RSC CLEAN TECHNOLOGY Monographs

The Sulfur Problem Cleaning up Industrial Feedstocks

DIANE STIRLING

series editor JAMES H. CLARK

The Sulfur Problem: Cleaning up Industrial Feedstocks

RSC Clean Technology Monographs

Series Editor: J.H. Clark, University of York, UK

Advisory Panel: N.M. Edinberry (Sandwich, UK), J. Emsley (London, UK), S.M. Hassur (Washington DC, USA), D.R. Kelly (Cardiff, UK), T. Laird (Mayfield, UK), T. Papenfuhs (Frankfurt, Germany), B. Pearson (Wigan, UK), J. Winfield (Glasgow, UK)

The chemical process industries are under increasing pressure to develop environmentally friendly products and processes, with the key being a reduction in waste. This timely new series will introduce different clean technology concepts to academics and industrialists, presenting current research and addressing problem-solving issues.

Feedstock Recycling of Plastic Wastes by J. Aguado, Rey Juan Carlos University, Móstoles, Spain; D.P. Serrano, Complutense University of Madrid, Spain

Applications of Hydrogen Peroxide and Derivatives by C.W. Jones, formerly of Solvay Interox R & D, Widnes, UK

Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents by J.H. Clark and C.N. Rhodes, Clean Technology Centre, Department of Chemistry, University of York, UK

The Sulfur Problem: Cleaning up Industrial Feedstocks by D. Stirling, University of Glasgow, UK

How to obtain future titles on publication

A standing order plan is available for this series. A standing order will bring delivery of each new volume upon publication. For further information please contact:

Sales and Customer Care Royal Society of Chemistry Thomas Graham House Science Park Milton Road Cambridge CB4 0WF Telephone: +44(0) 1223 420066

The Sulfur Problem: Cleaning up Industrial Feedstocks

Diane Stirling Chemistry Department, University of Glasgow, UK

ISBN 0-85404-541-4

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2000

All rights reserved.

Apart from any fair dealing for the purposes of research or private study, or criticism or review as permitted under the terms of the UK Copyright, Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry, in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

For further information see our web site at www.rsc.org

Typeset by Paston PrePress Ltd, Beccles, Suffolk Printed and bound by MPG Books Ltd, Bodmin, Cornwall

Preface

Many industrially important feedstocks are contaminated with sulfur compounds, ultimately released into the atmosphere as sulfur oxides. The sulfur oxides are converted to acid rain, which damages the whole ecosystem, attacking vegetation and stonework, and acidifying lakes and rivers with detrimental effects on aquatic life. Current technologies for removing these sulfur contaminants at both percentage and ppm levels from industrial feedstocks are discussed. These are then linked to new materials which are currently being developed for sulfur clean-up. The synthesis, characterisation and testing of these materials are discussed in depth. Elements of solid state chemistry, the properties of small particles in solution (important in the synthesis step), the characterisation of materials and the kinetics of the sorption of gases in solids are included to place the clean-up of sulfur in industrial feedstocks on a sound theoretical footing.

Contents

Chapter 1	Introduction: the Sulfur Problem	1
1	Sources of Sulfur and Major Uses	1
2	Environmental Sulfur Levels	5
3	Acid Rain	7
4	Conclusions	9
5	References	9
Chapter 2	Catalytic Hydrodesulfurisation	10
1	The Process	10
2	The Catalyst	11
3	Mechanism of Hydrodesulfurisation	13
4	References	15
Chapter 3	Adsorption and Absorption of H ₂ S	16
1	Introduction	16
2	Absorption into a Liquid	17
	Absorption in Alkanolamine	17
	Absorption in Ammonia Solution	20
	Absorption in Alkaline Salt Solutions	20
3	Removal of H ₂ S by Oxidation	22
	Claus Process	22
	Superclaus Process	22
	Iron Oxide Process	23
	Activated Carbon Process	23
4	Removal of H ₂ S and Other Sulfur Compounds Using	
	Solid Sorbents	24
	High Temperature Sorbents	24
	Low Temperature Sorbents	25
5	Conclusions	27
6	References	29

Contents	5
----------	---

VIII		0011101110
Chapter 4	Clean-up of Sulfur Dioxide	31
1	Introduction	31
2	Absorption in Liquids	31
	SO ₂ Clean-up Using a Lime/Limestone Process	32
	Alternative Absorbents for SO ₂ Removal	33
	Absorbents for the Removal of Both SO ₂ and NO _x	33
3	Sorption in Solids	33
	Activated Carbon Process	34
	Copper Oxide Regenerable Sorbent	34
	Alkali Salt Promoted CuO/y-Al ₂ O ₃	35
	Removal of NO_x and SO_2	35
4	Conclusions	37
5	References	38
Chapter 5	Synthesis and Characterisation of Solid Sorbents	39
1	Prerequisites for Efficient Sorbents	39
2	Synthesis of Sorbents	40
3	Layered Structures	45
4	Characterisation Techniques for Sorbents	48
	X-ray Powder Diffraction (XRD)	48
	Infra-red Spectroscopy	52
	UV-vis–Near-IR Diffuse Reflectance Spectroscopy	55
	Thermal Methods	58
	Electron Microscopy	59
	Surface Area Analysis	60
5	References	65
Chapter 6	Surface Energies and Interactions between Particles	67
1	Introduction	67
2	Miller Indices	67
3	Dielectric Properties	68
4	Electrostatic Forces	70
5	Dispersion Forces	71
6	Hydration Forces	74
7	Double Layer Effects	75
8	Conclusions	76
9	References	77

viii

Contents		ix
Chapter 7	Determination of the Sulfur Sorption Capacity of Solid Sorbents	78
1	Sorption Processes	78
2	Sorption Kinetics	80
	Mass Transfer and Diffusion Breakthrough Curves	80 84
3	References	88
Subject Ind	lex	89