METEORI

PROGRAMMING

For the ORIC-1

CONTENTS

GENERAL PROGRAMS

Leapfrog c v ittt it e e e e e et et e 1
Asteroids 1IN SPaACE v vttt ittt it enennnns 4
OricloCK ittt it et e e e e e e e et e e 6
D AW vt ettt ettt ettt ettt e 10
3D MAZEMAN v vttt ettt e et e eeneeneeneeaenns 15
EDUCATIONAL
Bubble SOort . .i ittt ittt e e e e e e 22
@ A 24
@ 26
@ 28
Sound Aid/Synthesisero. ... 29
MATHEMATICAL
Simultaneous Equationseceeeee.. 35
0 T = 1@ X P 40
BUSINESS
Payroll &t e e e e e e e e e e e e 42

Sales ANAalySis vivieeeeeeeeeenenenenenns 50

ARCADE GAMES

SpacCe ESCaApPe vt v it ittt it teeteeeeneenas 55
@) 111 @ O 59
Freeway Frog ...t in i teeeeeeennn 65
Duck Shoot ...ttt ittt et ettt eee e 74
Alien BlitzZ .. iiii ittt ittt ieeneenenn 78
(0 9@}] 0=l 83
LUuna Landa v vttt neeneeeeeeeeeeneenn 89
Meteor Stormttt ittt eeneenenn 94
Eliminator v .v it ettt ettt ettt eeeean 102
ORIC INVAder S vttt e teneeeeeaeneeas 110
North Sea Copteriii it enen.. 117
Adventure .. .i ittt i e e e e e e 123

UTILITY PROGRAMS

ORIC=1735 BASIC ittt ittt ettt eeenaeenn 138
Machine Code Monitoreeueene... 144
Renumberttt ittt ittt ee e 149
Token Tablettt teieeeeen. 163
Block Line Deletionuuueueeeennen. 166

Graphics Adld . .i ittt ittt it et eeeenn 173

METEORIC
PROGRAMMING

For the ORIC-1

METEORIC

For the ORIC-1

JOHN VANDER REYDEN

MELBOURNE HOUSE

]
=
L |

First Published in the United Kingdom
by Melbourne House

This Remastered Edition
Published in 2022 by
Acorn Books
acornbooks.uk

Copyright © 1983, 2022 Subvert Limited

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means without the
prior written permission of the publisher, nor be
otherwise circulated in any form of binding or cover
other than that in which it is published and without
a similar condition being imposed on the subsequent
purchaser. Any person who does so may be liable to
criminal prosecution and civil claims for damages.

All trademarks remain the property of their respective
owners.

This book 1is a page-by-page reproduction of the
original 1983 edition as published by Melbourne House.
The entirety of the book is presented with no changes,
corrections nor updates to the original text, images
and layout; therefore no guarantee is offered as to the
accuracy of the information within.

Publisher’s Note

In keeping with our ongoing commitment to provide both
literature and software for personal computers,
Melbourne House is very proud to be able to publish this
book of games and general routines for the Oric-1.

You will find complete program listings, comprehensive
structures and useful hints on each program. We have
taken care to design the format in such a way that the
programs will be easily read, to reduce the possibility
of transcription errors, especially with the graphics
characters.

After working through this book, I think you will agree
that the programs should set the standard by which
future programs for the Oric-1 will be judged by.

I know you will enjoy not only the programs themselves,
but also the insight you will gain about programming
the Oric-1.

Melbourne House are not just publishers - we are
dedicated to microcomputer software, and we are always
interested in your feedback: If you have an article or
program that you think might be of value to other
users we want to hear from you.

Until I hear from you, let me just wish you happy

w\ﬂ} -

ALFRED MILGROM
PUBLISHER

AARAAAAAARAAAAAAAAAARAA A AN A A AR A RN ok

SPECIAL NOTE

You may have noticed that the listings in the
book don't look exactly like the listings you
normally see on your screen.

T T T T TSN

% When a program is listed or printed out on
®* the ORIC the keywords are all compressed.
% The problem with this is that it makes it
% very hard for anyone to read the program,
* and harder still if you have to read a
% part of a line, key it in, and still know
:exactly where you were in the program line.
To overcome this problem and make it easier for
% you to key the listings in we have inserted
* spaces on either side of all colons(:),
semi-colons(;), and commas(,) as well as any
% other places where there could be difficulty
* in reading the listing. For example, a
» normal listing would look like this:
¥ 10 CURMOVSG, 0, 3:PRINTA$; “—"3;
% The same line in the book would look like this:
» 10 CURMOVS , O , 3 : PRINT A% ;5 "-" ;
% When you key the programs in you should not
% key any spaces in other than where they occur
*within quotation marks.
»
¥ 1f you find that you can't enter a whole line
% 80 back and check that you have not entered
:any spaces that should not be there.

:Where the number of blank spaces inside of

% quotation marks is critical or not easily

* determined we have noted the number of spaces
:thus: @

»

L2 £ 8288882828322 232328232323222222323¢23282¢%1

PSS SIS TSR YRS TR RETE TR E S E TN

Notes for Programmers

The following notes are meant to be read by all persons using the programs
in this book. Some are just tips from our own experience and some are
things that you won't find in the manual.

KEYBOARD SCANNING

As you may know the KEY$ function on the ORIC does not allow for the keys
to repeat (i.e. to get KEY$ to recognize a key more than once you must
release the key and press it again). This is not very useful for games
where you are trying to move and fire your ship (or whatever). You can
overcome this problem by peeking a location in ORIC's memory which changes
according to the key being held down. The memory location is 520 decimal.

The following table may save you some trouble.

CHARACTER PEEK (520) ASCII
172 8
188 9
180 10
156 11

space 132 32

null 56 error

See also Sound Aid (Play mode) for an advanced method of keyboard scanning.

CONTROL CHARACTERS

Control characters are used to determine the mode of certain operations
such as Caps lock, keyclick, double height, etc. The only problem with
control characters is that they toggle. This means that if a program

uses a control character, and the program is re-run, then the control will
toggle to its unwanted state. To overcome this, you can poke a value
directly into the memory location which controls these modes. This location
is 618 decimal. The most common setting is Cursor-off and keyclick-off.
This is achieved by the statement POKE 618,10. Other values may be found

by setting the states using control characters then typing PRINT PEEK (618)

USING CURMOV

You cannot use CURMOV without first having set CURSET.

ix

ERROR MESSAGES

If you crash a program and can't see/read the error message just type
Paper (n). The screen goes back into text mode and displays the error.

CURSOR POSITION

You may find, when programming, that printing numbers on the screen with
the PLOT command can be messy or you may find it difficult to position an
INPUT statement. These and other problems can be overcome with the ability
to position the PRINT cursor anywhere on the screen and using the PRINT
statement.

The programming method is as follows:

POKE 616, vertical position

PRINT

POKE 617, horizontal position

PRINT anything

Using the same principle a downward screen scroll may be achieved as
follows:

FOR K = 1 to 25

POKE 616, 255

PRINT

NEXT K

CSAVE

We recommend that you save all the programs before running them. To be
on the safe side, and to make sure you don't have to start keying in
again, we advise you to use the slow rate. Once you have a "slow'" master
copy then make a fast one for normal use.

STR$ FUNCTION

When using this function don't forget that the first character in the
string will be used for the sense (+, -) of the numerical value. This
can also affect the colour used if you print the string.

e.g. STR$ (B)= "STX 8'"= 2 characters

Leapfrog

You have had | MOUES
Flease anter Your mouve

This game makes a good mind exercise. The idea is simple. Move all the
frogs from the left side to the right side and vice-versa by hopping over
only one frog at a time. If you succeed, see if you can do it again in
less moves.

STRUCTURE

FUNCTION
Initialization
Display set-up

Prompt for move

Test if move valid
Move frogs

Game-end routine
Position-INPUT routine
Create frog characters

Frog character data

VARIABLES

Al$ = Left set of frogs
A2$ = Right set of frogs

CN = Move-counter
Bl1$ = Frog being moved

B2$ = Frog being replaced

k$ = Input from player

LINE(s)
100 - 170
180 - 220
240

250 - 280
300 - 330
350 - 410
420 - 450
430 - 520
460 - 490

100
110

130

140
150

160
170
180

190
200

210

230
240
250
260
270
280

480
490

910
920

PAPERO z INK2
GOSUB 430
A1$=CHR$ (2)+"AB " 31 Al1$=A1$+A1S$+A1S+AL1$+" "

Al1$=A1$+CHRS (3)+"AB "+CHR$ (3)+"AB "+CHR$ (3)+"AB

“+CHRS$ (3) +"AB"

A2$=CHR$ (2)+"CD " 1 A2$=A2$+A2$+A2S+A2$+" "
A2¢$=A2¢$+CHRS (3) +"CD “+CHR$ (3) +"CD -+CHRM3)+"CD
"+CHR$ (3) +“CD"

Bis=Al%$ 1 B2¢=A2$

CN=0

CLS t PLOTS , 23 , "1 2 3 4 S & 7, 8

9'.

PLOT1 , 20 , Bis ; PLOT1 , 21 , B2¢ @

IFLEFT$(Bl$% , 135)=RIGHT$(Al$, 15)ANDRIGHTS (Bl1s$,
15)=LEFTS$(Al¢$, 15) THENGOTO350

PLOT1 , B , " You have had”"+STR$(CN)+" moves"
PLOT1 , 10 , "Please enter your move "
60SUB420

INPUT K$

IF LEN(KS$)<>2THENGOTO210

FR=48% (ASC(LEFT$(K$, 1))-49)+1

TR=4% (ASC(RIGHT$(K$, 1))-49)+1

IF(MID$(B1% , TR ,

1)<>" "ORABS (TR-FR) >8) THENGOTO0210

CN=CN+1

B1$=LEFT$(Bl¢ , TR-1)+MID$(B1¢ , FR ,

3)+MID$ (B1s$, TR+3)

B2¢=LEFT$(B2¢% , TR-1)+MID$(B2¢ , FR , 3)+MIDS$(B2s%

, TR+3) @
Bi1$=LEFT$ (B1$, FR-1)+" | “+MID$(B1§ , FR+3)

B2$=LEFT$ (B2 , FR-1)+" “+MID$(B2$, FR+3)

60T0190

PLOTS , 8 , "You did it in"+STR$(CN)+" MOVES"
PLOT1 , 10 , " Do you want another go? .
GOSUB420

GETKS

IF K$="Y"THENGOTO160

IF K$<>“N"THENGOTO360

CLS : END

POKE&618 , 10 : POKE616 , 10 31 PRINT : POKE617 ,
26 3 POKE618B , 3 : RETURN

FORI=46600T046631

READX : POKEI , X

NEXTI

DATA1 , 19 , 53 , 39 , 63 , &3 , 23 , 3

DATA32 , 50 , 43 , 57 , 63 , 63 , 58 , 48
DATA3 , 3 , 39 , 55, 20, 8, 0 , O

DATA48 , 48 , 57 , 59 , 10 , 4 , O , O

PLOT1 , 20 , CHRS$(9)

PLOTO , 21 , CHR$(9)

RETURN

where the number of blank spaces inside of quotation marks is critical or not easily determined

we have noted the number of spaces thus:

Asteroidsin Space

You are travelling through space when you encounter a space storm. You
must avoid the asteroids by moving left and right using the "&' and ""
keys. After some time you end up in the heart of the storm and you must
negotiate your way between much larger asteroids. Eventually you will
crash, when you do you will be given a survival rating.

HOW THE PROGRAM WORKS

This program uses the PRINT function to scroll the screen upwards. When
the display is scrolled, your ship will move with everything else, so it
is overwritten with spaces then printed again in the correct position. In
this way your ship stays on the same line while everything else moves. The
creatures and space ships appear randomly at the bottom of the screen. The
screen is scrolled two lines each cycle so that there are not too many
obstacles on the screen at any one time.

IMPROVING THE PROGRAM!

The program has been kept deliberately simple to enable you to improve it.
Firstly, you can create more stages using the user defined character set
on the Oric. The test for the second stage is in line 270. Secondly, more
sound could be included, if only to slow the program up somewhat. You can
slow the program by changing the length of the notes in your sounds.
Thirdly, you could include the option to fire at the objects on the
screen, adding their values to your score, and so on!

4

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

260
270

290
300
310

320
330
340
3350
360
370
380
390
400
410

420

430
440
450
460
470

490
S00
510
520
330

REM % ASTEROIDS x

REM

PAPERO 3 INK7 : CLS

PRINT CHR$(17)

PLOT 15 , 2 , "FIND THE GAP...."

PLOT 15 , 3 , "ASTEROIDS IN SPACE"

FOR J=35 TO 38

FOR I=0 TO 7

READ K

POKE 46080+I+(J%8) , K

PLOT P, X , "&"

NEXT I

NEXT J

n‘=u’n

N=0

T=1

P=19 : X=10

R=INT(RND(1) 235)+3

PLOT R-1 , 26 , CHRS(INT(RND(1)%7)+1)
PLOT R , 26 , AS

PLOT P , X-2 , * *

PLOT P, X , "&" 3 PLOT P-1 , X , CHR$(2) :
PLOT P+1 , X , CHR$(0)

N=N+T

IF N=100 THEN As$="¢$X"

IF N=104 THEN T=2

PLOTP , X-1 , " ¥

PLOT P , X , "&"

IF SCRN(P , X+2)<>32 THEN 450

IF SCRN(P+T , X+2)<>32 THEN 450

IF SCRN(P-T , X+2)<>32 THEN 450

X$=KEY$

IF X$="W" THEN PLOT P , X , " " 3

P=P-T 31 IF P<3 THEN P=37

IF X$="E" THEN PLOT P , X , " " : P=P+T :
IF P>37 THEN P=3

PRINT : PRINT

GOTO 270

EXPLODE

PRINT"your survival rating ";N

PRINT CHR$(17)

PRINT"do you want another game , Y/N" :
INPUT A$: IF A$="Y"THEN RUN

DATA 45 , 45 , 30 , 6t , 51 , 30 , 33 , &3
DATA 36 , 34 , 35, 63 , 63 , 35, 34 , 34
DATA 9 , 17 , 49 , 63 , 63 , 49 , 17 , 9
DATA 31 , 21 , 31 , 4, 31 , 4, 10, 17
END

Oriclock

This program is a simulation of a REAL TIME CLOCK. The clock has alarm
facilities and ticks away for as long as you like to leave it. The alarm
is bound to wake you (by driving you mad). If you find it is still not
loud enough then increase the volume if you wish.

The clock is not extremely accurate as it uses the computer's "wait"
instructions. You can adjust this wait statement to tune the clock's
accuracy though it will always tend to vary in cycle time. The clock will
stop on alarm, this is unavoidable.

The Oriclock is not meant to replace your clock but is a demonstration
program with visual appeal and purpose. If anyone knows how to (if it is
possible) get access to the frames controller (sends picture "frames" to
video output) we would like to know as this will provide a stable
oscillator to use to control the clock's accuracy.

HOW TO RUN THE PROGRAM

Type RUN followed by (ENTER) to start the program after having loaded it.
You will need to enter the HOUR (12 or less), MINUTE and SECONDS at which
you want the clock to start. The program checks the validity of your input
to prevent you from entering wrong data. You will also be asked if you
wish to set the alarm, to do so you enter the values you require in the
same format as above.

ORICLOCK STRUCTURE:

INITIALIZATION:

1. Display clock-face.

2. Input hour, minute and seconds.

3. If alarm set;

4, Set alarm hours, minutes and seconds.
5. Initialize starting time.

THE MAIN LOOP:
H. Determine hour hand position
M. Determine minute hand position
S. Determine second hand position
Draw second, minute hour hands
Display clock face
If alarm time matches real time then alarm rings
Wait 1 second
Re-initialize time
Draw over second hand
If same minute then goto S:
Draw over minute hand
If same hour then goto M
Draw over hour hand
Goto H

HOW THE PROGRAM WORKS:

Sin and Cos functions are used to draw the clock hands. The second hand is
moved every second, the minute hand every minute and the hour hand every
12 minutes.

CONSIDERATIONS:

Due to the fact that the clock is only using the '"wait'" instruction for
timing, the clock is not very accurate. Therefore to get any reasonable
accuracy. It would be necessary to divide into the clock timer chip within
ORIC.

Line 1160 would then become:

1160 IF INT (TIMER/FREQ) { = O THEN 1160

where freq = 50 or 60 i.e. frequency of mains

S5 REM % ORICLOCK %
10 CLS 3 PAPER1 : INKO 1 N=1 1 T=30
20 GOTO 3000
1000 REM CLOCK MOVE
1005 PAPER1 : INKO
1020 IF HI=60 THEN HI=0
1040 H=HISC
1050 HX=408%SIN(H) : HY=—40%COS (H)
1060 IF MI=60 THEN MI=0 3 HT=HT+1
1065 IF HT=24 THEN HT=0
1070 M=MISC
1080 MX=603SIN(M) 3 MY=—408COS (M)
1090 A=SIsC
1100 SX=723SIN(A) 1 SY=-728CO0S (A)
1110 REM DRAW HANDS
1120 CURSET 119 , 96 , 3 :+ DRAW 8X , 8Y , 1
1130 CURSET 119 , 96 , 3 1 DRAW MX , MY , 1
1140 CURSET 119 , 96 , 3 : DRAW HX , HY , 1
1155 IF(AL=1 AND HT=AH AND MI=AM AND SI=AS) THEN 2000
1157 N=7-N
1158 PLAY1 , 0 , 1 , 100 s MUSIC1 , 4 , N, S ¢t PLAYO
sy 0, 0,0
1160 WAIT(T)
1210 CURSET 119 , 96 , 3 1 SI=SI+1 : DRAW 8X , SY , 2
1220 IF SI=60 THEN SI=0 ELSE 1090
1230 CURSET 119 , 96 , 3 1 MI=MI+1 s DRAW MX , MY , 2
1240 IF (MI-INT(MI/12)312)=0 THEN HI=HI+1 ELSE 1060
1250 CURSET 119 , 96 , 3 1 DRAW HX , HY , 2
1260 GOTO 1020
2000 PING
2010 AD$=KEY$
2020 IF AOs$=" " THEN 1210
2025 WAIT 100
2030 60TO 2000
3000 REM SET CLOCK
3030 P1=3.14159 : C=P1/30
3040 HIRES : CURSET 119 , 96 , 3 1 CIRCLE 90 , 1
3050 FOR I=1 TO 12
3060 @=I/6%P1
3070 CURSET 118+808SIN(Q) , 92-80%COS(@) , 3
3080 IF I<10 THEN CHAR 48+1 , 0 , 1 1 GOTO 3120
3090 IF I=10 THEN CHAR 49 , O , 1 1 CURMOV & , O , 3 :
CHAR 48 , 0 , 1 3 GOTOD 3120
3100 IF I=11 THEN CHAR 49 , O , 1 : CURMOV &6 , O , 3 1
CHAR 49 , 0 , 1 : GOTO 3120
3110 CURMOV-S , O , 3 1 CHAR 49 , O , 1 1 CURMOV 6 ,
0, 3:CHAR SO, 0, 1
3120 NEXT 1
4000 INPUT"HOUR. "3HT
4010 IF HT<O OR HT>24 THEN 4000
4020 INPUT*MINUTES"jMI
4030 IF MI<O OR MI>&0 THEN 4020
4040 INPUT"SECONDS"3SI

4050
4060
4070
4080

4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230

IF SI<O OR S1>60 THEN 4040

IF HT>12 THEN HT=HT-12 ELSE HI=HT
HI=HIS®S+INT (MI/12)

CLS : PRINT"DO YOU WANT TO SET THE ALARM."
PRINT" (Y OR N)"

INPUT A$

IF A$<>"Y" AND A$<>"N" THEN 4090
IF A%$="N" THEN AL=0 : GOTO 4190
AL=1 : CLS

INPUT"ALARM HOUR. “; AH

IF AH<O OR AH>24 THEN 4130
INPUT"ALARM MINUTES. ";AM

IF AM<O OR AM>60 THEN 4150
INPUT"ALARM SECONDS. "3AS

IF AS<0 OR AS>60 THEN 4170

REM DISPLAY TIME

PRINT : PRINT

PRNT"ORICLOCK."

GOTO 1000

END

