
$ 44.99 US
£ 27.99 UK
€ 39.99 EU

Prices do not include
local sales tax or VAT
where applicable

Packt Publishing

Birmingham - Mumbai

www.packtpub.com

Programming Windows Workfl ow
Foundation: Practical WF Techniques
and Examples using XAML and C#

Windows Workflow Foundation (WF) is a technology for defining, executing, and managing
workflows. It is part of the .NET Framework 3.0 and will be available natively in the Windows
Vista operating system.

In this book K Scott Allen provides you with all the information needed to develop successful
applications with Windows Workflow Foundation. Fast-paced and to-the-point, this book takes
you through the important topics of Windows WF development with clear explanations, from
compilation to the base activity library to runtime services. We develop an example workfl ow
system through the book, showcasing the technology and techniques used.

What you will learn from this book
• Authoring workflows with C# and with XAML
• Creating and managing Sequential Workfl ows
• Working with the activities in the base activity library
• Creating custom activities using a compositional approach and a derivation approach
• Using scheduling services, persistence services, and tracking services
 • Working with State Machines in Windows Workfl ow
 • Using services for communication with a host process and also across a network
 • Creating rules and conditions in Windows Workfl ow Foundation
 • Creating an example “bug reporting” workfl ow solution

Who this book is written for
This book is for .NET developers who want to enhance their applications with fl exible workfl ow
capabilities using Windows Workflow Foundation. This book is not an overview of the Windows
Workflow Foundation architecture, but concentrates on development topics. All the code
examples are in C#.

Program
m

ingW
indow

s W
orkfl ow

 Foundation
K

. S
cott A

llen

F r o m T e c h n o l o g i e s t o S o l u t i o n s

Programming

Windows Workfl ow Foundation

Practical WF Techniques and Examples using XAML and C#

A Concise and Practical Guide to Installation, Administration,
and Customization

K. Scott Allen

Programming Windows
Workflow Foundation: Practical
WF Techniques and Examples
using XAML and C#

A C# developer's guide to the features and programming
interfaces of Windows Workflow Foundation

K. Scott Allen

 BIRMINGHAM - MUMBAI

Programming Windows Workflow Foundation: Practical
WF Techniques and Examples using XAML and C#

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2006

Production Reference: 1121206

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-21-3

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

K. Scott Allen

Reviewer

Dan Kahler

Development Editor

Douglas Paterson

Assistant Development Editor

Nikhil Bangera

Technical Editor

Viraj Joshi

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Scott Allen is a software architect with 14 years of experience in commercial
software development. Scott has worked on platforms ranging from 8-bit embedded
systems to highly scalable and distributed web applications. For the last six years,
Scott has concentrated on the .NET platform, and is a Microsoft MVP. Scott presents
at local code camps and national conferences.

Scott is a founder of the website OdeToCode.com, where he publishes articles and
maintains a blog. Scott previously coauthored Building Websites with the ASP.NET
Community Starter Kit for Packt Publishing, and has also published articles in MSDN
Magazine and Dr. Dobb's Journal.

I'd like to thank Packt's Douglas Paterson for putting up with my
antics over the years. I'd also like to acknowledge the rest of the
Packt team, including Patricia Weir, Abhijeet Deobhakta, and Viraj
Joshi, for their efforts.

Dan Kahler and Nikhil Bangera made this a better book with their
diligent reviewing efforts, and I am grateful.

Finally, there is Beaker. While I was writing, and the rest of the
world was sleeping, Beaker would be on my desk or curled next to
my feet. She'd be sleeping too, but she was always close by until she
passed away. I miss you, Beaker.

About the Reviewer

Dan Kahler is a Senior Engineer with Verizon Business. With over eight
years of experience developing and administering Windows and Web-based
solutions, he specializes in using Microsoft technologies to simplify and automate
day-to-day system administration tasks and to integrate line-of-business
applications. Dan previously contributed to the Microsoft Log Parser Toolkit
(Syngress, ISBN: 1-932266-52-6) as a contributing author, and contributed to the
Microsoft Internet Information Services (IIS) 6.0 Resource Kit (Microsoft Press,
ISBN: 0-735614-20-2) as a technical reviewer and tester. He is active in the Baltimore
.NET user group (www.baltomsdn.com). Dan currently resides in Eldersburg,
Maryland with his wife Shannon and children Nicole and Ethan.

Table of Contents
Preface	 1
Chapter 1: Hello, Workflow	 7

Building Workflow Solutions	 8
A Windows Workflow Tour	 10

Activities	 11
Custom Activities	 11

Visual Studio 2005 Extensions	 12
Windows Workflow and XAML	 13
WF Validation and Debugging	 15
Designer Looks	 15

The Windows Workflow Runtime	 15
Hosting the Windows Workflow Runtime	 16
Runtime Services	 17

Our First Workflow	 19
Summary	 25

Chapter 2: Authoring Workflows	 27
Pure Code	 27

Pure Code and Visual Studio	 28
Objects and Their Relationships	 31
Pure XAML	 32

Using Custom Activities in XAML	 35
Compiling Workflows	 36

Compiling with Wfc.exe	 37
Compiling with WorkflowCompiler	 38
Compilation with MSBuild	 40
Code Generation and XAML Serialization	 42

XAML Activation	 45
XAML-only Summary	 46

Code and XAML Together	 47
Summary	 49

Table of Contents

[ii]

Chapter 3: Sequential Workflows	 51
The SequenceActivity	 51

Simple Flow	 52
Sequences Inside Sequences	 54

Workflows and the Outside World	 56
Workflow Instance Lifetime Events	 56
Workflow Parameters	 60
Raising Events and Invoking Methods	 62

Service Contracts	 63
Service Implementation	 65
Workflow Implementation	 66
Host Implementation	 69

Faults	 70
Summary	 73

Chapter 4: The Base Activity Library	 75
The Basics 	 75

The CodeActivity	 75
The IfElseActivity	 76
The WhileActivity	 78
The SequenceActivity	 78
The SuspendActivity	 78
The TerminateActivity	 79
The ThrowActivity	 79
The InvokeWorkflowActivity	 80
The ParallelActivity	 80
The DelayActivity	 81
The ListenActivity	 82
The EventHandlingScopeActivity	 83
The SynchronizationScopeActivity	 83
The ReplicatorActivity	 83

Local Communication Events	 84
The CallExternalMethodActivity	 85
The HandleExternalEventActivity	 86
The Activity Generator	 87

Fault Handling	 87
The FaultHandlersActivity	 88
The FaultHandlerActivity	 89

Transactions and Compensation	 89
The TransactionScopeActivity	 90
Compensation	 90
The CompensatableSequenceActivity	 91

Table of Contents

[iii]

The CompensatableTransactionScopeActivity	 91
The CompensateActivity	 92

Conditions and Rules	 92
The ConditionedActivityGroup	 92
The PolicyActivity	 94

Web Services	 95
The InvokeWebServiceActivity	 95
The WebServiceInputActivity	 96
The WebServiceOutputActivity	 96
The WebServiceFaultActivity	 96

State Activities	 96
The StateActivity	 97
The StateInitializationActivity	 98
The StateFinalizationActivity	 98
The EventDrivenActivity	 99
The SetStateActivity	 100

Summary	 100
Chapter 5: Custom Activities	 101

Why Would I Build Custom Activities?	 101
Reusability	 102
Extensibility	 102
Domain-Specific Languages	 102

How Do I Build Custom Activities?	 103
Activity Composition	 103

Opening a Black Box	 106
Property Promotion	 107

Composition Summary	 110
Dependency Properties	 111

Activity Binding	 113
Attached Properties	 114
Meta-Properties	 115
Dependency Property Summary	 116

Derivation	 116
ConsoleWriteActivity	 117
Activity Components	 119

Activity Validators	 119
Activity Designers	 120

Activity Execution	 122
Execution Context	 123
Custom Composite Activities	 124

Summary	 127

Table of Contents

[iv]

Chapter 6: Workflow Hosting	 129
The Workflow Runtime	 129

Workflow Runtime Logging	 131
Workflow Runtime Configuration	 133

Workflow Configuration Sections	 133
Scheduling Services	 135

Scheduling Services and Threads	 135
Scheduling Services and Configuration	 137

Scheduling Parameters	 139
Choosing the Right Scheduling Service	 139

Persistence Services	 139
Persistence Classes	 140
The SqlWorkflowPersistenceService	 141

SQL Persistence Service Configuration	 142
Running with Persistence	 143
Persistence and Serialization	 146

Tracking Services	 148
Tracking Classes	 149
Tracking Configuration	 150
Running with Tracking	 151

Tracking Profiles	 154
Data Maintenance	 157

Persistence and Tracking Together	 157
Shared Connection Configuration	 158

Summary	 159
Chapter 7: Event-Driven Workflows	 161

What Is a State Machine?	 161
State Machines in Windows Workflow	 162
Our First State Machine 	 163

Creating the Project	 163
Life of a Bug	 165
The State Activity	 167

The EventDriven Activity	 168
The SetState Activity	 169
The StateInitialization and StateFinalization Activities	 171

Driving the State Machine	 171
Inspecting State Machines	 173

StateMachineWorkflowInstance	 173
State Machine Tracking	 175

Hierarchical State Machines	 176
Summary	 178

Table of Contents

[�]

Chapter 8: Communication in Workflows	 179
Local Communication Services Redux	 179

Correlation Parameters	 180
Correlation Attributes	 183
Correlation Tokens	 185

Role‑Based Authorization	 186
Roles and Activities	 187

Workflow Queues	 189
WorkflowQueue and WorkflowQueueInfo	 190
Finding the Waiting Activity	 191
Canceling a Waiting Activity	 193
Communicating with Queues	 194

Web Service Communication	 194
Workflows as Web Services	 194

WebServiceInput Activity	 195
WebServiceOutput Activity	 196
Publishing Web Service Workflows	 197

Workflows as Web Service Clients	 200
InvokeWebService Activity	 201

Summary	 202
Chapter 9: Rules and Conditions	 203

What are Rules and Conditions?	 204
Working with Conditions	 205

Code Conditions	 205
Rule Conditions	 207

The .rules File	 208
Available Expressions	 210
Rules and Activation	 210

The Conditioned Activity Group	 211
When to Use the CAG	 214

Working with Rules	 214
The Policy Activity	 215

Creating a Policy Workflow	 215
Evaluation	 220
Priority	 220
Rule Dependencies	 221
Controlling Chaining	 225

Rules Engine Tracing and Tracking	 226
Tracing Rules	 226
Tracking Rules	 228

Dynamic Updates	 230
Summary	 232

Index	 233

Preface
Windows Workflow Foundation (WF) is a technology for defining, executing, and
managing workflows. It is part of the .NET Framework 3.0 and will be available
natively in the Windows Vista operating system.

Windows Workflow Foundation might be the most significant piece of middleware
to arrive on the Windows platform since COM+ and the Distributed Transaction
Coordinator. The difference is, not every application needs a distributed transaction,
but nearly every application does have a workflow encoded inside.

This book will help you add that workflow power to your applications.

What This Book Covers
Chapter 1 introduces us to the concept of workflow and describes how Windows
Workflow can solve the difficult problems inherent in workflow solutions. We'll
become familiar with activities as the basic building blocks of a workflow definition
and demonstrate how to author a simple workflow using Visual Studio 2005. This
chapter also describes the runtime services available with WF. By the end of the
chapter we will be able to identify the primary features of Windows Workflow.

Chapter 2 concentrates on authoring workflows. Specifically, we'll look at how
to build workflows with C#, and with extensible application markup language
(XAML). Looking at the workflow compiler, we'll have a better understanding of
how WF uses code generation to produce classes from workflow markup, and how
this generated code can combine with our hand‑written code to produce a workflow
type. This chapter will provide the fundamental knowledge needed to understand
how WF operates during the compilation phase.

In Chapter 3, we will turn our attention to sequential workflows. We will examine the
SequenceActivity and learn about the events fired by the workflow runtime during
the life of a workflow instance. Using Visual Studio, we will build workflows that

Preface

[�]

accept parameters and communicate with a host process by invoking methods and
listening for events. The chapter concludes with a workflow example that raises an
exception and uses a fault handler.

Chapter 4 examines each activity in the WF base activity library. We will look at the
control flow activities, communication activities, and transaction-oriented activities.
The chapter also examines web service activities, rule-centric activities, and state
activities. The goal of this chapter is to make us aware of all the capabilities provided
by the base activity library, with an eye towards understanding how each activity
can solve a particular problem.

With an understanding of what is available in the base activity library, we can
look at building our own custom activities in Chapter 5. This chapter examines the
motivations for building custom activities, and provides examples of building a
custom activity using both a compositional approach and a derivation approach.
We'll see how to build a custom validator and designer for our activity, and also
understand the advantages of using dependency properties. The chapter ends by
covering the execution context, which we must understand to build robust activities.

Chapter 6 covers the workflow runtime, workflow diagnostics, and the out‑of‑the‑box
services provided for WF by Microsoft. The chapter demonstrates how to configure
services both declaratively and programmatically. We'll see examples of how to use
a scheduling service, persistence service, and tracking service. The chapter provides
enough information to allow a developer to select and configure the services needed
for a wide variety of scenarios and environments.

Chapter 7 focuses on building event‑driven workflows using state machines. We'll
see how WF models the traditional state machine using activities, and we will build
a workflow to handle external events and react with state transitions. We'll also
see how to track and examine the history of state machine execution. The chapter
ends with an examination of a hierarchical state machine, which provides all the
knowledge we need to tackle tough problems with event‑driven workflows.

Chapter 8 is dedicated to workflow communications. The chapter explains how
to use correlated local services for communication with a host process, and web
service activities for communication across a network. By the end of the chapter
we'll uncover the queuing service that is used behind the scenes of a workflow to
coordinate and deliver messages.

Finally, Chapter 9 is about rules and conditions in Windows Workflow. This
discusses the role of business rules in software development and provides examples
of how WF's rules engine can take away some of the burden of rule development.
The chapter takes an in-depth look at rule execution in the PolicyActivity, and
recording diagnostic information about rule evaluation. We'll come away with the
knowledge we need to build rule‑based solutions using Windows Workflow.

Preface

[�]

What You Need for This Book
Windows Workflow Foundation is one part of the .NET 3.0 framework. To run
Windows Workflow, you'll need to download and install the .NET 3.0 redistributable
(see the links below):

.NET 3.0 (x86): http://go.microsoft.com/fwlink/?LinkID=70848

.NET 3.0 (x64): http://go.microsoft.com/fwlink/?LinkID=70849

Visual Studio 2005 extensions for .NET Framework 3.0 (Windows
Workflow Foundation):

http://www.microsoft.com/downloads/details.aspx?FamilyId=
5D61409E-1FA3-48CF-8023-E8F38E709BA6&displaylang=en

The .NET 3.0 runtime requires Windows Server 2003 SP1, Windows XP SP2, or
Windows Vista. To develop Windows Workflow solutions you'll need to download
the Visual Studio 2005 extensions for .NET Framework 3.0.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows:

"����The codeActivity1_ExecuteCode method is here and waiting for us to provide an
implementation�"

A block of code will be set as follows:

using System;
using System.Workflow.Activities;

namespace chapter2_library
{
 public sealed �� partial��� class PureCode: SequentialWorkflowActivity
 {
 public PureCode()
 {
 InitializeComponent();
 }

 }

Preface

[�]

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

using System;
using System.Workflow.Activities;

namespace chapter2_library
{
 public sealed �� partial��� class PureCode: SequentialWorkflowActivity
 {
 public PureCode()

 {

 InitializeComponent();

 }

 }
}

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"Right-click the workflow and select the Delete option".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

Preface

[�]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Qu�������estio��ns
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Hello, Workflow
…thoughts arrive like butterflies — Gossard / Vedder

Windows Workflow might be the most significant piece of middleware to arrive on
the Windows platform since COM+ and the Distributed Transaction Coordinator.
The difference is, not every application needs a distributed transaction, but nearly
every application does have a workflow encoded inside. To understand the types
of problems Windows Workflow is designed to solve, let's talk about workflow in a
generic sense.

What is a workflow? A simple definition would say a workflow is the series of steps,
decisions, and rules needed to complete a specific task. Think of the workflow that
takes place when you order food at the local pizza shop. You tell the cashier the
type of pizza you want. The cashier passes this information to the cook, who gathers
ingredients and puts a pizza in the oven. The cook hands a finished pizza to the
cashier, who collects payment and completes the workflow by handing over your
pizza. The work flows, to the cashier, then to the cook, and then back again.

During each of these steps, all parties are also evaluating rules and making decisions.
Before accepting the order, the cook has to compare the order against the ingredients
in stock. The cashier has to validate and process any coupons you might present, and
notify the manager if you pay with a counterfeit looking bill.

Not every workflow has to involve humans (which is good, because humans
complicate even the simplest process). A workflow can take place between
two distributed software applications. For example, two content management
applications might need to follow a specific set of steps and rules when
synchronizing content in the middle of the night.

Most workflows are stateful, and often run for a relatively long time. Hopefully, your
pizza will be ready within 30 minutes. During those 30 minutes, state information
about your order, like the toppings you selected, has to be available. A different

Hello, Workflow

[�]

workflow happens when the pizza shop orders cheese. The cheese supplier might
not deliver the mozzarella for 30 hours, and the pizza shop may not pay the cheese
supplier for 30 days. During those 30 days, something needs to maintain the state of
the workflow for a purchase.

A workflow may spend a large portion of its lifetime waiting for events to happen in
the world around it. A workflow may be idle when waiting for a delivery, or waiting
for a payment, or waiting for a pizza to finish in the oven. During these wait times,
the workflow is idle and no resources are required by the workflow.

A workflow, then, is a series of steps to finish a task. A workflow is often long
running and stateful, and often needs to wait on events and interact with humans.
You can see workflows everywhere you look in the world. As software developers,
we often have to codify the workflows around us into software applications.

Building Workflow Solutions
We've all been involved with software projects that try to improve a business
process. The process might have involved pizza orders, or financial transactions, or
health care. Invariably, the word workflow will arise as we talk about these projects.
While the workflow might sound simple, we know the devil is always in the details.
We'll need database tables and data access classes to manage the workflow state.
We'll need components to send emails and components to wait for messages to
arrive in a queue. We will also need to express the workflow itself for the computer
to execute. Let's look at a theoretical implementation of a workflow:

// The workflow for a newly submitted Purchase Order
class PurchaseOrderWorkflow
{
 public void Execute(PurchaseOrder order)
 {
 WaitForManagerApproval(order);
 NotifyPurchaseManager(order);
 WaitForGoods(order);
 }

	 …

}

Assuming we have definitions for the three methods inside of Execute, can a
workflow really look this simple? The answer is no. We'll have to add code for
exception handling, logging, and diagnostics. We'll need to raise events and provide
hooks to track and cancel a running workflow. Also, this workflow will be idle and
waiting for an external event to occur, like the arrival of the purchased goods, for the

Chapter 1

[�]

majority of the time. We can't expect to block a running application thread for days
or weeks while waiting for a delivery. We'll need to provide a mechanism to save
the workflow's state of execution to a persistent data store and remove the running
workflow instance from memory. When a significant event occurs, we'll need to
restore the workflow state and resume execution.

Unfortunately, we will have so much code in and around the workflow that we will
lose sight of the workflow itself. All the supporting code will hide the process we
are trying to model. A non-technical businessperson will never be able to look at the
code and see the workflow. A developer will need to dig through the code to find the
workflow inside.

An improved workflow design will try to separate the definition of a workflow from
the engine and supporting code that executes the workflow. This type of approach
allows a developer, or even a businessperson, to express what the workflow should
be, while the workflow engine takes care of how to execute the workflow. These days,
many workflow solutions define workflows inside the loving embrace of angled
brackets. Let's look at some theoretical XML for a workflow definition:

<Workflow Name="PurchaseOrderWorkflow">
	 <Steps>
		 <WaitForTask Event="ManagerApproval"/>
		 <NotifyTask Target="PurchaseManager"/>
		 <WaitForTask Event="Delivery"/>
	 </Steps>
	 <Parameters>
		 <Parameter Type="PurchaseOrder" Name="order"/>
	 </Parameters>
</Workflow>

Let's ask the question again — can a workflow really look this simple? The answer
is yes; what we will need is a workflow engine that understands this XML, and can
transform the XML into instructions for the computer. The engine will include all the
required features like exception handling, tracking, and enabling cancellations.

Hello, Workflow

[10]

The C# code we saw earlier is an example of imperative
programming. With imperative programming, we describe
how to perform a task by providing a series of instructions
to execute. The XML markup above is an example of
declarative programming. With declarative programming,
we describe what the task looks like, and let other software
determine the steps required to complete the task. Most of
the commercial workflow solutions on the market allow a
declarative definition of workflow, because the declarative
approach doesn't become cluttered with exception
handling, event raising, and other lower-level details.

One of the benefits to using XML is the large number of tools with the ability to
read, modify, create, and transform XML. XML is tool-able. Compared to parsing C#
code, it would be relatively easy to parse the XML and generate a visualization of the
workflow using blocks and arrows. Conversely, we could let a business user connect
blocks together in a visual designer, and generate XML from a diagram.

Let's think about what we want in a workflow solution. We want to specify
workflows in a declarative manner, perhaps with the aid of a visual designer. We
want to feed workflow definitions into a workflow engine. The engine will manage
errors, events, tracking, activation, and de-activation.

Enter Windows Workflow Foundation.

A Windows Workflow Tour
Microsoft's Windows Workflow Foundation is one piece of the new .NET 3.0
platform. The other major additions in .NET 3.0 include Windows Presentation
Foundation, or WPF, and Windows Communication Foundation, or WCF. Microsoft
will support Windows Workflow (WF) on Windows XP, Windows Server 2003, and
Windows Vista.

Support for current and future Microsoft platforms means WF could reach near
ubiquity over time. We can use WF in smart client applications, and in simple
console-mode programs. We can also use WF in server-side applications, including
Windows services, and ASP.NET web applications and web services. WF will
make an appearance in several of Microsoft's own products, including Windows
SharePoint Services and Microsoft Biztalk Server. We will now look at an overview
of the essential features of Windows Workflow.

Chapter 1

[11]

Activities
The primary building block in Windows Workflow is the activity. Activities compose
the steps, or tasks in a workflow, and define the workflow. We can arrange activities
into a hierarchy and feed activities to the workflow engine as instructions to execute.
The activities can direct workflows involving both software and humans.

All activities in WF derive from an Activity base class. The Activity class defines
operations common to all activities in a workflow, like Execute and Cancel. The
class also defines common properties, like Name and Parent, as well as common
events like Executing and Closed (the Closed event fires when an Activity is
finished executing). The screenshot below shows the Activity class in the Visual
Studio 2005 class designer:

WF ships with a set of ready-made activities in the base activity library. The
primitive activities in the library provide a foundation to build upon, and include
control‑flow operations, like the IfElseActivity and the WhileActivity. The base
activity library also includes activities to wait for events, to invoke web services, to
execute a rules engine, and more.

Custom Activities
Windows Workflow allows developers to extend the functionality of the base activity
library by creating custom activities to solve problems in their specific domain.
For instance, pizza delivery workflows could benefit from custom activities like
SendOrderToKitchen or NotifyCustomer.

Hello, Workflow

[12]

All custom activities will also ultimately derive from the base Activity class.
The workflow engine makes no special distinction between activities written by
Microsoft and custom activities written by third parties.

We can use custom activities to create domain‑specific languages for building
workflow solutions. A domain‑specific language can greatly simplify a problem
space. For instance, a SendOrderToKitchen custom activity could encapsulate a
web service call and other processing logic inside. This activity is obviously specific
to the restaurant problem domain. A developer will be more productive working
with this higher-level abstraction than with the primitive activities in the base
activity library. Even a restaurant manager will understand SendOrderToKitchen
and might arrange the activity in a visual workflow designer. It will be difficult
to find a restaurant manger who feels comfortable arranging WhileActivity and
InvokeWebServiceActivity objects in a workflow designer.

C#, VB.NET, and XML are general-purpose languages and
have the ability to solve a wide array of different problems.
We can use C# to develop solutions for pizza restaurants as
well as hospitals, and the language works equally well in
either domain. A domain-specific language excels at solving
problems in a particular area. A domain-specific language
for restaurant workflow would boost productivity when
writing software for a restaurant, but would not be as
effective when writing software for a hospital.

Visual Studio 2005 Extensions
Microsoft also provides the Microsoft Visual Studio 2005 Extensions for Windows
Workflow. These extensions plug into Visual Studio to provide a number of features,
including a visual designer for constructing workflows. A screenshot of the visual
designer is shown on the next page.

Chapter 1

[13]

The designer uses the same windows we've come to love as Windows and web
form developers. The Toolbox window will list the activities available to drag onto
the design surface. We can add our own custom activities to the Toolbox. Once
an activity is on the design surface, the Properties window will list the activity's
properties that we can configure, and the events we can handle. The Toolbox
window is shown below:

Windows Workflow and XAML
The WF designer can generate C# and Visual Basic code to represent our
workflow. The designer can also read and write eX���������������������������� tensible Application Markup
Language��� (XAML, pronounced zammel). ������������������������������������� XAML files are valid XML files. XAML

