

Object-Oriented Programming
with PHP5

Learn to leverage PHP5's OOP features to write
manageable applications with ease

Hasin Hayder

 BIRMINGHAM - MUMBAI

Object-Oriented Programming with PHP5

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2007

Production Reference: 1031207

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-56-1

www.packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

Credits

Author

Hasin Hayder

Reviewers

Kalpesh Barot

Murshed Ahmed Khan

Development Editor

Nanda Padmanabhan

Assistant Development Editor

Rashmi Phadnis

Technical Editor

Divya Menon

Editorial Team leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Indexer

Monica Ajmera

Proofreader

Damian Carvill

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Hasin Hayder is a Zend Certified Engineer and open-source enthusiast from
Bangladesh. Besides his regular job as Technical Director at Trippert Labs
(www.trippert.com), he is often found developing localized Bangla applications and
blogging at http://hasin.wordpress.com. He lives in Bangladesh with his wife
Ayesha, son Afif and plenty of toys around!

About the Reviewers

Kalpesh Barot has about 4 years of experience in the world of PHP. He has
extensively worked on small and large scale social networking websites developed
in PHP. He has been involved in varied projects, from planning and developing web
sites to creating custom modules on big social networking websites.

Kalpesh received a Masters degree in Enterprise software Engineering from the
University of Greenwich, UK in 2004. There he learned the theory behind his
computer experience and became a much more efficient computer programmer.

Kalpesh has worked actively in the IT sector since his freshman year at university.
He has been a PHP developer since then and has developed his skills in this field.

Through his increasing responsibilities, he has learned to prioritize needs and wants,
and applies this ability to his projects.

I would like to thank my wife Bansari for her consistent support.

Murshed Ahmmad Khan is a young web developer who believes that nothing is
impossible in the arena of programming. With his extensive 5 years work experience
in web & system level programming he wants to create cool, applicable and useful
systems for many people throughout the web.

He graduated (B.Sc. in CSE) from Rajshahi University of Engineering & Technology
(RUET) Rajshahi, Bangladesh, in Computer Science & Engineering (CSE).

Murshed Ahmmad Khan worked on BangladeshInfo.com
(http://www.bangladeshinfo.com), and Global Online Services Limited
(http://www.global.com.bd) gaining an immense reputation. BangladeshInfo.com
& Global Online Services Limited are both a concern of Texas Group Bangladesh and
a renowned IT firm in the local market for corporate and multinational companies.

He also worked in THPB (The Hunger Project, Bangladesh -
http://www.thp.org) and SHUJAN (SHUJAN is a citizen movements to
achieve good governance) as a lead developer for developing various e-governance
sites for increasing the accountability of the candidates of national elections.
From SHUJAN (http://www.shujan.org) he also developed the country's first
ever online.

Table of Contents
Introduction	 1
Chapter 1: OOP vs. Procedural Programming	 5

Introduction to PHP	 6
A Little History of OOP in PHP	 6
Procedural vs. OO Coding Style 	 7
Benefits of OOP 	 8
Dissection of an Object	 9
Difference of OOP in PHP4 and PHP5	 11
Some Basic OO Terms	 12
General Coding Conventions 	 13
Summary	 14

Chapter 2: Kick-Starting OOP	 15
Let's Bake Some Objects	 15

Accessing Properties and Methods from Inside the Class	 17
Using an Object	 17
Modifiers	 18
Constructors and Destructors	 20
Class Constants	 22
Extending a Class [Inheritance]	 24

Overriding Methods	 26
Preventing from Overriding 	 26
Preventing from Extending	 26

Polymorphism	 27
Interface	 28
Abstract Class	 30
Static Method and Properties	 32

Table of Contents

[ii]

Accessor Methods	 34
Using Magic Methods to Set/Get Class Properties	 36
Magic Methods for Overloading Class Methods	 37
Visually Representing a Class	 38
Summary	 39

Chapter 3: More OOP	 41
Class Information Functions	 41

Checking if a Class Already Exists	 41
Finding Currently Loaded Classes	 42
Finding out if Methods and Properties Exists	 42
Checking the Type of Class	 42
Finding Out the Class Name 	 43

Exception Handling	 44
Collecting all PHP Errors as Exception	 48

Iterators	 49
ArrayObject	 51
Array to Object	 52
Accessing Objects in Array Style	 53
Serialization	 54

Magic Methods in Serialization	 55
Object Cloning	 58
Autoloading Classes or Classes on Demand	 59
Method Chaining	 59
Life Cycle of an Object in PHP and Object Caching	 61
Summary	 62

Chapter 4: Design Patterns	 63
You Might have Done this Before…	 63
Strategy Pattern	 64
Factory Pattern	 66
Abstract Factory	 69
Adapter Pattern	 71
Singleton Pattern	 75
Iterator Pattern 	 77
Observer Pattern	 80
Proxy Pattern or Lazy Loading	 82
Decorator Pattern	 84
Active Record Pattern	 88
Facade Pattern	 88
Summary	 91

Table of Contents

[iii]

Chapter 5: Reflection and Unit Testing	 93
Reflection 	 93

ReflectionClass 	 94
ReflectionMethod	 99
ReflectionParameter	 102
ReflectionProperty	 104
Unit Testing	 106

Benefits of Unit Testing	 107
A small Introduction to Vulnerable Bugs	 107
Preparing for Unit Testing	 109
Starting Unit Testing	 109
Testing an Email Validator Object	 112
Unit Testing for Everyday Script	 116
Test Driven Development	 120

Writing Multiple Assertions	 125
PHPUnit API	 126

Summary	 136
Chapter 6: Standard PHP Library	 137

Available Objects in SPL	 137
ArrayObject	 138
ArrayIterator	 143
DirectoryIterator	 145
RecursiveDirectoryIterator	 149
RecursiveIteratorIterator	 150
AppendIterator	 150
FilterIterator	 152
LimitIterator	 154
NoRewindIterator	 154
SeekableIterator	 155
RecursiveIterator	 156
SPLFileObject	 158
SPLFileInfo	 159
SPLObjectStorage	 161
Summary	 163

Chapter 7: Database in an OOP Way	 165
Introduction to MySQLi	 165

Connecting to MySQL in an OO Way	 166
Selecting Data in an OO Way	 166
Updating Data in an OO Way	 167

Table of Contents

[iv]

Prepared Statements	 167
Basic Prepared Statements	 168
Prepared Statements with Variables	 169

Using BLOB with Prepared Statements	 170
Executing Stored Procedure with MySQLi and PHP	 171

PDO	 172
DSN Settings for Different Databases Engines	 174
Using Prepared Statements with PDO	 175
Calling Stored Procedures	 176
Other Interesting Functions	 177

Introduction to Data Abstraction Layers	 178
ADOdb	 178

Installing ADOdb	 178
Connecting to Different Databases	 179
Basic Database Operations using ADOdb	 183
Inserting, Deleting, and Updating Records	 184
Executing Prepared Statements	 184

MDB2	 185
Installing MDB2	 185
Connecting to Database	 186
Executing Prepared Statements	 187

Introduction to ActiveRecord	 188
Creating a New Record via ActiveRecord	 189
Selecting and Updating Data	 189

Summary	 190
Chapter 8: Cooking XML with OOP	 191

Formation of XML	 191
Introduction to SimpleXML	 192

Parsing Documents	 193
Accessing Attributes	 194
Parsing Flickr Feeds using SimpleXML	 194
Managing CDATA Sections using SimpleXML	 197
XPath	 198
DOM API	 200

Modifying Existing Documents	 202
Other Useful Functions	 202
Summary	 203

Chapter 9: Building Better with MVC	 205
What is MVC?	 205
Planning for the Project	 206
Designing the Bootstrap File	 206

Table of Contents

[�]

Adding Database Support	 224
Drivers	 227

Building Applications over our Framework	 237
Authentication Controller	 238

Summary	 245
Index	 247

Introduction
Object-oriented programming is largely about the ability to hide what's not important
to the user and to highlight what is. PHP 5 offers standardized means for specifying
the variety of property scopes typically offered by full-featured OO languages.

What This Book Covers
Chapter 1 introduces object-oriented programming and how it fits for PHP. Some
benefits of functional programming over procedural programming are highlighted.

In Chapter 2 you learn to create objects and define their properties and methods.
Details of classes, properties, and methods follow, along with the scope of methods.
This chapter shows you the benefits of using interfaces and a few other basic OOP
features in PHP to kick start your journey through OOPing in PHP.

Now that you have got your basics done for OOP in PHP, Chapter 3 helps you to
strengthen your base. It helps you to deal with more details and some advanced
features. For example, you learn about class information functions, which allows
you to investigate details of any class. This chapter takes you through some handy
object-oriented information functions, exception handling, iterators, and storing
objects using serialization.

In Chapter 4 you learn some of the Design Patterns and how to implement them in
PHP. These are an essential part of OOP and make your code more effective, more
efficient, and easier to maintain. Sometimes we implement these design patterns
in our code without knowing that these solutions are defined by design patterns.
Proper usage of the correct pattern can make your code perform better; similarly
using them improperly could make your code slower and less efficient.

Introduction

[�]

Chapter 5 focuses on two very important features of object-oriented programming
in PHP, reflection and unit testing. PHP5 replaces many old APIs with smarter new
ones. One of these is the Reflection API, with which you can reverse or engineer
any class or object to figure out its properties and methods. You can invoke those
methods dynamically and more. Unit testing is an essential part of good, stable, and
manageable application design. We focus on one very popular package, PHPUnit,
which is a port of JUnit to PHP. If you follow the guidelines provided in this chapter
you will be able to design your own unit tests successfully.

Some built-in objects and interfaces in PHP make life much easier for PHP
developers. In Chapter 6 you will learn about the huge object repository named the
Standard PHP Library or SPL.

Chapter 7: In this chapter we discuss the improved MySQL API known as MySQLi
and take a basic look at PHP Data Objects (PDO), adoDB, and PEAR::MDB2. We
take a look at the Active Record pattern in PHP using adoDB’s active record library
and the Object-Relational Mapping (ORM) pattern using Propel. We focus on
some specific topics that are interesting for PHP developers doing database access
the OO way.

In Chapter 8, you learn to process XML with PHP. You get to know about different
APIs like the SimpleXML API to read XML and the DOMDocument object to parse
and create XML documents.

Chapter 9: In Chapter 4 you learned how design patterns can simplify your daily
life in programming by providing you with a common approach for solving
problems. One of the most used design patterns for application architecture is
Model-View-Controller (MVC). In this chapter we discuss the basic structure of
MVC frameworks and then introduce you to some of these popular frameworks.
Frameworks play a very important role in Rapid Development of PHP applications.
You will learn how to build a framework in this chapter, which will also help you to
understand object loading, data abstraction layers, and the importance of separation
and finally you get a closer look at how applications are done.

Who is This Book for
From beginners to intermediate users of PHP5

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Introduction

[�]

There are three styles for code. Code words in text are shown as follows: "�������� In some
cases you may need to investigate which classes are in the current scope. You can do
it easily with get_declared_classes() function��."

A block of code will be set as follows:

<?
class ParentClass
{
}

class ChildClass extends ParentClass
{
}

$cc = new ChildClass();
if (is_a($cc,"ChildClass")) echo "It’s a ChildClass Type Object";
echo "\n";
if (is_a($cc,"ParentClass")) echo "It’s also a ParentClass Type
Object";

?>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"�� If you place the server in your web server (here localhost) document, root in a
folder named proxy and then access the client, you will get the following output:

March, 28 2007 16:13:20".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

Introduction

[�]

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/2561_Code.zip, and select this book
from the list of titles to download any example code or extra resources for this book.
The files available for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

This book is dedicated to
my Son

Afif—The Little Einstein

OOP vs. Procedural
Programming

PHP is one of the most popular scripting languages of the last couple of years. Almost
60% of web servers are running on Apache with PHP. It is so popular that millions of
websites and web applications are developed every month using PHP. PHP started its
journey as a simple replacement for Perl, and in a few years it became tremendously
popular and powerful. The language itself is closely similar to ANSI C.

One of the reasons why PHP became so popular is its short learning curve. Learning
PHP is not a big job, especially if you are familiar with the syntax of Java or C.
As writing PHP scripts is easy, anyone can write PHP code without following
conventions and mixing presentation layers with business logics (which is one of
the main reasons why there are large amounts of unmanageable projects floating
around). Because there are no strict coding conventions followed in PHP, over the
years as a project gets bigger, it can turn into an unmanageable demon.

OOP or Object Oriented Programming is a good programming practise to create
manageable projects more easily. Procedural programming means writing code
without objects. Procedural programming consists of codes with or without routines.
OOP enlightens any language for better coding, for best performance and for
writing very big projects without worrying a lot about managing them. OOP gives
you facilities to create reusable objects that you or other developers can use in their
projects without reinventing them again and again. OOP removes the hassles and
difficulties of writing and managing big applications.

In this book we are going to discuss how you can achieve maximum benefits using
OOP with PHP, using step-by-step instructions, real life examples how OOP helps
you to write effective code, how to improve your coding style, and how to reuse
them over time. This book won't work as a reference for PHP language; we will just
cover OOP features of PHP and not the basics of general PHP. If you are looking for
a good reference book, consult the PHP manual at first and then you can study Core
PHP Programming, a very good book written by Leon Atkinson�.

OOP vs. Procedural Programming

[10]

Introduction to PHP
This section is not for you if you are already a PHP developer, but for those who are
new to PHP and starting with this book. Though I said at the very beginning that I
assume you will have some pre development experience in PHP while reading this
book, but if you are a total fresher and want to learn OOP with this book, this section
may be worth recalling the basic PHP language features. If you are already familiar
enough, don't skip this section as we have other topics to discuss here.

So you may ask where is the introduction to PHP, I am not seeing any code here!
Well, you don't need to. The best resource on the internet is for free. Please go to
http://www.php.net and download the manual and read the basic chapters. For
a detailed learning of PHP, you can study the book Learning PHP5 written by
David Sklar.

Ready, Set, Go
In this book, we are using PHP5.1.2 for our examples but for almost 99% of cases it
will run with PHP version 5x. We have MySQL 5 in our machine and Apache 2
as our web server. If you aren't familiar with configuring all these in your machine,
you can download pre configured WAMP or LAMP distributions like XAMPP
(http://apachefriends.org) or Apache2Triad (http://www.apache2triad.net).
You will find corresponding documentation for installation and customization on
each of these product's website.

A Little History of OOP in PHP
When PHP was developed, it did not implement OO features in itself. After PHP/FI,
when Zeev, Rasmus, and Andy rewrote the core and released PHP3, very basic OO
features were introduced. When PHP4 was released, OO features got matured with
huge performance improvement. But the PHP team rewrote the core engine again
to introduce completely new object models and released PHP5. Now there are two
versions of PHP being developed. Don't get confused by comparing PHP versions
with other languages. PHP5 doesn't mean it is the latest PHP version. As I said a
while ago, PHP4 and PHP5 are being released actively (though there will be no more
releases of PHP4 after December 2007). Between these two, PHP5 implements almost
complete OO features while PHP4 doesn't. At the time of writing this book the latest
version of these two streams are PHP5.2 and PHP4.4.

Chapter 1

[11]

Procedural vs. OO Coding Style
PHP allows you to write code in two flavours, one is procedural and the other
is object oriented. You can even write procedural code in PHP5 and it will run
without any problems. If you are not clear about procedural and object oriented
programming, then we will have a look at these two different coding styles. The
following two examples are not fully running examples rather a pseudo code:

<?
$user_input = $_POST[‘field‘];
$filtered_content = filter($user_input); //user input filtering
mysql_connect("dbhost","dbuser","dbpassword"); //database
mysql_select_db("dbname");
$sql = "some query";
$result = mysql_query($sql);
while ($data = mysql_fetch_assoc())
{
 process ($data);
}
process_user_input($filtered_content);
?>

You will notice using a lot of inline processing either directly or via using functions.
It may stand as an example of typical procedural operation. Let's see how it looks
after converting it to OOP:

<?
$input_filter = new filter();
$input_filter->filter_user_input(); //filter the user inputs
$db = new dal("mysql"); //data access layer
$db->connect($dbconfig);//we wre using mysql
$result = $db->execute($sql);
ReportGenerator::makereport($result); //process data
$model = new Postmodel($filter->get_filtered_content());
$model->insert();
?>

Now if you take a look into these two code snippets, you will find that the latter
one is much more readable. Well, you can make the first one more readable by
introducing some more functions into it, but how many functions are you ready
to search into when you use them? The latter snippet is better organized because
you know which object is handling which process. If you write big applications in
procedural style, it will be almost impossible to manage after a few versions. Of
course you can implement strict coding conventions, but it is agreed by millions
of developers that it won't give you the ultimate manageability and usability if it's
procedural unless you do it in OO style. Almost all big applications are written using
the object oriented approach.

OOP vs. Procedural Programming

[12]

Benefits of OOP
OOP is invented to make the developer's life easier. Using OOP you can split
your problems into smaller problems that are comparatively easy to comprehend.
The main goal of OOP is: everything you want to do, do it via objects. Objects are
basically small discrete pieces of code which, can incorporate data and behaviors
together. In an application all these objects are connected to each other, they share
data among them and solve problems.

OOP can be considered better from many aspects, especially when you consider
the development time and maintenance overhead. The main benefits of OOP can be
considered as follows:

Reusability: An object is an entity which has bundles of properties and
methods and can interact with other objects. An object can be sufficient or it
may have dependencies over other objects. But an object is usually developed
to solve a specific set of problems. So when other developers suffer from the
same set of problems, they can just incorporate your class to their project and
use it without affecting their existing workflow. It prevents from DRY, which
means Don't Repeat Yourself. In functional or modular programming, reusing
is possible but complex.
Refactoring: When you need to refactor your projects, OOP gives
you the maximum benefit because all objects are small entities and
contain its properties and methods as a part of itself. So refactoring is
comparatively easier.
Extensible: If you need to add features to your project, you can achieve best
results from OOP. One of the core OOP features is extensibility. You can
refactor your object to add the feature. While doing it, you can still maintain
backward compatibility of this object so that it works fine with an old code
base. Or you can extend the object and create a totally new object that retains
all the necessary properties and methods of the parent object from which it
has been derived, and then expose new features. This is termed "inheritance"
and is a very important feature of OOP.
Maintenance: Object oriented code is easier to maintain because it follows
somewhat strict coding conventions and is written in a self explanatory
format. For example, when a developer extends it, refactors it, or debugs
it, they can easily find out the inner coding structure and maintain the
code time after time. Moreover, whenever there is a team development
environment in your project, OOP could be the best solution because you can
distribute your code after splitting it into small parts. These small parts could
be developed as a separate object, so developers can develop them almost
independently. Finally, it will be very easy to merge the code.

•

•

•

•

Chapter 1

[13]

Efficiency: The concept of object oriented programming is actually
developed for better efficiency and ease of development process. Several
design patterns are developed to create better and efficient code. Moreover
in OOP, you can think of your solution in a much better approach than
procedural programming. Because you first split your problem into a small
set of problems and then find solutions for each of them, the big problem is
solved automatically.

Dissection of an Object
So what is an object? Well, it's nothing but a piece of code with a bunch of properties
and methods. So is it similar to an array, as arrays can store data identified by
properties (well, they are called keys)? Objects are much more than arrays because
they contain some methods inside them. They can either hide them or expose them,
which are not possible in arrays. The object is somewhat comparable with a data
structure, data structure, and can incorporate a lot of other objects in itself and either
creates a tight coupling among them or a loose one. And object can incorporate a lot
of other object in itself and either creates a tight coupling among them or a loose one.
We will learn more about loose coupling and tight coupling later in this book and
understand how they will be useful for us.

Let's see the code of an object in PHP. The following object is a very simple
object which can send email to a bunch of users. In PHP5, objects are a lot more
different than an object in PHP4. We will not discuss the details of it, this is just an
introductory object to see how the objects are written in PHP.

<?
//class.emailer.php
class emailer
{
 private $sender;
 private $recipients;
 private $subject;
 private $body;

 function __construct($sender)
 {
 $this->sender = $sender;
 $this->recipients = array();
 }

 public function addRecipients($recipient)
 {
 array_push($this->recipients, $recipient);
 }

•

OOP vs. Procedural Programming

[14]

 public function setSubject($subject)
 {
 $this->subject = $subject;
 }

 public function setBody($body)
 {
 $this->body = $body;
 }

 public function sendEmail()
 {
 foreach ($this->recipients as $recipient)
 {
 $result = mail($recipient, $this->subject, $this->body,
 "From: {$this->sender}\r\n");
 if ($result) echo "Mail successfully sent to
 {$recipient}
";
 }
 }
}
?>

The above object contains four private properties and three accessor methods and
finally one more method to dispose the email to recipients. So how we are going to
use it in our PHP code? Let's see below:

<?
$emailer = new emailer("hasin@pageflakes.com"); //construcion
$emailer->addRecipients("hasin@somewherein.net"); //accessing methods
// and passing some data
$emailer->setSubject("Just a Test");
$emailer->setBody("Hi Hasin, How are you?");
$emailer->sendEmail();
?>

I am sure that the above code snippet is much more self explanatory and readable.
If you follow proper conventions, you can make your code easy to manage and
maintain. Wordpress developers use a motto on their site www.wordpress.org
which is "Coding is poetry". Coding is exactly a poem; if you just know how to
write it.

Chapter 1

[15]

Difference of OOP in PHP4 and PHP5
Objects in PHP5 differ a lot from objects in PHP4. OOP became matured enough in
true sense from PHP5. OOP was introduced since PHP3 but that was just an illusion
for real object oriented programming. In PHP4 you can create objects but you can't
feel the real flavour of an object there. In PHP4 it was almost a poor object model.

One of the main differences of OOP in PHP4 is that everything is open; no
restrictions about the usage of methods or properties. You can't use public, private,
and protected modifiers for your methods. In PHP4 developers usually declare
private methods with a double underscore. But it doesn't mean that declaring a
method in that format actually prevents you from accessing that method outside the
class. It's just a discipline followed.

In PHP4 you can find interfaces but no abstract or final keyword. An interface is a
piece of code that any object can implement and that means the object must have all
the methods declared in the interface. It strictly checks that you must implement all
the functions in it. In the interface you can only declare the name and the access type
of any method. An abstract class is where some methods may have some body too.
Then any object can extend that abstract class and extend all these methods defined
in that abstract class. A final class is an object which you are not allowed to extend.
In PHP5 you can use all of these.

In PHP4 there are no multiple inheritances for interfaces. That means an interface
can extend only one interface. But in PHP5 multiple inheritance is supported via
implementing multiple interfaces together.

In PHP4, almost everything is static. That means if you declare any method in the
class, you can call it directly without creating an instance of it. For example the
following piece of code is valid in PHP4:

<?
class Abc
{
 var $ab;

 function abc()
 {
 $this->ab = 7;
 }
 function echosomething()
 {
 echo $this->ab;
 }
}

echo abc::echosomething();
?>

