
$ 39.99 US
£ 24.99 UK
€ 36.99 EU

Prices do not include
local sales tax or VAT
where applicable

Packt Publishing

Birmingham - Mumbai

www.packtpub.com

Building Websites with
VB.NET and DotNetNuke 4

Revised and updated for DotNetNuke 4, this renowned book is your indispensable guide to
creating content-rich websites with DotNetNuke, as quickly as possible. This book covers
virtually everything you need to know to get your DotNetNuke website up and running.
Concisely written and with clear explanations, this book covers installation, administration,
deployment, and for developers, chapters on the core architecture, skinning, and custom
modules give you the skills to customize and extend your site. You will also fi nd in-depth
coverage of the DAL+, an extended feature set of the DotNetNuke Data Access Layer (DAL)
introduced in version 4.3 of DotNetNuke, which makes developing custom modules fast and easy.
The book starts off by giving you a deep understanding of working with basic DotNetNuke sites,
guiding you through the features and giving you the confidence to create and manage your site.
After that, you will journey to the heart of DotNetNuke, and learn about its core architecture.
From there, you will be ready to customize DotNetNuke: developers will enjoy the detailed
walkthrough of creating a new custom module, and web designers will enjoy the material on
skinning, helping them to create a new look for their site.

What you will learn from this book
• Install and confi gure DotNetNuke
• Master the standard modules and features of DotNetNuke
• Understand the core architecture of DotNetNuke
• Extend DotNetNuke using the DAL and DAL+ to create powerful custom modules
• Create your own skin using an HTML Editor or Visual Web Developer Express

Who this book is written for
This book has been written for both the beginner wanting to set up a website and also
ASP.NET developers with a grasp of VB.NET who want a deeper understanding of how to work
with DotNetNuke. To work with the DotNetNuke code, you will need access to Visual Web
Developer Express or Visual Studio .NET 2005. No prior knowledge of DotNetNuke is assumed.

M
ichael A

. W
ashington

D
aniel N

. E
gan

S
teve Valenzula

B
uilding W

ebsites w
ith VB

.N
ET and

D
otN

etN
uke 4

F r o m T e c h n o l o g i e s t o S o l u t i o n s

Building Websites with VB.NET and

DotNetNuke 4
A practical guide to creating and maintaining your own DotNetNuke
website, and developing new modules and skins

Michael A. Washington Daniel N. Egan Steve Valenzula

Building Websites with VB.NET
and DotNetNuke 4

A practical guide to creating and maintaining your own
DotNetNuke website, and developing new modules
and skins

Daniel N. Egan
Michael A. Washington
Steve Valenzuela

 BIRMINGHAM - MUMBAI

Building Websites with VB.NET and DotNetNuke 4

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2006

First reprint: January 2007

Production Reference: 1100107

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-99-X

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Authors

Daniel N. Egan

Michael A. Washington

Steve Valenzuela

Additional Material

Charles Nurse

Reviewers

Jerry Spohn

Jim Wooley

Development Editor

Douglas Paterson

Technical Editors

Mithil Kulkarni

Bhushan Pangaonkar

Editorial Manager

Dipali Chittar

Indexer

Mithil Kulkarni

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Authors

Daniel Egan has held a variety of positions in the information technology and
engineering fields over the last nine years. Currently, he is a System Development
Specialist for Automated Data Processing's Southern California region, working
extensively in database applications and web development. Daniel is an MCP
and MCSD.

In addition to his development work, he teaches a VB.NET Certification course at
California State University, Fullerton as well as serves on its .NET Advisory board.
He is also the founder and chief author of Dot Net Doc (www.DotNetDoc.com),
a .NET and DNN developer resource website built using the DotNetNuke framework.
He has written numerous articles on DotNetNuke and the underlying DNN
architecture. He is also the founder of the LA/Orange County DNN Usergroup
and is currenly working on two DNN-related projects: DNNUsergroup Online
(www.DNNUGOnline.com), a portal designed to allow usergroups to broadcast
their meetings online, and DotNetNuke Radio, a live internet radio show about
DotNetNuke.

Michael Washington is a website developer and an ASP.NET, C#, and Visual
Basic programmer. He is a DotNetNuke Core member and has been involved
with DotNetNuke for over three years. He is the author of numerous DotNetNuke
modules and tutorials. He is one of the founding members of the Southern California
DotNetNuke Users group (www.socaldug.org). He has a son, Zachary, and resides
in Los Angeles with his wife Valerie.

Steve Valenzuela is the manager of the University Extended Education (UEE) IT
Department at California State University, Fullerton, where he has worked for the
last five years. Steve has worked specifically with DotNetNuke for over two years, in
that time re-designing and delivering various Extended Education websites on the
DotNetNuke portal framework as well as designing and delivering custom modules
that support the function of University Extended Education.

Charles Nurse has been developing software for more than 25 years. He is owner
of his own consulting business, Keydance Computer Services, and has been a
DotNetNuke developer for over three years, the last two years as a Trustee. He was
lead developer on the .NET 2 version of DotNetNuke (DNN 4.0).

A native of Bristol, England, he obtained a Bachelor of Arts in Chemistry from
Oxford University. In 1978, he moved to Canada to continue his studies at the
University of Bristish Columbia where he obtained a Ph.D. (also in Chemistry), and
where he met his wife Eileen. More recently (2003) he completed a Post Baccalaureate
Certificate in Object Technology Programming at Simon Fraser University.

He is in the process of developing his own DotNetNuke Developer Resource site
(www.dnndevzone.com) where he will be providing articles for developing for and
with DotNetNuke.

He lives in Langley, BC, Canada with his wife and two children, both students at
Simon Fraser University.

About the Reviewers

Jerry Spohn has been working with computers since the age of 11, at which he
first began learning programming on a Commodore VIC 20. Times have changed,
and he moved through the interesting world of IBM mainframes into PCs. After
taking numerous courses on database design, programming, and object-oriented
methodologies, he moved into Visual Basic and other Microsoft languages.

Jerry currently works as a Development Manager for a medium-sized software
company in Pennsylvania. He also manages over 25 different websites using
DotNetNuke, and is the owner of Spohn Software LLC, which does custom
development across the entire Microsoft development toolset.

Jim Wooley began working on portals by building his own engine base on XML
and XSLT. Just as he was about to release it, the IBuySpy Portal was released.

Promptly dumping his custom solution, he has been working on extending and
deploying a number of IBuySpy and DotNetNuke portals. He is always striving
to stay at the forefront of technology and enjoys the thrill of a new challenge. In
addition, he attempts to pass on the insights he has gained by being active in the
community, including leading the Atlanta VB Study Group and serving as INETA
NorAm Membership Manager for the Georgia region.

Table of Contents
Introduction	 1
Chapter 1: What is DotNetNuke?	 7

Open-Source Web Portals	 7
What is a Web Portal?	 7
Common Portal Features	 8
Why DotNetNuke?	 9

PHP-Nuke	 10
Metadot	 10
Rainbow	 10
DotNetNuke	 10

Benefits of Using an Established Program	 13
The DotNetNuke Community	 13

Core Team	 13
The DotNetNuke Discussion Forum	 14
The Bug Tracker	 14
DotNetNuke Project Roadmap Team	 15

The License Agreement	 15
Coffee Connections	 15

Determining Client Needs	 16
What is a User Story?	 16
Advantages of Using User Stories	 17
Coffee Connections User Stories	 17

Summary	 18
Chapter 2: Installing DotNetNuke	 19

Installing DotNetNuke (Local Version)	 19
Clean Installation	 20
Downloading the Code	 20
Setting Up a Virtual Directory	 21

Using Windows Explorer (the Easy Way)	 22

Table of Contents

[ii]

Using the Virtual Directory Creation Wizard	 23
Verifying Default Documents	 26
Setting Security Permissions	 28
Setting up the Database	 28

Upgrading	 34
Upgrade Checklist	 35
Back Up Your Database	 35
Back up Your DotNetNuke files	 36

Logging In as Admin and Changing Passwords	 36
Summary	 38

Chapter 3: Users, Roles, and Pages	 39
User Accounts	 39

What is a User?	 40
Creating User Accounts	 40

Setting Required Registration Fields	 42
Managing a Profile	 45
Registering a User Manually	 46

Understanding DotNetNuke Roles	 48
Assigning Security Roles to Users	 53

Understanding DotNetNuke Pages and tabIDs	 55
Administering Pages	 62

Summary	 63
Chapter 4: Standard DotNetNuke 	 65

DotNetNuke Modules	 65
Adding a Module	 66
Module Settings	 66

Editing a Module	 67
Importing and Exporting Content	 67
Syndicate Information	 67
Online Help and Documentation	 67
Editing Module Functionality	 67

Standard Modules	 71
Account Login Module	 72

Practical Purposes	 72
Administration and Modification	 72
Special Features	 74

Announcements Module	 75
Administration and Modification	 76
Special Features	 77

Banner Module	 77
Blog Module	 78

Administration and Modification	 79

Table of Contents

[iii]

Contacts Module	 84
Practical Purposes	 84
Administration and Modification	 84
Special Features	 85

Documents Module	 85
Practical Purposes	 85
Administration and Modification	 86
Special Features and Additional Information	 87

Events Module	 87
Administration and Modification	 89

FAQs Module	 92
Practical Purposes	 92
Administration and Modification	 92
Special Features and Additional Information	 93

Feedback Module	 93
Practical Purposes	 94
Administration and Modification	 94
Special Features and Additional Information	 94

Forums Module	 95
Practical Purposes	 95
Administration and Modification	 96

Gallery Module	 98
Practical Purposes	 98
Administration and Modification	 98

Help Module	 100
Practical Purposes	 100

IFrame Module	 103
Practical Purposes	 103
Administration and Modification	 104
Special Features/Additional Information	 105

Image and Media Modules	 105
Practical Purpose	 106
Administration and Modification	 106

Links Module	 107
Practical Purposes	 107
Administration and Modification	 108
Special Features and Additional Features	 109

News Feed (RSS) Module	 110
Practical Purposes	 110
Administration and Modification	 110
Special Features	 112

Repository Module	 112
Administration and Modification	 113

Survey Module	 114
Administration and Modification	 116

Text/HTML Module	 117
Practical Purposes	 117

Table of Contents

[iv]

Administration and Modification	 117
Special Features and Additional Information	 118

User Accounts Module	 118
Practical Purpose	 119
Administration and Modification	 119
Special Features and Additional Information	 119

User Defined Table Module	 120
Practical Purpose	 120
Administration and Modification	 120
Special Features and Additional Information	 123

XML/XSL Module	 123
Practical Purpose	 123
Administration and Modification	 123
Special Features and Additional Information	 123

Summary	 123
Chapter 5: Host and Admin Tools	 125

The Difference between Host and Admin	 125
Admin Tools	 126

Site Settings	 126
Basic Settings	 126
Advanced Settings	 128
Stylesheet Editor	 130

Pages Menu	 130
Security Roles	 130
User Accounts	 130
Vendors	 131
Site Log	 131
Newsletters	 132
File Manager	 134
Recycle Bin	 137
Log Viewer	 137
Skins	 139
Languages 	 139

Host Tools	 140
Host Settings	 140

Basic Settings	 140
Advanced Settings	 142

Portals	 146
Module Definitions	 146
File Manager	 147
Vendors	 147
SQL	 151
Schedule	 151

Table of Contents

[�]

Languages	 151
Search Admin	 151
Lists	 152
Superuser Accounts	 153
Extra Options on the Admin Menu	 153
Common Tasks	 154

Summary	 154
Chapter 6: Understanding the DotNetNuke Core Architecture	 155

Architecture Overview	 155
Diving into the Core	 158

Using the Context Object in Your Application	 158
Working with the Configuration Files	 162
The web.config File	 163

Application Settings	 173
The Global Files	 174

Global.aspx.vb	 174
Application Start	 174
Examining Application_BeginRequest	 175

The Globals.vb File	 176
Putting It All Together	 178
Summary	 182

Chapter 7: Custom Module Development	 183
Setting up the Development Environment	 183
The Coffee Shop Listing Module	 184

Creating the View Control	 186
Displaying the Module	 192
What we have Accomplished	 198

The Module Folder Structure	 198
Inheriting from PortalModuleBase	 198
Module Configuration	 199
Diagnosing Errors using the Log Viewer	 199

Navigation and Localization	 199
Create EditShopList.ascx	 199
Navigation	 201
Localization	 201
Update the Configuration	 203
Navigate from ShopList to EditShopList	 204
What we have Accomplished	 205

IActionable	 205
NavigateUrl	 207
Adding Localization	 208

Summary	 208

Table of Contents

[vi]

Chapter 8: Connecting to the Database	 209
DotNetNuke Data Access Layer (DAL)	 209
Create the Database Elements	 210

Execute the SQL Script	 210
Create the Class Files	 214
Insert the DAL+ Code	 216
Create the Settings Page	 218
Update the Configuration	 221
View the Settings Page	 222
What we have Accomplished	 222

SQL Scripts	 223
The DAL+ 	 223
The Business Logic Layer (BLL)	 224
The Settings Page	 226

Comparing the DAL to the DAL+	 227
A Close-up Look at the DAL	 229

Create the DataProvider.vb	 229
Create the SqlDataProvider.vb	 231
Create the BLL Layer	 236
DAL Summary	 241

Complete the Presentation Layer	 242
Alter and Complete ShopList	 243
Alter and Complete EditShopList	 249
Build and View the Module	 254

Implementing Optional Interfaces	 254
Implementing IPortable	 254
Implementing ISearchable	 257
Making IPortable and ISearchable Work	 258
Testing Your Module	 261

Packaging Your Module for Distribution	 261
Installation Scripts	 261
Create the Installation Scripts	 262
The Install ZIP File	 263
Testing Your Installation	 265

Summary	 266
Chapter 9: Skinning Your Site	 267

What Are Skin Packages?	 268
Uploading a Skin Package	 270
Applying the Skin	 272
Creating a Custom Skin	 275
What Tools can we Use?	 276

Table of Contents

[vii]

Creating a Skin Using HTML 	 277
Creating the HTML Files	 279
Creating the Container	 282
Creating the XML Support Files	 285

Creating a Skin Using Visual Web Developer 	 288
Creating the Web User Controls	 290
Placing the Skin Objects	 293
Placing the Container Objects	 295

Creating the Cascading Style Sheets	 298
Creating the Skin Package	 302
Summary	 306

Chapter 10: Deploying Your DNN Portal	 307
Acquiring a Domain Name	 307
Finding a Hosting Provider	 308
Preparing Your Local Site	 309
Setting Up the Database	 311

Backup and Restore Database	 311
Build New Database	 313

FTP Your Files	 315
Summary	 316

Chapter 11: Creating Multiple Portals	 317
Multiple Portals	 317
Parent Portals versus Child Portals	 319

Setting up a Parent Portal	 319
Registering Your Domain and Setting the DNS	 320
Creating a Parent Portal	 321

Setting Up a Child Portal	 323
Creating Portal Templates	 325
Using the Site Wizard	 326
Managing Multiple Portals	 331
Summary	 332

Index	 333

Introduction
DotNetNuke is a free, open-source evolution of Microsoft's celebrated ASP.NET
reference implementation, the IBuySpy portal solution kit. DotNetNuke began life as
a framework for constructing data-driven intranet and Internet portal applications,
and has now developed into an advanced web content management system with
tools to manage a dynamic and interactive data-driven website. The DotNetNuke
portal framework allows you to quickly create a fully featured community-driven
website, complete with standard modules, user registration, and integrated security.
This free open-source application puts a staggering range of functionality into your
hands, and, either by using it as is or by customizing it to your requirements, you are
giving your projects a great head start.

Supported and tested by thousands of developers in the DotNetNuke community
across the world, the DotNetNuke framework, on one hand, offers you the luxury of
a well-tested and proven architecture, and on the other, the ability to manage your
site through an easy web-based administration system.

The book is structured to help you understand, implement, and extend the
DotNetNuke framework; it will take you inside DotNetNuke, allowing you to
harness its power for easily creating your own websites.

What This Book Covers
Chapter 1 introduces DotNetNuke (DNN) and discusses the meaning and purpose of
web portals, and the common aspects of successful web portals. It looks at different
types of open-source web portals, and discusses why we selected DotNetNuke for
this book. We then meet our fictional client Coffee Connections and, using user
stories, gather the requirements needed to build this client's site.

In Chapter 2 we see how to install a local version of DotNetNuke with Microsoft SQL
Server and SQL Server 2005 Express, and cover setting the required permissions on
your machine to run DNN properly.

Introduction

[�]

In Chapter 3 we cover users, roles, and pages. Users are the individuals who visit or
administer your portal, and their power depends on the roles that they have been
assigned. We discuss how each page of your portal can be administered differently,
laying the foundation for the rest of the book. From defining users, to registration, to
security roles, this chapter will help you to begin administering a DNN portal.

In Chapter 4 we cover the standard modules that come pre-packaged with
DotNetNuke. We cover their basic uses as well as situations they may be used in.
You will use these modules to build your portal's content.

Chapter 5 introduces the administrative functions available to the host and admin
logins. These are special logins that have access to all areas of your portal, and are
used to secure your site and make changes to its content. This chapter takes you
through the tools to make sure you are comfortable with all that is available to you.

Understanding the core architecture of DNN is essential if you want to extend the
system or even modify the existing code. In Chapter 6 we learn how the DotNetNuke
framework builds the pages, and the major classes that drive it.

In Chapters 7 and 8 we take the knowledge we learned in the last chapter and use it to
build a custom module. You will learn everything you need to know to start building
your own modules so you can extend the capabilities of your portal. After creating
your user controls, you will create your data access and business logic layers. In
Chapter 8 you will learn about the DotNetNuke Data Access Layer (DAL) and the
DAL+, which take much of the routine work out creating custom modules. We finish
our look at development by seeing how to package your module for distribution.

Chapter 9 talks about skins. A skin is the outer layer of your site, and defines the
look and feel of the portal. In this chapter we design a custom skin for the Coffee
Connections site. You will learn the skills needed to skin both your portal and your
module containers.

When you finally have your portal the way you want it to look and function, you
are ready to deploy it, and that is what Chapter 10 shows you how to do. The chapter
advises on what you should look for in a web host and helps to steer you clear of
common deployment mistakes.

In Chapter 11 we show you how to take advantage of one of the most exciting
features of DotNetNuke: multiple portals. These are additional portals that use
the same underlying database, but can contain different content. So instead of just
having one website, you can create as many as you need using just one DotNetNuke
installation. From parent portals to child portals, this chapter gives you the
information necessary to create new portals from scratch or to use the new template
structure built into the framework.

Introduction

[�]

What You Need for Using This Book
This book has been written both for the beginner wanting to set up a website and
also for ASP.NET developers with a grasp of VB.NET. No prior knowledge of
DotNetNuke is assumed. To work with the DotNetNuke code, you will need access
to Visual Studio .NET 2005 or Visual Web Developer 2005 Express.

This book uses the DotNetNuke open-source project available from
http://www.DotNetNuke.com. To install and run DotNetNuke, you will need:

The .NET Framework 2.0
One of Windows Server 2003, Windows 2000, or Windows XP
operating systems
An installation of SQL Server 2005 or SQL Server 2005 Express Edition
Visual Web Developer 2005 Express

You can download SQL Server 2005 Express Edition for free from
http://msdn.microsoft.com/vstudio/express/sql/download/.
Visual Web Developer 2005 Express can be downloaded for free from
http://msdn.microsoft.com/vstudio/express/vwd/download/.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We then
use the Add method of this object to add an item to the menu ".

A block of code will be set as follows:

Label1.Text = "Hello World!"
 Throw New Exception("Something didn't work right.")
 Catch exc As Exception
 Exceptions.ProcessModuleLoadException(Me, exc)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

Label1.Text = "Hello World!"
 Throw New Exception("Something didn't work right.")
 Catch exc As Exception
 Exceptions.ProcessModuleLoadException(Me, exc)
 End Try

•

•

•

•

Introduction

[�]

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Tips, suggestions, or important notes appear in a box
like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to
use them.

Introduction

[�]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you could report this to us. By doing this you can save
other readers from frustration, and also help to improve subsequent versions of
this book.

If you find any errata, report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the Submit Errata link, and entering the details of
your errata. Once your errata have been verified, your submission will be accepted
and the errata added to the list of existing errata. The existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

What is DotNetNuke?
From company intranets to mom and pop shops to local chapters of the 4H club, most
organizations are looking to have a presence on the World Wide Web. Open-source
web portals answer this demand by providing easy-to-install-and-use websites that
are not only extremely functional but also free. Whether it is to sell services or to have
a place to meet, web portals play an important part in communications on the Web.

In this chapter, we will first discuss what web portals are and what successful web
portals have in common. We will explore different types of open-source web portals
and discuss why we selected DotNetNuke for our project over other available
portals. In addition, we will cover the benefits gained by using an established
program as a framework and the benefits of DotNetNuke specifically. We will then
introduce Coffee Connections, our fictional client. We will get a brief overview of
Coffee Connections, determine the specific requirements for its website, and gather
the requirements using user stories. This will give you a general overview of what to
expect from this book and how to best use it depending on your role and experience
with web portals and Visual Basic .NET.

Open-Source Web Portals
So what does it actually mean to have a web portal? We begin the chapter with an
explanation of what a portal is, and then go on to the features of a web portal and
reasons for selecting open-source web portals.

What is a Web Portal?
You have decided to start a portal and first need to find out what makes a web
portal. Does throwing up a few web pages with links to different topics make it a
web portal? A portal, in its most basic sense, aims to be an entry point to the World
Wide Web. Portals will typically offer services such as search engines, links to useful
pages, news, forums, and email, all in an effort to draw users to their site. In most

What is DotNetNuke?

[�]

cases, portals provide these services free in the hope that users will make the site
their home page or at least come back often. Successful examples include Yahoo!
and MSN. These sites are horizontal portals because they typically attract a wide
audience and primarily exist to produce advertising income for their owners. Other
web portals may focus on a specific group of users or be part of a corporate intranet.
They will most often concentrate on one particular subject, like gardening or sports.
This type of portal is a vertical portal because they focus inward and cater to a
selected group of people.

The type of portal you create depends on the target audience you are trying
to attract. You may discover that the portal you create is a combination of
both horizontal and vertical portals in order to address specific needs, while
simultaneously giving a broader range of services to your visitors. Whatever type
of portal you decide on, horizontal or vertical, they both will share certain key
characteristics and functionality that guarantee users will return to your site.

Common Portal Features
What makes a great portal? Is it a free prize giveaway, local weather forecasts, or
sports scores for the teams you watch? While this package of extras might attract
some users, you will certainly miss a large group of people who have no interest
in these offerings. There are as many web portals to choose from as programming
languages they are written in. However, one thing is for certain: there are particular
services your portal should incorporate in order for it to be successful and attract a
wide audience.

A Gateway to the World Wide Web: Web portals are the way we start our
day. Most of us have set up our home page to one web portal or another and
whether you start at MSN, Yahoo!, or Apple, you will notice some common
features. Local weather forecasts, movie reviews, or even maps of your
community are a few features that make the web portal feel comfortable and
tailored for you. Like reading the morning newspaper with a cup of coffee, it
gives you a sense of home. Web portals attempt to be the place where all of
your browsing starts.
Content Management: Content management has come a long way from the
days of paper memos and sticky notes. Computers have done away with
the overflowing file cabinets holding copies of every document that crossed
our desks. Little did we realize that even though we would be solving one
problem, another one would rise in its place. How many times have you
searched your computer wondering where you saved the document your
boss needs right now? Then once you find it, you need to make sure that it
is the correct version. Alternatively, if you run a Soccer Club, how do you
ensure that all of your players can get a copy of the league rules? One of the

•

•

Chapter 1

[�]

commonest uses for a web portal is content management. It allows users to
have one place to upload, download, and search for a file that is important
to them or their company. It also alleviates the problem of having more than
one copy of a document. If the document is stored only in one location, you
will always have the current copy.
Community Interaction: People have always found a place to meet. From
the malt shop on Main Street to your local church, people like to find others
who have the same interests. This is one of the main drawing powers of a
web portal. Whether you are a Christian looking for other Christians
(http://www.christianwebsite.com/) or someone who is interested in
Personal Digital Assistants (PDAs) (http://www.pdabuzz.com) there is a
web portal out there for you. Web portals offer different ways for users to
communicate. Among these are discussion forums that allow you to either
post a question or comment to a message board or comment on the posts of
others. Chat rooms take this a step further with the ability to talk to one or
more persons "live" and have your questions answered immediately.
One of the most interesting ways to express your opinions or communicate
your ideas to others on a web portal is to use a blog. A blog (also known as a
weblog) is sort of like a diary on the Web, except you do not lock it when you
are done writing in it. Instead, you make all your thoughts and observations
available to the world. These blogs range in topic from personal and
comical (http://weblog.herald.com/column/davebarry/) to technical
(http://weblogs.asp.net/scottgu) and, in recent years, have exploded
on the scene as the de facto way to communicate on the Internet. Most web
portals will offer at least one of these ways to communicate.
Security & Administration: Web portal security not only manages who can
access particular sections of the site but also enables administrators to access,
add, and change content on the site. Most web portals use a WYSIWYG
(what you see is what you get) style editor that allows users to add and edit
content without needing to know programming or HTML. It is as simple
as adding content to a text file. Having users authenticate with the portal
allows you to tailor the site to individuals so that they can customize
their experience.

Why DotNetNuke?
When the time comes to decide how you want to build your portal, you will have to
make many decisions: Do I create my portal from scratch? If not, which web portal
framework should I use? What type of hardware and software do I have available to
me? Moreover, what is my skill level in any particular platform? In this section, we
will discuss some of the better-known portals that are available.

•

•

What is DotNetNuke?

[10]

For our portal, we have decided that it would be counter-productive to start from
scratch. Instead, we will be using an already developed framework in designing our
portal. We will have many options from which to select. We will discuss a few of our
options and determine why we believe DotNetNuke fits us best.

PHP-Nuke
Most likely the grandfather of DotNetNuke (in name at least) is PHP-Nuke
(http://www.phpnuke.org). PHP-Nuke is a web portal that uses PHP (a recursive
acronym for Hypertext Preprocessor) pages to create dynamic web pages. You
can use it in a Windows environment but it is most comfortable in a Linux/Unix
environment. PHP is an open-source, HTML-embedded scripting language,
which is an alternative to Microsoft's ASP (Active Server Pages) the precursor to
ASP.NET, which is the programming language used in DotNetNuke. PHP-Nuke,
like DotNetNuke, is a modular system that comes with pre-built standard modules
and allows you to enhance the portal by creating custom modules. Since we will be
using a Windows platform, and are more comfortable using ASP.NET, this choice
would not fit our needs.

Metadot
Metadot Portal Server is another open-source portal system available to those
looking to create a web portal. Metadot states that "its user friendly environment"
allows non-technical individuals to create powerful websites with just a "few clicks
of the mouse". Like PHP-Nuke, Metadot runs primarily on the Linux operating
system (although, it supports Windows as well), Apache web server, and a MySQL
database. It uses Perl as its scripting language. For the same reasons as PHP-Nuke,
this framework will not fit our needs.

Rainbow
Similar to DotNetNuke, the Rainbow project is an open-source initiative to
build a CMS (content management system) based on the IBuySpy portal using
Microsoft's ASP.NET. In contrast to DotNetNuke, the Rainbow Project used the C#
implementation of IBuySpy as its starting point. It does run on Windows and uses
ASP.NET, but our language of choice for this project is VB.NET so we will rule
out Rainbow.

DotNetNuke
So why did we select DotNetNuke as the web portal of choice for this book? Well
here are a few reasons for selecting DotNetNuke:

Chapter 1

[11]

Open-source web portal written in VB.NET: Since we wanted to focus
on building our web portal using the new VB.NET language, this was an
obvious choice. DotNetNuke was born out of a best-practice application
called IBuySpy. This application, developed for Microsoft by Scott Stanfield
and his associates at Vertigo Software, was created to highlight the
many things that .NET was able to accomplish. It was supposed to be an
application for developers to use and learn the world of .NET. IBuySpy was
an application by the original author of DotNetNuke (formerly IBuySpy
Workshop), Shaun Walker of Perpetual Motion Interactive Systems Inc. He
originally released DotNetNuke 1.0 as an open-source project in December
2002. Since then DotNetNuke has evolved to version 4.x and the code base
has grown from 10,000 to over 120,000 lines of managed code and contains
many feature enhancements over the original IBuySpy Starter Kit.
Utilizes the new ASP.NET 2.0 Provider Model: With the release of
ASP.NET version 2.0, Microsoft debuted a new provider pattern model.
This pattern gives the developer the ability to separate the data tier from
the presentation tier and provide the ability to specify your choice of
databases. The DotNetNuke framework comes pre-packaged with an SQL
Data Provider (Microsoft's SQL Server, MSDE, or SQLExpress). You can
also follow this model to create your own data provider or obtain one from
a third-party vendor. In addition, the DotNetNuke framework also uses
many of Microsoft's building-block services like the Data Access Application
Block for .NET (http://www.microsoft.com/downloads/details.
aspx?FamilyID=F63D1F0A-9877-4A7B-88EC-0426B48DF275&displaylang=
en) introduced by Microsoft in its Patterns and Practices articles.
Contains key portal features expected from a web portal: DotNetNuke
comes pre-packaged with modules that cover discussions, events, links, news
feeds, contact, FAQs, announcements, and more. This gives you the ability to
spend your time working on specialized adaptations to your site. In addition
to this, the DotNetNuke core team has created sub-teams to maintain and
enhance these modules.
Separates page layout, page content, and the application logic: This allows
you to have a designer who can manage the "look and feel" of the site, an
administrator with no programming experience who can manage and change
the content of the site, and a developer who can create custom functionality
for the site.
Ability to "skin" your site: Separating the data tier from the presentation
tier brings us to one of the most exciting advancements in recent versions of
DotNetNuke, skinning. DotNetNuke employs an advanced skinning solution
that allows you to change the look and feel of your site. In this book, we will
show you how to create your own custom skin, but you will also find many

•

•

•

•

•

What is DotNetNuke?

[12]

custom skins free on websites like core team member Nina Meiers' eXtra
Dimensions Design Group (http://www.xd.com.au), and Snowcovered
(http://www.snowcovered.com). These give you the ability to change the
look and feel of your site without having to know anything about design,
HTML, or programming.
Supports multiple portals: Another advantage of using DotNetNuke as your
web portal of choice is the fact that you can run multiple portals using one
code base and one database. This means you can have different portals for
different groups on the same site but still have all of the information reside
in one database. This gives you an advantage in the form of easy access to all
portal information, and a central place to manage your hosting environment.
The framework comes with numerous tools for banner advertising, site
promotion, hosting, and affiliate management.
Designed with an extensible framework: You can extend the framework in
a number of ways. You can modify the core architecture of the framework
to achieve your desired results (we will discuss the pratfalls of doing this
in later chapters) and design custom modules that "plug in" to the existing
framework. This would be in addition to the pre-built modules that come
with DotNetNuke. These basic modules give you a great starting point and
allow you to get your site up and running quickly.
Mature portal framework: As of the writing of this book, DotNetNuke is
on version 4.2. It means that you will be using an application that has gone
through its paces. It has been extensively tested and is widely used as a web
portal application by thousands of existing users. What this affords you is
stability. You can be comfortable knowing that thousands of websites already
use the DotNetNuke framework for their web portal needs.
Active and robust community: Community involvement and continuing
product evolution are very important parts of any open-source project and
DotNetNuke has both of these. The DotNetNuke support forum is one of the
most active and dynamic community forums on the ASP.NET website. There
are currently over 280,000 users registered on the DotNetNuke website. At
the time of writing, the much-anticipated DotNetNuke version 4.2 had just
been released, and has brought about a significant number of improvements
over its previous releases. The core team continues to move forward, always
striving towards a better product for the community.
Recognized by the Microsoft team as a best-practices application: In March
2004 at the VSLive conference in San Francisco, the premiere conference for
Visual Studio .NET Developers, DotNetNuke 2.0 was officially released,
and showcased for the public. This gave DotNetNuke a great leg up in the
open-source portal market and solidified its position as a leader in the field.

•

•

•

•

•

Chapter 1

[13]

Benefits of Using an Established Program
Whether you are building a website to gather information about your soccer club or
putting up a department website on your company's intranet, one thing is certain—
to write your web portal from the ground up, you should plan on "coding" for a long
time. Just deciding on the structure, design, and security of your site will take you
months. After all this is complete, you will still need to test and debug. At this point,
you still have not even begun to build the basic functionality of your web portal.

So why start from scratch when you have the ability to build on an existing structure?
Just as you would not want to build your own operating system before building a
program to run on it, using an existing architecture allows you to concentrate on
enhancing and customizing the portal for your specific needs. If you are like me and
use Visual Studio to do your development, then you already adhere to this concept.
There is no need for you to create the basic building blocks of your application
(forms, buttons, textboxes, etc.); instead you take the building blocks already there for
you and assemble (and sometimes enhance) them to suit your needs.

The DotNetNuke Community
The DotNetNuke community has one of the most active and dynamic support
forums on the ASP.NET website and has over 280,000 users registered on the
DotNetNuke website.

Core Team
The core team comprises individuals invited to join the team by Shaun Walker,
whom they affectionately call the "Benevolent Dictator". Their invitations were based
on their contributions and their never-ending support of others in the DotNetNuke
forum. Each team member has a certain area of responsibility based on his or her
abilities. From database functionality and module creation to skinning, they are the
ones responsible for the continued advancement of the framework. However, not
being a member of the core team does not mean that you cannot contribute to the
project. There are many ways for you to help with the project. Many developers
create custom modules they make freely available to the DotNetNuke community.
Other developers create skins they freely distribute. Still others help answer the
many questions in the DotNetNuke forum. You can also be a contributor to the core
architecture. You are welcome to submit code improvements to extend, and/or
expand the capabilities of DotNetNuke. These submissions will be evaluated by the
core team and could possibly be added to the next version.

What is DotNetNuke?

[14]

The DotNetNuke Discussion Forum
When the DotNetNuke project started, one of the things that helped to propel
forward its popularity was the fact that its forums were housed on the ASP.NET
forums website (http://www.asp.net/forums/showforum.aspx?forumid=90).
With well over 200,000 individual posts in the main DotNetNuke forum alone, it
was, and continues to be one of the most active and attentive forums on the ASP.NET
forums website (http://www.asp.net/forums/). Beginning sometime after the
version 3.x release, the DotNetNuke team puts its finishing touches on its own
forum module. It now utilizes this module for most new DotNetNuke questions
(http://www.dotnetnuke.com/tabid/795/Default.aspx). In both forums, you
will find help for any issue you may be having in DotNetNuke.

The main forum is where you will find most of the action, but there are also
sub-forums covering topics such as Core Framework, Resources, Getting Started,
and Custom Modules. You can search and view posts in any of the forums but will
need to register if you want to post your own questions or reply to other users' posts.
The great thing about the forums is that you will find the core team hanging out
there. Who better to answer questions about DotNetNuke than those who created it?
However, do not be shy, if you know the answer to someone else's question feel free
to post an answer. That is what the community is all about: people helping people
through challenging situations.

The Bug Tracker
Like any application there are bound to be a few bugs that creep into the application
now and then. To manage this occurrence, the DotNetNuke core team uses a
third-party bug tracking system called Gemini, by CounterSoft. The bug tracker is
not for general questions or setup and configuration errors; questions of that nature
should be posted in the discussion forum. You can view the status of current bugs at
the Gemini site (http://support.dotnetnuke.com), but will not be able to add new
bugs to the system. Reporting a bug is currently done by posting to the DotNetNuke
forum. Follow the guidelines currently posted there (http://www.asp.net/forums/
ShowPost.aspx?tabindex=1&PostID=752638). To summarize: you need to first
search the bug tracker to make sure that it has not already been reported. If you
cannot find it in the system you will need to supply the forum with exactly what you
did, what you expected to have happen, and what actually happened. Verified bugs
will be assigned to core team members to track down and repair.

Chapter 1

[15]

DotNetNuke Project Roadmap Team
If you want to find out what is in the works for future releases of
DotNetNuke then you will want to check out the DotNetNuke Project Roadmap
(http://www.dotnetnuke.com/Development/Roadmap/tabid/616/Default.
aspx). The main purpose of this document is as a communication vehicle to inform
users and stakeholders of the project's direction. The Roadmap accomplishes this by
using User Stories. User Stories are closely related to Use Cases with the exception
that they take the view of a fictitious customer requesting an enhancement. The
priority of the enhancements depends on both the availability of resources (core
team) and the perceived demand for the feature.

The License Agreement
The license type used by the DotNetNuke project is a modified version of the BSD
(Berkeley Software Distribution) license. As opposed to the more restrictive GPL
(GNU General Public License) used by many other open-source projects, the BSD
license is very permissive and imposes very few conditions on what a user can do
with the software; this includes charging clients for binary distributions, with no
obligation to include source code. If you have further questions on the specifics of
the license agreement, you can find it in the documents folder of the DotNetNuke
application or on the DotNetNuke website.

Coffee Connections
Wherever your travels take you, from sunny Long Beach, California, to the
cobblestone streets of Hamburg, Germany, chances are that there is a coffee shop
nearby. Whether it is a Starbucks (located on just about every corner) or a local coffee
shop tucked neatly in between all the antique stores on Main Street, they all have one
thing in common, coffee, right? Well yes, they do have coffee in common, but more
importantly, they are places for people with shared interests to gather, relax, and
enjoy their coffee while taking in the environment around them. Coffee shops offer
a wide variety of services in addition to coffee, from WiFi to poetry readings to local
bands; they keep people coming back by offering them more than just a cup o' Joe.

But how do you find the coffee shops that have the type of atmosphere you are
looking for? In addition, how do you locate them in your surrounding area? That's
where Coffee Connections comes in; it is its desire to fill this void by creating a
website where coffee lovers and coffee shop regulars can connect and search for
coffee shops in their local area that cater to their specific needs. Coffee Connections
has a vision to create a website that will bring this together and help promote coffee
shops around the world. Users will be able to search for coffee shops by zip code,

What is DotNetNuke?

[16]

types of entertainment, amenities, or name. It will also allow its customers to purchase
goods online and communicate with others through chat rooms and forums.

Determining Client Needs
In any project, it is important to determine the needs of the client before work begins
on the project. When designing a business-driven solution for your client your
options range from an extensive Request for Proposal (RFP) and case modeling, to
user stories and Microsoft Solutions Framework (MSF). To determine the needs and
document the requirements of Coffee Connections we will use user stories.

We selected User Stories as our requirements collection method for two reasons.
First, the DotNetNuke core team uses this method when building enhancements and
upgrading the DotNetNuke framework. Thus using user stories will help to give you
a better understanding of how the core team works, the processes team members
follow, and how they accomplish these tasks in a short amount of time. Second, it is a
very clean and concise way to determine the needs of your client. We will be able to
determine the needs of Coffee Connections without the need for pages and pages of
requirement documents.

What is a User Story?
User stories were originally introduced as part of Extreme Programming.
Extreme Programming is a type of software development based on simplicity,
communication, and customer feedback. It is primarily used within small teams
when it is important to develop software quickly while the environment and
requirements of the program rapidly change. This fits the DotNetNuke project and
the DotNetNuke core team well.

User stories provide a framework for the completion of a project by giving a
well-designed description of a system and its major processes.

The individual stories, written by customers, are features they wish the program
to possess. Since the user stories are written by the customer, they are written in
the customer's terminology and without much technical jargon. The user stories
are usually written on index cards and are approximately three sentences long.
The limited space for detail forces the writer to be concise and get to the heart of
the requirement. When it is time to implement the user story, the developer will
sit down with the customer—in what is referred to as an iteration meeting—to go
over particular details of each user story. Thus, an overview of a project is quickly
conceptualized without the developer or customer being bogged down in
minor details.

Chapter 1

[17]

User stories also help in the creation of acceptance tests. Acceptance tests are
specified tests performed by the user of a system to determine if the system is
functioning correctly according to specifications the user presented at the beginning
of the development process. This assures that the product performs as expected.

Advantages of Using User Stories
There are many different methods of defining requirements when building an
application, so why use user stories? User stories fit well into Rapid Application
Development (RAD) programming. Software and the computer industry in general
change on a daily basis. The environment is fast moving and in order to compete in
the marketplace it is important to have quick turn around for your product. User
stories help to accomplish this in the following ways:

Stressing the importance of communication: One of the central ideas
behind user stories is the ability to have the users write down what exactly is
expected from the product. This helps to promote communication by keeping
the client involved in the design process.
Being easily understandable: Since user stories are written by the customer
and not by the developer, the developer will not have the problem of "talking
over the head" of the customer. User stories help customers know exactly
what they are getting because they personally write down what they want in
terms that they understand.
Allowing for deferred details: User stories help the customer as well as the
developer understand the complete scope of a project without being bogged
down by the details.
Focusing on project goals: The success of your project depends less on
creative coding strategies and more on whether you were able to meet the
customer's goals. It is not what you think it should do but what the customer
thinks it should do.

Coffee Connections User Stories
Below you will find the user stories for Coffee Connections. From these stories, we
will use DotNetNuke to build the customer's website. The title of the card is followed
by a short description of what is needed. Throughout the book, we will refer back to
these as we continue to accomplish the project goals for Coffee Connections.

•

•

•

•

What is DotNetNuke?

[18]

Title Description
Web Store Users will be able to purchase coffee and

coffee-shop-related merchandise through the website.
Coffee Shop Search Users will be able to find coffee shops in their area by

searching a combination of zip code, coffee shop name,
amenities, or atmosphere and rating.

Coffee Finder Additions Users will be able to post coffee shops they find and give
a description of the coffee shop for other users to see.

Coffee Shop Reviews Users will have the ability to rate the coffee shops that are
listed on the website.

Site Updates Administrators will have the ability to modify the site
content easily using a web-based interface.

Coffee Chat Users will be able to chat with people from other coffee
shops on the site.

Coffee Forum Users will be able to post questions and replies in a
Coffee Shop Forum.

When referring back to the user stories later in the book, we will use a card to
compare and determine if we have met the customer's needs.

Summary
In this chapter, we have discussed the meaning and purpose of web portals,
and what successful web portals have in common, looked at different types of
open-source web portals, and discussed why we selected DotNetNuke. We then
met our fictional client Coffee Connections, and using user stories, gathered the
requirements to build its site.

The next chapter will cover the always-enlightening task of installing the software.
We will cover what we need to run DotNetNuke and describe the process of
installing the framework.

Installing DotNetNuke
In previous versions of DotNetNuke (version 3.0), whether you were a developer
or just wanted to set up a quick and easy website, you needed to download the
entire code base and install all of it up to your server. While the ability to download
the code has not disappeared, the core team also allows you to download a
slimmed-down version that only contains the files that are needed to upload
and work with a basic DotNetNuke site.

In this chapter, we will cover the steps necessary to set up a non-developer version of
the website on your local machine. We will show you how to set up the DotNetNuke
portal and database by using Microsoft SQL Server 2005 Express Edition. Finally, we
will log in as an administrator and change the default passwords.

Installing DotNetNuke (Local Version)
Before you begin installing DotNetNuke, you will need to determine if you have the
.NET 2.0 Framework installed. The easiest way is to browse to the following location
C:\WINDOWS\Microsoft.Net\Framework and look for a folder that starts with
V2.0 (for example: v2.0.50727). If you do not see this folder, then you will have to
download the 2.0 version of the .NET Framework. You can find the files at the .NET
Framework home site (http://msdn.microsoft.com/netframework/). For our
examples, we will be using Windows XP Professional, IIS 5.1, and version 2.0 of the
.NET Framework.

Installing DotNetNuke

[20]

In this section of the book, we will only be using the Install
Package, which only contains the items that are needed to
deploy to a web host: we will be using IIS to host our site.
IIS stands for Internet Information Services and is the web
server application that will run our web portal. If you have
downloaded the Source Package and use Visual Studio
2005 then you do not need IIS to work with DotNetNuke.
We will also be using SQL Server 2005 in this discussion.
DotNetNuke will work easily with SQLExpress. We will
discuss installing and working with the Source Package and
SQLExpress when we discuss building custom modules. If
you haven’t installed IIS then make sure that it is installed
prior to the .NET Framework.

Clean Installation
If this is the first time you are installing DotNetNuke, or you do not want to upgrade
from a previous version, then you will want to perform a clean installation. This
means that you will have to build your DotNetNuke instance from scratch. This
chapter will walk you through all the steps necessary to accomplish this task. If you
wish to upgrade DotNetNuke from a previous version, please refer to the Upgrading
section towards the end of the chapter.

Downloading the Code
Before we start installing our web portal, we need to download the source code. Go
to the DotNetNuke website http://www.DotNetNuke.com. You will be required
to register before you can download the code. This step is simple, just click on the
Register link in the upper right-hand corner, and fill in the required information.
Provide a working email address, as the registration process will send an email that
includes a verification code.

Once you receive the email you may continue to the DotNetNuke site, log in,
and download the code. You will find the DotNetNuke source by clicking on the
Downloads icon. If you want the documentation that comes with DotNetNuke, you
will need to download both the Install Package and the Documentation Package.
While the file is downloading, take time to explore what the DotNetNuke site has to
offer. You will find information that will help you as you build your portal.

Chapter 2

[21]

When you are downloading, you will also see a Starter
Kit for DotNetNuke. The Starter Kit is used to help Visual
Studio Developers work with DotNetNuke. We will discuss
this download in the Module Development chapter.

Once you have the Install Package downloaded from the site, you can double-click
on the ZIP file to extract its contents. Where you extract the file is entirely up to you.
Most of the documentation you come across will assume that you extract it to
C:\DotNetNuke so for consistency's sake we will do the same.

Setting Up a Virtual Directory
After you unzip the files, you will need to set up a virtual directory in IIS. If IIS is
not already installed on your system, you can install it by going to Control Panel |
Add Remove Programs | Add Remove Windows Components.

For more information on installing and using IIS,
http://www.IISFaq.com, (which utilizes the
DotNetNuke framework for its portal) should suffice.

A virtual directory is a friendly name, also called an alias, that allows you to
separate a physical folder from a web address and defines the application's
boundaries. A virtual directory is needed if your files are not located in the home
directory. The home directory for IIS is found at C:\Inetpub\wwwroot (if installed at
the default location). The virtual directory, or alias name, is used by those accessing
your website. It is the name they type in the browser to bring up your portal so select
a simple name.

The following table shows examples of mapping between physical folders and
virtual directories. As you can see, we will need to set up a virtual directory for
DotNetNuke since its location is outside the home directory, in C:\DotNetNuke.

