and also to
Kai Wen for just being my son.

 About the Reviewer

Walt Stoneburner is a software architect with over 20 years of commercial
application development and consulting experience. Fringe passions involve quality
assurance, configuration management, and security. If cornered, he may actually
admit to liking statistics and authoring documentation as well.

He's easily amused by programming language design, collaborative applications,
and ASCII art. Self-described as a closet geek, Walt also evaluates software products
and consumer electronics, draws cartoons, produces photography, writes humor
pieces, performs sleight of hand, enjoys game design, and can occasionally be found
on ham radio.

Walt may be reached directly via email at wls@wwco.com. He publishes a tech and
humor blog called the Walt-O-Matic at http://www.wwco.com/~wls/blog/. Rumors
suggest that some of his strange videography may be found on iTunes.

Currently he is employed at Business & Engineering Systems Corporation as a lead
engineer developing advanced software solutions for knowledge management.

Other book reviews and contributions include AntiPatterns and Patterns in Software
Configuration Management (ISBN 978-0-471-32929-9, p. xi) and Exploiting Software: How
to Break Code (ISBN 978-0-201-78695-8, p. xxxiii).

Table of Contents
Preface	 1
Chapter 1: Introduction to Web Mashups	 5

Web mashups	 5
Ruby and Ruby on Rails	 6

Types of web mashups	 7
What can I do with web mashups?	 8

As a new breed of applications	 8
Access large sets of external sources	 9
Innovate and create extra value for your application 	 9
Save on development and maintenance	 10
Leverage on and integrate common and widely available external
applications	 10

Things to watch out for when doing web mashups	 10
Unreliable external APIs	 11
Commercial dependency	 11
Losing your users	 12

How this book works	 13
What does it do?	 14
Domain background	 14
Requirements overview	 14
Design	 14
Mashup APIs on the menu	 14
What we will be doing	 14
Summary	 15

Ready?	 15
Chapter 2: 'Find closest' mashup plugin	 17

What does it do?	 17
Building a kiosk locator feature for your site	 17

Table of Contents

[ii]

Requirements overview	 18
Design	 18
Mashup APIs on the menu	 18

Google Maps	 19
Yahoo Maps	 19
Geocoder.us	 19
Geocoder.ca	 19
Hostip.info	 20
GeoKit	 20

Configuring GeoKit	 21
Getting an application ID from Yahoo	 21
Getting a Google Maps API key from Google	 21
Configuring evironment.rb	 21

YM4R/GM	 23
What we will be doing	 23

Creating a new Rails project 	 24
Installing the Rails plugins that will use the various mashup APIs	 24
Configuring database access and creating the database	 24
Creating scaffolding for the project	 25
Populating kiosk locations with longitude and latitude information	 26

Populate the database with sample data	 26
Bulk adding of longitude and latitude	 26

Adding longitude and latitude during kiosk creation entry	 28
Creating the find closest feature	 29
Displaying kiosks on Google Maps	 31

Summary	 36
Chapter 3: Proxy mailing list mashup plugin	 37

What does it do?	 37
Building a proxy mailing list feature for your website	 37
Requirements overview	 38
Design 	 39

Define messages	 39
Get contacts and customized message data	 39
Send messages	 39

Sending SMS messages	 40
Sending fax messages 	 41

Mashup APIs on the menu	 42
Google Spreadsheets	 42
EditGrid	 43
Clickatell	 44
Interfax	 49
Net::HTTP 	 51

Table of Contents

[iii]

What we will be doing	 52
Creating a new Rails project 	 52
Configuring the database access and creating the database	 53
Creating standard scaffolding	 53
Allowing the marketing people to create the message templates	 54
Allowing the reseller to provide contacts data through a remote link	 55

Uploading to and publishing from Google Spreadsheets 	 56
Uploading to and publishing from EditGrid	 61

Creating the rake script to send messages at regular intervals	 63
Parsing data from the online spreadsheet	 69
Sending a fax with Interfax	 70
Sending an SMS through Clickatell	 71
Sending an email through ActionMailer	 74
Customizing text messages according to the individual recipient	 76

Using the mashup	 77
Summary	 77

Chapter 4: Book sales tracking mashup plugin	 79
What does it do?	 79
A book sales tracking and shopping cart feature	 79
Requirements overview	 79
Design	 80

Provide information	 80
Track sales ranking with a chart	 80
Show customer reviews	 81
Provide a shopping cart 	 81
Allow visitors to buy related books 	 81

Mashup APIs on the menu	 81
Amazon E-Commerce Services API	 81

Registering for an Amazon Web Service access key ID	 82
Registering as an Amazon Associate	 82

Amazon ECS Ruby library	 82
Sparklines web service	 83

What we will be doing	 83
Creating a new Rails project 	 84
Installing the Amazon ECS Ruby library	 85
Creating the books controller	 85
Creating the Amazon Rails library	 85
Creating the sidebar	 88
Getting customer reviews	 91
Getting the daily sales ranking	 94
Displaying the sales ranking sparkline	 95

Table of Contents

[iv]

Creating a shopping cart	 97
Adding similar books to the shopping cart	 101

Summary	 103
Chapter 5: Job board mashup application	 105

What does it do?	 105
Job board	 105
Requirements overview	 106
Design	 106
Mashup APIs on the menu	 107

Facebook	 107
Facebook Platform	 107
RFacebook	 108

Google Maps	 108
Indeed	 108
Technorati	 109
Daylife	 109
Net::HTTP	 110
XmlSimple	 110

What we will be doing	 112
Acquire candidates through Facebook	 112
Search for jobs through Indeed	 113
Display jobs in Google Maps	 113
Search and display job news from Daylife	 113
Search and display job stories from Technorati	 113
Acquiring candidates through Facebook	 113

Creating a Rails application	 114
Creating a Facebook application	 114
Installing and configuring RFacebook	 115
Extracting the Facebook user profile	 116
Displaying the user profile and creating the search form	 118
Deploying and configuring the Facebook application	 120

Searching for jobs through Indeed	 125
Creating the search action	 125
Parsing and displaying the search results	 126

Display jobs in Google Maps	 127
Displaying the location of the jobs on the map	 127
Creating a link on each job to show the news and blog articles	 130

Searching and displaying news from Daylife	 132
Searching for news on the company	 132

Searching and displaying blog articles from Technorati	 134
Searching for blog entries on the company	 134

Summary	 135

Table of Contents

[�]

Chapter 6: Trip organizer mashup application	 137
What does it do?	 137
Requirements overview	 137
Design	 138
Mashup APIs on the menu	 138

Google Maps	 139
FUTEF 	 139
WebserviceX Currency Converter	 139
Yahoo Maps Geocoding API	 140
WeatherBug 	 140
Kayak	 141
GeoNames	 141
Flickr	 141
Hostip.info	 142
Open URI	 143

What we will be doing	 143
Creating a Rails application	 144
Creating the basic Location object	 144
Creating a search form	 149
Creating the online map	 150
Creating the tabs for the information	 151
Getting information from Wikipedia	 155
Getting places information	 156
Getting hotel information	 160
Getting weather information	 164
Displaying pictures of the location	 168
Showing currency exchange rate	 171
Showing remote location time compared with local time	 179

Showing nice exception pages	 182
Summary	 183

Chapter 7: Ticketing mashup application	 185
What does it do?	 185
Online event ticketing	 185
Requirements overview	 186
Design	 186
Mashup APIs on the menu	 187

PayPal	 187
Website Payment Pro	 187
PayPal Sandbox	 188

Ruby-PayPal library	 190
Google Calendar	 190

Table of Contents

[vi]

GoogleCalendar library	 191
Clickatell	 191

What we will be doing	 191
Creating a Rails application	 192
Creating the flow for the ticketing application	 192
Integrating with PayPal for payment	 207
Integrating with Google Calendar	 211
Integrating with Clickatell	 213

Summary	 214
Chapter 8: Expenses claims mashup plugin	 215

What does it do?	 215
Salary and expense claims	 215
Requirements overview	 216
Design	 216
Mashup APIs on the menu	 217

PayPal	 217
Mass Payment	 217
PayPal Sandbox	 218

Google	 218
Google Account Authentication	 218
Google Data APIs	 218
Google Document Data List APIs	 219
Google Spreadsheet Data APIs	 219

Ruby-PayPal library	 219
Acts_as_state_machine plugin	 219
XmlSimple	 220

What we will be doing	 220
Creating a Rails application	 221
Setting up the database	 221
Creating the Payment and Claim Item scaffolds	 222
Modifying Payment and creatomg subclasses	 222
Creating the Google API access library	 223
Creating the Manager class and its controller and views	 240
Creating the expense claims parsing rake script	 240
Creating the mass payment rake script	 242
Modifying the Payment and Claim Item controllers	 243

How it works all together	 245
Summary	 251

Index	 253

Preface
A web mashup is a new type of web application that uses data and services from
one or more external sources to build entirely new and different web applications.
Web mashups usually mash up data and services that are available on the
Internet—freely, commercially, or through other partnership agreements. The
external sources that a mashup uses are known as mashup APIs.

This book shows you how to write web mashups using Ruby on Rails—the new web
application development framework. The book has seven real-world projects—the
format of each project is similar, with a statement of the project, discussion of
the main protocols involved, an overview of the API, and then complete code for
building the project. You will be led methodically through concrete steps to build the
mashup, with asides to explain the theory behind the code.

What This Book Covers
The first chapter introduces the concepts of web mashups to the reader and provides
a general introduction to the benefits and pitfalls of using web mashups as stand-
alone applications or as part of existing web applications.

The first project is a mashup plugin into an existing web application that allows
users to find the location of the closest facility from a particular geographic location
based on a specified search radius. The location is mapped and displayed on
Google Maps.

The second project is another mashup plugin. This plugin allows users to send
messages to their own list of recipients, people who are previously unknown to the
website, on behalf of the website. The project uses Google Spreadsheets and EditGrid
to aggregate the information, and Clickatell and Interfax to send SMS messages and
faxes respectively.

Preface

[�]

The third project describes a mashup plugin that allows you to track the sales
ranking and customer reviews of a particular product from Amazon.com. The main
API used is the Amazon E-Commerce Service (ECS).

The fourth project shows you how to create a full-fledged Facebook application
that allows a user to perform some of the functions and features of a job board. This
mashup uses Facebook, Google Maps, Daylife, Technorati and Indeed.com APIs.

The fifth project shows you how to create a full web mashup application that allows
users to view information on a location. This is the chapter that uses the most
mashup APIs, including Google Maps, FUTEF, WebserviceX, Yahoo! geocoding
services, WeatherBug, Kayak, GeoNames, Flickr, and Hostip.info.

The sixth project describes a mashup plugin that allows an online event ticketing
application to receive payment through Paypal, send SMS receipts, and add event
records in the customer's Google Calendar account. The APIs used are Google
Calendar, PayPal, and Clickatell.

The final project shows a complex mashup plugin used for making corporate
expense claims. It allows an employee to submit expense claims in Google Docs
and Spreadsheets, attaching the claims form and the supporting receipts. His or
her manager, also using Google Docs and Spreadsheets, then approves the expense
claims and the approved claims are retrieved by the mashup and used to reimburse
the employee through PayPal. It uses the PayPal APIs and various Google APIs.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "This will
copy the necessary files to your RAILS_ROOT/vendor/plugins folder and run the
install.rb script."

A block of code will be set as follows:

class Kiosk < ActiveRecord::Base
 def address
 "#{self.street}, #{self.city}, #{self.state}, #{self.zipcode}"
 end

Preface

[�]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

begin
kiosks.each { |kiosk|
loc = MultiGeocoder.geocode(kiosk.address)
kiosk.lat = loc.lat

Any command-line input and output is written as follows:

$./script/plugin install svn://rubyforge.org/var/svn/geokit/trunk

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[�]

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/3933_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be added to the list of existing errata. The existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to Web Mashups

Web mashups
Welcome to the world of web mashups! A web mashup is a new type of web
application that uses data and services from one or more external sources (usually
from the Internet) to build entirely new and different web applications. This
book shows you how to write web mashups using Ruby on Rails—the new web
application development framework.

The idea of taking data and services from various places and making them available
in a single application is not new. Data feeds such as RSS and ATOM feeds have
been around for a while, making information available for anyone to re-use in
another application. Screen scraping was a commonly used older technology that
takes content directly from another application's display. Portals where different
data and services were aggregated into portlets and displayed on the portal were
popular during the dot-com era. What's so different about web mashups?

The answer is that while older data and service aggregation technologies aggregate
and integrate in a fashion, a true web mashup creates a completely different and
new function out of the existing content and services, driving different purposes
and objectives.

The word mashup itself comes from the world of hip-hop music, where two or
more songs are mixed together to form a new song. Web mashups are primarily
web applications (though it is not a strict requirement). Web mashups also usually
mash up data and services that are available on the Internet—freely, commercially or
through other partnership agreements. The external sources that a mashup uses are
known as mashup APIs.

Introduction to Web Mashups

[�]

Ruby and Ruby on Rails
Ruby is a dynamic, object-oriented programming language that is highly suitable for
integrating various pieces of data and software together:

Ruby is designed for programmer productivity and can be used to quickly
develop maintainable pieces of software.
Ruby is interpreted in real time, meaning that whatever is coded can be
executed immediately without compilation.
Ruby has a significant number of libraries that can be easily re-used through
the gem packaging mechanism.

Ruby on Rails is an open-source full stack web application framework built on Ruby.
Ruby on Rails follows two basic guiding principles—Convention over Configuration
and Don't Repeat Yourself (DRY).

Convention over Configuration is a programming design that favors following
a certain set of programming conventions instead of configuring an application
framework. Certain commonly used configurations (by convention and not by
rule) are pre-set and the framework just works if you follow those conventions. For
example in Ruby on Rails, the convention states that a controller for a model object
Book will be called BookController and all view pages relating to that controller
will be kept in a folder called book.

DRY is a principle that focuses on reducing information duplication by keeping any
piece of knowledge in a system in only one place. For example, in ActiveRecord
(a major component of Ruby on Rails), schema information doesn't need to be
duplicated in complex XML configuration files but is derived from the database
schema itself. If the schema changes, the model changes accordingly, without the
need to make changes in other parts of the system.

All this translates into a highly productive development framework in which web
applications can be developed, deployed, and maintained easily. This framework,
coupled with the fact that it uses Ruby, makes it an excellent platform for developing
web mashups.

For more in-depth discussion into Ruby's capabilities I would recommend
you look at Programming Ruby: The Pragmatic Programmer's Guide by Dave
Thomas, Chad Fowler, and Andy Hunt as well as The Ruby Way, Second
Edition: Solutions and Techniques in Ruby Programming by Hal Fulton.
The recommended reading for Ruby on Rails is Agile Web
Development with Rails, Second Edition by Dave Thomas and David
Heinemeier Hansson.

•

•

•

Chapter 1

[�]

A note of caution here—this book is written with Rails 1.2.x in mind and the projects
and examples in this book follows this version. There is no significant change in the
projects though, if you choose to use Rails 2.x instead. As of writing, Rails does not
work with Ruby 1.9. If you're a complete beginner with Ruby and Ruby on Rails I
would recommend you flip through the books mentioned in the information box
opposite before plunging into this one.

Types of web mashups
There are some existing classifications of mashups in various literatures available
on this subject though none are authoritative. In many cases, web mashups are
categorized according to their functionality; for example, some define data mashups,
photo and video mashups, news mashups, and business mashups. However, in this
book, I classify web mashups by how they are used in building an application. From
this perspective, we can see two broad types of web mashups:

A fully standalone mashup application.
An embedded mashup plugin.

A mashup application is a web mashup that provides a complete set of functions
for the user. This means a mashup application is the entire purpose of the system.
For example, a mashup might take data from Flickr, the photo storage and sharing
application and mash it up with Google Maps, the online mapping application to
display photos that come from a particular geographical area. By themselves, neither
Flickr nor Google Maps are able to provide these features. However, this mashup's
functionalities only come from combining both APIs; the web application cannot
exist without the APIs. The functionality of the mashup is a synergistic product of
creative usage of APIs from both sources.

A mashup plugin, on the other hand, only provides part of the functionality of
an existing web application. For example a leave (time off work) submission and
approval application's core functionality is to allow users to submit and approve
leave as part of an HR process. A mashup plugin can be embedded into this
application to allow an employee to apply optionally for leave through an online
calendar and send a text message to the manager to alert him or her. The data from
the online calendar is passed to the core application and also the text messaging APIs
to enhance the value of the core application. However, the leave submission and
approval application can still exist and its core functionality is not reduced without
the mashup plugin.

•

•

Introduction to Web Mashups

[�]

The difference might not be apparent at first glance, but the thinking behind the
mashups and their creation can be quite different. Mashup plugins are usually
created to supplement an existing application that is probably not a mashup. They
are a means of providing more services and data to the user of the application.
Mashup applications, on the other hand, are created mashups in the first place and
all the functionalities are derived from the mashup APIs they source from.

This has an interesting implication in developing web mashups. While many
still regard web mashups as interesting technology toys and probably the latest
buzzword alongside AJAX and Web 2.0, this classification of web mashups allow us
to see mashups not just as Web 2.0 startup applications but potential value-added
services for our existing applications. While mashup applications are an exciting and
growing phenomenon on the Internet, mashup plugins will probably provide the
most practical way of using mashups immediately within an existing environment.

What can I do with web mashups?
So what is in it for you? I assume you are a programmer, either professional or
amateur, looking perhaps to extend your repertoire of skills and capabilities to
develop and maintain software more easily, better, and faster.

Web mashups represent a new way of developing software and along with any new
development techniques come opportunities and risks. Here's an example of what
you can do with mashups:

Create a platform for a new breed of applications
Provide access to a large set of external data and service sources
Innovate and create extra value for your existing applications quickly
Save on development and maintenance
Leverage on common or widely available external applications and integrate
them into your application

As a new breed of applications
Web mashups are a new breed of web applications (Wikipedia defines a mashup as a
web application hybrid). While most prominent web mashups use publicly available
APIs like Google Maps, Amazon ECS, and so on, this is not the only way to do
mashups. Significant innovation can be achieved with further aggregation and
hybridization of code and data from publicly available APIs, with private data as
well as private applications.

•

•

•

•

•

Chapter 1

[�]

The idea behind web mashups is creativity and innovation in new data and services,
not just aggregation of existing ones, which most of the older technologies focus on.
In comparison with portals, web mashups differ because portals aggregate and dish
out content and applications in discrete packages, whereas mashups integrate the
data and services together and serve them out as a single application.

An example of this is that while a portal will happily display a map of your current
location, your address book, and today's astrology readings in 3 different portlet
windows, a mashup will display the astrology readings of 10 of your friends who are
closest to you, in an online map occupying the whole browser space.

This integrated and mashed up approach to programming can provide much insight
into the way we program applications.

Access large sets of external sources
There are an increasing number of applications on the Internet providing an amazing
variety of data and services as APIs or data sets for mashups. A quick check on the
Programmable Web (http://www.programmableweb.com), which hosts a directory
listing mashup APIs as well as mashup applications, shows up service APIs ranging
from social networks to sending snail mail through the Internet. You can also get
tons of data from hotel bookings to government spending data.

With the wealth of these external data sources, you can build amazing new
applications that bring these data and services into meaningful new services. While
mashups are not the only way to consume large sets of external sources of data and
services, they are probably the most creative. Buzzword aside, anytime you take data
or services from another application, you're already doing a mashup.

Innovate and create extra value for your
application
If you have an existing application already, web mashups can allow you to innovate
and create new value to your application by grafting new functionality through
the external sources. For example, if you run a reservation application, you can
alert your user through text messages from an SMS mashup API, add the date of
reservation into his or her Google Calendar account through Google Calendar APIs,
and show the location of the venue on Yahoo Maps.

Introduction to Web Mashups

[10]

Save on development and maintenance
Using mashups you can build new functions much faster and save on the
development and maintenance effort. For example, if you are the developer
of a facilities reservation system you don't want to spend time mastering the
development of a text message sending component, which you normally would have
to do if you wanted to have that feature.

Besides development, you can also reduce the maintenance of a feature that is
outside your core domain. While this is often critical for startups, it is equally
important for larger organizations that want to focus on their core domain. In the
example given earlier, you don't want to spend time developing and maintaining a
text-messaging component—you'll want to leave it to the text-messaging experts to
do their job.

Leverage on and integrate common and
widely available external applications
Besides saving on effort, instead of doing it yourself—you might want to leverage
on common and popular applications to do the work for you. Effort aside,
such applications already have a widespread user base that is familiar with the
functionality. You can tap these users to extend your own user base and use the
features of these applications to give an easily recognizable interface for your users.

For example, if you want online calendaring features, you wouldn't want to
redevelop another Google Calendar. Instead, you would mash up Google Calendar
APIs into your application and use their interface to provide something more
familiar to your users.

Things to watch out for when doing web
mashups
With all the exciting talk on mashups, it's important to realize that, as with any new
technology and way of programming, the road is usually fraught with dangers.
Rightly the map around mashups should have bright neon lights flashing 'Here
Be Dragons'. Here are some possible problems (but not all) you might face when
developing web mashups:

Unreliable external APIs
Commercial dependency on third party data and services
Losing your users to external source providers

•

•

•

Chapter 1

[11]

Unreliable external APIs
One of the most common complaints you will encounter as you develop web
mashups is that you are highly, if not totally, dependent of the reliability of the
mashup APIs you use. The two critical aspects of a web application—availability and
response time—are not under your control, especially from sources that are provided
freely to you.

Unfortunately at this point in time there is no viable way of resolving this
completely. The only way of ensuring full availability and response time that
meets your own requirements is to not have external dependencies at all. This is not
possible of course, because web mashups are all about using external data
and services.

However there are a number of ways to work around this issue:

Do not use mashups for mission-critical services. If the service is mission
critical for you or your user, don't use mashups or at least not those that fail
to guarantee certain availability and response time.
Have an agreement (normally commercial) with your external mashup API
provider that provides back-to-back service agreements with your own
services. For example, if you promise 98% uptime, make sure you have an
agreement with your provider that also agrees to 98% uptime.
Design your mashup to have graceful error handling. This could range from
a user-friendly error page to a caching system for data feeds and even a
standby secondary service provider. For example, if you have a mashup that
sends text messages to your users, you can do a mashup with more than one
provider—if a provider fails you, quickly switch to another.

This issue is generally more difficult to accept in mashup applications because
should core functionality of the system be compromised, it is difficult to proceed.
In any case, catering and planning for backup or alternatives in case of an external
source breakdown is a must for all mashups if you intend to go into production.

Commercial dependency
This problem is related to the first. Besides being dependent on the external APIs for
functionality, the larger issue could be that the provider of the external API changes
its service partially or completely. This could range from the provider being shut
down altogether, to the provider changing its business model or commercial terms
and it becoming no longer viable to continue with that provider anymore. Even
simpler issues like changes in API parameters and accessibility can potentially cause
service outage.

•

•

•

Introduction to Web Mashups

[12]

For example, a free service could start to charge a fee (or increase its existing fees)
and you can no longer afford to include it in your mashup. Sometimes the service
itself is no longer sustainable because of licensing issues or the company behind the
service abandons its business model in pursuit of another revenue source.

This problem is more acute in areas where the provider is the only one around.
Again, planning for alternatives is important if you intend to go into production
because this problem can potentially kill your mashup altogether. Some possible
defenses against this risk:

Avoid using mashups in cases where there is only a single provider.
Plan for backups and be alert to the happenings of the external providers
you're using. Keep an active lookout for API changes as well as news on
the company providing your sources. For example, if an online mapping
provider is being bought by Google and you use either Google Maps or the
online mapping provider's sources you should be wary that either one or
both services are likely to change.
Be aware of the competition available to the providers you're using and
design your mashup for easy switching. For example, if you need an online
map make sure you're familiar with more than just Google Maps and design
your system to be able to switch to another online mapping service easily.

Losing your users
Another problem might not be related to reliability or availability at all. If your
mashup becomes commercially interesting, it is sometimes quite easy for your
external source API provider to extend their existing functionality to include yours
and you to be left with an 800-pound gorilla in your backyard. A related risk is for
your users to decide that if they are already using the external provider anyway, they
might as well switch over to it completely and bypass your mashup altogether.

Again both risks are more likely for mashup applications since a mashup
application's main value is in the creative combination of the external sources.
Mashup plugins are less likely to encounter this because your main application
already has functionality that should be different from external APIs (or else you
might want to ask yourself why you're doing it!).

The main defense against such risks is to continually innovate and possibly include
more APIs. A mashup application that combines two APIs creatively is more likely
to be made irrelevant than a mashup application that combines three, four, five or
more APIs and uses them in a creative way that none of your external providers can
match by themselves. Remember that your main advantage in creating a mashup
application is that you are able to be the best of breed by combining the best aspects
and features of various providers to create a unique service for your users.

•
•

•

Chapter 1

[13]

At the end of the day, although there are significant risks in creating web mashups,
there are always ways of mitigating them. Ultimately it's up to you to decide if the
risks are worth taking compared to the services you're providing in your mashup.

How this book works
The approach I use in this book is pragmatic and direct and tends to be hands-on. If
you're not a practicing programmer, you might want to dust off your programming
books and read them again!

There are seven mashup projects in this book, with one chapter per project. Each
chapter has the following sections:

What does it do?
Domain background
Requirements overview
Design
Mashup APIs on the menu
What we will be doing
Summary

Each chapter explains the technical (and some domain) aspects of what the project
does in increasing levels of difficulty and complexity. The first few chapters will be
on simpler mashups and we gradually move on to more complex ones. Also, as you
progress with the chapters there are more assumptions made on your abilities to
understand how mashups work. For example, the first few chapters describe how
you can get accounts in the various mashup APIs but subsequent ones dispense
with this altogether, assuming that you can navigate your way to registering for your
own account.

The chapters tend to have less theory and more discussion on background
technology while focusing more on a step-by-step guide in building the project in the
chapter. The chapters also tend to be standalone though there are occasionally some
references back to earlier chapters for some background technology; so feel free to
explore them in any sequence you like.

The following explains each subsequent chapter's structure, section by section.

•

•

•

•

•

•

•

Introduction to Web Mashups

[14]

What does it do?
This section gives a brief summary of the mashup's functions and objectives. This is
normally just a paragraph or two.

Domain background
What follows after the summary of objectives is a description of the domain
background of the mashup's functions. For example, in Chapter 5 we will be
discussing how we can create a job board mashup. The domain background section of
the chapter gives a simple introduction to job boards, what they are and what they do.

Requirements overview
This section provides an overview of the requirements of the mashup we will be
creating in the chapter. It lists the requirements and objectives to meet in building the
project in the chapter.

Design
This section describes how we will be building the project, the rationale behind the
design, and how we approach the creation of the mashup.

Mashup APIs on the menu
This is a major section in the chapter, and it describes the list of mashup APIs that
we will be using to create the mashup. In the first few chapters we will also describe
how we register for the mashup APIs at the external sources. Later chapters will
dispense with this. All of the APIs are either freely available or have trial accounts
where you have limited access to the APIs.

This section also describes the various libraries we will be using to build the
mashups. This includes open-source libraries as well as libraries included in the
standard Ruby distribution. Whenever necessary there will be some discussion on
the theory behind the libraries and how they work.

What we will be doing
This section is the bulk of the chapter and goes through the step-by-step creation of
the project. All necessary code is shown and major steps are described in detail. Each
major step is explained in its own sub-section. In some cases additional information
is given to explain why certain aspects of the code are written that way.

Chapter 1

[15]

This section starts with the creation of a Ruby on Rails project and ends with a
final completion of the whole project. Most projects are coded in a straightforward
manner without much optimization. In some cases I will even go some way out to
code the project in a way that a more advanced Rubyist might find not following
the 'Ruby Way'. This is intentional as the purpose of the book is to focus on web
mashups and not on Ruby or Ruby on Rails, and the code should normally be very
readable by any programmer, even those less familiar with Ruby.

Summary
The chapter is finally wrapped up in a short summary that describes what we have
done in the chapter.

Ready?
So much for the brief introduction to web mashups! While some of the caveats in this
chapter sound scary, ultimately web mashups are a brave new world altogether, and
an exciting one for programmers.

It's time to jump into the projects, so let's begin and have fun!

