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Welding emerged as a result of engineering necessity for joining two metal
pieces. However, to me, what makes fabrication and performance of steel
welds most fascinating is that it is possibly the only single topic that necessitates
education in almost the entire spectrum of metallurgical engineering. For
example, ensuring sound performance of a cracking-resistant welded steel
vessel for handling a corrosive fluid would need an understanding of:

• metallurgy of solidification and solid state phase changes associated
with fabrication (and sound microscopic evaluation of the phase changes);

• non-destructive evaluation (NDE) of defects and stresses in welded
structure;

• corrosion and synergistic influence of stress and corrosion causing cracking;
• fracture mechanical evaluation of the design and remaining life of the

welded structure;
• NDE of the extent of damages in the aged welded structure;
• fractography and failure analyses of cracked structure; and
• metallurgy and NDE evaluation of the repair of cracked structure.

Adequate modelling coupled with key experimentation and validation
approaches are essential inputs for quality and cost-effective welding
management. Welding technology concerns traditional metallurgical
engineering, which is underpinned by the fundamentals of physics, chemistry,
materials and mechanical engineering. Unfortunately, metallurgical engineering
in most modern materials engineering curricular contents has been dwindling
worldwide. However, welding will continue to be an indispensable fabrication
process for industrial structures, and the problems associated with welding
will continue to perplex designers, manufacturers and plant operators. Because
of the lack of adequately trained engineers in the field of traditional welding/
metallurgical engineering, more and more professionals from other disciplines
(such as mechanical and chemical engineers, who will be required to design,
manufacture the components and run the plants) will have to shoulder the
responsibilities of weld design, fabrication and robust operation over the
lifetime of the plant.

Introduction

R K  S I N G H, Monash University, Australia

xv



Introductionxvi

In the planning and development of this book, particular care has been
taken to make the chapters suitable for professionals from other disciplines
who will need to learn and apply the information provided to the welds and
their cracking/failures. Therefore, wherever possible, each chapter provides
short descriptions (either within the main text or in an appendix) of the
traditional metallurgical terminology and/or phenomena.

This book benefits tremendously from the participation of international
experts in complementary topics of welding technology and research. The
chapters deal invariably with the most recent technological advances in the
respective topics while keeping an eye on the other primary purpose of the
book, i.e. to make the chapters suitable for those without formal training in
welding/metallurgical engineering (for the reasons described above).

The book has three parts. Part I aims at providing fundamentals as well as
most recent advances in the areas of welding technology, design and material
selection for preventing weld cracking. This part consists of chapters on
such topics as robust welding technologies, component design against cracking
and selection of crack-resistant stainless steels.

Part II discusses weld crack behaviour, evaluation and repair of cracking/
cracked welds. NDE is the most critical tool for monitoring the health of
welded components as well as their life prediction. The book benefits from
an extensive and robust chapter on the topic of NDE and quality control that
is contributed by one of the strongest non-destructing evaluation and
development groups in the world. There is another chapter on the specialised
use of neutron diffraction in evaluation of residual stresses of weldments.
Chapters on fracture toughness and other common mechanical properties of
welds deal with the role of fundamental metallurgical aspects on these properties
and their evaluation. Some of the sets of data included in these chapters have
been generated over extended testing and are extremely relevant to the
performance of actual welds and their cracking. The chapter on the application
of cellulosic girth welding provides an elaborate fundamental treatment of
the major issue of weld cracking in the millions of kilometres of pipelines of
welded steel structure. Similarly, the chapter on weld repair provides modern
metallurgical approaches for restoration of the cracked welded structure. To
develop an appreciation for the direct industrial relevance of these topics,
Part II includes a chapter on a few typical case histories of weld cracking in
different industrial situations and the systematic engineering and metallurgical
approaches that were adopted to mitigate the problem of weld cracking in
each case.

Part III covers environment-assisted weld cracking. Corrosion in conjunction
with stresses (called stress corrosion cracking, SCC) can lead to catastrophic
cracking. Such failures are particularly severe in the case of welded structures
that are invariably under considerable residual stresses, which can lead to



Introduction xvii

SCC failures if the welds are not suitably stress relieved. Therefore,
environment-assisted weld cracking has received tremendous research and
development attention over the several decades. This part includes an elaborate
chapter on corrosion and corrosion-assisted cracking of steel weldments. It
also has chapters on a modern technique on evaluation of SCC susceptibility,
and on relatively less explored types of corrosion-assisted failures of welds
and the existing research and development potentials.

The editor finds it extremely fulfilling to have been able to receive
participation of a galaxy of experts in the complementary areas of welding
technology, design, evaluation and maintenance. However, special thanks
must go to Indira Gandhi Centre for Atomic Research (IGCAR), a reputable
research centre of Indian Atomic Energy and its distinguished director, Dr
Baldev Raj. IGCAR is possibly the most self-sufficient centre for welding
technology, design and evaluation, having extensive programmes on each of
the areas listed earlier. Dr Raj has been the key factor in encouraging his
colleagues for the participation in this book, and in ensuring that a sound
mechanism was in place for the delivery of the committed chapters.
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3

1
Selection of weld-crack resistant

stainless steels

J  N  D U P O N T, Lehigh University, USA

Abstract: Stainless steel alloys are used in a wide variety of applications
that often involve welding. Depending on the specific alloy type and
composition, these alloys can be susceptible to various forms of cracking
during welding. This chapter provides an overview of the various types of
stainless steels, descriptions of potential cracking mechanisms, and
techniques for avoiding cracking.

Key words: stainless steels, solidification cracking, HAZ cracking, liqud
cracking, hydrogen cracking, primary solidification mode.

1.1 Introduction

Stainless steels are used in a wide range of applications that require good
resistance to corrosion along with various combinations of strength, ductility,
and toughness. Most applications will require fabrication by fusion welding.
Although stainless steels are generally readily weldable, there are some
forms of cracking that can occur during welding that need to be avoided. The
objective of this chapter is to provide an overview of cracking mechanisms
that can occur during welding of stainless steels. A brief description of the
physical metallurgy applicable to various classes of stainless steels is provided
first. The types of cracking mechanisms that are operable in stainless steels
are then reviewed. In this section, particular attention is given to solidification
cracking and heat-affected zone (HAZ) liquation cracking, since these are
the most common problems that need to be avoided. The chapter concludes
with general recommendations for avoiding the various types of cracking
that can occur in stainless steels during welding.

1.2 Types of stainless steels

1.2.1 Martensitic stainless steels

Table 1.1 summarizes compositions of some common martensitic stainless
steels. These alloys generally contain 11.5 to 18 wt% Cr for corrosion resistance.
The strength of these alloys is primarily obtained by an austenitize-cool-
temper heat treatment procedure that is designed to form a tempered martensitic
microstructure with carbides. Additional strength can be imparted due to
solid solution hardening by the presence of dissolved solute elements (such
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Table 1.1 Compositions of some common martensitic stainless steels. All values in weight percent. Unless noted, single value is a
maximum

Alloy UNS no. C Cr Mn Si Ni Other

403 S40300 0.15 11.5–13.0 1.00 0.50 – –
410 S41000 0.15 11.5–13.5 1.00 1.00 – –
420 S42000 0.15 min. 12.0–14.0 1.00 1.00 – –
431 S43100 0.20 15.0–17.0 1.00 1.00 1.25–2.50 –
440A S44002 0.60–0.75 16.0–18.0 1.00 1.00 – 0.75 Mo
CA-6NM – 0.06 11.5–14.0 1.00 1.00 3.5–4.5 0.4–1.0 Mo
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as Ni and Cr), the precipitation of carbides during tempering, and by control
of the prior austenite grain size. Since martensite is the primary strengthening
mechanism, the hardness and strength of these alloys increase significantly
with increasing carbon content. Cold working also provides a significant
increase in strength, but the ductility and toughness are adversely affected,
so this strengthening mechanism is typically not exploited in practice.

The austenitizing treatment is required as the initial step so that martensite
can form from the austenite during cooling. Formation of fully martensitic
structures in simple Fe–Cr alloys is limited to ~ 10–12 wt%. Above this Cr
level, austenite is replaced by ferrite at higher temperatures, thus restricting
the ability to form martensite during cooling. Additions of elements such as
C, N, and Ni are useful in this regard because they widen the austenite phase
field. This permits the addition of higher Cr contents while allowing formation
of a fully austenitic structure at higher temperatures. Unlike low alloy steels,
the relatively high Cr content of these alloys leads to high hardenability, so
that quenching is generally not required to form a uniform martensitic
microstructure during cooling. The as-quenched martensite exhibits very
high hardness and strength, but is usually of insufficient toughness for most
engineering applications. Thus, tempering is required to impart adequate
toughness and ductility (with a concomitant reduction in strength and hardness).

Master tempering curves are often available to correlate changes in
mechanical properties to heat treatment time and temperature. An example
of this for a 12Cr–0.14C martensitic stainless steel is shown in Fig. 1.1 [1].
In this plot, the change in hardness is plotted against a Larson–Miller type

1.1 Master tempering curve for a 12Cr–0.14C martensitic stainless
steel.
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tempering parameter (where T is temperature and t is time). This type of
information permits one to determine various combinations of time and
temperature that produce equivalent results in terms of tempering and resultant
properties. The reduction in hardness occurs due to release of carbon from
the super saturated martensite, which is also accompanied by precipitation
of various carbides. It is worth noting, however, that the tempering temperatures
between 475 and 550 °C are generally avoided in martensitic stainless steels
in order to avoid temper embrittlement. This form of embrittlement produces
a significant reduction in toughness that is associated with segregation of
tramp elements to the prior austenite grain boundaries during tempering.

1.2.2 Ferritic stainless steels

Table 1.2 lists typical compositions of some common ferritic stainless steels.
The presence of austenite stabilizing elements in these alloys is lower than
the martensitic stainless steels and, as a result, these alloys generally remain
ferritic from room temperature up to melting. Thus, they cannot be strengthened
by heat treating. Some alloys can contain minor amounts of martensite, but
most alloys are fully ferritic. Ferritic stainless steels exhibit inferior mechanical
properties compared with martensitic and austenitic stainless steels, and are
susceptible to various forms of embrittlement at service temperatures above
~ 400°C. However, they have good resistance to general and localized corrosion
(e.g. stress corrosion cracking). Thus, these alloys are typically used where
low temperature corrosion resistance, rather then mechanical properties, is
of primary concern.

Ferritic stainless steels are susceptible to several types of embrittlement
phenomena that induce severe losses in toughness and ductility and warrant
brief discussion. These include 475 °C embrittlement, sigma phase
embrittlement, high temperature embrittlement, and notch sensitivity. Alloys
with Cr levels from 15 to 70 wt% can undergo 475 °C embrittlement. This
process is generally believed to be associated with the formation of a coherent
α′ precipitate at temperatures below 550 °C, which is expected from the
miscibility gap that exists in the Fe–Cr system. Alloys aged below this
temperature can form a two phase microstructure that consists of Fe-rich (α)
and Cr-rich (α′) phases. The rate of precipitation increases with increasing
Cr content and increasing cold work. This form of embrittlement can also
reduce corrosion resistance due to selective attack of the low Cr α phase.
The brittle σ phase can form in alloys with 20–70 wt% Cr when exposed to
temperatures from 500 to 800 °C. As with 475 °C embrittlement, the rate of
σ phase formation increases with plastic deformation and increasing Cr
content. Sigma phase embrittlement can be reversed if the alloy is heated
above 800 °C, which results in dissolution of the σ phase.

High temperature embrittlement occurs when alloys are heated above ~



S
election of w

eld-crack resistant stainless steels
7

Table 1.2 Compositions of some common ferritic stainless steels. All values in weight percent. Unless noted, single value is a maximum.
P levels are typically < 0.04, and S levels are typically < 0.03

Alloy UNS no. C Cr Mn Si Ni Other

405 S40500 0.08 11.5–14.5 1.00 0.50 0.60 0.10–0.30 Al
409 S40900 0.08 10.5–11.75 1.00 1.00 0.50 Ti = 6 × C – 0.75
434 S43400 0.12 16.0–18.0 1.00 1.00 – 0.75–1.25 Mo
446 S44600 0.20 23.0–27.0 1.50 1.00 0.75 0.25 N
468 S46900 0.03 18.0–20.0 1.00 1.00 0.50 0.03 N, 0.07–0.30 Ti,

0.10–0.60 Nb
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950 °C. Since this is well above the service temperature of ferritic stainless
steels, this process can occur during processing operations such as casting,
welding, and/or thermo-mechanical processing. The level of interstitial elements
such as carbon, nitrogen, and oxygen, have a strong influence on high
temperature embrittlement. At high temperatures, these elements can be
dissolved. During cooling, their presence can lead to precipitation of Cr-rich
carbides, nitrides, or carbo-nitrides that induce a severe reduction of impact
toughness and increase in the ductile to brittle transition temperature. Even
when ferritic stainless steels can be processed without the three forms of
embrittlement described thus far, they still exhibit notch sensitivity. As shown
in Fig. 1.2, notch sensitivity is a strong function of Cr content and the
combined interstitial level (carbon + nitrogen) [2].

1.2.3 Austenitic stainless steels

Austenitic stainless steels represent the most widely used alloys of all the
stainless steels. This can be attributed to their combination of good corrosion
resistance, ease of fabricability by a variety of techniques (e.g., casting,
welding, and various forming processes), and good mechanical properties.
Table 1.3 lists the composition of some common grades of austenitic stainless
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1.2 Notch sensitivity of ferritic stainless steels as function of Cr
content and combined C + N content. Open circles represent high
impact strength alloys; closed circles represent low impact strength
alloys.
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Table 1.3 Compositions of some common austenitic stainless steels. All values in weight percent. Unless noted, single value is a
maximum. P is < 0.045 and S is < 0.03

Alloy UNS no. C Mn Si Cr Ni Other

304 S30400 0.08 2.0 1.0 18.0–20.0 8.0–10.5 –
308 S30800 0.08 2.0 1.0 19.0–21.0 10.0–12.0 –
309 S30900 0.20 2.0 1.0 22.0–24.0 12.0–15.0 –
316 S31600 0.08 2.0 1.0 16.0–18.0 10.0–14.0 2.0–3.0 Mo
321 S32100 0.08 2.0 1.0 17.0–19.0 9.0–12.0 Ti = 5 × C – 0.70
347 S34700 0.08 2.0 1.0 17.0–19.0 9.0–13.0 Nb = 10 × C – 1.00
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steels. It should be noted that this is only a small list from a very wide range
of commercially available alloys. These alloys are based on the Fe–Ni–Cr
system and generally contain a minimum of ~ 8 wt% Ni that is added to
stabilize the γ-austenite matrix to low temperatures. The influence of Ni is
readily observed from isothermal sections of the Fe–Ni–Cr ternary system
shown in Fig. 1.3 [3]. Austenite (γ) and ferrite (referred to as either α or δ)
are the primary phases that cover most of the temperature–composition space
associated with the Fe–Ni–Cr system. The brittle σ phase can also form at
lower temperatures and higher Cr concentrations. Although the kinetics
associated with formation of the σ phase are typically sluggish, it has been
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typical range of Ni (~ 8–20 wt%) and Cr (~ 15–25 wt%) concentrations
found in many commercially austenitic stainless steels.
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observed in several higher Cr alloys and can compromise both mechanical
properties and corrosion resistance [4]. The small boxes (dotted lines) shown
in Fig. 1.3 represent the typical range of Ni (~ 8–20 wt%) and Cr (~ 15–25
wt%) concentrations found in many commercially austenitic stainless steels.
Note that most alloys will be fully or nearly fully austenitic.

Austenitic stainless steels can exhibit either primary ferrite or primary
austenite solidification modes [5,6]. This can be understood by reference to
the 70 wt% Fe isopleth section extracted from the Fe–Ni–Cr system that is
shown in Fig. 1.4 [7]. The ternary liquidus projection for this system exhibits
a line of twofold saturation that separates primary δ-ferrite solidification
from primary γ-austenite solidification. This line has a slope of ~ 3Cr : 2Ni
on the ternary liquidus projection, and the line is reduced to a ‘eutectic point’
on the isopleth section of Fig. 1.4. Alloys rich in Ni located to the left of the
eutectic will exhibit primary γ solidification, and γ will generally remain
stable after solidification (as previously mentioned, the σ phase can potentially
form in some higher Cr alloys). Alloys higher in Cr located to the right of the
eutectic will solidify as primary δ. However, in most commercial austenitic
stainless steels, this ferrite is not stable with decreasing temperature and can
transform to austenite with continued cooling. Depending on alloy composition
and cooling rate, the alloy may contain some remnant ferrite (either stable or
unstable), or may be fully austenitic.

Although the phase diagrams shown in Figs 1.3 and 1.4 are useful for
understanding phase transformation sequences and potential microstructures,

1.4 The 70 wt% Fe isopleth section extracted from the Fe–Ni–Cr
system.
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